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Scientific Selection: A Century of Increasing Crop 

Varietal Diversity in U.S. Wheat 

 

ABSTRACT 

A prevalent and persistent biodiversity concern is that modern cropping systems lead to an 

erosion in crop genetic diversity. Although certain trait uniformity provides advantages in crop 

management and marketing, farmers are also incentivized to use diverse genetics to reduce risks 

from change in climate, pests and markets. These risk factors have spurred increased turnover in 

varietal use to address complex and spatially variable genetics, environment, and crop 

management (GxExM) interactions to optimize crop performance. Contrary to commonly held 

perceptions, phylogenetically blind and phylogenetically informed diversity metrics reveal that 

the intensive use of scientifically selected varieties has led to significant increases in both the 

spatial and temporal diversity of the U.S. wheat crop over the past century.  
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1. Introduction 

Halting biodiversity loss is crucial to achieving many of the U.N.’s sustainable development 

goals, and is a leading development target in its own right (U.N. 2021; Delabre et al. 2021). 

Agriculture is seen as both a key cause of the global “biodiversity crisis” (UNEP 2016; U.N. 

2021, pp. 19 and 52; Lu and Bullock 2021), and a principal means of addressing it (U.N.-SCBD 

2020, p. 20). The nexus between biodiversity and agriculture is complex and multidimensional. 

With 36.7% of the world’s land mass in cropping and animal agriculture (FAO 2021), promoting 

sustainable agricultural productivity growth is key to feeding a large and still growing world 

population at affordable prices, while at the same time stalling growth in or shrinking the 

footprint of agriculture to return areas to wild or at least more natural, biodiverse landscapes. The 

small number of crop species used to feed the planet is also a source of concern to many (e.g., 

National Research Council 1972; Fowler and Mooney 1990; Thrupp 2000; Smolders 2006). In 

2018, more than half (51.6%) of the 7,967 quadrillion calories consumed by humans were 

sourced from just 5 crops—wheat (18.5% of total calories), rice (18%), sugar (6.8%), maize 

(5.3%), and soybeans (2.9%) (FAO 2021). This translates into large areas of the world growing 

the same crop type, for example, 216 million hectares (15.0% of total harvested area) of wheat, 

197 million hectares (13.8%) of corn, and 162 million hectares (11.3%) of rice in 2019 (FAO 

2021).  

Another long-standing biodiversity concern is genetic erosion within cropping agriculture (e.g., 

Miller 1973; Harlan 1975), which Brush (2004, p. 154) succinctly defined as “...the loss of 

variability in crop populations.” This manifests itself as a narrowing of the genetic diversity 

across farmers’ fields within a given crop species. The transition from growing landraces, 

essentially farmer-bred crop varieties, to scientifically bred varieties is seen as a pivotal point in 
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the narrowing of genetic diversity within agriculture (Frankel 1970; Harlan 1975). But the 

subsequent decades of using varieties developed by scientists rather than farmers is perceived as 

a further, if not the primary, cause of a narrowing genetic variability in crop populations (Fowler 

1994, Appendix I; Brush 2004, ch. 7). Two commonly cited corollaries from these concerns are 

that a) a narrowing of the genetic variability in fields using scientifically-bred varieties makes 

cropping agriculture more vulnerable to losses associated with adverse climate, pest and disease 

shocks (NAS 1972; Miller 1973), and b) the encroachment of modern agriculture into cropping 

systems more reliant on the use of landraces erodes in situ access to the historical accumulation 

of genetic diversity that farmers through the ages have formally or informally selected into that 

material (Harlan 1975).  

A persistent and still prevailing perception is that the use of modern, and in particular 

scientifically bred, varieties continues to be a major driver of genetic erosion (Frankel 1970; 

Hawkes 1983; UN-SCBD 2020). However, economic first principles suggest that genetic erosion 

within agricultural crops occasioned by the shift to, and, especially, the subsequent widespread 

uptake of, scientifically bred varieties is neither inevitable, or necessarily the most probable 

outcome. While economic incentives are likely to lead to crop uniformity in some traits, similar 

incentives are also likely to drive diversification in other crop attributes. As Duvick (1984) 

discussed, there are substantial economic gains by way of lower costs of food production, 

processing and consumption that come from uniformity in particular phenotypic traits in certain 

cropping systems (e.g., uniform crop emergence, flowering and harvesting times; plant, seed or 

fruit size, shape or composition; and so on). However, there are other economically valuable 

crop traits—e.g., resilience to changes in biotic and abiotic stresses over time, or responsiveness 
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to locational differences in the agroecological attributes that affect crop production—that 

incentivize the development and use of more diverse germplasm.  

From this economic framing, it naturally follows that an informative assessment of crop genetic 

diversity considers both the temporal and the spatial dimensions of diversity. For example, while 

landraces (or farmer-bred varieties) may exhibit more spatial diversity at any point in time (Peng 

et al. 2011), they may be vulnerable to unprecedented (in nature and magnitude) biotic or abiotic 

shocks occasioned by relative rapid changes in climate and human- or naturally-mediated 

invasions of foreign pests and diseases. In contrast, the relatively rapid turnover of crop varieties 

in more intensive agriculture systems that use scientifically selected material (Brush 2004, ch. 7; 

Brennan and Byerlee 1991; Meng et al. 1998) opens up prospects for more rapid, and thereby 

more valuable, genetic responses to changing climate, pest and disease circumstances. Market 

forces are likely to favor varieties with superior performance attributes in these changed 

environmental realities. In addition, scientifically selected varieties that optimize their 

performance in locationally variable agroecological environments means that market forces are 

also likely to spur more spatially diverse seed development and deployments to achieve better 

performing G x E (genetics-by-environment) matchups.  

The ecology, genetics, economics, information theory and other sciences have spawned a 

multitude of diversity measures. The measures used by prior studies of wheat diversity (see 

Table S1 for a summary) fall into two broad categories. One is phylogenetically blind entropy 

measures (e.g., Brennan and Byerlee 1991; Smale et al. 1998). These measures quantify diversity 

in terms of varietal “abundance” without consideration of relatedness among varieties. When 

applied to cropping agriculture, these measures effectively consider each variety of a given crop 

as being equally distinct from one another. The second category are phylogenetically informed 
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measures that attempt to account for the genetic, phenotypic, or functional relatedness among 

crop varieties. These include pedigree-based similarity measures, phenotypic (morphological or 

biochemical) traits-based measures, and molecular marker-based measures of genetic diversity.  

