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Multiple Optimal Solutions in
Quadratic Programming Models

Quirino Paris

The problem of determining whether quadratic programming models possess either unique
or multiple optimal solutions is important for empirical analyses which use a mathematical
programming framework. Policy recommendations which disregard multiple optimal solutions
(when they exist) are potentially incorrect and less than efficient. This paper proposes a strategy
and the associated algorithm for finding all optimal solutions to any positive semidefinite linear
complementarity problem. One of the main results is that the set of complementary solutions
is convex. Although not obvious, this proposition is analogous to the well-known result in linear
programming which states that any convex combination of optimal solutions is itself optimal.

The importance of not overlooking
multiple optimal solutions in empirical
studies based on linear programming (LP)
models was discussed by Paris in a recent
article. In the last decade, however, qua-
dratic programming (QP) models have
been used at an increasing rate for ana-
lyzing problems of choice under market
and general equilibria as well as under
risky environments.

While conditions leading to alternate
optimal solutions in LP have been known
for a long time, knowledge of the struc-
tural causes underlying multiple optimal
solutions in QP, and of criteria for their
detection is rather limited. The study of
this subject-is of recent vintage. The re-
sults obtained so far are confined either to
specialized journals or unpublished pa-
pers.

The existence of either unique or mul-
tiple optimal solutions in QP models has
significant consequences in the formula-
tion of policy recommendations. Unfor-
tunately, commercial computer programs
for solving QP problems are completely
silent about this aspect and leave it en-
tirely to the enterprising researcher to find
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convenient ways for assessing the number
of optimal solutions and their values.

Multiple optimal solutions are an ap-
pealing feature of programming models
at least for two reasons. First of all, they
allow greater diversification of activities
representing an economic environment. In
other words, all the activities specified in
the model can potentially be operated at
positive levels regardless of the number of
constraints. Secondly, a policy maker has
greater flexibility in choosing the strategy
to implement knowing that he need not
sacrifice economic efficiency.

For many years, references to unique-
ness of solutions in QP models have been
scant. A reference to a sufficient condition
for uniqueness of a part of the solution
vector in a QP model, namely the positive
definiteness of the quadratic form, is found
in Takayama and Judge (p. 164). How-
ever, it is not necessary to have positive
definite quadratic forms to have unique
solutions. The relevant aspect of the prob-
lem is, therefore, to know both the nec-
essary and sufficient conditions for
uniqueness. Hence, a more interesting
problem can be stated as follows: If the
quadratic form in a QP model is positive
semidefinite (as are the quadratic forms
in many empirical problems presented in
the literature), how do we know whether
the given problem has a unique solution
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or it admits multiple optimal solutions?
This paper addresses this problem and
presents an algorithmic approach to its so-
lution. The algorithm is relatively simple
and can be implemented efficiently on a
computer even for large scale models. A
particularly interesting result of this study
is that the set of multiple optimal solutions
in positive semidefinite QP models is con-
vex. The possibility of diversified policy
strategies is based upon this finding.

The paper relies heavily on numerical
examples to illustrate the seemingly intri-
cate structure associated with either
uniqueness or multiplicity of solutions.
After discussing the convexity of the set
of multiple optimal solutions, the same al-
gorithm is applied to a LP and a QP prob-
lem to illustrate its numerical feasibility.
A remarkable feature of the discussion
presented below is that for finding all
multiple optimal solutions of a QP prob-
lem it is sufficient to solve an associated
linear programming problem.

The Linear Complementarity Problem

One promising way to gain insight into
this rather complex problem is to regard
the quadratic program as a linear com-
plementarity (LLC) problem. Consider the
following symmetric QP problem

max {¢'x — kx'Ds/2 — k,y'Ey/2} (1)
subject to:
Ax —kEy =b, xz20, y=0,

where A is an (m X n) matrix, D and E
are symmetric positive semidefinite (PSD)
matrices of order n and m, respectively.
Parameters k, and k, are nonnegative sca-
lars suitable for representing various eco-
nomic scenarios, from perfect and imper-
fect market equilibria to risk and
uncertainty problems. It can be easily
shown that the necessary and sufficient
Kuhn-Tucker conditions corresponding to
(1) can be written in the form of the fol-
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lowing LC problem: find an [(n + m)x 1}
vector z such that

w=Mz+q=z0,z=0 2)

and:

z'w =0,

where w is an [(n + m) x 1] vector of slack
variables, q' =[—c,b'], z’'=[x",y'] and

M= [k_{z ki&]::] isan[(m + n) X (m + n)]

PSD matrix (for any A). It should be ap-
parent that when E is the null matrix,
problem (1) represents the traditional
asymmetric quadratic program, and when
both D and E are null a LP problem is
obtained.

