

The World's Largest Open Access Agricultural & Applied Economics Digital Library

This document is discoverable and free to researchers across the globe due to the work of AgEcon Search.

Help ensure our sustainability.

Give to AgEcon Search

AgEcon Search http://ageconsearch.umn.edu aesearch@umn.edu

Papers downloaded from **AgEcon Search** may be used for non-commercial purposes and personal study only. No other use, including posting to another Internet site, is permitted without permission from the copyright owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C.

No endorsement of AgEcon Search or its fundraising activities by the author(s) of the following work or their employer(s) is intended or implied.

Historic, Archive Document

Do not assume content reflects current scientific knowledge, policies, or practices.

.

ALABAMA RIVER BASIN INVENTORY OF RESOURCES AND NEEDS A PROGRESS REPORT

UNITED STATES DEPARTMENT OF AGRICULTURE Prepared by SOIL CONSERVATION SERVICE ECONOMIC RESEARCH SERVICE FOREST SERVICE MARCH 1973

.

aT D 392 .U5

FOREWORD

(*__*)

500

The purpose of this cooperative progress report is to provide information pertaining to water and related land resources in the Alabama portion of the Alabama River Basin. The progress report is an informal document to guide the final phases of the study. The participating USDA agencies agreed that the report would include an inventory of land and water resources in the basin, a study of the area's past and projected economic and agricultural development, a discussion of resource problems and needs, and identification of resource problems for further study and analysis.

With this report the Alabama Development Office, State Planning Commissions, and other interested parties will be better informed on the type of resource data being assembled for use in planning and conserving our natural resource base. This report shows the need for developing certain resources and possible conflicting demands on some resources.

A high degree of participation and coordination between federal, state, and local agencies and the citizens of Alabama is essential in developing and implementing resource use plans. The information in this progress report provides factual data which may be used as an additional basis for defining specific objectives for continuing studies. Specific objectives of all interests concerned with land and water resource use will be sought in additional planning phases. This will assure maximum participation by all Alabama citizens. Factual information in this report will be supplemented as necessary. This progress report should result in stimulative and definitive courses of action by federal and non-federal planners, which can be used to establish priorities for more detailed investigations,

The final report will include an updated version of this progress report and an evaluation of alternative plans for land and water resources utilization. Impacts of alternative plans will be analyzed and displayed preparatory to cooperative development of a recommended plan for use and development of land and water resources to meet current and foreseeable needs. Authorities for implementing features of the basin recommended plan, which need to be installed in the near future, will be identified. The needs for additional implementation authorities will be explored. Benefits and costs will be evaluated and displayed for basin plan projects that can be implemented under USDA porgrams.

ALABAMA RIVER BASIN

INVENTORY OF RESOURCES AND NEEDS A PROGRESS REPORT

Prepared By THE UNITED STATES DEPARTMENT OF AGRICULTURE Soil Conservation Service Economic Research Service Forest Service

> Sponsored By THE ALABAMA DEVELOPMENT OFFICE

TYPE 4 COOPERATIVE RIVER BASIN STUDY

Under Authority of Section VI, Public Law 83-566 as Amended

MARCH 1973

NATIONAL

LIBRARY

394629

Ton .

ALABAMA RIVER BASIN INVENTORY OF RESOURCES AND NEEDS A PROGRESS REPORT

NOV 2 1 1974

TABLE OF CONTENTS

Page

Section	1	Page
I	INTRODUCTION Nature and Scope of the Study Purpose and Objectives of the Study	· I-1 · I-1 · I-2
II	NATURAL RESOURCES. Description of the Basin. Climate. Precipitation. Wind. Storm Characteristics. Geology and Topography. Inventories of Resources. Water. Surface Water. Impoundments. Surface Water Quality. Stream Classification. Site Availability. Ground Water. Land. Land Use. Land Capability Classification. Land Ownership. Soils. Preliminary Soil Association. Soil Association Interpretations. Status of Publication of Soil Surveys in the Alabama River Basin. Forests. Forest Resources. Timber Types and Associated Species. Longleaf-Slash Pine. Loblolly-Shortleaf Pine. Oak-Gum Cypress. Non-typed. Minerals.	<pre>II-1 II-1 II-1 II-1 II-1 II-2 II-2 II-2</pre>
	Fish and Wildlife Methods of Inventory and Evaluation Fisheries Resource Wildlife Resource	 II-85 II-85 II-85 II-86
	Rare and Endangered Vertebrates	. II-87

TABLE OF CONTENTS

Section		Page
II	Supply Fisheries WildlifeHunting WildlifeNon-Harvest Values Rare and Endangered Vertebrates	II-88 II-88 II-96 II-103 II-104
III	HUMAN AND ECONOMIC RESOURCES. General Population and Urban Growth Income. Employment. Industrial Development. Urban Land Use. Agricultural Land Úse. Agricultural Economy. Crop Production. Livestock and Livestock Products. Forestry. Forestry Industry. Employment. 1970 Production Stumpage Values. Agribusiness Importance.	III-1 III-1 III-1 III-4 III-7 III-7 III-7 III-9 III-10 III-10 III-12 III-13 III-14 III-15 III-15 III-18 III-18 III-18 III-18
IV	PROBLEMS AND NEEDS. Natural Resources. Flood Prevention. Erosion and Sediment Control. Conservation Treatment Needs. Urban and Industrial Water Use and Needs. Rural and Agricultural Water Use and Needs. Agricultural Water Shortages. Impaired Drainage. Surface Storage for Low-Flow Augmentation, Recreation, and Municipal Water. Recreation and Related Needs. Introduction. Methodology. Demand, Supply, and Facility Needs. Fish. Wildlife. Environmental Quality. Aesthetic Quality. Forest Environment. Livestock Waste. Solid Waste Systems. Places of Historical, Archaeological, and	IV-1 IV-1 IV-13 IV-28 IV-28 IV-32 IV-40 IV-41 IV-46 IV-48 IV-48 IV-48 IV-51 IV-51 IV-53 IV-59 IV-82 IV-82 IV-82 IV-84 IV-84 IV-84 IV-84 IV-86 IV-90

TABLE OF CONTENTS

Section		Page
IV	Forest Resource Management. Wildfire. Projected Economics. Urban Land Needs. Demand for Food and Fiber. Projection of Agricultural Development. Crops. Livestock. Wood Products. Reallocation of Resources. Agricultural Land Use. Other Social Needs.	IV-107 IV-108 IV-113 IV-113 IV-115 IV-117 IV-117 IV-117 IV-117 IV-120 IV-120 IV-121
V	RESOURCE AREAS SELECTED FOR FURTHER STUDY Resource Problems and Needs Identified Resource Areas Scheduled for Further Evaluation	V-1 V-1
	APPENDIX	A-1-51
	BIBLIOGRAPHY	B-1-4

Number Page Average annual and maximum recorded wind velocities II-1 II-2 representative of the Alabama River Basin II-2 Maximum, minimum, and average runoff rates at selected gaging stations, Alabama River Basin..... II-11 II-3 Statistics of impoundments, located on major streams, Alabama River Basin, 1972..... II-15 Statistics of impoundments, P. L. 566 and RC&D flood-II-4 water retarding structures, single- and multiplepurpose, Alabama River Basin, 1972..... II-16 II-5 Statistics of impoundments on tributaries, by subbasins and by counties, Alabama River Basin, 1972..... II-19 II-6 Mileage of streams having drainage areas exceeding one square mile..... II-25 Statistics of potential reservoir sites for water II-7 storage needs, by subbasins, Alabama River Basin, 1972..... II-29 II-8 Land use by capability class and subclass by subbasins, Alabama River Basin..... II-35 Distribution of National Forests in the Alabama River II-9 Basin, land by administrative units and subbasins, 1970.... II-47 II-10 Characteristics of soil associations and interpretations for selected uses, Alabama River Basin, 1972.... II-55 II-11 Value of mineral production in the Alabama River Basin, by counties..... II-76 II-12 Coal (bituminous) production by counties, state production and Alabama River Basin share II-78 II-13 Sand and gravel sold or used by producers, by counties, state production and Alabama River Basin share...... II-79 TT-14 Crushed limestone and dolomite sold or used by producers, by counties state production and Alabama River Basin share..... II-80 II-15 Conversion of acres of wildlife habitat to man-days of hunting..... II-86

Number		Page
II - 16	Freshwater fish habitat available for public use, and associated capacity, Alabama River Basin, 1971	II-90
II - 17	Large impoundments in the Alabama River Basin, 1971	II-91
II - 18	Ten important fishing tributaries in the Alabama River Basin	II - 92
II - 19	Total acreage, use, and ownership of small impound- ments in the Alabama River Basin, 1971	II-92
II - 20	Numbers and acres of ponds stocked by State and Federal hatcheries through September 30, 1970, by counties, Alabama River Basin	II - 93
II - 21	Total number of commercial fishing licenses issued by counties, Alabama River Basin	II - 95
II - 22	Available supply of public hunting acreage in the Alabama River Basin, 1971	II - 96
II - 23	Estimated hunting and harvest effort in the Alabama River Basin, 1970–1971	II - 96
III-l	Population trends, Alabama River study area, Alabama, southeastern states, and the United States for selected years, 1940–1970, and projected 1990, 2000, and 2020	III-2
III-2	Urban-rural composition of the population, 1950, 1970, and projected to 2020, Alabama River Basin and subbasins	III-3
III-3	Total personal and per capita income, United States, Alabama, and the Alabama River Basin study area, 1959, 1969, and projected 1990, 2000, and 2020,	T T T - A
III-4	Employment by major categories, Alabama River Basin study area, 1940 to 1970, and projected 1990, 2000, and 2020.	III -6
III-5	Industrial development, Alabama River Basin, 1967- 1969	III-8
III-6	Urban land use, Alabama, Alabama River Basin, and selected subbasins, 1958 and 1967	III-9
III-7	Trend in agricultural land use, Alabama River Basin, 1954-1969	III-9

Number		Page
III-8	Distribution of land use by subbasin, Alabama River Basin, 1967	III - 10
III-9	Farm characteristics, Alabama River Basin, and Alabama, 1954–1969	III-11
III-10	Value of products sold by source, Alabama River Basin, 1959 and 1969	III-11
III-11	Principal crops: acres harvested and production, Alabama River Basin, 1964 and 1970	III - 12
III-12	Livestock and livestock products sold, Alabama River Basin, 1959, 1964, and 1970	III-13
III-13	Ownership of commercial forest land, Alabama River Basin, 1970	III-14
III-14	Classification of commercial forest land by timber type, whole county area, Alabama River Basin, 1970	III-14
III-15	Commercial forest area and volume of growing stock, Alabama and Alabama River Basin, 1962	III-15
III-16	Investment in Alabama forest industries, 1965-1971	III-15
III-17	Average monthly employment and total annual wages for forest-based industries, Alabama Basin, whole county area, 1970	III-17
III-18	Roundwood production in Alabama and the Alabama River Basin, 1970	III - 18
III-19	Stumpage values for products harvested in the Alabama River Basin, 1970	III-18
III-20	Agribusiness industry; type, employment, volume of sales, and capital, Alabama River Basin, 1966–1967	III-19
IV-1	Flood plain areas along the principal streams of the Alabama River Basin	IV-5
IV-2	Estimated average annual damage along the principal streams of the Alabama River Basin	IV-7
IV-3	Estimated flood plain land use and flood plain damage by watersheds and subbasins, in the Alabama River Basin, 1972	IV-9