A sizable number of studies have used a range of relatedness measures, including phenotypic 

traits, varietal pedigrees or molecular markers to generate measure of varietal relatedness among 

wheat populations (see, e.g., Table S1). Of note, these prior studies often do not take into 

consideration the spatio-temporal dynamics of wheat varietal diversity in the sense that the 

diversity is assessed among a collection of varieties irrespective of the locales and time where 

the varieties were grown (see, e.g., Poets et al. 2020). 

Based on the economic notions broached above, it is by no means a foregone conclusion that the 

more intensive (in space and time) use of scientifically selected crop varieties leads to an erosion 

of crop diversity. Here we use a purpose-built data set to quantify the changing spatio-temporal 

pattern of varietal diversity in the U.S. wheat crop over the past century spanning the years 1919 

to 2019; a period that encompasses most of the time that scientific crop breeding was informed 

by Mendelian methods of genetic selection (Biffen 1905; Ball 1930; Smýkal et al. 2016). To do 

so we draw on phylogenetically informed metrics of diversity developed in the ecological 

literature while also introducing the notion of a “meta-population” (where, in this instance, U.S. 

level crop varietal data are parsed into state-level spatial sub-units) to enable the joint assessment 

of changes in temporal and spatial crop diversity. We used the generalized phylogenetic diversity 

(PD) measure proposed by Chao et al. (2010), and applied the Hill numbers (or the effective 

number of varieties) framework to quantify the changing varietal diversity of the U.S. wheat crop 

during the past 100 years. The generalized PD and Hill numbers framework incorporates both 

varietal relatedness and varietal abundance to allow for the joint assessment of the spatio-
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temporal dynamics of varietal diversity within a cropping system that is heavily reliant on 

scientifically selected varieties. 

2. Methods 

2.1 Data on Wheat Varieties in the U.S. 

Data on planted area-by-variety were collected for the U.S. wheat crop for the period 1919-2019 

by the authors and colleagues at the International Science and Technology Practice and Policy 

(InSTePP) center and the GEMS Informatics Center, University of Minnesota. Wheat crops were 

divided into three market classes–durum, spring and winter. From 1919 to 1984, acreage-by-

variety data are reported quinquennially for a total of 42 states by USDA’s Statistical Bulletins 

on the Distribution of the Varieties and Classes of Wheat in the United States. Thereafter we 

sourced the required data from state-specific agricultural statistical services, which dropped to 16 

states in 2000 and the years following. These 16 states accounted for 89% of total U.S. wheat 

area in 2019. For each market class, the states for which we have area-by-variety data account 

for around 97 percent of durum acreage, 100 percent of spring acreage, and 84 percent of winter 

acreage based on the 2019 NASS data. However, even within the 16 major wheat-growing states, 

not all states report area-by-variety data for all years. To construct a complete state-level panel 

on wheat variety areas, we filled in the missing years’ variety area information using linear 

interpolation based on years before and after any missing years. Furthermore, we used each 

variety’s year of release and last year of reported use nationally to determine the beginning and 

end year of each variety’s use when interpolating their state-specific areas. Information on 

variety’s year of release was collected from multiple sources, including the Genetic Resource 

Information System (GRIS) for Wheat and Triticale (CIMMYT 2017), the Germplasm 

Resources Information Network (GRIN) (USDA-NGRP 2021), the GrainGenes database 
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(USDA-ARS 2021), crop registration narratives from scientific journals such as Crop Science, 

Journal of the American Society of Agronomy, and Journal of Plant Registration, the Plant 

Variety Protection Office (USDA-PVPO 2021), and searches from elsewhere such as private 

company websites and university websites.   

Additionally, information on each variety’s name, market class, and crop pedigree were also 

collected. Varieties often have aliases or different spellings depending on the time and location 

they were marketed and adopted. To avoid double counting the same varieties with different 

names across states and over time, we reconciled the aliases of different varieties and 

standardized the names across all the reported wheat varieties grown commercially in the U.S. 

from 1919 to 2019. Multiple sources of wheat genetic and pedigree information were used to 

consolidate varietal names and their pedigrees, including the Genetic Resource Information 

System (GRIS) for Wheat and Triticale (CIMMYT 2017), the Germplasm Resources 

Information Network (GRIN) (USDA-NGRP 2021), the GrainGenes database (USDA-ARS 

2021), and the Plant Variety Protection Office (USDA-PVPO 2021).  

Where possible, the entire pedigree of each variety and their parents were traced back to either a 

landrace, a wild accession or a local variety. The pedigree information for all reported 

commercially grown varieties in the U.S. was collected and processed. Inconsistencies among 

reported pedigrees (and varietal name) were reconciled by PedTools, a python library developed 

by the GEMS Informatics Center at the University of Minnesota that maps input varieties for a 

crop to aliases, standardizes naming protocols, and recursively reconstructs pedigrees in 

principle back to landraces through repeated observations of parent-child relationships found in 

the literature. To process the 1,353 commercially grown varieties included in this study, 
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PedTools was applied to 2,597 varieties (including non-commercially grown crossing materials) 

for the final pedigree analysis.  

2.2 Diversity Measures 

A large number of biodiversity measures have been proposed in the disciplines of ecology, 

genetics, economics, information theory and other sciences (Fisher et al. 1943; Solow et al. 1993; 

Shannon 2001; Chao et al. 2014). Among them, the most commonly used are phylogenetically 

blind in the sense that they tally the distributions of each type of entity, regardless of each entity 

type’s taxonomic, genetic or functional similarities. Such indexes include an entity richness 

index, the Shannon entropy index (Shannon 2001), and the Gini-Simpson index (Simpson 1949), 

all of which are special cases of the generalized Tsallis entropy measures (Keylock 2005; Jost 

2006), also known as HCDT entropy indexes (Havrda and Charvát 1967; Daróczy 1970; Tsallis 

1988). HCDT indexes can be converted into so-called “true diversity” measures. Such measures, 

also known as the effective number of species or “Hill numbers”, represent the hypothetical 

number of equally abundant entities that would give the same diversity index value as was 

actually observed (Hill 1973; Jost 2006). “Hill numbers” do not depend on the functional form of 

the index and satisfy the replication principle, whereby the index value doubles if each entity 

grouping was divided into two equal new groups (Jost 2006; Tuomisto 2012). Thus, Hill 

numbers allow for a unified and intuitive interpretation of diversity across locations. 

