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Portfolio Analysis Considering
Estimation Risk and Imperfect

Markets

Bruce L. Dixon and Peter J. Barry

Mean-variance efficient portfolio analysis is applied to situations where not all assets are
perfectly price elastic in demand nor are asset moments known with certainty. Estimation and

solution of such a model are based on an agricultural banking example. The distinction and

advantages of a Bayesian formulation over a classical statistical approach are considered. For
maximizing expected utility subject to a linear demand curve, a negative exponential utility
function gives a mathematical programming problem with a quartic term. Thus, standard
quadratic programming solutions are not optimal. Empirical results show important differences
between classical and Bayesian approaches for portfolio composition, expected return and mea-
sures of risk.

This paper extends the mean-variance
model to account explicitly for the possi-
ble effects of including an asset traded in
an imperfectly competitive market on the
composition of an expected utility maxi-
mizing portfolio. An imperfect asset is
characterized by dependence between the
asset's rate of return and its level of hold-
ing in a portfolio. Furthermore, an asset's
risk is attributed to two sources: the actual
random deviation of an asset's return from
its mean (market risk) and uncertainty
about the true values of the asset's mean
and variance (estimation risk). The result-
ing portfolio problem is illustrated for a
small agricultural bank; however, the gen-
eral modelling approach holds for a wide
range of portfolio problems.

Below, we review literature about port-
folio analysis considering estimation risk
and imperfect markets. An illustrative
problem with three assets is specified al-
gebraically, where two of the assets are
risky. Optimal portfolios for the banking
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problem are derived using non-linear pro-
gramming; then portfolio responses to se-
lected parameter changes are evaluated.
The programming results show the effects
of estimation risk with imperfectly elastic
assets are not trivial and warrant further
consideration in more comprehensive em-
pirical models.

Related Studies

Combining the effects of risk and mar-
ket imperfections in micro models is a de-
manding task (Baltensperger). Mean-vari-
ance (EV) portfolio theory provides one
modelling approach, but it was originated
by Markowitz under the assumption that
assets are traded in perfectly competitive
markets. However, studies by Klein and
James have considered the theoretical im-
plications for risk efficient sets of includ-
ing assets traded in imperfect markets.

Klein's approach used a banking situa-
tion to derive an equilibrium ratio of loans
to total assets under expected utility max-
imization, where utility was expressed by
a quadratic function. The optimal loan-
to-asset ratio explicitly accounted for
lending risks, differences in loan demand,
and-differences in demand elasticities, un-
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der the assumption of a linear demand
function. That is, the rate of return on
loans was a linear function of the amount
lent. An important result was the loss in
applicability of Tobin's separation theo-
rem; the optimal combination of risky as-
sets, relative to holding a risk-free asset, is
no longer independent of the utility func-
tion. If one of the risky assets (loans) has
less than perfect elasticity, then the ex-
pected return on loans depends on the
amount of risky assets relative to the risk-
free asset, which in turn requires knowl-
edge about the bank utility function
(Klein, p. 494).

James extended Klein's analysis to show
the relationship between risk and return
in a portfolio model with an imperfect,
risky asset. James' formulation minimizes
the portfolio variance subject to a speci-
fied expected income level, where at least
one of the assets is traded in an imper-
fectly competitive market. His analysis
shows that introducing market imperfec-
tions (specified as a monopoly position),
subject to a downward sloping demand
curve, does not affect the upward slope of
an EV efficient set; the set is still concave,
but not necessarily linear as in the purely
competitive case. Moreover, the differ-
ence between the expected return on the
imperfect asset and a risk-free asset is ex-
pressed as the risk premium from the cap-
ital asset pricing model plus a monopoly
premium determined by the demand
elasticity. An interaction between the risk
and monopoly premiums brings greater
risk from expanded holdings of the im-
perfect asset.

In James' study the mean and variance
of the assets' returns are assumed known,
as is the case in the Markowitz derivation
of the mean-variance frontier. However,
a number of studies have suggested ap-
proaches to the portfolio problem, for
competitive assets when the moments of
the distributions are not known with cer-
tainty. Fried considers the use of linear
regression models to predict the mean re-

turn of an asset, given the value of rele-
vant exogenous variables. He observes that
the variance associated with an asset's
forecasted return has two parts, one rep-
resenting the uncertainty about the true
value of the regression coefficients (esti-
mation risk) and the other due to the vari-
ation of the stochastic error term (market
risk). Berck employs Fried's methods in a
portfolio model for cotton producers.