Number		Page
IV-4	Estimated flood plain land use and flood damages within P. L. 566 and RC&D watersheds by subbasins, Alabama River Basin, 1972	IV-12
IV-5	Land treatment needs on strip-mined areas within the Alabama River Basin	IV-19
IV-6	Estimate of sediment damage within subareas of the Alabama River Basin, 1972	IV-20
IV-7	Estimated average annual sediment yield to main stem reservoirs in the Alabama River Basin, 1972	IV-23
IV-8	Estimated average annual sediment yield at the mouth of selected streams in the Alabama River Basin, 1972	IV-25
IV-9	Land treatment needs by subbasins, Alabama River Basin, 1967	IV-30
IV-10	Acreage of cropland and pastureland needing intensive treatment for capibility classes VIe and VIIe by sub- basins in the Alabama River Basin	IV-31
IV-11	Withdrawal use of water (million gallons per day) by source and principal use by subbasin in the Alabama River Basin, 1970	IV-35
IV-12	Present and projected public water supply needs by subbasins in the Alabama River Basin	IV-36
IV-13	Estimated gross public water supply demands by towns and subbasins in the Alabama River Basin	IV-37
IV-14	Present and projected withdrawal of water for residen- tial, industrial, commercial, and rural use by sub- basin in the Alabama River Basin	IV-39
IV-15	Estimated water use by hydroelectric and thermoelec- tric plants by subbasins in the Alabama River Basin, 1970	IV-39
IV-16	Rural withdrawal use of water, 1970 and 1990, by subbasins in the Alabama River Basin	IV-40
IV-17	Minimum number of drought-days for different months, soil storage capacities and probabilities in the Alabama River Subbasin	IV-42

Number		Page
IV-18	Minimum number of drought-days for different months, soil storage capacities and probabilities in the Cahaba and Tallapoosa Subbasins	IV-43
IV-19	Minimum number of drought-days for different months, soil storage capacities and probabilities in the Coosa River Subbasin	IV-44
IV-20	Land with drainage problems by land class and land use by subbasins in the Alabama River Basin	IV-47
IV-21	Location of existing and potential water pollution problems, status of impoundment possibility for low- flow augmentation, and minimum flow requirements, Alabama River Basin, 1972	IV-49
IV-22	Projected demand for outdoor recreation by residents and tourists in the Alabama River Basin, 1971, 1990, and 2020	IV-51
IV-23	A sample of the worksheets used for estimating facil- ity needs, Alabama River Basin, 1970	IV-54
IV-24	Present and projected percentage of the population participating in selec t ed activities by subbasins, Alabama River Basin, 1971, 1990, and 2020	IV-55
IV-25	Annual per person present and projected activity occa- sions of participation in selected activities by sub- basins, Alabama River Basin, 1971, 1990, and 2020	IV-56
IV-26	Present and projected percentage of within state activity occasions of selected activities by sub- basins, Alabama River Basin, 1971, 1990, 2020	IV-57
IV-27	Annual use standards for selected outdoor recreation activities, Alabama River Basin	IV-58
IV-28	Boating demand, public supply, and development needs, by subbasins, Alabama River Basin, 1971, 1990, and 2020	IV-63
IV-29	Swimming demand, public supply, and development needs, by subbasins, Alabama River Basin, 1971, 1990, and 2020	IV-64
IV-30	Water skiing demand, public supply, and development needs, by subbasins, Alabama River Basin, 1971, 1990, and 2020	IV-66

Page		Number
IV-68	Camping demand, public supply, and development needs, by subbasins, Alabama River Basin, 1971, 1990, and 2020	IV-31
IV-70	Hiking demand, public supply, and development needs, by subbasins, Alabama River Basin, 1971, 1990, and 2020	IV-32
IV-72	Picnicking demand, public supply, and development needs, by subbasin, Alabama River Basin, 1971, 1990, and 2020	IV-33
IV-74	Golfing demand, public supply, and development needs, by subbasins, Alabama River Basin, 1971, 1990, and 2020	IV-34
IV-76	Fishing demand, public supply, and development needs, by subbasins, Alabama River Basin, 1971, 1990, and 2020	IV-35
IV - 79	Hunting demand, public supply, and development needs, by subbasins, Alabama River Basin, 1971, 1990, and 2020	IV-36
IV-83	Results of Aerial Beaver Pond Survey in Alabama with expanded data and estimates in each county, Alabama River Basin, 1967	IV-37
IV-88	Confined livestock operations by type and subbasin in the Alabama River Basin, 1972	IV-38
IV-89	Production of wastes by confined livestock in the Alabama River Basin, 1972	IV-39
IV-112	Fire statistics summary of all fires occurring on state protected lands in the Alabama River Basin, (1968–1970)	IV-40
IV-112	Summary of fire occurrence on National Forest land in the Alabama River Basin, (1968–1970)	IV-41
IV-113	Population density by size of city, Alabama, 1967	IV-42
IV-114	Urban land use projections to 2020 for the state of Alabama and the Alabama River Basin and its subbasins.	IV-43
IV - 116	Production of major farm products, 1968-1970 average, with projections to 2020 for Alabama	IV-44

Number

- IV-45 Production of agricultural commodities, 1970, with projections to 2020 for the Alabama River Basin..... IV-116
- IV-46 Projected agricultural land use, current and projected assuming no accelerated development, for the state of Alabama, the Alabama River Basin and its subbasins.... IV-123

APPENDIX TABLES

A-1	Water quality characteristics and their effects	A-1
A-2	Use limitations of water quality parameters	A-3
A-3	Chemical composition of selected streams in Alabama River Basin	A-4
A-4	Water quality parameters measured in Alabama	A-21
A-5	Municipal waste disposal facilities in the Alabama River Basin, by subbasins, 1970	A-22
A-6	Industrial waste disposal facilities in the Alabama River Basin, by subbasins, 1970	A-28
A-7	Use classification of streams in the Alabama River Basin	A-39

LIST OF FIGURES

Number		Page
I-1	Map of Alabama River Basin	I-3
II-1	Average annual temperature, 1931-1960	II-3
II-2	Normal annual precipitation (inches) 1931-1960	II-4
II-3	Major land resource areas	II-7
II - 4	Annual runoff (inches)	II-10
II - 5	Land Use Map	II-41
II - 6	Ownership of commercial forest land, Alabama River Basin, 1962	II - 47
II-7	Land Ownership Map	II - 45
II-8	Location of National Forests	II - 44
II - 9	General Soil Map	Pocket
II - 10	Distribution of timber types in the Alabama River Basin, 1962	II-63
II - 11	Timber Type Map	II - 66
II - 12	Ten most prevalent species in the basin (order of growing stock volume), 1962	II - 67
II - 13	Volume of growing stock on commercial forest land in the Alabama River Basin, 1962	II - 68
II -1 4	Total growing stock inventory on National Forest, Alabama River Basin, 1970	II - 69
II-15	Sawtimber growth inventory on National Forest within the Alabama River Basin, 1970	II - 70
II - 16	Poletimber growing stock inventory on National Forest in the Alabama River Basin, 1970	II-71
II - 17	Average per acre inventory, net annual growth, and cut on National Forest, Alabama River Basin, 1970	II - 72
II - 18	Stand size class on National Forest Lands, 1962	II-73
II-19	Fossil fuels	II-81
4-32888	3-73	

LIST OF FIGURES

Page		Number
II - 82	Road material, agricultural minerals and dimension stone	II-20
II - 83	Special purpose minerals	II-21
II - 84	Metallic minerals	II - 22
II - 94	State operated public hunting and fishing areas	II - 23
II - 98	Potential for hunting, by counties	II-24
II - 99	Estimated deer population by counties, 1971	II - 25
II-100	Deer concentration within each county, 1971	II - 26
II -1 01	Estimated turkey population by counties, Alabama 1971.	II-27
II-102	Turkey concentration within each county, 1971	II-28
III - 5	Per capita income in Alabama River Basin counties compared to the United States, 1969	III-1
III -1 6	Primary forest industries of the Alabama River Basin and adjacent counties	III-2
IV-3	Status of water resource development projects	IV-1
IV-16	Average erosion rates by subbasins	IV-2
IV-17	Erosion problems	IV-3
IV-18	Sedimentation problems	IV-4
IV-33	Trends in total water withdrawal, population, and per capita daily use, Alabama, 1965–1970	IV-5
IV-34	Public water supply needs, Alabama River Basin	IV-6
IV-45	Monthly precipitation and monthly evapotranspiration for Alabama	IV-7
IV-52	Outdoor recreation versus population growth, Alabama River Basin	IV-8
IV-65	Location of beach acreage needed, 1971 to 1990	IV-9
IV-67	Water needed for skiing, 1971 to 1990	IV-10
IV-69	Camping facilities needed, 1971 to 1990	IV-11

Number		Page
IV-12	Hiking trails needed, 1971 to 1990	IV-71
IV-13	Location and extent of picnic table needs	IV-73
IV-14	Golf course requirements, 1971 to 1990	IV-75
IV-15	Water development needed for fishing, 1971 to 1990	IV-78
IV-16	Additional acres needed for hunting, 1971 to 1990	IV-81
IV-17	Man and the forest ecosystem	IV-85
IV-18	Fire occurrence map	IV-110
IV-19	Causes of wildfire in the state, Alabama, 1968-1970	IV-111
IV-20	Timber supply and demand projections, Alabama River Basin	IV - 118

I. INTRODUCTION

Nature and Scope of the Study

The State of Alabama is intensely interested in the conservation, development, and utilization of all resources within the Alabama River Basin. In order to determine the water and land resource availabilities and the demands on these resources both present and future, the state requested the Secretary of Agriculture to cooperate in a study of the basin. This study began in November 1969.

The Progress Report contains the results of the initial reconnaissance of the basin. It provides a framework for application of multipleobjective planning guidelines during the detail phase of the study. It also establishes a basis for selection and evaluation of alternative plans for natural resource uses and developments. Some resource information included in the Progress Report will be used in the State Water Quality Management Plans and will become part of the Comprehensive State Water and Related Land Resources Plan. This Progress Report provides local people, the State of Alabama, and federal agencies with basic data on natural resources, identifies problems and needs, and establishes a basis for improving the economic and social opportunities for the people of Alabama.