For wheat, new varieties are typically developed by genetic crosses among existing varieties, and 

thus the contribution of each new variety to the overall crop diversity depends on their 

relatedness to existing varieties. Commonly used phylogenetically blind biodiversity measures 

such as species richness and Shannon entropy are unsuitable to differentiate areas growing many 

genetically similar, but nonetheless differentiated (by name), crop varieties from those areas with 
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many genetically distant crop varieties. Thus, characterizing the biodiversity of a crop species in 

modern agricultural landscapes requires a phylogenetically informed approach, which by 

construction incorporates the notion of varietal relatedness into the measure of diversity.  

A growing number of phylogenetically informed biodiversity measures have been proposed to 

account for taxonomic, functional or phylogenetic similarities among species within a 

community, such as Rao’s quadratic entropy (Rao 1982), taxonomic cladistics diversity (CD) 

(Vane-Wright et al. 1991), phylogenetic diversity (PD) (Faith 1992), pure diversity measure 

(Solow et al. 1993; Solow and Polasky 1994), functional diversity (FD) (Tilman 2001) and many 

others (e.g., Crozier 1992; Weitzman 1992; Warwick and Clarke 1995; Chao et al. 2010; Chiu 

and Chao 2014). Among these alternatives, one common approach to account for the genetic 

relatedness among biological individuals is the phylogenetic diversity (PD) measure proposed by 

Faith (1992). This diversity measure is defined as the sum of all the phylogenetic branches along 

the minimum spanning path to quantify the evolutionary history shared among individuals. 

Weitzman (1992) showed that a community’s diversity value can be represented by the branch 

length of the hypothetical phylogenetic tree.  

PD measures typically focus on the presence or absence of a species to measure the overall 

genetic variation within a community, without taking into account the relative abundance of each 

species. However, species abundance provides crucial additional information regarding the 

composition of the community, especially for agroecosystems where a few popular crop varieties 

may dominate the majority of the landscape, while numerous other varieties account for 

comparatively small portions of the overall cropped area. To incorporate both species abundance 

and species phylogenetic distances, Chao et al. (2010) generalized the traditional phylogenetic 
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measure and proposed a PD measure based on Hill numbers that quantifies “the mean effective 

number of species,” and in so doing unified many of the existing measures of biodiversity.  

To calculate a generalized PD, a phylogenetic tree is first constructed based on distances 

between species of the community using the UPGMA method (unweighted pair group method 

with arithmetic mean). Both molecular markers and pedigree information have been used in 

major crop genetic diversity studies to derive genetic distances among crop varieties. For this 

study, we use the coefficient of parentage (COP) concept to infer genetic relatedness from 

pedigree information on all named U.S. wheat varieties planted during the period 1919 to 2019. 

Following Murphy et al. (1986), COP calculates the proportion of shared genetic material among 

varieties based on their respective pedigrees under the following assumptions: (1) a cultivar 

inherits half of its genes from each parent; (2) all parental lines are homozygous and 

homogeneous; and (3) all landraces are unrelated to each other. Defining a pair-wise 

dissimilarity index between variety 𝑖𝑖 and variety 𝑗𝑗 as 𝑑𝑑𝑖𝑖𝑖𝑖, we can obtain a pair-wise dissimilarity 

matrix 𝐷𝐷 for the collection of all wheat varieties over the entire study period in the U.S. Based on 

the pairwise dissimilarity matrix, a phylogenetic tree can be constructed for all U.S. wheat 

varieties. Using the phylogenetic tree, the generalized PD (denoted as  𝐻𝐻) for a community of 

wheat varieties can then be calculated using Chao et al.'s (2010) method as: 

𝐻𝐻� (𝑇𝑇�) 
𝑞𝑞 = ��𝑇𝑇𝑖𝑖 × �

𝑎𝑎𝑖𝑖
𝑇𝑇�
�
𝑞𝑞𝐵𝐵

𝑖𝑖=1

�

1
1−𝑞𝑞

 

where 𝐵𝐵 is the number of branch segments in the tree, 𝑇𝑇𝑖𝑖 denotes the length of branch 𝑖𝑖 (𝑖𝑖 =

1,2, … ,𝐵𝐵), 𝑎𝑎𝑖𝑖 denotes the branch abundance (sum of relative abundance of all species descended 

from branch 𝑖𝑖 ), 𝑞𝑞 denotes the exponent value (i.e., order) given to the branch abundance 

normalized by the mean branch length, which is defined as  𝑇𝑇� = ∑ 𝑇𝑇𝑖𝑖𝑎𝑎𝑖𝑖𝐵𝐵
𝑖𝑖=1 . For special cases of 
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the order 𝑞𝑞 spanning the entire age of the phylogenetic tree, it is shown that 𝐻𝐻�(𝑇𝑇�) 
0  becomes the 

total branch length, which is the traditional Faith’s PD; 𝐻𝐻�(𝑇𝑇�) 
1  can be linked to a generalization 

of Shannon entropy to incorporate phylogenetic distances; and 𝐻𝐻�(𝑇𝑇�) 
2  can be linked to Rao’s 

quadratic entropy (Chao et al. 2010; Chiu and Chao 2014). The phylogenetic Hill number is then 

calculated as: 

𝐷𝐷�(𝑇𝑇�) 
𝑞𝑞 =

𝐻𝐻�(𝑇𝑇�) 
𝑞𝑞

𝑇𝑇�
=

1
𝑇𝑇�
��𝑇𝑇𝑖𝑖 × �

𝑎𝑎𝑖𝑖
𝑇𝑇�
�
𝑞𝑞𝐵𝐵

𝑖𝑖=1

�

1
1−𝑞𝑞

 

For a state with 𝑁𝑁 equally common species that are completely distinct from each other along the 

phylogenetic tree, the diversity measure 𝐷𝐷�(𝑇𝑇�) 
𝑞𝑞  always gives exactly 𝑁𝑁. Thus, the phylogenetic 

Hill number 𝐷𝐷�(𝑇𝑇�) 
𝑞𝑞  can be interpreted as the effective number of maximally distinct lineages 

with equal relative abundance (Chao et al. 2010).  