Other studies have focused on estimat-
ing the moments of asset returns from
sample observations. Frankfurter, Phil-
lips, and Seagle give Monte Carlo results
showing the possible problems of using
point estimates in place of population pa-
rameters. Barry observes the increase in
the variance of predicted returns for op-
timal portfolios when estimation risk is
considered. Jobson and Korkie derive the
approximate sampling distribution of the
estimators for the return and variance of
an optimal portfolio when normally-dis-
tributed assets have unknown moments.

Klein and Bawa follow a Bayesian ap-
proach to maximizing expected utility
when the population parameters are un-
known. In this case, the predictive distri-
bution of an asset's returns combines any
priors the decision maker may have about
the population parameters with the sam-
ple data via Bayes formula. Using two
normally-distributed assets and a qua-
dratic utility function, Klein and Bawa
show that estimation risk changes the op-
timal portfolio substantially for small sam-
ples.

Summarizing, past research has treated
the following: a) theoretical problems of
banks facing a downward sloping demand
for loans; b) the general problem of deriv-
ing a mean-variance efficient portfolio
when at least one of the assets is traded in
an imperfectly competitive market; and
c) the problems of deriving efficient port-
folios for competitive assets when the mo-
ments of the distributions of asset returns
are unknown. In the next section we in-
troduce the portfolio problem when one
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ot the assets in the choice set is traded in
an imperfectly competitive market and is
subject to estimation risk.

Theoretical Framework

We illustrate the effects of an imperfect
asset on an optimal portfolio for a risk
averse banker under the assumptions that
the returns are normally distributed and
the utility function is expressed by the
negative exponential U(II) = 1 - e-

where II is the return from investment and
p is the degree of risk aversion. The ex-
pected value of a negative exponential
function integrated over a normal density
function for II is

E[U(I)] = E(I-) - pa (1)

where E(II) and ar are a portfolio's ex-
pected return and variance, respectively
(Freund). Thus, maximizing E[U(n)] is
equivalent to maximizing E(II) - pa. We
select the negative exponential because of
its plausible use in empirical studies and
well behaved algebraic properties. It has
the property of constant absolute risk
aversion. As shown below, this portfolio
problem requires iterative solution tech-
niques, even with a simple algebraic form.
Also, iterative solution of the problem over
a grid of values for p yields the EV (mean-
variance) frontier.

The bank may allocate a fixed amount
of funds (Y) among three assets. Asset X1
is a risk-free asset with return r1. Asset X2
is a risky asset traded in a competitive
market with return r2 = R2 + e2 , where R2
is the mean of r2 and e2 is a random vari-
able with mean zero and variance oa. Asset
X3 is a risky asset traded in an imperfect
market, subject to a linear demand func-
tion, so that its return is r3 = A + BX3 +
e3. 1 The parameters A and B are assumed
to be unknown population constants and

'A negative slope coefficient (B) is anticipated for
loan demand; however, requiring B < 0 is not nec-
essary to satisfy the second order maximization con-
ditions.

e3 is a random variable with mean zero
and variance r2. A linear equation for r3
is used for simplicity and to permit linear
regression techniques in the empirical
analysis. 2

The traditional approach for selecting
EV efficient, or expected utility maximiz-
ing, portfolios is to replace the parameters
in (1) with their point estimates and then
maximize (1) with respect to the asset
levels. However, this approach tends to
underestimate portfolio risk by ignoring
the error in estimating the unknown pa-
rameters. This estimation risk is in addi-
tion to the market risk generated by the
variability of e2 and e3.

A Bayesian approach, employed by Klein
and Bawa, is used here to maximize the
expected value of (1). Maximization oc-
curs in two steps. First, the predictive dis-
tribution of the returns is obtained by in-
tegrating the distribution of the returns,
given the parameters, over the posterior
density of the parameters. That is, the
predictive distribution of r2, g(r2 ), is:

g(r,) = f(r, I R2 )p(R2)dR 2

where p(R2) is the posterior density of R2
and f(r2 lR) is the density of r2 given R2.
Second, expected utility is maximized by
using g(r2) as the distribution of r2. The
optimal portfolio is thus derived in accor-
dance with Von-Neumann-Morgenstern
axioms (Klein and Bawa).3

2 The models for r2 and r3 need not be as simple as
they appear. R2 and A can be both linear and non-
linear functions of exogenous variables, but not a
function of the Xi. Forecasting models based on ex-
ogenous variables are discussed by Fried.