It is well known that when multiple op-
timal solutions exist in a L.P problem, their
set constitutes a face of the convex poly-
tope of all feasible solutions. This property
can be extended to the LC problem (2).
First of all, notice that the linear inequal-
ities of problem (2) form a convex set of
feasible solutions. Of course, we are not
merely interested in the set of feasible so-
lutions but in the set of feasible as well as
complementary solutions, that is those so-
lutions (w, z) which satisfy the feasibility
conditions w = 0, z = 0 and also the com-
plementarity condition w'z = 0. All com-
plementary solutions to (2) are optimal so-
lutions for the QP problem (1).

In LP problems, the set of optimal so-
lutions is convex. This well known fact
implies that a convex combination of any
two optimal solutions is itself an optimal
solution. From an empirical viewpoint this
is an important result because it admits
that the number of positive components
of an optimal solution be greater than the
number of independent constraints.
Hence, when multiple optimal solutions
exist, one can select a more diversified so-
lution for policy recommendation. It turns
out that, as in LP, the set of optimal so-
lutions in QP problems is convex. To dem-
onstrate this less known proposition it is
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sufficient to prove that the set of comple-
mentary solutions of problem (2) is con-
vex. The proof requires the results of the
following

Lemma: Suppose (2, W) and (z, W) are
complementary solutions to
problem (2). Then, W'z = w'z =
(z—2)M(EZ —-1Z)=0.

Proof: According to (2), the definition of
the W and W vectors is % = M2 +
q and W = Mz + q. Subtracting W
from w: (W — W) = M(2 — Z). Pre-
multiplying by (Z — 2)’ the above
result gives:

Z-2/"—-—w)=C-zMz—-2)=0 (3)
because M is PSD
W — AW — W 4 ZW = —2W — 2% = 0.

The simplification in the second row of
(8) is obtained because, by assumption, (2,
W) and (z, W) are complementary solu-
tions. Furthermore, the inequality is es-
tablished in the direction of nonpositivity
because z, W, z, and W are nonnegative.
Hence, the two inequalities in (3) establish
the conclusion of the lemma.

We can now demonstrate the following

important

Theorem: The set of all complementary
solutions in a PSD-L.C problem
is convex,

Proof: Consider any two distinct pairs of
complementary solutions to prob-
lem (2), say (z, W) and (2, W). We
need to show that (z, w) defined as
a convex combination of (z, W) and
(2, W) is also a complementary so-
lution. Let z=aZz + (1 — &)z and
w=aw+ (1 —a)wfor0 <o =< 1.
Then, (z, w) is a feasible solution
to (2) since z = 0, w = 0 and

Mz + q=Maz + (1 — a)2] + q
=aMz + (1l —a)M2 + q
=W -—q)+{1-a)¥-qg) +q
=aw + (1 — a)% = w.

To show that (z, w) is a complementary
solution

Multiple Solutions in QP Models

w'z =[aw + (1 — a)W][az + (1 — a)%]
=Wz + (1 — @*%'% + a(l — W'
+a(l —a)W'z=20
since W'z and W'z are equal to zero
for being complementary solu-
tions, while w'2 and W'z are zero

according to the lemma.

An important corollary to this theorem
is that the number of solutions to a PSD-
LC problem is either 0, 1, or co. This is
so because either the problem has no so-
lution, or has a unique solution, or if it has
more than one solution, by convexity it
has an infinite number of them.

Determining the Number of Solutions

Judging from the empirical literature,
almost never has it been a concern of au-
thors to state whether a QP problem pos-
sesses either a unique or multiple optimal
solutions.! It is difficult, however, to
downplay the importance of this aspect in
empirical studies. To turn the tide around,
referees and journal editors ought to make
it a definite point to require information
about uniqueness of the solution in all
mathematical programming analyses sub-
mitted to them. Admittedly, this addition-
al piece of information requires additional
computations over and above those nec-
essary to obtain an optimal solution. In
econometrics, computational require-
ments have rarely been regarded as a de-
terrent for achieving a correct and com-
plete analysis. There is no reason to
suppose that they should deter a mathe-
matical programmer.

To reduce as much as possible these ad-
ditional computations a two-stage proce-
dure seems convenient. After achieving

! von Oppen and Scott (p. 440) present a rare passing
reference of solution uniqueness of their QP model.
They do not state, however, whether the associated
quadratic form is positive definite or semidefinite,
nor how the uniqueness of the solution was deter-
mined.
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any optimal solution of the QP (L.C) prob-
lem, determine the number of solutions
by means of a recent suggestion presented
by Kaneko. If the results of the algorithm
indicate that the solution is unique, stop.
If the number of solutions is infinite, it is
possible to proceed to find all the extreme
point optimal solutions (finite in number)
of the QP problem through the combi-
nation of results obtained by Adler and
Gale and by Mattheiss.