The area of the basin encompassed by this study is approximately 17,211 square miles and extends across Alabama from the Alabama-Georgia state line to the confluence of the Tombigbee River with the Alabama River approximately 45 miles north of Mobile. The Coosa and Tallapoosa Rivers join upstream to form the Alabama River proper. The Cahaba River flows into the Alabama River approximately 16 river miles downstream from Selma. (See Figure I-1)

Thirty-five of the 67 counties in the state are completely or partially within the basin. The principal cities within the basin are Gadsden, Anniston, Montgomery, and Selma. The greater Birmingham area, the largest urban area within the state, with a population of approximately 900,000 is partially within the basin.

The study to date has been oriented toward an inventory of natural resources and an evaluation of problems and needs. Included in this report are: (1) objectives of the study; (2) an inventory of natural resources; (3) human and economic resources; (4) problems and needs related to our natural resources; (5) projected demands for agricultural products; and (6) a list and description of resource areas to be considered for further study.

Participation in the Type 4 Cooperative River Basin Study by the U. S. Department of Agriculture is under authority of Section VI, Public Law 83-566 as amended. The principal participants within the Department of Agriculture are the Economic esearch Service, Forest Service, and Soil Conservation Service. Studies made by these agencies are carried out under direction of the USDA Field Advisory Committee. This committee is chaired by the State Conservationist, Soil Conservation Service. The Field Advisory Committee is responsible for coordinating the Department's survey activities; arranging for field reviews of recommendations and draft reports; arranging for consultations, preparing schedules; and for maintaining overall relations with other cooperating federal and state agencies.

The Alabama Development Office is the sponsor and coordinating agency for the State of Alabama. State agencies, local governments, and other organizations are participating in this study. Several federal agencies are also contributing data and other assistance where their expertise is needed.

Purpose and Objectives of the Study

The broad purposes of this study are to inventory water and land resources, project future resource needs, provide basic data for planning and development, and identify problems for more detailed study. To achieve these purposes, the study will be conducted: (1) to develop basic information to be used by the State of Alabama in the development of a State Water Quality Management Plan for each subbasin in the Alabama River Basin by July 1975, and a comprehensive State Water and Land Resources Plan by 1975: (2) to provide appropriate alternatives to be considered in formulating a sound resource use plan for the basin that will result in the conservation and development of water and related land resources to meet current foreseeable needs, economic growth and development, and protection and enhancement of the natural environment; (3) to identify specific resource problems and needs that can be met through existing local, state, and federal programs; (4) to identify those problems and needs requiring action which cannot be implemented under existing programs and suggest methods and techniques for their solution.

The Alabama River Basin study is being conducted in accordance with the multiple-objective planning concepts proposed by the Water Resources Council. These planning concepts are intended to reflect society's preferences with regard to use of the basin's natural resources. To implement these concepts, planning efforts will be directed to components of the following objectives for land and water resource planning: (1) National Economic Development (NED): to enhance and increase the value of the Nation's output of goods and services and improve national economic efficiency; (2) Environmental Quality (EQ): to enhance the quality of the environment by the management, conservation, preservation, creation, restoration, or improvement of the quality of certain natural and cultural resources and ecological systems: (3) Regional Development (RD): to enhance regional development through increases in the region's income; increases in employment; distribution of population within and among regions; improvements of the region's economic base and educational, cultural, and recreational opportunities; and enhancement of its environment and other specified components of regional development; and (4) Social Well-Being (SW-B): to enhance the equitable distribution of real income, employment, and population, with special concern for the incidence of the consequences of a plan on affected persons or groups; by con-4-32888 3-73

tributing to the security of life, health, and property; by providing educational, cultural, and recreational opportunities; and by contributing to national security.

The Alabama Development Office has recently initiated the development of goals for all areas of state government. Interim goals have been developed for each of the ten functional areas of government. These interim goals, without regard to priority, are as follows:

To ensure adequate transportation, utilities, and communications for the people of Alabama.

To provide adequate housing for all Alabamians.

To assure each Alabamian the opportunity for the type and amount of education he desires.

To provide for the effective development, conservation, and use of the state's natural resources.

To provide for the fulfillment of the recreational and cultural desires and interests of Alabamians.

To ensure the overall security, safety, and consumer protection of all Alabamians.

To provide for the physical, mental, and emotional needs and well-being of those who cannot provide for themselves.

To provide for the increased economic well-being of all Alabamians.

To provide the basic general government services to the people of Alabama.

It is expected that these goals will be well-defined by late 1973. Every effort will be made to direct this river basin study toward attainment of these goals. The specific objectives of the river basin study will be revised and refined as necessary during the next year to reflect these goals and in proposals for development of the Alabama River Basin.

A portion of the basic information needed by the Alabama Water Improvement Commission for use in preparing subbasin Water Quality Management Plans will be collected and evaluated during this study. Specific objectives in this regard are:

- 1. An overview of the total water and related land resources.
- 2. Classification of designated streams into reaches of freeflowing streams and impoundments.
- 3. Physical data (surface areas, depths, etc.) relative to large impoundments.

- 4. Volume and duration of low flows at selected locations on designated streams.
- 5. An analysis of the effect of probable social and economic development (land use, population, industry, and agriculture) on the quality and quantity of water resources.
- 6. Identification of floodwater, sediment and erosion damages; and needed conservation management systems.
- 7. Identification of significant sediment contributing areas, possible sources of animal waste pollution, and quantities of pesticides and fertilizers used and projected to be used by location.
- 8. An analysis of the feasibility of improving water quality by augmenting at designated low-flow problem locations through surface storage.
- 9. Alternative proposals to contribute to the improvement of water quality in streams that presently do not meet the minimum water quality standards.

Work accomplished in meeting the above specific objectives will be related to appropriate components of the environmental quality and regional development objectives.

The Alabama Development Office, the State Planning and Development Commissions and the USDA agencies conducting the study are interested in the development of additional information to be used by an agency or group engaged in planning for the sound use of the basin's water and related land resources. Additional specific objectives are:

	Specific Objective	Major <u>Objective</u> l/	Components		
1.	Development of proposals that will provide water supply to meet projected municipal, industrial, and	RD,NED,SW	Municipal and industrial water supply. Population dispersal.		
	rural water system needs in 1990, 2000, and 2020 by taking advantage of potential for surface storage and utilizing ground water of suitable quality.	EQ, SW	Lakes, Ponds, and reser- voirs. Enhanced recrea- tion opportunities.		
2.	Identification of alter- native agricultural land use proposals which will increase basin production and agricultural income, particularly in areas of current low income.	RD, SW	Increase regional income and reduce regional unemployment to acceptable levels. Enhance income distribution.		

<u>1</u>/ NED-National Economic Development, RD-Regional Development, EQ-Environmental Quality, SW-Social Well-being.

3.	<u>Spe</u> Dev men	cific Objective elopment of forest manage- t programs to:	Major <u>Objectives</u>	<u>Components</u>
	a.	Expedite the develop- ment and use of forest management practices resulting in the con- servation of forest ecosystems.	EQ,RD,NED,SW	Ecological features, wild- life management, recreation development, quality of land, green space.
	b.	Increase forest pro- duction on the existing land base and improve the forest products mix.	NED,RD,EQ,SW	Multiple use-sustained yield forest management systems and forest develop- ment programs. Improve economic stability.
	C .	Reduce forest resource losses and debilitation from insects, diseases, and wildfires to accept- able levels consistent with national and state- wide watershed goals.	RD,EQ,NED	Fire, insect, and disease damage reduction; pol- lution abatement (air and water). Improve economic stability.
	d.	Develop quality environ- mental, educational, and recreational facilities on forested land and supply wood products.	RD,EQ,SW	Improve economic stability, housing, and enhance educational and recreational opportunities.
4.	Analysis of land treatment needs and development of a program emphasizing treatment of critical areas and strip- mined areas through increased technical assistance to landowners and additional cost-sharing. Level of treatment to reduce overall erosion by 30 percent and critical area erosion by 80 percent by 1990.		RD, SW	Sediment and erosion, con- servation management systems. Enhance cultural opportunities.
			EQ	Quality of land, streams, and river systems.
5.	Analysis of flood problems in urban areas and develop- ment of recommendations that will provide flood protection to urbanizing areas through intensified land treatment, installation of structural measures, flood plain regulati and other methods.		RD,NED,SW	Flood damage reduction. Improve security of life.
			EQ ion,	Green open space.

	Specific Objective	Ma Obje	ajor ective	Components
6.	Development of proposals that will reduce flooding in selected rural areas to a level consistent with capa-	RD,	NED	Reduction of floodwater, sediment and erosion damages; conservation management systems.
	use (will not result in a net increase in the basin's share of Nation's crop surplus).		SW	Green open space. Enhance security of life and health.
7.	Development of proposals to meet projected water-based recreation needs as indicated in the revised State Rec- reation Plan.	RD,E	EQ,SW	Enhance recreational and cultural opportunities.
8.	Identification of natural areas having unusual aes- thetic and scenic values with proposals to restrict development through legis- lation or local regulation.	EQ,	SW	Green open space and rec- reational opportunities.
9.	Identification of rare and endangered species of flora and fauna in the basin with proposals to provide for their protection and to increase the public's aware- ness of their existence.	EQ,	SW	Enhance biological features, educational and cultural opportunities.
10.	Development of proposals for one major waterfowl preserve in the Alabama Subbasin and other waterfowl areas through- out the basin that will be available for public use.	RD EQ,	SW	Fish and wildlife Ecological features and recreational opportunities.
11.	Analysis of action necessary to increase area available for public hunting and fishing including the development of private, corporate, and public lands for this specific use.	RD	SW	Fish and wildlife Recreational Opportunities.
12.	Identification of areas of historical, cultural, and archaeological value with proposals for preservation or restoration.	EQ,	SW	Enhance historical, archae- ological, educational, and cultural features.
4-328	88 3-73	T_7		

	Specific Objective	Major Objectives	Components	
13.	Analysis of regulations and planning needs in regard to the disposal of solid wastes.	EQ, SW	Improve quality of land and water. Enhance cultural opportunities.	
14.	Determine agricultural products with greatest market development potential; estimate costs of develop- ment and probable impacts.	NED,RD,SW	Improve income, employ- ment distribution, and economic stability.	

NATURAL RESOURCES

II. NATURAL RESOURCES

Description of the Basin

The Alabama River Basin comprises approximately 22,750 square miles extending from East Tennessee and Northeast Georgia diagonally across Alabama in a southwesterly direction to the Gulf of Mexico at Mobile. The land and water resources in the upstream portion of the basin in Tennessee and Georgia have been developed extensively and this portion of the basin is not included in the study. However, the effects of runoff from this portion of the basin have been considered.