3 The difference between classical and Bayesian
methods can be illustrated for a risky, competitive
asset. Under traditional methods X2 would have a
population mean equal to the sample mean, Fr, and
variance equal to the unbiased estimate of 2a, sl.
Using Bayesian methods, and assuming normality
and a large sample, r2 has approximately a normal
distribution with mean r2 and variance s2(1 + l/n)
where n is the sample size. Thus, including esti-
mation risk increases the variance of r2 which is
what one intuitively expects.
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Given the expository purposes of this
study, the predictive distributions of r2 and
r3 are assumed to be normal. Thus, the
expectation of the negative exponential
can be evaluated in terms of mean and
variance. The assumption of normality is
not necessarily unrealistic. Considerable
evidence indicates that distributions of re-
turns on financial assets are not normal.
However, if these returns are adjusted for
predictable effects of exogenous forces,
then the normality assumption becomes
more tenable, as discussed in Fried (p.
553). The decision maker is assumed to
have diffuse priors on the unknown pa-
rameters.

To complete the analysis, it is also as-
sumed e2 and e3 are independently dis-
tributed.4 Thus the predictive distribution
for r2 in large samples is approximately
normal with mean r2, the sample mean,
and variance s2(1 + l/n), where n is the
sample size and s2 is the unbiased estimate
of oj. For r3 the predictive distribution of
r3 in large samples is approximately nor-
mal with mean a + bX3. If no exogenous
variables other than X3 influence r3, then
a and b are derived by regressing r3 on X3
and an intercept term.5 The variance of
the predictive distribution of r3 is [1
X3]SAB[1 X3] + s2 where sj is the unbiased
estimate of r-2 and SAB is the covariance
matrix of A and B. Clearly, the means and
variances above are identical to those giv-
en by classical least squares for a forecast
of the dependent variable and the vari-
ance of the forecast. Technically the pos-

4 If e2 and e3 are not distributed independently then
one is faced with deriving the posterior distribution
for a set of seemingly unrelated regressions. The
independence assumption seems reasonable here
because the market for a bank's imperfect asset is
likely local, while the markets for competitive assets
are likely national or international in scope.

5 If other independent variables were used in the
regression for r3, then the estimated coefficients
would be multiplied by the projected levels of their
independent variables for the future period and
summed to give A. Corresponding adjustments
would have to be made to get SAB.
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terior distributions are of the student "t"
form; however, for large samples the t is
closely approximated by the normal. Giv-
en X3, the forecasted mean return for X3r3
is aX3 + bX2, and the forecast variance,
X3 times the variance of r3, which, given
the properties of matrix multiplication, is
X3([1 X3]SB[1 X]' + s2)X 3 = [X3 X X]SAB[XS XI] + X2s2

Or, in scalar algebra,
X3sA + 2X3SAB + X3sB + X3S3

where S2, s2, and SAB are the posterior vari-
ances of A and B and the covariance of A
and B, respectively. Under these specifi-
cations, maximizing the negative expo-
nential for the three asset case requires
maximizing J where

J = r1X + f2X2 + aX3 + bX3

(2)- [S2X 2 + s3X3 + S2/X2

+ s2X + 2sABX + sXj- s^X
3
+ 2SBX3 3

subject to

X, + X2 + X3 < Y XI, X2, X3 > 0.

The variance of the expected return is
the sum of the bracketed expression in (2).
The first two terms are the traditional
variances in EV analysis. The next two
terms account for error in estimating R2
and A. The last two terms are attributed
to the imperfect asset. The cubic term re-
flects correlation between the slope coef-
ficient and the intercept of the return
equation for the imperfect asset. The vari-
ance of B is multiplied by a quartic term.
Thus, the imperfect asset with a linear re-
turn and uncertain parameters results in
a portfolio model that is solved by quartic
programming. If, however, the slope of
the return function is known with certain-
ty, the model is solved by quadratic pro-
gramming. Thus, the requirement for
quartic programming is based on uncer-
tainty about the elasticity of the imperfect
asset.

Empirical Relevance of Estimation Risk

A fair question in empirical studies is
whether estimation risk is relevant com-
pared with market risk, particularly if
sample sizes are large, say in excess of
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thirty observations. The answer hinges on
the structure of the regression model. If
r2's value is not conditioned by any exog-
enous variables, then the estimation error
of R2 is roughly of order 1/n compared
with market risk. It can be ignored for
large samples. The traditional and Baye-
sian approaches will give essentially the
same answers. If, however, r2 is condi-
tioned by exogenous variables, then the
comparative magnitude of the estimation
error may not dissipate as quickly as when
r2 is explained only by a constant popu-
lation mean. This is particularly true if the
values of the exogenous variables for which
r2 is being forecasted differ substantially
from their sample means. The reduction
in estimation risk from larger samples may
be more than counterbalanced if the levels
of the exogenous variables for the forecast
period are far from their sample means.