2.3 Spatial and Temporal Diversity Decomposition 

The generalized PD indexes introduced above are static measures of biodiversity for a single 

crop (in this instance wheat) community (e.g., a U.S. state, or the U.S. as a whole). However, 

variation in both the spatial and temporal dimensions of an ever-changing mix of crop varieties 

are one of the most fundamental features of modern agricultural systems. Thus, decomposing 

biodiversity into its spatial and temporal components provides a means of characterizing the 

dynamic changes over space and time in agricultural biodiversity. A growing number of long-

term datasets have been used to examine the spatial and temporal patterns of biodiversity change 

within ecological systems (e.g., Magurran et al. 2010). This study incorporates both spatial and 

temporal decompositions into an assessment of the diversity dynamics of a major crop species. 
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Whittaker (1960) first proposed the decomposition of the overall diversity (𝛾𝛾- diversity) into 

within-community (𝛼𝛼- diversity) and between-community (𝛽𝛽- diversity) components, using 

either an additive or multiplicative rule. For spatial decomposition within each time period, each 

U.S. state can be treated as a separate crop community, where the variation among different 

states reflects the spatial diversity across the landscape. For temporal decomposition with each 

U.S. state, each year can be treated as a separate crop community where the variation across 

years reflects the temporal diversity within each state.  

Here we define a crop community as the collection of varieties planted within a given state for a 

given year for a given crop. Then a “spatial metacommunity” is defined as the collection of all 

communities within a single year (i.e., all states in the U.S. within a given year) and a “temporal 

metacommunity” is defined as the collection of communities over multiple years within the same 

state (i.e., all years within a given state). With these definitions of spatial and temporal 

metacommunities, following Marcon et al. (2014), the total species neutral HCDT entropy (𝛾𝛾- 

entropy) for a metacommunity 𝐻𝐻𝛾𝛾 
𝑞𝑞  can be decomposed as: 

 𝐻𝐻𝛾𝛾 
𝑞𝑞 = 𝐻𝐻𝛼𝛼 

𝑞𝑞 + 𝐻𝐻𝛽𝛽 
𝑞𝑞 = �𝑤𝑤𝑚𝑚 𝐻𝐻𝛼𝛼𝑚𝑚

𝑞𝑞

𝑚𝑚

+ �𝑤𝑤𝑚𝑚 𝐻𝐻𝛽𝛽𝑚𝑚
𝑞𝑞

𝑚𝑚

 

where 𝛼𝛼- and 𝛽𝛽- entropies for the metacommunity (i.e.,  𝐻𝐻𝛼𝛼 
𝑞𝑞  and  𝐻𝐻𝛽𝛽 

𝑞𝑞 ) are the weighted sums of 

local entropies within each community (i.e., 𝐻𝐻𝛼𝛼𝑚𝑚
𝑞𝑞  and 𝐻𝐻𝛽𝛽𝑚𝑚

𝑞𝑞 ). The weight 𝑤𝑤𝑚𝑚 adjusts for sample 

size differences among communities, which is commonly defined as 𝑤𝑤𝑚𝑚 = 𝑛𝑛𝑚𝑚/𝑁𝑁 where 𝑛𝑛𝑚𝑚 is 

the number of individuals (here, crop varieties) in a local community and 𝑁𝑁 is the total number 

of individuals for a metacommunity. The 𝛼𝛼- and 𝛽𝛽- entropies for a community are calculated as: 

𝐻𝐻𝛼𝛼𝑚𝑚
𝑞𝑞 = −�𝑝𝑝𝑖𝑖𝑚𝑚

𝑞𝑞 𝑙𝑙𝑛𝑛𝑞𝑞 𝑝𝑝𝑖𝑖𝑚𝑚
𝑖𝑖
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𝐻𝐻𝛽𝛽𝑚𝑚
𝑞𝑞 = ∑ 𝑝𝑝𝑖𝑖𝑚𝑚

𝑞𝑞 lnq
𝑝𝑝𝑖𝑖𝑖𝑖
𝑝𝑝𝑖𝑖𝑖𝑖  where 𝑝𝑝𝑖𝑖 = ∑ 𝑝𝑝𝑖𝑖𝑚𝑚𝑚𝑚  

Similarly, as a linear transformation of generalized entropy, the generalized PD for the 

metacommunity  𝐻𝐻�𝛾𝛾 
𝑞𝑞 (𝑇𝑇) can be decomposed as: 

𝐻𝐻�𝛾𝛾 
𝑞𝑞 (𝑇𝑇) = 𝐻𝐻�𝛼𝛼(𝑇𝑇) 

𝑞𝑞 + 𝐻𝐻�𝛽𝛽(𝑇𝑇) 
𝑞𝑞  

where   

𝐻𝐻�𝛾𝛾 
𝑞𝑞 (𝑇𝑇) = �

𝑇𝑇𝑘𝑘
𝑇𝑇�

𝐻𝐻𝛾𝛾𝑘𝑘
𝑞𝑞

𝑘𝑘

 

𝐻𝐻�𝛼𝛼(𝑇𝑇) 
𝑞𝑞 = �𝑤𝑤𝑚𝑚

𝑚𝑚

�
𝑇𝑇𝑘𝑘
𝑇𝑇�

𝑘𝑘

𝐻𝐻𝛼𝛼𝑘𝑘
𝑞𝑞  

𝐻𝐻�𝛽𝛽(𝑇𝑇) 
𝑞𝑞 = �𝑤𝑤𝑚𝑚

𝑚𝑚

�
𝑇𝑇𝑘𝑘
𝑇𝑇�

𝑘𝑘

𝐻𝐻𝛽𝛽𝑘𝑘
𝑞𝑞  

The corresponding decomposition of the diversity index  𝐷𝐷�𝛾𝛾 
𝑞𝑞 (𝑇𝑇), also known as the 

phylogenetic Hill number, is then obtained as: 

𝐷𝐷�𝛾𝛾 
𝑞𝑞 (𝑇𝑇) = 𝐷𝐷�𝛼𝛼(𝑇𝑇) 

𝑞𝑞 𝐷𝐷�𝛽𝛽(𝑇𝑇) 
𝑞𝑞  

where 

𝐷𝐷�𝛾𝛾 
𝑞𝑞 (𝑇𝑇) = 𝑒𝑒𝑞𝑞

𝐻𝐻�𝛾𝛾 
𝑞𝑞 (𝑇𝑇)

 

𝐷𝐷�𝛼𝛼(𝑇𝑇) 
𝑞𝑞 = 𝑒𝑒𝑞𝑞

𝐻𝐻�𝛼𝛼(𝑇𝑇) 
𝑞𝑞

 

𝐷𝐷�𝛽𝛽(𝑇𝑇) 
𝑞𝑞 = 𝑒𝑒𝑞𝑞

𝐻𝐻�𝛽𝛽(𝑇𝑇) 
𝑞𝑞

1+(1−𝑞𝑞) 𝐻𝐻�𝛼𝛼(𝑇𝑇) 𝑞𝑞  

Here 𝑒𝑒𝑞𝑞𝑥𝑥 is the transformed exponential defined as 𝑒𝑒𝑞𝑞𝑥𝑥 = [1 + (1 − 𝑞𝑞)𝑥𝑥]1/(1−𝑞𝑞)  