The basin is located primarily in the Southern Piedmont, Southern Coastal Plains, and the Alabama-Mississippi Blackland Prairies Land Resource Areas. The headwaters of the basin extend into the Southern Appalachian Ridges and Valleys and Sand Mountain Land Resource Areas. The 1966-1967 Conservation Needs Inventory lists approximately 72 percent of the land in the basin as being in woodland and approximately 26 percent distributed equally between cropland and pasture. Slightly more than 2 percent of the basin area is being used for non-agricultural purposes. The drainage area of the Alabama portion of the Alabama Subbasin is 5,919 square miles, the Coosa is 5,461 square miles, the Tallapoosa is 3,959 square miles and the Cahaba is 1,872 square miles, all within Alabama. The drainage area in East Tennessee and Northeast Georgia is 5,539 square miles.

<u>Climate</u> -- The climate in the basin is mild and humid. Summers are warm and long, while winters are usually short and mild. The climate is influenced by frontal systems moving from northwest to southeast and temperatures change rapidly from warm to cool due to inflow of northern air. The average annual temperature is 64° F, ranging from 60° in the north to 68° in the sourthern portion of the basin (see Figure II-I). The average daily temperature varies from 80° F in July to 47° F in December. Summer temperatures usually reach 90° or higher about 70 days per year but temperatures above 100° are relatively rare. Freezing temperatures are common but are usually of short duration. During the winter, extremes of 32° or less occur about 65 times. The frost-free season varies from 201 days in extreme north portion to about 261 days in the southern portion of the basin. Snowfall is rare, but some occurs in the upper mountainous regions.

<u>Precipitation</u> -- Average annual rainfall is about 54 inches and varies from 52 inches to 60 inches in the southern portion of the basin. The nearness of the Gulf of Mexico is a major reason for plentiful rainfall in the basin. Precipitation occurs as air masses move from the Gulf to the land. Climatic forces change with seasons but the direction and velocity of the winds do not vary greatly during the year. The more intense rains usually occur during the warmer months.

The normal rainfall is shown in Figure II-2. Some flooding occurs in most years. During the last 37 years, 80 percent of the flood-producing storms occurred during winter and spring months, and 25-30 percent of these storms occurred in March. March is generally the wettest month

with an average rainfall of over 6 inches. Occasionally several wet years or dry years occur in series. Annual rainfall records indicate no characteristic order or pattern. Even greater variability is evident if single months are studied. The greatest probability of drought is in May and October. Severe droughts are uncommon.

<u>Wind</u> -- Wind in the basin is normally less than ten miles per hour. During the passage of cyclonic disturbances over and to the north of the basin, there have been destructive local windstorms, some developing into tornadoes with winds of 100 mph or more. The southern portion of the basin occasionally experiences high winds when hurricanes move inland from the Gulf of Mexico. Wind records are available from the U. S. Weather Bureau first-order stations located at Atlanta, Birmingham, Chattanooga, Mobile, and Montgomery. These stations are widely separated but report similar conditions that are adequate for this study. They are summarized in Table II-1.

	Years	Average		Maximum			
	of	annual	Prevailing	Velocity	Direc-		
Station	Record	m.p.h.	direction	m.p.h.	tion	Date	
Atlanta, Ga.	36	9.6	NW	70	NE	Jan.	53
Birmingham, Ala.	57	7.9	S	65	SW	Mar.	55
Chattanooga, Tenn.	82	6.3	S	82	W	Mar.	47
Montgomery, Ala.	49	6.8	S	60	SW	Mar.	52
Mobile, Ala.	39	9.2	Ν	98	E	Jul.	16

Table II-1--Average annual and maximum recorded wind velocities representative of the Alabama River Basin.

<u>Storm Characteristics</u> -- Flood-producing storms over the Alabama River Basin are usually of the frontal type. They usually occur in the winter and spring and last from 2 to 4 days. These frontal movements often cover a large portion of the basin and produce the most serious flooding. Summer storms are usually thunderstorms with intense precipitation over small areas sometimes resulting in serious local floods. Occasionally a hurricane, such as that of July 1916, will cause major floods over the entire basin. Normally 5 to 6 inches of intense or general rainfall produce widespread flooding, but on many smaller streams, 3 to 4 inches of rainfall are sufficient to produce local floods.

<u>Geology and Topography</u> -- The Alabama River Basin is an area of strong topographical contrasts. There are five major land resource areas within the basin. Each of these areas is characterized by similar topography, soils, land use, and climate (Figure II-3). These characteristics are interrelated with the geology and weather patterns of the area and have produced a distinct, recognizable land form with advantages and disadvantages as well as corridors for and barriers to development.

Sand Mountain Land Resource Area is a series of plateaus underlain by rocks of Pottsville (Pennsylvanian) Age. These rocks are a thick sequence of shales and sandstones; mostly flat lying and undeformed with a strong sandstone near the base of the sequence. The basal sandstone forms prominent cliffs overlooking the valleys so that the plateau margins stand out sharply to the observer. The Sequatchie and Wills Creek anticlines form valleys that divide the area into three main parts, Lookout Mountain, Sand Mountain, and the plateau west and south of Sand Mountain. The long. straight Wills Creek and Sequatchie Valleys are developed on limestones that are folded and broken by thrust faulting similar to the valleys in the adjacent Ridge and Valley area; and stand in strong contrast to the main portions of the plateaus with their massive sandstone rims.

The Southern Appalachian Ridges and Valleys Land Resource Area is also called the Coosa Valley or the Limestone Valleys. The area is a series of wide, gently rolling valleys and steep, rough ridges all trending northeast-southwest. Long, straight valleys and ridges influence transportation, agriculture, streams, and roads. Elevation in the valleys range from 500 to 700 feet, and elevations on the higher ridges from 1,500 to 2,000 feet above sea level.

The Ridge and Valley area is known geologically as the Folded Appalachians. The northeast-southwest trend is caused by the parallel folding and faulting of the underlying rocks. In the humid climate of the region, limestone is generally weathered most rapidly, with shale being a little more resistant and sandstone being the most resistant. Selective weathering has formed sandstone and shale ridges and limestone and shale valleys parallel to the structure of the underlying rocks.

The Southern Piedmont Land Resource Area comprises about 25 to 30 percent of the basin. The area is mostly a moderately rolling upland developed on deeply weathered, crystalline, metamorphic rocks. Elevations in the Piedmont area of Alabama generally range from 700 to 1,000 feet above sea level. The state's highest elevation, Cheaha Mountain at 2,407 feet, is located in this area. The Piedmont area was once general farm land used primarily for cotton production. During the past 30 years, because of erosion and economic factors, the area has become a land of pine timber, mixed farming and manufacturing.

The Piedmont is geologically very complex. The rocks are metamorphosed sedimentary and igneous rock masses. Metamorphic, crystalline rocks such as schists and gneisses predominate with quartzites, slates and phyllites forming lesser areas.

4-32888 3-73

The Southern Coastal Plains Land Resource Area comprises most of the southern half of the basin and is divided in two portions by the Black Belt. The northern portion of the Coastal Plain is mostly rough, rolling land, generally called the Upper Coastal Plain. South of the Black Belt the countryside varies from rough and rolling to smooth and gently rolling. Topography and soils of the Coastal Plains favor the development of timber and general agriculture. Elevations in the Upper Coastal Plain vary from 300 to 600 feet and in the Lower Coastal Plain from 300 to 500 feet above sea level.

The upper Coastal Plain is developed on sands, clays, and gravels of the Tuscaloosa group and the Eutaw formation of Upper Cretaceous Age. The lower Coastal Plain is underlain by sands, clays, shales, and limestone of Cretaceous through Recent Age. The area is belted with topographic belts trending east and west in the basin. This belting is caused by weathering of formations of differing resistance. The geologic structure is monoclinal and the formations all slope very gently southward at 10 to 45 feet per mile.

The Alabama and Mississippi Blackland Prairies Land Resource Area is more commonly called the Black Belt. In the basin, the Black Belt trends east and west and is generally an area of gently undulating topography developed on soft, limy, sedimentary rocks. The name, Black Belt, is derived from the fertile, black soils. The area was originally grassland with hardwood timber and brush. The topography and soils led first to development of a cotton plantation culture; later a cattle industry developed, and now the area is diversifying with mixed agriculture, cattle and crops. Elevations generally range from 100 to 300 feet above sea level.

The Black Belt geologically belongs within the Coastal Plains but is such a distinct belt and covers such a large area that it is set out as a Major Land Resource Area. The same structure that is present in the Coastal Plain prevails with the same gentle southerly slope of the formations.

Inventories of Resources

Inventory data has been developed from numerous published sources such as the 1967 Conservation Needs Inventory, the 1969 Agricultural Census, and the 1970 U. S. Census. Information from many technical publications has also been used.

In addition to data from secondary sources, the river basin staff conducted an extensive field examination of the entire basin area. Data was collected and organized within groups of designated Conservation Needs Inventory watersheds. This field examination was oriented toward the location of resources with development potential and the identification of existing and projected problems and needs. Attention was directed toward the problems and needs identified in the Work Outline and the areas of interest expressed by the Alabama Development Office. District Conservationists of the Soil Conservation Service participated in this field examination and furnished valuable information concerning problems and needs within their district. The need for displaying combinations of resource inventory data and identifying conflicting uses of resources was recognized early in the inventory process. For these reasons, much of the resource data collected has been prepared for storage in a map oriented computer data storage system known as MIADS (Map Information Assembly and Display System). This system is used to store, combine, and display any resource data that can be mapped.

Currently, the following data is stored in the system: river basin and subbasin boundaries, county boundaries, land resource areas, land use. land ownership, minerals, soil associations, and forest types. Plans include storing in this system additional information such as wildlife habitat evaluations.

The basin area was gridded with 1/10 inch by 1/12 inch cells on a 1:500,000 scale map. This grid was then superimposed on maps at other scales. The information recorded represents the unit occupying the majority of a 332.13-acre cell. The data stored can be combined and printed out on a 1:250,000 scale map. This resource data is available to other planners; other inventory data not stored in MIADS is maintained in the files of participating USDA agencies and is available to interested persons.

Generally, the basin has a plentiful supply of good quality water for municipal, industrial, domestic and livestock purposes. In most areas of the basin an adequate supply of surface water exists, or could be impounded for irrigation.

Water supplies of the basin are generally adequate at the present time except in local areas during extreme dry periods. In the future, additional supplies will be needed in all areas of the basin. A large part of the future needs can be supplied from surface reservoir storage of water.

Surface Water

Only two county studies of surface water resources in the river basin have been published by the U. S. Geological Survey/Geological Survey of Alabama. 1/2/ Rainfall (54-inch average) in the basin amounts to about 49.5 million acre-feet per year. Most of this rainfall is returned to the hydrologic cycle by evaporation and transpiration, a small amount infiltrates to ground water reservoirs, and the remainder becomes streamflow. The geographic distribution of surface runoff is illustrated by Table II-2 which shows average, maximum and minimum rates at selected gaging stations in the four subbasins. Average annual runoff represents the normal surface water resource or the normal recoverable surface water supply. This totals about 23.7 million acre-feet per year or approximately 21.2 billion gallons per day. The streamflow is equivalent to an average runoff of 19.59 inches from the entire basin area including the area outside Alabama (see Figure II-4).