This argument is stronger for an im-
perfectly elastic asset. While the variance
of the intercept, which may include any
number of shifters, is multiplied by the
squared level of the asset, the variance of
the slope coefficient is multiplied by the
fourth power of the asset level. Thus, even
though a larger sample size may increase
parameter precision, the overall risk effect
may be substantial, particularly if the op-
timum level of the imperfectly elastic as-
set is substantially different from its sam-
ple mean.

In empirical analysis the relevance of
estimation risk compared with market risk
will depend on the sample data and char-
acteristics of the problem. In this paper
we examine the relevance issue in detail
in order to gain further insight about the
importance of estimation risk.

Programming Analysis

The effects of risk and market imper-
fections are evaluated in a nonlinear pro-
gramming analysis of the three asset case
with solutions for five levels of risk aver-
sion under various specifications of the pa-
rameters in equation (2).6 The setting is a
small agricultural bank with $6 million of

funds (Y) available to invest in risk-free
treasury bills (X1) having a 5 percent an-
nual return, corporate securities (X2) hav-
ing an estimated expected annual return
of 5.714 percent and an estimated popu-
lation variance of 0.3322, 7 and farm loans
(X3) having an expected return of

r3 = 8.024 - .07546X3

(.230) (.0274)
(3)

with standard errors in parentheses. Using
these returns, optimal portfolios are de-
rived for a static problem. A dynamic
model, while more realistic, could tend to
obscure the effects of the two sources of
uncertainty.

The parameters of the loan demand
function were estimated from a sample of
agricultural banks, which included annual
data on amounts lent and interest rates on
farm loans over the 1972 to 1979 period
(Barnard). The constant term in (3) is the
sum of an intercept term plus six inde-
pendent variables evaluated at their sam-
ple means multiplied by the respective es-
timates of their coefficients. 8 The results

6 The solutions were obtained using a non-linear op-
timization package called Generalized Reduced
Gradients by Lasdon et al. Convergence was ob-
tained when the Kuhn-Tucker conditions were sat-
isfied to within .001.

7 The rate of return of 5.714 was computed as the
sample mean of 52 observations on the one-year
U.S. Treasury Bill rate for 1977. Thus, the variance
due to estimation is (1/52)(.3322)= .0064, an al-
most negligible proportion of the asset's total risk.

8 The regression equation from which (3) is derived
regressed observed r3 on six independent variables,
an intercept term, and X3. The posterior covariance
matrix for these parameters is assumed equal to the
generalized least squares estimate of the covariance
matrix of the generalized least squares estimator of
the unknown coefficients. To get the vector [A B],
we simply multiplied the estimated coefficient vec-
tor by the matrix

z1, z, , Z2, , Z6,
0, 0, . . . , 0, 1 J

where the zi are the forecasted values of the six
independent variables. To get SAB, the estimated co-
variance of the coefficients was premultiplied by
the above matrix and postmultiplied by its trans-
pose.
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TABLE 1. Optimal Portfolios for the Base Problem.

Varianceb
Activity Levels

Risk Activity LevelsMean Net Market Estimation Total
Coefficient X, X2 X3 Returna Risk Risk Risk

A. Estimation Risk Included

(P)
0.0 0.0 0.0 6.0 45.4 18.5 2.07 20.6
50 0.0 1.91 4.09 42.5 9.83 .863 10.7

100 2.58 1.05 2.37 37.5 3.25 .278 3.53
150 3.63 .692 1.68 35.4 1.61 .140 1.75
200 4.22 .527 1.26 34.1 .907 .080 .987

B. Estimation Risk Excluded

(P)
0.0 0.0 0.0 6.0 45.4 18.5 2.07 20.6
50 0.0 1.69 4.31 42.8 10.5 .960 11.5

100 2.37 1.07 2.56 38.0 3.76 .324 4.08
150 3.50 .717 1.78 35.7 1.81 .158 1.96
200 4.10 .538 1.37 34.4 1.06 .094 1.15

a Mean net returns are computed as gross return less the initial six million of investable funds, measured in
units of $10,000.

b Measured in $10,0002.
Source: computed.

show a highly elastic demand for farm
loans.