The algorithm suggested by Kaneko is
simple. As already stated, its objective is
to determine the number of solutions of
the PSD-LC problem, not to find those
solutions. The first step is to solve the LC
problem (corresponding to the QP prob-
lem) by means of any suitable algorithm,
for example, Lemke’s complementary
pivot.algorithm. At this point, let p = {j}
be the set of all the j indexes for which
w,=%=0,j=1,... m + n, where (z,
W) is a solution to (2). In other words, con-
sider all the degenerate components of the
complementary solution. If p is empty, p =
¥, stop because the solution is unique.
Otherwise, let M be the transformation of
M in the final tableau of the Lemke’s al-
gorithm and solve the following PSD-QP
problem.

minimize R = u'M,,u/2 (4)

subject to:

where s is a vector of ones. This QP prob-
lem corresponds to the following PSD-1.C
problem:
Lv+d=0, v=0 (3)
viiLbv+d)=0

M, -s 10 _tu
where L _[s' O}’ d—[_l] and v _[ZR}

Kaneko has demonstrated that if no solu-
tion exists or if a solution is found such
that R > 0, then the solution to the origi-
nal QP (L.C) problem is unique. On the
contrary, if a solution exists such that R =
0, then the number of solutions to the
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original QP (LC) problem is infinite. In
other words, the admissibility of multiple
optimal solutions requires that the matrix
M,, be positive semidefinite. Notice that
the dimensions of the M,, matrix depend
on the number of degeneracies present in
the first optimal solution found in step 1.
In many instances M, is a rather small
matrix also for large scale models and
problem (4) is easy to solve.

The rationale of Kaneko’s algorithm is
based on the fact that a degenerate solu-
tion of the L.C problem opens the way for
the linear dependence of the vectors in a
submatrix, M,,, of the final optimal ta-
bleau of problem (2). The constraint of
problem (4) defines a convex combina-
tion, while the objective function tests the
linear dependence (or independence) of
the subset of vectors associated with the
degenerate components of the original op-
timal solution to problem (1). Hence, de-
generacy of an optimal solution is a nec-
essary but not sufficient condition. for
multiple optimal solutions: degeneracy and
linear dependence of the associated sub-
matrix are necessary and sufficient.

To illustrate this point and the working
of Kaneko’s algorithm, two numerical ex-
amples of asymmetric quadratic pro-
grams will be discussed. Example 1 illus-
trates the necessary aspect of degeneracy
(but not its sufficiency) for the existence
of multiple optimal solutions. Example 2
shows that degeneracy of an optimal so-
lution must be accompanied by linear de-
pendence of the submatrix, M,,, for the
existence of multiple optimal solutions.
Familiarity with the complementarity pi-
vot algorithm of Lemke will be assumed
throughout.

Example 1
max {¢'x — xDx/2}
subject to:
Ax=<b,x=0

where ¢’ =[12 8 11/2], b =[18 12]
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TABLEAU 1. Initial Tableau of Example 1.

Multiple Solutions in QP Models

Basic

Vari-

W, W, W, W, W z, z, Z, Z4 z z, q ables
1 -3 -2 ~3/2 -6 ~4 -1 -12 W,
1 -2 ~4/3 -1 —4 -3 -1 -8 W,

1 -3/2 -1 -3/2 -2 —1 -1 —-11/2 Wy

1 6 4 2 0 0 -1 18 w,

1 4 3 1 0 0 -1 12 Ws

3 2 3/2
A=ﬁgﬂ,n={24m {}
3/2 1 8/2

The matrix D is PSD of rank 2. To for-
mulate and solve this QP problem as a 1.C
problem we must set up a tableau follow-
ing Lemke’s instructions and having the
structure (fw — Mz — sz,; q), where s is a
vector of ones and z, is the associated ar-
tificial variable. All the other components
of the problem are defined as in (2). The
layout of Example 1 is given in Tableau
1. The final Tableau exhibiting a comple-
mentary- solution is given in Tableau 2.
The complementary solution of Tableau 2
translates into an optimal QP solution as
z, = x, = 3, z, = y, = % while all the other
x and y variables are zero. The optimal
value of the QP objective function is 22.5.