Information presented in Figure II-4 makes it possible to estimate the approximate average flow of a tributary stream. Since larger streams drain many runoff areas and some originate out of the state, it is not possible to compute their runoff from the data.

4-32888 3-73

Water

<u>1</u>/ Surface Water Resources of Calhoun County, Alabama; Circular 33, Geological Survey of Alabama; University Alabama, 1965, by J. R. Harkins.

<u>2</u>/ Mineral, Water and Energy Resources of Wilcox County, Alabama; Information Series 40, Geological Survey of Alabama; University Alabama, 1969.

^{|| - 10}

	Period	Drainage		Wate.	rshed	-	0)	Square Mil	Ð
	of	Area	Average	Average	Maximum	Minimum	Average	Maximum	Minimum
Vaging Station	Kecora	• TIM • PC	TU•/ XL•	C.I.S.	C.I.S.	C.T.S.	C.T.S.	C.I.S.	C.I.S.
ALAVANIA KIVET JUNUASII.						([(
0.242900	40 years		19.41	31,540	267,000	4,450	1 • 4	12.1	0.202
Claiborne, Ala.	07026T								
02423000 Selma, Ala.	55 years 1900-13	17,100	20.78	26,170	284,000	2,660	1.5	16.6	0.156
	1928-70								
02420000	43 years	15,100	20.86	23,190	283,000	2,180	1.5	18.7	0.144
Montgomery, Ala.	1899-1903 1927-70								
02425500	18 years	217	13.77	220	45,600	0.1	1.0	210.1	0.000
Cedar Creek	1952-70								
Minter, Ala.									
02421000	18 years	298	15.27	335	48,600	0	1.1	163.1	0.000
Catoma Creek	1952-70								
Montgomery, Ala.									
Cahaba River Subbasin									
02425000	18 years	1,768	20.29	2,642	83,400 <u>1</u>	/ 224	1.5	47.2	0.127
Marion Jct., Ala.	1938-54								
02424000	1968-70 42 vears	1.029	20.47	1.551	83.600	06]•0	81.2	0.087
Centreville, Ala.	1901-08								
	1929-32								
	0/-CEAT								
02423630	5 years	72.4	23.82	127	7,220	11	1.7	7.99	0.152
Shades Creek	1964-70								
Greenwood, Ala.					•				
02423800	13 years	148	17.89	195	10,000	36	1.3	67.6	0.243
Little Cahaba	1957-70								
Brierfield, Ala.									

Table II-2--Maximum, minimum and average runoff rates at selected gaging stations, Alabama River Basin.

	•				-			86. 1	
	Period	Uraınage		wate	rsnea		م ا	duare MII	e
	of	Area	Average	Average	Maximum	Minimum	Average	Maximum	Minimum
Gaging Station	Record	Sq. Mi.	In./Yr.	c.f.s.	c.f.s.	c.f.s.	c.f.s.	c.f.s.	c.f.s.
Coosa River Subbasin									
02411000	46 years	10,200	21.28	15,980	298,000	54	1.6	29.2	0.005
Wetumpka, Ala.	1912-14								
	1926-70								
02407000	57 years	8,390	22.03	13,610	146,000	440	1.6	17.4	0.052
Childersburg,Ala.	1913-70								
02400500	44 years	5,800	21.66	9,253	76,900	100	1.6	13.3	0.017
Gadsden, Ala.	1926-70								
02408500	26 years	244	20.09	361	22,800	7	1.5	93.4	0.029
Hatchett Creek	1944-70								
Rockford, Ala.									
02405800	ll years	67.3	21.39	106	6,550	0 0	1.6	97.3	0.126
Talladega Creek	1959-70								
Talladega. Ala.									
02404000	41 years	281	19.53	404	22,500	30	1.4	80.1	0.107
Choccolocco Creek	1903-08								
Jentier, Ala.	1935-70								
02401000	27 years	185	22 . 32	304	14,800	21	1.6	80.0	0.114
Big Wills Creek	1943-70								
Crudup, Ala.									
	•								
Iallapoosa KIVer Subbu	asın				0	/			
02418500	41 years	3,320	19.18	4,688	128,0005	10	1.4	38 • 6	0.003
Tallassee, Ala.	1928-70								
02414500	47 years	1,660	19.84	2,426	52,800	45	٦°0	31.8	0.027
Wadley, Ala.	1923-70							,	
02412000	18 years	444	19.37	633	19,300	13	1.4	43.5	0.029
Heflin, Ala.	1952-70								

of Area Average Average Average Maximum Minimum Average Maximum Minimum Average Maximum Average Maximum Minimum Average Maximum Average Maximum Minimum Average Maximum Minimum Average Maximum Minimum Average Maximum Average Average Averas Maximum Average	of Area Average Average Average Maximum Minimum Average Maximum Minimum Minimum Average Maximum Minimum Average Maximum Minimum Minimum Average Maximum Minimum Minimum Minimum Average Maximum Minimum Minimu		Period	Drainage		Wate	rshed		()	quare Mil	Ð
79.6 20.86 301 15,600 8 1.5 79.6 0.041 Hillabee Creek 1952-70 1952-70 1952-70 1952-70 0.041 Hackneyville, Ala. 31 years 330 17.58 427 32,200 0.8 1.3 97.6 0.002 Uphapee Creek 1939-70 17.58 427 32,200 0.8 1.3 97.6 0.002 Upkapee Creek 1939-70 17.58 427 32,200 0.8 1.3 97.6 0.002	79.6 20.41 79.6 1.5 79.6 0.041 Hillabee Creek 1952-70 196 20.86 301 15,600 8 1.5 79.6 0.041 Hackneyville, Ala. 31 years 330 17.58 427 32,200 0.8 1.3 97.6 0.002 02419000 31 years 330 17.58 427 32,200 0.8 1.3 97.6 0.002 02419000 1939-70 1939-70 32,200 0.8 1.3 97.6 0.002 Ubhapee Creek 1939-70 330 17.58 427 32,200 0.8 1.3 97.6 0.002 10skegee, Ala. 1939-70 330 17.58 427 32,500 0.8 1.3 97.6 0.002 / Flood of February 24, 1961 reached a stage 43.80 feet present datum, from flood marks (discharge not determined). March 15, 1929 maximum discharge August 16, 1939 (gage height 42.95 feet). February 25, 1961 (gage height, 50.4 feet). Maximum discharge not determined). Maximum discharge not determined).	ading Station	of Record	Area Sa. Mi	Average In./Yr.	Average c.f.s.	Maximum c.f.s.	Minimum c.f.s.	Average c.f.s.	Maximum c.f.s.	Minimum c.f.s.
Jackneyville, Ald. 31 years 330 17.58 427 32,200 0.8 1.3 97.6 0.002 D2419000 1939-70 Jphapee Creek 1939-70 Tuskegee, Ala.	<pre>7ackneyville, Aid. 72419000 Uphapee Creek Tuskegee, Ala. 7 Flood of February 24, 1961 reached a stage 43.80 feet present datum, from flood marks (discharge not determined). Maximum discharge August 16, 1939 (gage height 42.95 feet). 7 Flood of March 15, 1929 maximum gage height, 51.35 feet (discharge not determined). Maximum discharge reach. 7 Flood of March 15, 1929 maximum gage height, 51.35 feet (discharge not determined). Maximum discharge reach.</pre>	1111abee Creek	18 years 1952-70	196	20.86	301	15,600	ω	1.5	79.6	0.041
	/ Flood of February 24, 1961 reached a stage 43.80 feet present datum, from flood marks (discharge not determined). Maximum discharge August 16, 1939 (gage height 42.95 feet). / Flood of March 15, 1929 maximum gage height, 51.35 feet (discharge not determined). Maximum discharge February 25, 1961 (gage height, 50.4 feet).	Jackneyville, Ald. 22419000 Jphapee Creek Tuskegee, Ala.	31 years 1939-70	330	17.58	427	32,200	0.8	1•3	97.6	0.002
		/ Flood of March 15 February 25, 1961	, 1929 maxi (gage heig	mum gage hé ht, 50.4 fé	eight, 51 set).	.35 feet	(discharg	je not det	ermined).	Maximur	n discharg

<u>Impoundments</u> -- The impoundments of the basin range in surface area from a fraction of an acre up to 40,000 acres. There are about 14,736 impoundments, including natural impoundments, containing a combined surface area of 244,980 acres. Included in natural impoundments are beaver ponds, river oxbows, wet borrow pits and Grady ponds (natural, swampy, rounded ponds or "bays" in the Coastal Plains Area).

There are 93 impoundments with a surface area larger than 40 acres and whose combined surface areas are 177,630 acres. This represents only 0.6 percent of the impoundments but 72.5 percent of the surface area. Martin Lake is the largest impoundment in the basin and has a surface of 40,000 acres and a storage capacity of 1,630,000 acre-feet at normal operating level.

The U. S. Corps of Engineers and Alabama Power Company impoundments statistics are shown in Table II-3 and locations in Figure IV-1 (page IV-3). Statistics for single purpose and multiple-purpose structures installed under authority of PL-566 and the RC&D Programs are shown in Table II-4.

Impoundments larger than 40 acres, other than those mentioned above, are listed in Table II-5. Also shown in this table are the total number and surface acres of impoundments between 5 and 40 acres and less than five acres. Total number and surface acres of natural impoundments are also shown in this table. Data in Tables II-4 and II-5 are listed by subbasins and counties. Table II-3--Statistics of impoundments, located on major streams, Alabama River Basin, 1972.