The regression results reported in (3) are
for a sample of 67 banks, with data col-
lected over a seven-year period, certainly
not a small sample by most standards.
Nonetheless, the ratio of estimation risk
for A to market risk is about 10 percent.
This is probably the minimum ratio for
these data since the demand shifters were
set at their sample means. Indeed, if the
problem were being solved for ex ante ac-
tions, the values of the exogenous vari-
ables that are incorporated into A would
be set at their projected levels. These levels
could differ substantially from their sam-
ple means, thus increasing the importance
of estimation risk.

Based on these data, the optimal port-
folio of bank assets results from the max-
imization of

1.05X- + 1.05714X2 + 1.08024X3

- 0.0007546X3 - p(10-4)
[.3322X2 + .5151X3 + .006388X2

+ .05313X3 - 2(.001909)X3 + .0007539X4]/

subject to

X, + X2 + X3 < 6.0 and X,, X2, X3 > 0.
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Optimal asset levels are shown in Table
1 for five levels of risk aversion. The re-
sults show an emphasis on the risk-free
asset for higher levels of risk aversion, a
more balanced portfolio for intermediate
levels of risk aversion, and specialization
in the higher yielding farm loans for
smaller p. The risk neutral solution (p=
0.0) shows complete specialization in farm
lending, despite the less than perfectly
elastic return function. In this case the
complete specialization results from the
highly elastic demand and from the spe-
cific numerical values on returns and fund
availability.

For each level of p the corresponding
quadratic programming (QP) solution that
recognizes only market risk is given in part
B of Table 1. As expected, disregarding
estimation risk yields solutions with higher
mean returns and total risk for each non-
zero level of risk aversion. Compared with
the quartic solutions, the QP solutions show
greater investment in the imperfect asset
and lower investment in the risk-free asset
for non-zero risk aversion. When estima-
tion risk is added to the market risk for
the QP results, the underestimation of to-

December 1983



Estimating Risk and Imperfect Markets

TABLE 2. Optimal Portfolios with Decreased Elasticity for the Imperfect Asset.

Varianceb

Risk Activity Levels Mean Net Market Estimation Total
Coefficient X1 X2 X3 Return" Risk Risk Risk

A. Estimation Risk Included

(P)
0.0 0.0 4.47 1.53 36.1 7.84 1.02 8.86
50 2.67 2.12 1.21 34.1 2.25 .407 2.65

100 3.99 1.06 .957 33.0 .843 .172 1.01
150 4.49 .700 .807 32.4 .499 .096 .595
200 4.77 .527 .699 32.1 .344 .061 .405

B. Estimation Risk Excluded

(P)
0.0 0.0 4.47 1.53 36.1 7.84 1.02 8.86
50 2.36 2.15 1.49 34.4 2.68 .844 3.53

100 3.74 1.07 1.19 33.3 1.11 .362 1.47
150 4.29 .716 .990 32.8 .675 .188 .863
200 4.62 .537 .847 32.4 .465 .111 .576

a Mean net returns are computed as gross return less the initial six million of investable funds, measured in
units of $10,000.

b Measured in $10,0002.
Source: Computed

tal variance can be computed for the var-
ious solutions. For example, when p = 50,
the total variance of the QP solution (11.5)
is underestimated by about 8.3 percent
(10.5 versus 11.5). The impact of estima-
tion risk on the optimal portfolio compo-
sition varies with p. For high values of p,
little difference occurs in the optimal
portfolios. However, for intermediate
levels of p, the optimal portfolios respond
more strongly to whether estimation risk
is acknowledged. Nonetheless, the mean
returns vary by no more than two percent
for any level of p.

Results in Table 2 indicate the effects
of a less competitive, more volatile market
for farm lending. The slope coefficient for
the loan return function is multiplied by
10, giving a more steeply sloped demand,
and the variance of the slope is increased
so that the estimated coefficient is double
its standard error. The change in slope is
maintained in the remaining models.
Compared with the results in Table 1, the
optimal portfolios respond to those changes
by reduced holdings of the imperfect risky
asset and greater holdings of the risk-free
and risky competitive assets (for p = 50).

Thus, the more steeply sloped loan de-
mand and greater risk combine to reduce
the attractiveness of the imperfect asset.
Moreover, diversity between the two risky
assets occurs in the risk neutral solution.
When estimation risk is deleted, the QP
solutions underestimate total variance of
their portfolios by about 20 percent, and
indicate greater holdings of the imperfect
asset for p > 50. The mean returns drop
considerably for the less elastic demand as
shown by a comparison of mean returns
between the corresponding portfolios in
Tables 1 and 2. Estimation risk again
causes a substantial difference in the com-
position of the optimal portfolio, with
about a 1 percent decrease in mean re-
turns.