Degeneracy appears in three pairs of
complementary variables w, =7 =0 for j
=2, 83, 5. Hence, Kaneko’s index set is p
= {2, 8, 5}. This index set corresponds to

the following —M,, matrix:
o o -1/3
-M,,=| 0 =5/6 1/3 |
/3 —1/3 0

To determine the uniqueness or the
multiplicity of solutions according to Ka-
neko one must solve problem (4), alter-
natively problem (5). We choose problem
(5) and Tableaux 3 and 4 give the corre-
sponding initial and final layouts.

From Tableau 4 it can be observed that
v, = 2R = 2/15 > 0, and hence, in spite of
its extended degeneracy, the problem in
Example 1 has one complementary solu-
tion, the one presented in Tableau 2. Cor-

respondingly, it can be cbserved that the
matrix M, is positive definite. Of course,
with a small matrix it may be easier to
determine its definiteness directly by
means of evaluating its minors and deter-
minant. But as soon as the dimensions of
M,, become respectable, say greater than
6 or 7, solving Kaneko’s problem (5) is
definitely easier.

Example 2

In this example another QP problem is
considered with the following coefficients:

¢ =[12 8 4], b’ =[18 12]

3 2 1
A=ﬁgﬂ,p=k4mzm}
12/31/3
The matrix D is PSD of rank 1. The initial
and final Tableaux corresponding to this
problem are presented in Tableaux 5 and
6, respectively.
The index set of degenerate comple-
mentary variables is again p = {2, 3, 5}
and the corresponding —M,, matrix is:

0 0 -1/8
~M,,=| 0 0 1/3 |
1/3 -1/3 0

The matrix M,, is, obviously, singular and,
thus, PSD. Hence, we can conclude that
the QP in Example 2 has multiple optimal
solutions. However, for sake of complete-
ness and for familiarization with Kaneko’s
algorithm and its interpretation, the full
computations are presented in Tableaux 7
and 8.
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TABLEAU 2. Final Tableau of Example 1 (after Reordering of rows and columns).

Basic

Vari-

2, W, W, Z, A W, Z, 25 W, Zs q ables
1 0 2/3 1/3 1/6 0 3 Z,
1 -2/3 0 0 0 -1/3 0 W,

1 -1/3 0 -5/6 1/12 1/3 0 W,

1 -1/6 0 1/12 —-1/12 2/3 1/2 Z,

1 0 1/3 -1/3 —-2/3 0 0 Wg

Tableau 8 shows that ¥, = 2R =0 and
we conclude that the QP problem of Ex-
ample 2 possesses an infinite number of
optimal solutions.

Determining All Basic
Complementary Solutions

Once it has been determined that the
number of solutions of a given QP (LC)
problem is infinite, it is of interest to find
all the basic complementary solutions as-
sociated with the vertices of the corre-
sponding convex set. Recall that such a set
constitutes a face of the convex set of fea-
sible solutions of the given L.C problem.
Adler and Gale have demonstrated that
this face is defined by the following sys-
tems of inequalities and equations

M,z,+q=0, 7,20 (6)
M,, + M,,)z, =0 (7)

where M is the complementary transform
of the given L.C problem obtained in the
final Tableau of the Lemke’s algorithm; p
is the index set of subscripts correspond-
ing to degenerate complementary pairs of
variables; M., is the submatrix of M with
the columns defined by the index set p;

M,, is the submatrix of M with both rows
and columns defined by p; q is the trans-
form of q in the final Tableau.

Any solution to (6) and (7) constitutes a
complementary solution to the original I.C
problem. At this point an algorithm is re-
quired for enumerating all vertices of
problem (6) and (7). The work of Mat-
theiss provides such an algorithm that is
both elegant and efficient.

Consider the system of linear inequali-
ties Ax < b, which must also include all
nonnegative constraints. Let A be an
(m X n) matrix, m > n. Let K be the
n-convex set of solutions of the given sys-
tem of inequalities. K is embedded in a
one-higher-dimensional space forming the
convex (n + 1) polytope C, which is the
set of feasible solutions of the following
linear program:

maximize Z =y (8)

subject to: Ax +ty +Is=b, y=0, s=0

where x is an (n x 1) vector variable, y is
a scalar variable, s is a (m X 1) vector of
slack variables and t is a (m x 1) vector
of coefficients defined as:

n Y
ti=<2a§>, i=1,..., m.
=1

TABLEAU 3. Initial Tableau for Problem 5, Example 1.

Basic
w, W, W, w, v, A Va A Vo q Variables
1 0 0 -1/3 1 -1 0 2
1 0 —5/6 1/3 1 -1 0 W,
1 1/3 -1/3 0 1 -1 0 Ws
1 -1 —1 —1 0 -1 -1 W,
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TABLEAU 4. Final Tableau for Problem 5, Example 1 (Reordered).