	Loca	ation	Droingoo				(+) (+)		1+20 1+20 1+20	1
and	Now	uth	Area		Pool , ,	Area	(1,000)	Line	at Dam	
Impoundments	(im)	les)	(Sq. Miles)	Purpose <u>l</u> /	Elev.2/	(Acres)	(Ac. Ft.)	(Miles)	(Feet)	
			Ŭ	orps of Engi	neers					I
Alabama River										
Claiborne	8]	1.1	21,520	N-R-F&W	35	5,800	100.0	160	33	
William F. Dau	nelly 142	2.3	20,700	N-P-R-F&W	80	17,200	331.8	516	56	
Jones Bluff	245	5.4	16,300	N-P-R-F&W	125	12,300	247.0	368	61	
			A1:	abama Power	Company					
Coosa River										
Bouldin 3	4		<u></u>	P-R-F&W	252.0	~m	~ M	~ (C)	52	
Jordan <u>3</u> /	18	0,00	10,165	P-R-F&W	252.0	6,800	233.5	118	110	
Mitchell	37	7.3	9,827	P-R-F&W	311.9	5,850	177.0	147	06	
Lay	[2]	I • 3	9,087	P-R-F&W	396.0	12,000	241.5	289	88	
Logan-Martin	36	8.4	7,700	FC-P-R-F&W	465.0	15,263	518.6	275	69	
H. Neely Henry	148	0.0	6,600	P-R-F&W	508.0	11,200, /	121.9	339	53	
Weiss	225	5.7	5,273	FC-P-R-F&W	564.0	30,200 ^{2/}	703.4	447	62	
Tallapoosa River										
Crooked Creek ^E	136	0.0	1,453	FC-P-R-F&W	793.0	10,660	431.0	1	118	
Martin	90	0.6	3,000	P-R-F&W	490.0	40,000	1630.0	700	155	
Yates	223	2.7	3,250	P-R-F&W	344.0	2,000	54.0	40	46.5	
Thurlow	40	7.6	3,300	P-R-F&W	288.8	574	18.4	9	54	
1/ Purposes - F	C-Flood Cont	trol, P	-Power, N-Na	avigation, R	-General	Recreatio	n, F&W-Fis	h & Wildl	ife.	
2/ Normal opera	ting pool le	evel or	summer poo	l level.						
4/ Bouldin abou	it 15 miles o	off str	ame reservo. Bam from Jos	rdan Dam.						
5/ Small acreag	e in Georgia	ď.		1						
6/ Crooked Cree	k Reservoir	as cur	rently prop(osed.						
<pre>Z/ Not availabl</pre>	e.									

4-32888 3-73

				Normal	Normal	100 yr.	Multiple		Maximum2/	
	Site		Drainage	Pool	Pool	Sediment	Purpose	Detention	Area	Height
	No.	Purpose	Area	Elevation	Area	Volume	Volume	Volume	F1ooded	of Dam
Location		$1\overline{/}$	(sq.mi.)	(msl)	(ac.)	(ac.ft.) ((ac.ft.)	(ac.ft.)	(ac.)	(ft.)
			Coo	a River S	ubbasin					
Blue Eye Creek W/S										
Talladega & Calhoun Co.	Ч	FР	5.29	555.5	15	423/		588	95	42
)	0	FР	3.23	545.0	10.5	463/		748	80	34
Cheaha Creek W/S										
Talladega & Clay Co.	C	FР	3.57	599.0	25	653/		815	7 90	22
	ო	FР	2.40	685.0	7 ° 7	33 <u>3</u> /		628	599	41
	4	FР	5.82	699.2	10	563/		2,109	72	68
	വ	FР	11.56	590.5	19	1113/		3,940	1,675	76
	9	FР	27.22	587.1	38	1903/		9,520	353	83
Choccolocco Creek W/S Calhoun, Cleburne,						l				
Talladega & Clay Čo.	2	FР	21.35	772.0	31	324		4,987	249	72
)	ო	FР	2.76	765.3	9	62		818	38	47
	7	FP-R	13.98	1027.1	58	224	326	6,060	234	72
	0	FР	1.50	729.3	7.6	42		376	28	37
	11	FP-WS	16.00	647.0	182	303	2,887	4,693	317	72
	14	FР	1.09	664.5	4 8	31		259	25	32
	15	FР	1.95	666.3	7.1	49		525	49	40
	17	FР	1.87	629.0	3°2	48		473	34	57
	24	FP	12.87	870.9	17.7	227		6,926	286	86
Tallaseehatchie Creek W/S Talladega & Clay Co.	2	FР	2.05	600.5	11	85		657	42	52

Table II-4cont'd										
38 3-7	Site		Drainage	Normal Pool	Normal Pool	100 yr. N Sediment P	lultiple urpose	Detention	Maximum <u>2</u> / Area	Height
د Location	No.	Purpose 1/	Area (sq.mi.)	Elevation (msl)	Area (ac.)	Volume (ac.ft.)	Volume ac.ft.)	Volume (ac.ft.)	Flooded (ac.)	of Dam (ft.)
Terrapin Creek W/S Cherokee, Cleburne &										Ì
Calhoun Co.	9	FР	4.50	654.8	16.6	79		1,035	105	32
	00	FР	20.80	645.5	77.3	390 <u>3</u> /		4,940	393	33
	σ	FР	2.30	700.8	0°0	64		603	45	41
	14	FР	3.00	811.0	6	40 <u>3/</u>		710	56	39
	15	FP	2.70	858.5	7.2	373/		891	47	47
	17	FP	5.10	846.2	23	723/		862	120	25
	21	ЧЧ	17.50	932.3	28	2253/		3,900	325	55
	22	FР	21.60	901.5	25	2643/		4,808	154	100
	31	FР	29.01	747.1	49	2902/		7,790	345	72
	33	FP	15.90	814.5	38	2263/		3,052	213	12
			Tallap	oosa Rive	r Subbas	in				
Cahulga Creek W/S						ŀ				
Cleburne Co.	٦	FP-WS	6.54	887.7	84.2	111	526	3,036	177	41
Crooked Creek W/S										
CLAY, MAHUULPH &	C		, c		L () ()				r ([
Cleburne Co.	N 0	FP-WS	2°24	T030.2	0.4 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	000	1,250 750	2,106 , 000	TOT	4./
	о (L L L WO	0.07 0.51	0.077 0.077	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	10.3		0000 T	0.01	1 00
Fox Creek W/S	1	4	+ > >))) 1			2)
Clay & Randolph Co. High Pine Creek W/S	2	FР	1.35	1034.8	6 ° 3	27 <u>3</u> /		259	26	30
Randolph & Chambers Co.	Г	FР	2.60	860.0	0°0	733/		554	25	52
		FР	6.95	741.5	54	1863/		1,808	150	39
	m	FР	3.28	783.9	15	$102\overline{3}/$		700	67	32
	4	FР	2.70	928.4	13	873/		575	53	37
	ŋ	FP	1.80	939.5	11	633/		384	35	36
	9C	FP-WS	3.18	848.7	100 100 0	9 <u>9</u> 3/ 873/	500	813 575	102	30 30
		<u>с</u> с ццц	2.90	719.3 771.7	35 12.4	123 <u>3</u> / 47 <u>3</u> /		775 282	102 53	22

II-17

				Normal	Normal	100 yr. Mul	tiple	Maximum2,	
	Site		Drainage	Pool	Pool	Sediment Pur	pose Detention	Area	Height
	No.	Purpose	Area	Elevation	Area	Volume Vc	Jume Volume	Flooded	of Dam
Location		1/	(sq.mi.)	(msl)	(ac.)	(ac.ft.) (ac	:.ft.) (ac.ft.)	(ac.)	(ft.)
Ketchepedrakee Creek W/S									
Clay & Randolph Co.	Ч	ЦЪ	2.26	970.5	0	$19\frac{3}{2}$	630	69	26
	0	FР	3.09	996.8	14	613/	899	78	31
	10	FР	1.92	1017.7	വ	24	455	50	30
	11	FР	1.12	1008.4		0	190	14	41
Little Hillabee Creek W/S									
Clay & Tallapoosa Co.	Ч	Ц Ц	3.22	906.0	6.5	70	752	21	55
	2	FР	2.85	921.0	11	64	508	34	37
	ო	FР	1.99	870.7	11.5	43	292	30	22
	4	FР	3.09	838.0	14.1	69	499	51	26
	9	FР	1.42	826.0	5.2	14	223	27	25
Lost Creek W/S									
Cleburne Co.	Г	ЧЪ	8.52	584.3	30	170	1,630	130	38
	2	ГР	1.96	600.0	14	121	351	34	300
	ო	FР	1.66	571.0	12	78	337	32	31
	4	FР	1.48	551.7	13	81	261	30	28
Old Town Creek W/S									
Bullock & Macon Co.	24	FР	5.50	372.7	73	500	1,044	218	27
	25	FР	4.18	387.7	62	346	1,269	178	26
	26	ГР	5.50	384.7	62	494	1,702	208	29
	31	FР	3.06	, 295.3	83	217	1,182	229	18
	32	БP	5.654/	334.1	16	971	3,080	285	29
	37	FΡ	2.91	342.4	61	217	1,073	184	19
1/ FP - flood prevention,	н 1 1 1 1 1 1	recreatio	n, WS - V	vater supp	1 y.				

2/ Alted Tlooded at depth Of flow in emergency spillway for designed storm. 3/ 50-year sediment volume. 4/ Equivalent drainage area (5.65 sq. mi.) 100 percent of 2.46 sq. mi. plus 24 percent of 15.43 sq. mi.