Solutions in Table 3 show the effects on
the optimal portfolios of less certainty
about the value of the slope coefficient, B,
for the imperfectly elastic asset. The loan
demand characteristics (2) for X3 were re-
vised so that the ratio of the estimate of B
to its standard error equals minus one, in-
dicating statistical insignificance by con-
ventional econometric practices. A com-
parison of the holdings of X3 between
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TABLE 3. Optimal Portfolios with Decreased Elasticity and Greater Uncertainty for the Imper-
fect Asset.

Varianceb
Activity LevelsRisk Acty L s Mean Net Market Estimation Total

Coefficient X1 X2 X3 Returna Risk Risk Risk

A. Estimation Risk Included

(P)
0.0 0.0 4.47 1.53 36.1 7.84 3.36 11.2
50 2.93 2.11 .965 33.7 1.96 .568 2.52

100 4.15 1.04 .814 32.7 .701 .291 .992
150 4.65 .700 .654 32.2 .383 .129 .511
200 4.90 .526 .575 31.9 .262 .081 .343

B. Estimation Risk Excluded

(P)
0.0 0.0 4.47 1.53 36.1 7.84 3.37 11.2
50 2.36 2.15 1.49 34.4 2.68 2.97 5.66

100 3.74 1.07 1.19 33.3 1.11 1.22 2.33
150 4.29 .716 .990 32.8 .675 .598 1.27
200 4.62 .537 .847 32.4 .465 .331 .796

a Mean net returns are computed as gross return less the initial six million of investable funds, measured in
units of $10,000.

b Measured in $10,0002.
Source: computed.

Tables 2 and 3 for the solutions which in-
clude estimation risk shows that greater
uncertainty about the true value of B leads
the risk averse investor to hold less of X3.
Additionally, the difference in mean re-
turns for the intermediate levels of p be-
tween the quartic and quadratic solutions
in Table 3 are slightly more than 2 per-
cent. Also, the total risk of a portfolio is
more grossly underestimated if estimation
risk is ignored when uncertainty about B
is high. This is true for both quartic and
quadratic solutions compared with their
counterparts in Table 2.

While the mean returns for risk averse
portfolios vary by no more than about 2
percent between recognizing and ignor-
ing estimation risk, the change in portfolio
composition is more pronounced. Note in
Table 3 for p = 50, disregarding estima-
tion risk leads to a 54 percent increase in
the amount of funds allocated to the loan
alternative. Such shifts by a bank would
have a substantial impact on local mar-
kets. Thus, the incorporation of estimation
risk into portfolio analysis may have a

larger impact on asset markets than on
mean returns for the investor.

Implications for Modeling and Analysis

The numerical results of the program-
ming analysis indicate an optimal portfo-
lio may respond significantly to the risk
and market characteristics of its assets and
to changes in risk aversion. Comparing so-
lutions for the various programming
models shows that an asset's degree of
market imperfection has a marked effect
on the portfolio's composition and mean
returns. Including estimation risk in the
programming analysis also influences the
optimal portfolios, with the effects on
portfolio risk being greater than the ef-
fects on expected returns. These effects of
estimation risk would be magnified con-
siderably if the costs of funds acquisition
were included in the analysis. For the
banking example, the high financial le-
verage of commercial banks means that
relatively small changes in expected re-
turns to assets yield proportionately large
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swings in expected returns to equity, after
the costs of acquiring debt capital are paid
for. The effects of estimation risk would
also be greater if smaller sample sizes were
used to estimate the model's parameters.

These results support the need to ac-
count jointly for the effects of risk and
market imperfections in studies of bank-
ing and other empirical situations where
these phenomena are important. The
model illustrated here has a simplified
specification of assets and constraints in
order to focus on the portfolio effects of
the assets' risk and market characteristics.
More complete models that include activ-
ities for acquiring resources, their risk and
market characteristics, and other con-
straints would add realism and likely re-
duce the sensitivity of the portfolio re-
sponses to the variations induced in this
study. But these added details would ob-
scure the fundamental effects of the risk
and market characteristics as well. Thus,
including the effects of the risk and mar-
ket imperfections provides a richer, al-
though more complex analytical frame-
work for evaluating risk efficient
portfolios.
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