Basic
W, v, Vs v, ¥ W, Ws W, o] Variables
1 —8/15 4/5 -9/5 —1/15 115 W,
1 4/5 —6/5 6/5 —2/5 2/5 ¥,
1 1/5 6/5 —6/5 —-3/5 3/5 A
1 3/5 —2/5 7/5 —2/15 2/15 A
The t vector is regarded as a general- where SB = slack variables in the basis.

ized slack activity whose purpose is to de-
fine and construct the radius of the largest
sphere inscribable in the set of feasible
solutions K. The idea of embedding K in
C is to make the convex set K to be a face
of the (n + 1) polytope C. Then, by start-
ing at the vertex of C where (the radius)
y is maximum, it is possible to reach every
vertex of K by simplex pivot operations
that, it is well known, lead to adjacent ver-
tices.

Every optimal solution to the linear
program (8) is characterized by all x; vari-
ablesj=1, ..., nand y as basic variables.
Otherwise, the problem is infeasible. Also
(m — n —1) slack variables will be basic
while the remaining (n — 1) slacks not in
the basis (s, = 0) identify the set of binding
constraints H, where p is the index of the
solution.

The primal tableau of a basic feasible
solution has the following structure:

Z X Y SB | SNB
Z 1 . W .7
X I UX BX
Y 1 Uy BY
SB I US BS

TABLEAU 5. Initial Tableau of Example 2.

slack variables not in the ba-
sis.

the solution column, BX is a
(n x 1) block giving the val-
ues of x, BY isa (1 x 1) sca-
lar giving the value of y and
BS is an [(m —n — 1) x 1]
block giving the solution
values of the basic slack
variables SB.

= the row of dual variables.
the current solution value.
the matrix of coefficients of
the slack variables not in the
basis divided in three blocks
corresponding to X, Y and
SB variables.

To travel from one vertex to another ver-
tex of C requires pivot operations accord-
ing to the feasibility criterion of the pri-
mal simplex algorithm. However, a pivot
in the UX block of coefficient is inadmis-
sible because it would remove some x; from
the basis, thus leaving the set of feasible
solutions K. A pivot selected in the US
block will exchange slack activities in the
basis, providing another solution of the
linear program. A pivot executed in the

SNB =

B:

1

NS
fl

Basic
W, W, W3 W, W z, Z, 25 z, Z Zo q Variables
1 -3 -2 -1 -6 -4 —1 -12 W,
1 -2 —4/3 —-2/3 -4 -3 —1 -8 W,
1 -1 —2/3 -1/3 -2 -1 -1 —4 W,
1 6 4 2 0 0 -1 18 w,
1 4 3 1 0 0 -1 12 Ws
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TABLEAU 6. Final Tableau of Example 2 (Reordered).

Basic
Z, W, W, z, Ws W, Z, Z3 W, Z q Variables
1 0 2/3 1/3 1/6 0 3 z,
1 —2/3 0 0 0 —1/3 0 W,
1 -1/3 0 0 0 1/3 0 Wy
1 -1/6 0 0 —1/12 2/3 1/2 Z,
1 0 1/3 -1/3 -2/3 0 0 W
TABLEAU 7. Initial Tableau for Problem 5, Example 2.
Basic
w, W, A A 2 A A A A q Variables
1 0 0 -1/3 1 -1 0 w,
1 0 0 1/3 1 -1 0 W,
1 1/3 —1/3 0 1 -1 0 W,
1 -1 -1 -1 0 -1 -1 W,
TABLEAU 8. Final Tableau of Problem 5, Example 2 (Reordered).
Basic
Wy A A v, v, W, Wy W, q Variables
1 0 -3/2 3/2 —1/2 1/2 W,
1 3/2 0 -3/2 -1/2 1/2 v,
1 ~3/2 3/2 0 0 0 Va
1 1/2 1/2 0 0 0 v,
TABLEAU 8. Initial Tableau of Example 3.
Basic
Wiy W, W W, Ws W Zy 2 zZ4 z, z; z4 z, q Variables
1 0 0 0 0 —2 -1 -1 —53/22 2
1 0 0 0 0 -1 -3 -1 -39/22 W,
1 0 0 0 0 -5 2 —1 -5 W,
1 0 0 0 0 -1 —4 -1 -2 W,
1 2 1 5 1 0 0 -1 4 Ws
1 1 3 -2 4 0 0] -1 0 W

148



Paris

Multiple Solutions in QP Models

TABLEAU 10. Final Tableau of Exampie 3 (Reordered).