Depending on the grouping of communities into a given “spatial metacommunity” or a “temporal 

metacommunity”, the above formula allows us to decompose diversity into its respective spatial 

or temporal dimensions. Essentially, for a metacommunity (i.e., a collection of local 
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communities), the overall 𝛾𝛾-diversity is decomposed into an average local community diversity 

(𝛼𝛼-diversity) and a measure of the effective number of communities (𝛽𝛽-diversity). Intuitively, for 

a given year in the U.S. with an overall phylogenetic diversity (PD) index value 𝛾𝛾, the 𝛼𝛼-

diversity component of this “spatial metacommunity” indicates the average diversity of wheat 

varieties growing within a state (i.e., the average effectively distinct number of varieties from 

maximally distinct lineages with equal relative abundance in a state), while the 𝛽𝛽-diversity 

component of this “spatial metacommunity” indicates the effectively distinct number of states 

(i.e., the equivalent number of states that each has 𝛼𝛼 effective number of varieties that are 

distinct from each other). Similarly, for a “temporal metacommunity” (i.e., multiple periods or 

epochs for a given state) with an overall phylogenetic diversity (PD) index value 𝛾𝛾, the 𝛼𝛼-

component indicates the average diversity of wheat varieties growing in each epoch in this state, 

while the 𝛽𝛽-component indicates the effectively distinct number of epochs (i.e., the equivalent 

number of epochs where each has 𝛼𝛼 effectively distinct number of varieties). Using a unique 

long-run panel dataset for a major crop species, such spatial and temporal decompositions allow 

us to better understand the impact of crop varietal turnover on modern agricultural genetic 

diversity and address key questions concerning 1) the overall trends in the phylogenetic diversity 

of the U.S. wheat crop, and 2) changes in either the spatial or temporal dimensions of diversity in 

the U.S. wheat crop over the past century. 

3. Results 

3.1 Phylogenetically Blind Measures of Wheat Biodiversity 

U.S. planted wheat area peaked in 1981 (88.3 million acres), thereafter declining steadily to just 

45.5 million acres by 2019 (USDA-NASS 2021). In recent years, around 70% of the acreage was 
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planted to winter wheat, with spring wheat averaging around 25% and durum wheat less than 5% 

(USDA-NASS 2021). Spring and durum wheats are grown mostly in the Northern Plains, while 

winter wheat is mainly planted in the Central Plains and Pacific Northwest. Among all three 

classes of wheat that were commercially grown across 16 major wheat-producing states during 

the period 1919-2019, we identified a total of 1,353 unique named varieties, each accounting for 

at least 0.5% state-level area share by market class in the year they were grown.  

As shown in Fig.1, the area dynamics of major varieties exhibits a strong regularity. First, the 

acreage shares attributed to the top wheat varieties decline over time (see decrease in overall 

colored areas in Fig. 1). In 1919 the top five varieties accounted for 88% of the U.S wheat 

planted acreage; by 1964 that share had shrunk to just 34%. The colored plus darker grey 

elements of Fig. 1 signify the share of area planted to the top 20 varieties (99% in 1919 down to 

68% in 2019). Second, the temporal pattern of major variety uptake typically follows a logistic 

function (consistent with Griliches’ 1957 classic study of the U.S. adoption of hybrid corn), 

followed by a period of dis-adoption as newer varieties gained popularity. Finally, Fig 1. 

graphically illustrates the waves of faster varietal turnover that have consistently swept through 

the U.S. wheat crop over the past century. Specifically, earlier varieties (such as Turkey) that 

were once dominant for several decades are no longer major varieties, while in recent years the 

top varieties tend to completely turn over within a period of 5 years.  

Fig. 2 plots several phylogenetically blind diversity metrics that summarize important 

dimensions of the varietal dynamics shown in Fig. 1. Our data reveal that the number of major 

commercially grown wheat varieties increased steadily over time, from just 33 in 1919 to 186 in 

2019. On a per-million-acre basis, the intensity of varietal use indicates an increasingly diverse 

spatial pattern. In 1919, varietal intensity averaged 0.8 varieties per million acres. A century 



15 
 

later, farmers were using a much more diverse portfolio of varieties; varietal intensity had 

increased more than 10-fold to average 9.1 varieties per million acres in 2019.  

In 1919 just 1.3% of the planted area was sown to new varieties (i.e., <5 years old). By 2019, 

more than one third (36.0%) of the U.S. wheat area was planted to new varieties, such that the 

area-weighted age of commercially grown varieties declined dramatically from 36.4 years in 

1919, to 16.0 years in 1960, and down to just 9.3 years in 2019. The decline in the area share of 

older varieties (i.e., >15 years since release) was particularly pronounced; 68.8% in 1919, and 

only 13.7% in 2019. 

The average trends on varietal longevity mask a good deal of variation in the commercially 

useful life of individual varieties. For example, the winter wheat variety Cheyenne, bred at the 

Nebraska Agricultural Experiment Station and released for commercial use in 1933, was planted 

for a period of 80 years, disappearing from the varietal statistics in 2014. Its area peaked at 

around 2.5 million acres in 1959, falling steadily to less than 5,000 acres in 2013. In our 

collection, a total of 453 (33.5% of the 1,353 total) wheat varieties were long-lived (i.e., 

commercially grown for more than 15 years). In contrast, 93 varieties were especially short-

lived, with recorded commercial use of just one year.  

3.2  Spatio-temporal Phylogenetic Diversity Patterns  

While the phylogenetically blind measures presented above unequivocally reveal increasing 

varietal diversity in the U.S. wheat crop, they can be potentially misleading indicators of the 

extent of genetic erosion associated with the use of scientifically selected crop varieties. It is the 

perception of a narrowing of the genetic variation in modern cropping systems that is most 

closely associated with the concerns over the resilience of these systems to current and 

prospective climate and pest shocks. Phylogenetically blind measures of diversity will overstate 
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the degree of genetic diversity within a given population or area extent (e.g., a field, state or 

country) when the varieties in that population or locale are genetically related through shared 

breeding materials. 