Table II-4--cont'd

II-18

1972.
Basin,
River
Alabama
counties,
and by
subbasins
þλ
tributaries,
UO
impoundments
0 t
II-5Statistics
le
Tab

mi. WMillers rry R.L Mi. SWBlocton F mi. NCentreville F mi. EPalmerdale

4-32888 3-73

	Large Impou	ndments <u>1</u> /			Height	Med Impound	ium dments2/	Sma Impoun	$\frac{11}{100}$	Natu Impour	ural idments4/
Name		Location	Use ⁵ /	Surface Acres	of Dam (feet)	No.	Surface Acres	No.	Surface Acres	NO	Surface
Lake Purdy On	6	Little Cahaba				24	325	175	350	183	392
Riv Oak Mountain Public Lake Oak	e Oak	er Mtn.State Park	ц ц ц	400 84	60 40						
Oak Mountain Public Lake Oak	e Oak	Mtn.State Park	. Ц.	. 60	300						
Frank Trucks Lake 3 ¹ / ₂ 1	3 <u>7</u> 1 3 <u>7</u> 1	ni. SSpringvillé	e F,R	42	15	ന		60	130	25	22
Margaret Lake Just	Just	NMargaret	Ц	50	15						
Sportsman Lake 2 mi	2 mi	• NOdenville	F,R	60	30						
						2	16	21	47	14	81
13				1,784		110	1,324	682	1,402	754	6,189
			Coosa	Subbasin							
						1	1	15	30	15	279
Harold Fink 5 mi.	5 mi.	NAnniston	F,R	78	13	125	1,000	400	500	41	109
Lee Bros. Lake 4 mi.	4 mi.	NWReads Mill	F,R	48	25						
Nesbitt Lake 3 mi.	3 mi.	NWJacksonvill	le F	40	20						
Coley Bros. 5 mi.	5 mi.	SCentre	L,R	100	26	4	9	146	450	27	83
						11	130	190	200	50	1,240
						13	101	с С	10	13	49
						10	241	0	7	6	28
Ann Jordan 2.3 mi	2.3 mi	SWKellyton	Private	135	20	38	288	270	680	41	148
Camp Corner Lake 25 mi.9 Ecrt David City Inc.	Z2 mi.	5Valley Head	ct 2	75	20	6	111	70	140	23	68
rull fayne ully Lake - NE Slut Cheimer Iske	DES ZUE	Dricor Form	INI E T	063		2	C	C U C	001		
Dreighter Lake Eactory	TadeTO	FITSON FAIN	н с ц	000	20	0 0		00V	77.7	0 7 7	L \$ 249
Meadow Lake Edsterr	Lastern	LETOWAN CO.	L L	C 4 0	12	07.0	200	G/ 7	T,000	2.2	2.1
Smyer's Lake #1 3 mis 5	ກ. • - ເອັດ	W Dunavant	т. Т	80		32	665	222	450	20	66
Smyer's Lake #2 3 ml. S	G ml.	WDunavant	н Ч	100	O. M						
Lake wenapa I ml. S	т т т т т т	SW Dunavant	Н.	200	25						
Woodmere Lake 6 mi. 1	6 mi.	MColumbiana									
Ala. 7	Ala. 7	0	F,R	67	40						
Yielding Lake 2 mi.	2 mi.	W-Vandiver	F,R	40	20						
Chandler Mtn. Lake Atop C	Atop C	handler Mtn.	F, I	145	27	32	282	150	300	45	171
Lake Joyce 4 mi.	4 mi.	NE – – Mood y	ĹĻ	46	12						
Pinedale Shores 3 mi.	3 mi.	WAshville	F,R	125	16						
Springville Lakes Est. 35 mi.	3 <u>5</u> mi.	NWSpringville	F,R	40	25						
Sumatanga 2 mi.	2 mì.	SGallant	Ц	60	25						
Caudle Lake 12 mi	$1\frac{1}{2}$ mi	 NFayetteville 	e F,R	65	22	21	278	105	210	45	185
Lake Elliott 2 mi.	2 mi.	ETalladega	F,R	40	23						
Lake Howard 4 mi Mump Creek Reservoir 1 mi	4 4 1 1 1 1	• NESylacauga • EWaldo	M	, 200 42	40						
Lake Socapatoy 👌 mi.	∱ mi.	SWaldo	F,R	40	25						
24				2,401		321	3,048	2,403	4,699	396	3,780

Table II-5--cont'd

						N - 1 -			-		,
		, 1/			•	r Mean	10 1111		/8 11	JEN	Ural 4
	Large Impc	vundments-			Height	Impound	iments≌⁄	Impound	dmentsz⁄	Impoun	dments
			/ U	Surface	of Dam		Surface		Surface		Surfac
County	Name	Location	Use ^{2/}	Acres	(feet)	No.	Acres	.No.	Acres	No.	Acres
			Tallapoos	a Subbasin							
Bullock						23	160	289	435	38	1,066
Chambers	J.W. Grady Lake	.5 mi. SWStroud	Ц	40	20	15	126	133	225	48	167
	LaFayette Reservoir	3 mi. WLaFayette	M	80	30						
Clay	Lake Gerald	2 mi. EDelta	œ	120	30	Г	10	10	35	15	59
•	State Lakes (3)	🚡 mi. WDelta	œ	103	I						
Cleburne	Lake Edmond	Iz mi. WChulafinne	se R	165	35	37	444	181	579	21	65
	Cleburne Co.Boy Scout	2 mi. WHollis Cros	SS								
	Lake	Roads	Ч	63	40						
Coosa						0	12	ŋ	10	9	21
Elmore	Seller Pond	S. of Wetumpka	Я	40	10	00	190	380	1,085	20	1,388
Lee	C.E. Lee Lake	4 mi. SOpelika				100	1,150	364	1,110	36	1,004
		Hwy. 37	Ц	60	20	100					
	Ogletree #1Auburn										
	City Lake	3 mi. SEAuburn	F,M	200	50						
	Opelika City Lake	3 mi. NOpelika	F, M	560	40						
	Willow Run Lake	Beauregard	Ľ	60	15						
Macon	Tuskegee Public Lake	Adjacent-Tuskegee	R	100	30	50	600	640	580	98	2,896
Montgomery						70	350	500	1,100	32	790
Randolph						20	200	415	600	36	139
Tallapoosa	Russell Lake	4 mi. SAlexander									
5		City	Ш	60	1	10	70	400	1,000	43	162
Subtotal	13			1,651		336	3,312	3,317	6,759	423	7,757
GRAND OTA	L 64			6.630		1,154	11.598	10,976	22,330	2,468	32,816
1.1.						- +	+ + + + + + + + + + + + + + + + + + + +				

Note: The classification of impoundments has no relation to any other size grouping in this report. 1 Surface area of normal pool is greater than 40 acres. 2 Surface area of normal pool is between 5 and 40 acres. 3 Surface area of normal pool is less than 5 acres. 4 This includes such impoundments as old river oxbows, beaver ponds, Grady ponds, inundated borrow p 5 F-fishing, R-water-base recreation, L-livestock watering, I-irrigation, M-municipal water storage.

This includes such impoundments as old river oxbows, beaver ponds, Grady ponds, inundated borrow pits, etc. F-fishing, R-water-base recreation, L-livestock watering, I-irrigation, M-municipal water storage.

Table II-5--cont'd

<u>Surface Water Quality</u> -- The surface waters of the Alabama Basin are generally of good chemical quality. With few exceptions, streams of the basin are suitable for most industrial or domestic uses. Specific individual qualities may be of great importance when the water is to be used in some manufacturing processes. If water of the specific qualifications needed is not available, the available supply can usually be tailored to fit industrial needs by chemical treatment. Chemical constituents commonly found in natural water with their sources and effects, are given in Appendix Table 1. Results of samples analyzed by U. S. Geological Survey are given in Appendix Table 3.

The chemical quality of water in streams varies with the stage and at low flow is closely related to the lithology of the surficial.geologic units through which the stream flows. The Alabama River and its tributaries are higher in calcium and magnesium content than in sodium and potassium at both high and low stage. As flow decreases the bicarbonate content increases and the sulfate content decreases.

Stream temperatures vary from 36[°]-48[°]F in January and February to 63[°]-86[°]F in July and August. Major streams furnish an abundant year long supply of water at temperatures suitable for most industrial purposes.

The Alabama River Basin streams and lakes have many uses which are necessary in the public interest. These uses include water supply for livestock, irrigation, domestic, municipal and industrial purposes, fish and wildlife, recreation, disposal of municipal sewage and industrial waste, and the aesthetic enjoyment by man. Appendix Table 2 summarizes common water use limitations. The rigid application of strict and uniform water quality standards may not be desirable or reasonable because of the varying uses of such waters and the economic costs of pollution controls to achieve specific water quality conditions in all streams. Standards and improvement goals are set by law and as a result of public hearings for each of the basin's streams and tributaries. Water use standards are based on volume of flow, depth of channel, rate of flow, temperature, natural characteristics, geographic location and the nature of the stream and its major uses. Use classification of streams in the Alabama River Basin are presented in Appendix Table 7.

The following is a description of water quality conditions and treatment facilities that exist in the Alabama River Basin. Plant managers employing water treatment facilities (large water using industries) were asked if the treatment process constituted a problem in their water resource use.1/ Only 3 percent of the plant managers reported that the necessity for treatment was a serious problem. Thirty-nine percent of the plants reported that the necessity of treating water posed a moderate problem to their industrial water use, while 58 percent reported that treatment was no problem at all. The Alabama Water Improvement Commission has established quality criteria for waters and streams of Alabama. As compliance with the State's standards is achieved many of the qualitative water-conflict situations may be resolved.

I/ Industrial Use and Community Supplies of Water in Alabama, School of Business Research Series 1, Auburn University.

The U. S. Geological Survey is currently concentrating on improving the scope of its water-quality network. In determining the precautionary measures to be taken to reduce the effect of wastes upon water quality, it is necessary to study the nature of the natural waters and how they are affected by wastes discharges. The affects of organic loadings are most evident during the warm summer months when high stream temperatures and low flow coincide. Available data are not of sufficient detail to accurately define the nutrient content of streams in the Alabama River Basin. Studies to determine the extent and effect of nutrient pollution should be implemented. Water quality parameters measured in Alabama are listed by agencies in Appendix Table 4.

Private industry and municipalities have invested large sums in recent years for treatment facilities in all subbasins. Residents and industry in the Alabama River Basin generate 847,928 population equivalents of waste which receive varying degrees of treatment. Municipalities are listed in Appendix Table 5 with type of waste disposal facility. There are still untreated wastes being discharged into the streams of the basin. Fourteen towns with a total population of 68,000 or more have inadequate facilities, however, one of these has new facilities presently under construction while six others have corrective plans in the advanced stage. (Information furnished by Alabama Water Improvement Commission). Ten industrial treatment facilities are listed as inadequate with plans scheduled to meet required standards. Appendix Table 6 lists waste water treatment by industries in the study area.

Population served by sanitary sewage facilities are listed by subbasins:

Alabama Subbasin	187,685
Coosa Subb <mark>asin</mark>	188,543
Tallapoosa Subbasin	92,249
Cahaba Subbasin	379,451

Stream pollution in the subbasins is one of the more serious potential water resource problems. Careful planning to restore or maintain the water quality of streams is a responsibility of all levels of government and the private sector.

Improvement in sewer collection and treatment systems for cities in the basin are needed. The cooperation of the general public and enforcement of state and federal laws is necessary to control dumping of garbage and waste materials and to regulate the use of insecticides, herbicides, and other poisons.

Most of the water withdrawn for use is returned to the environment in such a manner and condition that it can be used again. Withdrawal use of water generally causes a gradual degradation in quality; and it is only clean, useable water that constitutes a resource. If the depreciation in water quality is sufficient to render the source unfit for further use, that source is depleted almost as drastically as if it had been entirely consumed. Thus, the quality rather than the quantity of Alabama River Basin's water supply would appear to be the principal concern of the future. <u>Stream Classification</u> -- The Alabama Water Improvement Commission adopted water use classifications in 1967. The establishment and maintenance of stream classification standards is primarily a state function, but a federal influence is exerted through the Environmental Protection Agency (EPA). The classification of water uses in streams in the Alabama River Basin was completed in 1972, the Cahaba River Subbasin being the last. These classifications are:

- 1. Public Water Supply
- 2. Swimming and Other Whole Body Water Contact Sports
- 3. Fish and Wildlife
- 4. Agricultural and Industrial Water Supply
- 5. Navigation
- 6. Treated Waste Transportation

The use classification of streams in the Alabama River Basin are presented in Appendix Table 7 provided by the Alabama Water Improvement Commission.

Stream mileage information is being compiled and used by many agencies and individuals. The Corps of Engineers maintains accurate and current mileage tables on the main streams. The U. S. Geological Survey is presently preparing information related to stream miles and drainage area. The Corps of Engineers, Forest Service, Agricultural Research Service and the Soil Conservation Service prepared the 1969 National Assessment of Streambank Erosion. The miles of streambank erosion and the lengths of streams with drainage areas greater than one square mile were tabulated. This information will continue to be useful as a source of information and it will be necessary to identify the future erosion and pollution problems.