Basic

W, W, 2y 2, 25 2 2, 2, W,y W, Wy W §  Variables
1 0 0 —7/22 —9/22 0 0 0 W,
1 0 0 —1/22 —17/22 0 0 0 W,

1 7122 1/22 0 0 2/11 —1/22 8/11 Zs

1 9/22 17/22 0 0 1/11 5/22 4/11 z,

1 0 0 -2/11 —-1/11 0 0 12/11 7

1 0 0 1/22 —5/22 0 0 5/22 Zs

UY block eliminates y from the basis and
projects C onto some vertex of CNK, one
of the desired vertices.

The description of the algorithm pro-
vided by Mattheiss is complete but also
rather elaborate. Some numerical exam-
ples should be of help in following and
understanding the thread of reasoning and
the required computations which gener-
ate all the complementary solutions to a
given L.C problem. Of course, a careful
reading of Mattheiss’ paper will provide
valuable insights and indispensible details.

Two numerical examples will be dis-
cussed. The first example is a linear pro-
gram with multiple optimal solutions. We
desire to enumerate all the basic optimal
solutions using Adler and Gale and Mat-
theiss results. Since it is possible to obtain,
rather simply, all the basic optimal solu-
tions by other more traditional proce-
dures, this example will help in under-
standing Adler, Gale and Mattheiss’
algorithm in a way that is useful for more
complex problems. The second example is
Example 2 of the previous section where
a QP problem was detected to possess
multiple optimal solutions.

Example 3

Consider the following LP problem:

max (53/22)x, + (839/22)x, + 5x, + 2x,
2%, + X5 + 5x3 + x, =4

x; + 3%, — 2%, + 4x, =0
xz0 j=1,...,4

subject to

Although Lemke’s algorithm is not the
most convenient computational procedure

to solve a LP problem, we choose this
method to maintain uniformity through-
out the paper. Tableaux 9 and 10 present
the initial and the optimal Tableaux of the
above LP Example 3.

The first primal optimal solution is z, =
%, =8/11,%2,=%,=4/11, %, =%, =0. The
dual optimal solution is z; =y, = 12/11,
Zs = ¥, = 5/22. The index set of degener-
ate pairs of complementary variables is p
= {1, 2}. The systems of inequalities and
equalities corresponding to the face of the
convex set of multiple optimal solutions
and given by (6) and (7) are, respectively,

0 0 0
0 0 0
—7/22  -1/22 |:2le | s
—9/22 ~17/22 ||z 4/11
0 0 12/11
0 0 5/22
0
0 _
0 z, 0 ,
=lo ’[ZZ]Z[O (@)
0 |
0

o alLz)-[o
0 0f|z of
Hence, system (7') is vacuous, while sys-
tem (6') can be reduced to the two central
inequalities. Mattheiss’ algorithm can thus
be applied to the following reduced sys-
tem expressed in the Ax < b form:

7/22 1/22 8/11
9122 17/22 ||z, | _ [4/11 )
1 Zy 0
-1 0

Prior to analyzing system (8) algebra-
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Figure 1.

ically, and proceeding with Mattheiss’ al-
gorithm, it is convenient to graph it. Fig-
ure 1 indicates that the convex polytope
K of feasible solutions to (8), whose ver-
tices are sought, possesses three extreme
points (0, 0), (0.0, 0.89) and (0.47, 0.0) and
that constraint 1 is redundant. It also shows
that the largest sphere inscribable in the
convex set of feasible solutions, K, has a
radius y = 0.177.

The initial and the final Tableaux of
Mattheiss’ set up are presented in Tab-
leaux 11 and 12, respectively. The primal
simplex algorithm is used for solving this
part of the problem.

Tableau 12 shows that, at this stage the
basic variables are z,, z,, y and s,. The
nonbasic variables are s,, s, and s, which

The Set of Solutions, K, to System (8).

have been starred to indicate that the cor-
responding constraints are binding. The
values of z, and z, (as well as y) are all
equal to .1769. They are to be interpreted
as the coordinates of the center of the
maximum circumference (sphere, in
higher dimensions) inscribed in the
K-polytope, as illustrated in Figure 1.
Mattheiss’ algorithm requires a thor-
ough analysis of Tableau 12. First of all
H, = {2, 3, 4} defines the set of binding
constraints for this Tableau. A record R,
is defined by the value of the linear ob-
jective function (the radius of the largest
sphere) and by the set of binding con-
straints, that is, R, = {.1769, (2, 3, 4)}. In
the process of analyzing a record, either a
new record or a set of vertices of K are

TABLEAU 11. Initial Primal Tableau, Example 3, System (8).