To infer the genetic relatedness using pedigree data, in this study we utilize a comprehensive 

collection of U.S. wheat pedigree information (see Methods). As Fradgley et al. (2019) 

demonstrated in a recent large-scale wheat genetic diversity study across 454 wheat varieties, 

there is high correlation between pedigree- and marker-based kinship coefficients, confirming 

the value of using pedigree information to inform and manage wheat genetic diversity. The 

phylogenetic tree on the LHS of Fig. 3. graphically depicts the genetic relatedness of 1,353 

commercial wheat varieties grown in the U.S. during the period 1919-2019. The genetic distance 

between each pair of wheat varieties is represented by the pedigree branch length between them, 

based on their respective coefficient of parentages (COPs) that we calculated using the method 

described by Murphy et al. (1986). The horizontal, colored lines in Fig. 3 indicate the presence or 

absence of each of these commercially grown wheat varieties for each of the years 1919-2019.  

The phylogenetic variation among wheat varieties in the U.S. increased over time, as revealed by 

the expanding coverage across the phylogenetic tree over time. The three market classes for 

wheat differ in their clustered locations within the phylogenetic tree. Most of the durum wheats 

(red lines) are concentrated within a closely clustered region on the phylogenetic tree. Winter 

wheats exhibit a much more diverse phylogenetic background than durum or spring wheats, with 

varieties ranging across the entire phylogenetic tree. In addition, the phylogenetic background of 

winter wheats constantly changes as the use of particular varieties waxes and wanes over time. 

Phylogenetic Diversity (PD) Indexes 
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We used the genetic relatedness among varieties based on their respective position within the 

phylogenetic tree, and the abundance of each variety based on its state-specific planted area 

shares, to calculate a PD index for each of the 16 major U.S. wheat producing states during the 

period 1919-2019 using the method described by Chao et al. (2010). The overall, and dominant, 

trend is for the phylogenetic diversity of wheat to increase over time in all the larger wheat 

growing states for all three market classes (Fig. 4). For winter wheat, many states—including 

Kansas, Kentucky, Montana, Nebraska, Oklahoma, Texas and Washington—had substantial 

increases in phylogenetic diversity, especially in the more recent decades, while some of the 

smaller wheat growing states (Oregon, Wyoming, Indiana) had rather stagnant phylogenetic 

diversity over the longer run. The PD indexes for spring wheat are generally similar to those for 

winter wheat within states growing both market classes (such as South Dakota, Montana and 

Washington). In California, Montana and South Dakota, the PD indexes for durum wheats are 

almost always less than those for winter wheat, whereas in North Dakota the phylogenetic 

diversity of durum wheat is comparable to that of spring and winter wheat.  

Temporal Decomposition of PD 

The phylogenetic diversity trends reported above track state-level changes over time in a PD 

index, where that index is calculated by treating each state at each point in time as a discrete 

community of wheat varieties. Adopting an approach introduced by Whitakker (1960) in his 

study of diversity changes in the vegetative cover of two forested regions, a more nuanced, and 

more insightful measurement approach to analyzing the variation in phylogenetic diversity 

among U.S. wheat varieties is to introduce the concept of a metacommunity. In this first 

instance, we treat the wheat varieties grown over the entire century in each state as a distinct 

“temporal metacommunity,” such that the overall phylogenetic diversity (aka γT-diversity) of 
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each state-specific metacommunity can be decomposed into two components: an αT-diversity, 

which captures the average effective number of phylogenetically distinct varieties planted each 

year in a given state, and a temporal βT-diversity, which measures the effective number of 

phylogenetically distinct epochs for a state. Thus, for example, states with higher numbers of 

phylogenetically distinct varieties in a year will have larger αT -diversity values, while those 

states with higher turnover rates of phylogenetically distinct varieties will have higher βT -

diversity values. Fig. 5 plots the αT -diversity (number of effectively distinct varieties per year) 

on the x-axis and temporal βT -diversity (number of effectively distinct epochs) on the y-axis for 

each state, where the rectangle area (equal to αT x βT) represents each state’s overall (spatio-

temporal) γT -diversity.  

Winter wheat states differ markedly in terms of their αT -, βT - and γT -diversities. Washington, 

Idaho and Texas are the top three ranked states in terms of their overall γT –diversities, with both 

high αT -diversity (averaging 6.7, 6.7 and 6.8 effectively distinct varieties per year, respectively) 

and high temporal βT -diversity (5.1, 5.0 and 4.7 distinctly different epochs during the 101-year 

period spanning 1919 to 2019). In contrast, Wyoming has the lowest overall γT -diversity, with 

both the lowest αT -diversity (averaging just 3.2 effectively distinct varieties each year) and 

lowest temporal βT -diversity (with just 2.7 phylogenetically distinct epochs). Kansas is the most 

βT -diverse state, with 5.7 phylogenetically distinct epochs during the period 1919-2019, 

indicative of a rapid rate of varietal turnover. 

For spring wheat, North Dakota has the highest overall γT -diversity with 4.4 effective varieties 

each year (αT -diversity), and 6.0 phylogenetically distinct years (βT -diversity). Idaho and 

Minnesota have the highest αT -diversity and βT -diversity respectively. In Washington, the αT -

diversity for spring wheat (4.7) is smaller than it is for winter wheat (6.7), with a difference of 
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2.0 effectively distinct varieties. Spring wheat in North Dakota and South Dakota have higher αT 

-, βT - and γT -diversities than wheats in the other two market classes, suggesting both a higher 

effectively distinct number of varieties and a faster rate of replacement for spring wheat in these 

states.   

Among the four durum wheat states, Montana planted 3.6 effectively distinct varieties each year, 

higher than North Dakota, South Dakota, and California which ranged from 2.0 to 2.7 effectively 

distinct varieties annually. California has the highest temporal βT -diversity (4.5 distinct epochs) 

among all four states. 

Spatial Decomposition of PD 

To characterize the spatial variation of wheat varieties across states, the collection of all major 

wheat growing states in the U.S. for each year is treated as a “spatial metacommunity”. In this 

instance, the γS -diversity represents the overall diversity in the U.S., which can be decomposed 

into αS-diversity—representing the average number of effectively distinct varieties in a state—, 

and the spatial βS-diversity—which represents the effective number of phylogenetically distinct 

states in the U.S. For the three market classes of wheat in the U.S., their overall γS -diversity and 

its αS - and βS - decompositions are plotted over time in Fig. 6. Generally, the diversity indexes 

are increasing over time for all three market classes of wheat in the U.S., where winter wheat has 

the highest overall γS -diversity followed by spring wheat. Winter wheat and spring wheat have 

similar αS -diversity indexes over time, suggesting that the state-level wheat varietal diversities 

are similar among these two market classes. However, winter wheat has much higher spatial βS -

diversities than spring wheat, consistent with the fact that winter wheat is grown in more states 

over larger geographic areas than spring wheat. This is also consistent with the notion that 

market forces are likely to drive towards the development and deployment of varieties that better 
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align varietal genetics across the diverse, location-specific agroecologies in which they are 

grown.  

With only four major durum wheat states, the spatial βS -diversity and overall γS -diversity for 

durum are the lowest among the three market classes. The overall γS -diversities for the U.S. 

wheat crop are heavily influenced by both the αS-diversity and βS -diversity, suggesting that both 

the within-state varietal diversity and across-state spatial variations are important for the overall 

diversity of the wheat population across each of the three market classes.  

4. Discussion 

Our temporal, spatial and varietal coverage constitutes a superset of the coverage contained in 

previous studies of the changing crop diversity in U.S. wheat production (Table S1). And, going 

beyond these prior studies, we used the concept of a meta-community to examine both the spatial 

and temporal dimensions of crop diversity. Our conclusions derived from both phylogenetically 

blind diversity metrics, in which different crop varieties are counted as equally distinct 

varieties—which tend to inflate estimates of diversity—as well as phylogenetically informed 

metrics that take account of the relatedness of scientifically-selected varieties. Despite these 

analytical differences, our results provide further, more comprehensive, evidence that the 

increasingly intensive use of scientifically selected crop varieties generally leads to more, not 

less, biodiverse cropping practices, at least regarding diversity in the U.S. wheat crop over the 

past century. 

Developing accurate estimates of varietal similarity is still challenging. De novo sequences of the 

complete genome, let alone hundreds of thousands of marker sites for every wheat variety, are 

still not available. Hence, we have used COPs—estimates of relatedness based on pedigrees—to 
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infer genetic relatedness. Despite the unrealistic assumption of the absence of selection that the 

COP calculation employs, it has been shown to align more closely with direct marker-based 

assessments of relatedness among wheat varieties as the number of assessed markers increases 

(Fradgley et al. 2019). This provides further confidence that the phylogenetically informed 

diversity statistics we have computed are indicative of the changing spatio-temporal pattern of 

wheat genetic diversity. 

Our findings add to a growing body of empirical evidence of generally enhanced, not 

diminished, phylogenetic crop diversity in modern agricultural systems (see, e.g., the 

compilation in Table S1). Moreover, this finding can profoundly reframe the policy and practical 

implications of a sizable body of literature that ignores phylogenetic (within-crop species) 

diversity when assessing the implications of intensified cropping systems on agricultural 

biodiversity. For example, a recent meta-review of 89 studies across 1,475 locations on the 

relationships between biodiversity and cropping agriculture concluded that “Up to 50% of the 

negative effects of landscape simplification on ecosystem services was due to richness losses of 

service-providing organisms, with negative consequences for crop yields” Dasinese et al. (2019, 

p. 1). However, this study did not address the notion of within-crop (richness and abundance) 

diversity. Moreover, the spatial (and temporal) extents of the sampled locations included in the 

meta review are limited (i.e., generally data for a single or just a few years across individual 

fields, farms or nearby areas) relative to the U.S.-wide wheat acreage spanning a century of 

production included in the present study. Notably, and contrary to Dasinese’s conclusion, U.S. 

average wheat yields rose fourfold (from 12.9 bu/ac in 1919 to 51.7 bu/ac in 2019) in a 

monoculture cropping system that we show is getting genetically more complex from a 

phylogenetic perspective.   
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What if any lessons do these findings have in terms of the biodiversity concerns embodied in the 

U.N.’s sustainable development goals and similar concerns by many other institutions and 

individuals? Setting policies, and subsequently putting them into practice, to achieve desired 

outcomes involving the biodiversity-agricultural nexus is a complex, multi-objective problem. 

Moreover, conserving or enhancing (within species) crop biodiversity in and of itself is a multi-

instrument, multi-objective problem, where the crop biodiversity outcomes are envisaged as a 

means (instrument) to other ends (e.g., yield growth; resilience to a multitude of climate or pest 

and disease shocks; and various food security, access and equity outcomes). Beyond the genetic 

diversity of the crop per se, there is above and below ground (e.g., plant, microbe and insect) 

biodiversity within cropping systems, the biodiversity inherent in dual animal-livestock 

production systems, and the much more encompassing notions of managed, natural or wild 

systems of biodiversity involving land outside of agriculture to be considered.  

Getting some clarity on the distinction between policy instruments and targets is useful in 

thinking through the policies and practices concerning agricultural biodiversity. As Alston and 

Pardey (2021) point out, Tinbergen’s Rule (Arrow 1958) calls on policymakers to use at least 

one policy instrument per policy target, while Corden’s (1974) corollary argues for matching 

instruments closely to targets. Failing to keep policy instruments and targeted outcomes closely 

aligned is often ineffective (in that one instrument is unlikely to be equally optimal for achieving 

more than one outcome) and socially wasteful (in that misaligned instruments and targets are 

unlikely to be cost effective, incurring higher than otherwise direct and opportunity costs). 

If enhancing crop (within species) diversity at consequential temporal and spatial scales is the 

target, our results show that the intelligent intensification of cropping systems using scientifically 

selected crop varieties can be an especially effective instrument. Moreover, in this particular 
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instance, this same instrument has multiple other desired outcomes. The higher yields associated 

with more-intensive cropping systems clearly have positive food security implications by 

increasing crop output, lowering the unit costs of production, or both. This in turn lowers the 

price of food, with especially equitable impacts on poorer people who spend a substantially 

larger share of their meager incomes on food (Muhammad et al. 2011).  

If our results are generalizable such that intensive cropping systems generally increase both 

yields and crop genetic diversity, they are also likely to be impactful on biodiversity more 

generally by shrinking the footprint of cropping agriculture. In the spirit of Waggoner (1996) and 

Borlaug (2007), Stevenson et al. (2013), for example, carried out a counterfactual simulation to 

assess the land use consequences of global agriculture absent the Green Revolution yield gains 

associated with genetic improvement in wheat, rice, coarse grains and other crops (cassava, 

lentils, beans and potatoes) over the period 1961-2004. They concluded that “… the total crop 

area in 2004 would have been between 17.9 and 26.7 million hectares larger in a world that had 

not benefited from crop germplasm improvement since 1965. Of these hectares, 12.0–17.7 

million would have been in developing countries, displacing pastures and resulting in an 

estimated 2 million hectares of additional deforestation (Stevenson et al. 2013, p. 8363).” In fact, 

U.S. wheat production increased by 3.3-fold over the past century (USDA-NASS 2021) while 

planted area declined by 41%. Similarly, the 2019 global area in wheat was roughly comparable 

to the acreage in the late 1960s, so that output grew by 3-fold in-line with the increase in average 

global wheat yields (FAO 2021). 