Basic
4 2, z, y S5 Sy S3 S, B Variables
1 0 0 -1 0 0 0 0 0 Z
0 7/22 1/22 3214 1 8/11 s,
0 9/22 17/22 .8743 1 4/11 S,
0 -1 0 1.0 1 0 S
0 0 -1 1.0 1 0 S4
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TABLEAU 12. Final Tableau, Example 3, system (8) (Reordered).

Multiple Solutions in QP Models

Basic
Z Z, 2, y S, A A s, B Variables
1 .4863 1990 .3758 1769 4
1 4863 —.8010 .3758 1769 z,
1 4863 .1990 —.6242 1769 Z,
1 (.4863) (.1990) (.3758) 1769 y
1 -.3332 .1819 .2120 .6061 Sy

obtained. A list is a set of records. When
all the records have been analyzed and
eliminated from the list, the algorithm
terminates.

The analysis of a record is performed
through a set of pivot operations. Recall
that it is admissible to pivot only in the
rows corresponding to either y or slack
variables. Choose a pivot in each column
of the nonbasic variables s* such that it
maintains the feasibility of the solution. A
pivot executed in a slack row generates a
new record. A pivot executed in the y row
generates a vertex of K.

Let us proceed to the analysis of Tab-
leau 12, (R)).

Step 1. H, = {2, 3, 4}.

Step 2. The pivot in the first nonbasic
column, s,*, is a pivot in the y
row, UY, (pivot is enclosed in pa-
rentheses) which generates the
vertex of K, Z, = (0, 0). In fact,
the solution column correspond-
ing to this pivot execution is:

Step 4. The pivot in column s* is a UY
pivot corresponding to the vertex
of K, Z; = (0.0, 0.4706). The so-
lution column corresponding to
this pivot execution is:

0.0 Z
0.0 7
0.4706 | z,
0.4706 | s*
0.7059 | s,

The analysis of record R, is completed. R,
is removed from the list. No other record
is in the list and the algorithm is termi-
nated. All vertices of K have been iden-
tified together with the redundant con-
straint corresponding to the slack variable
s, which, for this reason, was not starred.

Notice that in terms of the original lin-
ear programming problem of Example 3,
the slack variables s, and s, of Mattheiss’
problem correspond to the variables x, and
x,. To summarize the enumeration of all
the basic optimal solutions of Example 3,
we have:

0.0 7
0.0 z
0.0 Zs
0.3636 | s,*
0.7273 | s,

Step 3. The pivot in column s;* is, again,
a UY pivot corresponding to the
vertex of K, Z,= (0.8889, 0.0).
The solution column correspond-

ing to this pivot execution is:

0.0 Z
0.8889 | z,
0.0 7
0.8889 | s*
0.4444 | s,

Optimal Solutions

Variables | Vertex 1  Vertex 2 Vertex 3
P X, 0.0 0.85889 0.0
R
1 Xy 0.0 0.0 0.4706
M
A Xs 0.7273 0.4444 0.7059
L

Xy 0.3636 0.0 0.0

D Vi 12/11 12/11 12/11
U
A Vo 5/22 5/22 5/22
L

It can easily be verified that all three pri-
mal basic solutions generate the same op-
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Figure 2. The Set of Solutions to system (9).

timal value of the linear objective func-
tion in Example 3, that is 48/11 = 4.3636.

Example 4

To complete the description of the pro-
cedure to generate all optimal solutions of
a QP problem, Example 2 of the previous
section will be fully analyzed. Consider
Tableau 6.

The M,, matrix corresponding to p = {2,
3, 5} is such that (M,, + M,,) is a null
matrix. Therefore, also in this example,
constraints (7) are inoperative. The M.,
matrix establishes the following relevant
inequalities corresponding to (6):

2/3 1/3 0 s | [o]
0o 0 -1/3|[z 0 0
- o o 13 ||z|+] 0 |=]0
o o 2/3|lz| |1/2] |o
/3 -1/3 0 0 0

z, | [0

zZ, | = O—‘.

%] LO]

Notice that, by inspection, one can im-
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Constraint 3

\\\

23

mediately conclude that z; = 0. Thus, it is
possible to reduce the problem to two in-

equalities:
1/3 ||z, -3 2| _ |0
Sl 1R e

[2/3

1/3

The initial and optimal tableaux of Mat-
theiss” algorithm are presented in Ta-
bleaux 13 and 14, respectively. From Ta-
bleau 14, record R, is R, = {1.85, (1, 2, 3)}.
Figure 2 illustrates this record. It shows
that the three vertices are (0, 0), (0, 9), (3,
3), while the radius of the largest sphere
is 1.35. The distance of the circumference
from constraint 4 is the slack s, = 1.92.