If enhancing both within- and between-species biodiversity in modern cropping systems are the 

two prioritized policy targets, then the Tinbergen-Corden insights would argue in favor of using 

at least two instruments. For example, intensive use of scientifically selected varieties of a 
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particular crop could be coupled with other genetic and crop management instruments. However, 

that may incur sizable opportunity costs, if by seeking to simultaneously enhance both within- 

and between-species diversity the productivity (yield or farmer cost of production) performance 

of one or either crop species is compromised, thus leading to an increase in the overall footprint 

of cropping agriculture with unintended, albeit negative, consequences for biodiversity 

conservation more generally.  

The choice of targets and instruments is naturally context sensitive. In poorer parts of the world, 

the priority policy target may be to improve the well-being of poor people, especially by way of 

increasing crop productivity (thus expanding the supply and lowering the price of food, with 

equitable implications for poorer consumers given larger shares of their incomes are typically 

spent on food). In this instance, our results indicate that an efficient instrument to cost-effectively 

achieve well-being targets for poorer people would be to intelligently intensify wheat production 

by way of expanding the use of scientifically selected wheat varieties; a strategy that calls for 

doubling down on the science and seed systems that at present often underserve farmers in 

poorer countries. The other positive finding from our study is that this particular configuration of 

policy instruments and targets is also likely to improve biodiversity outcomes, both directly by 

increasing the spatio-temporal diversity of wheat varieties in use, and indirectly by stalling the 

expansion or even shrinking the footprint of unnatural agricultural landscapes in favor of 

increasing areas in more natural environments. 
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Fig. 1. Turnover of the top wheat varieties in the U.S., 1919-2019.  
Notes: Colored varieties represent varieties that were among the top 5 in area share in at least one year; 
“OTHER-TOP20-VARIETIES” represent varieties that were among the top 20 in area share in at least 
one year (excluding the top 5 varieties colored already); “OTHER-SMALL-VARIETIES” represent the 
remaining named varieties (excluding unknown varieties).  
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Fig. 2. Phylogenetically blind measures of U.S. wheat diversity, 1919-2019. 
  



27 
 

  
Fig. 3. Changes over time in the phylogenetic variation of commercially grown U.S. wheat 

varieties, 1919-2019. 
Notes: The left-hand-side phylogenetic tree illustrates the distances among commercial wheat varieties 
grown in the U.S. during 1919-2019 based on their coefficient of parentage. Each colored dash line 
represent the use of a particular wheat variety for a given year in the U.S. with the color representing 
different wheat market classes.   
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Fig. 4. Phylogenetic diversity for major U.S. wheat producing states, 1919-2019. 
Notes: Lines represent the Phylogenetic Diversity indexes of the order 1 for each state by different wheat 
market classes during 1919-2019. Similar trends are observed using PD indexes of order 2 (see 
Supplementary Materials).    
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Fig. 5. Temporal decomposition of phylogenetic diversity for major U.S. wheat producing 
states, 1919-2019. 
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Fig. 6. Spatial decomposition of phylogenetic diversity for major U.S. wheat producing 
states, 1919-2019. 

Notes: Limitations in reported area-by-variety data in more recent years (especially after 2016) accounts 
for the decline in diversity indexes for the more recent years. 
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Table S1. Summary of selected prior wheat diversity studies  

Studies Number of 
varieties 

Spatial and Temporal  
Extent 

Taxonomy-informed Diversity Measures Taxonomy-
blind  

Diversity 
Measures 

Spatial / 
Temporal  
Dynamic 
Measures 

Pedigree-
based 

Phenotypic 
traits Molecular marker1 

Cox et al. (1986) Between 60 
and 262 

depending on 
year 

U.S. winter wheat states 
(1919-1984) 

COP (area 
weighted) 

-2 - - Time trend of 
COP 

Murhy et al. 
(1986) 

110 U.S. winter wheat states COP - - - - 

Kim and Ward 
(1987) 

22 North America COP - RFLP - - 

Brennan and 
Byerlee (1991) 

not specified Regions in Argentina, 
Australia, Brazil, 
Mexico, Netherlands, 
New Zealand Pakistan, 
U.S.  
(1970-1986)  

- - - Varietal area 
and age 

Time trend of 
varietal area 

and age 

Chen et al. 
(1994) 

45 25 varieties from U.S.  

20 varieties from China, 
Pakistan, India, Iraq, 

Hungary, Austria, 
Yugoslavia 

- - STS - - 

Barbosa-Neto et 
al. (1996) 

112 U.S. midwest COP - RFLP - - 

van Beuningen 
and Busch 
(1997) 

270 North America COP - none - - 
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Barrett et al. 
(1998) 

43 U.S. Pacific Northwest COP - AFLP - - 

Hartell et al. 
(2000) 

18 Pakistan COP - - Varietal area 
and age 

Time trend of 
varietal area 

and age 

Corbellini et al. 
(2002) 

40 Central and South 
Europe 

COP - RFLP, AFLP - - 

Almanza-Pinzón 
et al. (2003) 

70      32 accessions from 
CIMMYT  

38 accessions 
 from 15 countries 

COP - AFLP, SSR - - 

Marić et al. 
(2004) 

14 Croatia COP Yes3 RAPD - - 

Fufa et al. (2005) 30 U.S. Northern Great 
Plains 

COP Yes3 SSR, SRAP - - 

Chao et al. 
(2007) 

43 U.S. none - SSR - - 

Fradgley et al. 
(2019) 

454 U.K. Kinship - SNP - - 

Sthapit et al. 
(2020) 

320 U.S. Pacific Northwest 

(1900-2019) 

- - SNP Varietal area Time trend of 
varietal area 

1Abbreviations for different molecular markers: AFLP (amplified fragment length polymorphism); RAPD (random amplified polymorphic DNA); RFLP 
(restriction fragment length polymorphism); SNP (single nucleotide polymorphisms); SRAP (sequence related amplified polymorphism); SSR (simple sequence 
repeats); STS (sequence tagged sites). 
2Dash (-) indicates such measures were not used. 
3Marić et al. (2004) includes 12 morphological traits; Fufa et al. (2005) includes 5 morphological traits and 4 end-use quality traits
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Fig S1. Comparing phylogenetic diversity indexes of order 1 and 2 for major U.S. wheat 
producing states, 1919-2019. 
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