TABLEAU 13. Mattheiss’ Initial Primal Tab-
leau, Example 4.

Basic

Vari-

VA Z, r y S, S, S; 8, B ables
1 0 0 -1 0 Z
2/3 1/3 7454 1 3 s
13 —-1/3 4714 1 0 s,
—1 0 1 1 0 s,
0 -1 1 10 s,
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TABLEAU 14. Mattheiss’ Optimal Tableau, Record R,, Example 4 (Reordered). Pivots in pa-

rentheses.
Basic
Vari-
4 Z, Zs y S, S,* S, S5% B ables
1 4511 4511 4511 1.3533 Z
1 4511 4511 —.5492 1.3533 z,
1 1.0891 -1.9111 .0903 3.2673 Z,
1 (.4511) (.4511) (.4511) 1.3533 y
1 (.6380) —2.3623 —.3606 1.9140 S,

Analysis of Tableau 14 starts with the
starring of s*, s,*, s;* because the corre-
sponding constraints are binding. Pivots
are in parentheses.

Step 1. The selection of pivot in column
s,* indicates a tie with pivots in
both the UY and US block. The
pivot executed in the UY row
gives the vertex of K, Z, = {7, =
0, z, = 0}. The pivot executed in
the US block creates a new rec-
ord, R,=1{0, (2, 3, 4)} corre-
sponding to Tableau 15. The list
of records comprises R, and R,.
The pivot executed in column s,*
is a UY pivot and gives a vertex
of K, Z,= (0, 9).

The pivot executed in column s;*
is a UY pivot and gives a vertex
of K, Z, = (8, 3).

Step 2.

Step 3.

Record R, is completely analyzed and
is discarded from the list. The analysis of
record R, indicates that by pivoting in col-
umns s,* and s;* vertices already identi-
fied are generated. The pivot of column

TABLEAU 15. Record R, of Example 4.

s;* is in the US block and its execution
creates a new record R, = R,, already ana-
lyzed. Hence, the algorithm terminates

successfully, having identified all vertices

of K.

Notice that, in this example, slack s,
corresponds to x, of the original QP prob-
lem. To summarize, the three optimal so-
lutions of the QP problem in Examples 2
and 4 are:

Complementary Solutions
Variables | Vertex 1 Vertex 2 Vertex 3
P X 3 0 0
R
I Xy 0 0 3
M
A % 0 9 3
L

It can easily be verified that each of
these solutions corresponds to a value of
the QP objective function of 22.5. Fur-
thermore, any convex combination of these
three solutions is another optimal solution.
Hence, all the three activities can be op-
erated efficiently at positive levels.

Basic

Vari-

Z Z, Zs y $,* S,* Sg* 8,* B ables
1 2.1213 7058 —.7070 0 z
1 21213 —.2942 —.7070 0 Z,
1 2.1213 .7058 —-1.7070 0 Zs
1 21213 .7058 —.7070 0 y

1 -3.7026 —.5652 1.5674 3 s,
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Conclusions

In the 1980s, the determination of the
number and the value of multiple optimal
solutions in QP is a feasible problem. All
basic optimal solutions can be obtained in
a rather efficient way if the computational
scheme illustrated in this paper is adopt-
ed. This applies also to LLP problems.

There remains the problem of choosing
the solution to recommend or to imple-
ment among all the multiple optimal so-
lutions. Depending on the goals of the em-
pirical study, different criteria may be
adopted for this task. A particularly ap-
pealing one is to choose that optimal so-
lution which minimizes the squared dis-
tance from present practices, as suggested
by Paris. This procedure requires the
identification of all basic optimal solutions
first and, secondly, the computation of the
optimal weights for combining these basic
solutions into an optimal convex combi-
nation. Another possibility is to compute
first any optimal solution and its corre-
sponding value of the objective function,
say Z*. Then, by extending a suggestion
by McCarl and Nelson, an optimal solu-
tion having the property of minimizing
the distance from present practices can be
computed by solving the following non-
linear problem

minimize (x, — x)'(x, — x}/2
subject to ¢'x — kx'Dx/2 = Z*
Ax<b, x=0

where x, is the vector of activity levels
actually operated. This problem is qua-
dratic both in the objective function and
in one crucial constraint. Suitable algo-
rithms already exist for solving such a
problem. Its main advantage lies with the
fact that it does not require the enumer-
ation of all the basic optimal solutions. Its
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disadvantage consists in the nonlinear
constraint. Furthermore, this procedure
does not yield any information on how
different various optimal basic solutions
might be. The computation of all basic
optimal solutions is more informative be-
cause it provides a complete analysis of
the given QP (I.C) problem.
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