The capability of natural streams to assimilate pollutants is dependent on length of travel, rate, volume, and pattern of flow. Water quality management planning is based on knowledge of the location and type of pollution sources and the effects of wastes on water quality from point to point.

The State of Alabama is developing a Water Quality Management Plan for each of the 14 river basins within the state. The Regional Planning and Development Commissions are working on seven Metropolitan/Regional Water Quality Management Plans. Stream mileage data is being compiled by freeflowing and impounded stream miles. Most of the Alabama and Coosa River main streams are impounded. With installation of the proposed Crooked Creek impoundment on the Tallapoosa River, about 50 percent of this stream will be impounded. The Cahaba River has very few miles of impounded streams. In 1968 the office of the Governor suggested the inclusion of the Cahaba River as a wild and scenic stream. The 1963-1964 annual report of the Alabama Water Improvement Commission indicated there are about 978 river miles in the study area; approximately 500 miles are impounded.

An estimate of stream mileage in Alabama indicates that there are 13,596 miles of streams in the Alabama River Basin with drainage areas one square mile or larger. (See Table II-6) These estimates were determined by measuring the thread of the stream on a selected group of $7\frac{1}{2}$ minute quadrangle maps to determine the ratio of stream mileage to drainage area. Quadrangle maps were chosen to represent the dominant topography in a land resource area. The ratio of stream mileage to drainage area (densities) range from 0.539 to 1.006 and the weighted average for the basin is 0.790 miles per square mile.

Stream mileage classification is needed by type of flow, perennial or intermittent, for use in water resource inventory and development and management. This classification will be made in the Alabama River Basin during the detailed phase of the river basin study. The flow classification study will be developed by land resource areas, topography, and river subbasins. Stream classification by the above factors will provide the water resource planner with valuable information for evaluating the quality of streams.

Table II-6--Mileage of streams having drainage areas exceeding one square mile.

River Subbasins	Drainage Area Square Miles <u>l</u> /	Miles of Streams 2/
Alabama	5,919	4,840
Coosa	5,461	4,235
Cahaba	1,872	1,410
Tallapoosa	3,959	3,111
TOTAL	17,211	13,596

1/ Alabama Conservation Needs Inventory, 1967.

2/ Expanded from $7\frac{1}{2}$ minute quadrangle sample.

<u>Site Availability</u> -- The major rivers of the basin are largely committed to navigation and hydroelectric power and therefore, additional development of the rivers beyond that already existing or planned is limited. Consequently, the discussion of available impoundments will be focused on tributaries and minor streams.

The topography of the Sand Mountain, Southern Appalachian Ridges and Valleys, and Southern Piedmont land resource areas is well suited for impoundments. However, these sites may be limited by factors such as roads, railroads, pipelines, transmission lines, houses, other fixed improvements, or geologic conditions. These items have a more immediate effect on the selection of large impoundments. Small private pond sites for recreation, irrigation, fire control, fish production, and other purposes are relatively unlimited throughout the area.

The soil and foundation characteristics are favorable for constructing earthfill structures for both large and small reservoirs. Borrow material is readily available within close proximity of the structure. Some locations may have a limited supply of impermeable soil for use as core material. Seepage through the abutments and foundations may be a problem with the greater water storage depths within the Sand Mountain area and the Appalachian areas.

Due to the stage versus storage relationship, large reservoir storages such as municipal, industrial, fish and wildlife, recreation or low-flow augmentation will require high dams. It is not difficult to locate embankments in areas with flood plains ranging from 50 to 400 feet in width. This results in rather short dams compared to their height.

Because this area has a high concentration of water resource developments, the extent of site availability is limited in the Talladega Mountain area from Sylacauga to the Alabama-Georgia state line. There are presently 54 floodwater retarding structures with drainage areas ranging from 1.1 to 27.2 square miles located in this area. Storage volumes range up to 9,520 acre-feet. Six of these are multiple-purpose structures. Approximately 21 sites are planned but not constructed; some are multiple-purpose sites.

The lower reaches of the Piedmont, upper Coastal Plain and Blackland Prairies areas are not as well suited for impoundments as is the area discussed above. Low, rolling topography characterizes these areas with broad valleys and gently sloping hill lands. These conditions cause inundation of large land areas with relatively shallow depths. This characteristic is suitable for recreational purposes but less desirable from a storage volume respect and land rights cost. The topography lends itself to low embankments up to 3,500 feet in length. Suitable borrow material is readily available within close proximity of the structure. Critical sediment source areas above these sites may require treatment to control the accumulation of sediment in the reservoirs.

The lower Coastal Plain is not well suited for impoundments. The topography is too level and the sandy soils provide limited amounts of impermeable material.

4-32888 3-73

Few large sites on large creeks such as Big Wills, Talladega, Choccolocco, and Mulberry exist that have not been preempted by other interests. This renders their use as reservoirs prohibitively expensive.

In general, a site is available within reasonable distance for any need. However, man-made improvements will increase with time resulting in an increase in land rights cost; therefore, dedication of potential sites for beneficial water storage should be made as soon as possible.

A study of the basin was made to locate available reservoir sites which would meet existing needs such as low-flow augmentation, recreation, and municipal storage. The study was oriented primarily around low-flow augmentation needs furnished by the Alabama Development Office (see Table IV-21) and water-based recreation needs in the Cahaba Subbasin. Statistics of available sites which will meet identified needs, in whole or in part, are given in Table II-7.

The type of sites located are for on-stream, impoundment reservoirs, with dams and ungated emergency spillways. Reservoir sites were located upstream from such identified needs as low-flow augmentation and municipal water supply. These sites were studied primarily as single-purpose sites, however, water could be stored for multiple use. Some sites could include water storage for flood control, fire protection, irrigation and other uses as well as surface area for water-based recreation.

Topographic quadrangle maps were used to locate potential reservoir sites. Data to be used in sizing the reservoirs were obtained from the topographic maps.

Complete coverage of the study area is available in topographic maps of the Army Map Service (AMS) at a scale of 1:250,000 (50-ft. and 100-ft. contour intervals). In addition partial coverage is available in topographic maps of the U. S. Geological Survey (USGS), either in the $7\frac{1}{2}$ minute quadrangle series (1:24,000 scale, 10-ft. or 20-ft. contour interval) or the earlier 15 minute quadrangle series (1:62,500 scale, 10-ft. or 20-ft. contour interval).

The upper third of the Cahaba Subbasin is covered by $7\frac{1}{2}$ minute quadrangles. The center and lower quarters of the subbasin are covered by 15 minute quedrangles. The lower portion of Bibb County and the upper portion of Perry County have no coverage other than the AMS series.

The upper two-thirds of the Coosa Subbasin has the best coverage in the river basin. This area has solid coverage of $7\frac{1}{2}$ minute and 15 minute quadrangles. The lowermost point in the subbasin is covered by 15 minute quadrangles. A strip through Chilton and Coosa Counties is covered only by the AMS series.

The uppermost portion of the Tallapoosa Subbasin is covered with $7\frac{1}{2}$ minute quadrangles. A portion through the middle of the subbasin is presently being mapped by USGS and $7\frac{1}{2}$ minute advance sheets are available for this area. The remainder is covered only by the AMS series.

About one-third of the Alabama Subbasin in the Chilton, Dallas, Autauga, and Montgomery County area is covered by 15 minute quadrangles. A few $7\frac{1}{2}$ minute quadrangles are available in the Selma and Montgomery areas. The remainder of the subbasin is covered only by the AMS series.

Scattered areas in the river basin are covered with 30 minute quadrangles. These are mostly repetitious of $7\frac{1}{2}$ minute and 15 minute quadrangle coverage and are of early edition.

The reliability of the reservoir data depends upon the scale and contour interval of the maps used. In spite of this weakness, information derived from these maps is not without value. As more detailed maps become available the reservoir data developed from the existing maps can be revised.

The dependable yield of the drainage area and reservoir was considered in sizing and locating of the reservoirs. As a general guide, those sites capable of developing a dependable yield equivalent to 50 percent of the average annual runoff are considered the most economical and generally desirable. Average annual runoff was obtained from Water Resources Data for Alabama published by the U. S. Geological Survey. No allowance for evaporation and seepage losses were made in estimating dependable yield. Runoff from the uncontrolled area and losses in transmission were not considered in calculations of storage needed. The land use of reservoir areas was considered in site selection along with topographic feasibility.

It is to be recognized that this study does not give consideration to some of the cardinal elements of a comprehensive feasibility study. Such elements include the economic analysis of cost, benefits, justification, and financing; the engineering design of the dam, spillway, outlet works, and appurtenances; and an assessment of the environmental impact of the proposed reservoir.

							Total			
				Pool			Storage		Map	Depend-
	Primary Need	D.A.	Dam Heicht	Surface	Water Denth	Pool Flevation	Volume Avail	Type of Man Head	Contour Interval	able viel4/
Site Location	1/	(sq.mi.)	(feet)	(acres)	(feet)	(msl)	(acft)	3/ 03cg	(feet)	(cfs)
<pre>Alabama Subbasin Catoma Cr.,15 mi.SW of Montgomery;</pre>				Ċ	-					
R19E; T14N; Sect.26	ΓĿ	58 . 3B	20	7007	14	256.0	15,000	AMS	50	37.95
Pursley Crk. Trib.,4 mi.SW of Camden; PRE.TION.Sect 35	Ц I	7 94	30	190	00	187 0		D MC	C L	3 07
Pursley Cr. Trib., 8 mi.SW of Camden;	114	-			77		19000	CHEV	2	
R9E; TIIN; Sect. 17 & 20	0 LF	7.47	22	370	15	245.0	2,750	AMS	50	3.74
Zahaba Subbasin Bio Black Cr. B mi NF of Truseville:										
RIE TI5S; Sect. 36	LF	10.47	55	255	45	655.0	4,780	734	20	7.85
Cahaba R.,2 <u>2</u> mi.N of Trussville;								3		
RIW; T16S; Sect. 12	LF	12.68	60	140	50	795.0	2,825	721	20	9.51
Hogpen Branch, 4 mi.SE of Tronuale;	1		4							
RIW; TI7S; Sect. 34	ΓĿ	4.0B	50	9B	43	540.0	1,650	721	20	3.06
Little Black Cr., 6 mi.E of Trussville;								,		
RIE; TI6S; Sect. 24	LF	11.36	55	304	45	640.0	6,765	$7\frac{1}{2}$	20	8.52
Big Cr., <u>35</u> mi.W of Maylene;										
R4W;T2JS;Sect. 23	œ	7.59	85	200	75	446.0	8,000	15,	50	6.07
Mayberry Cr.,42 mi.W of Montevallo;										
R4W;T24N;Sect. 2	£	7.98	95	240	85	445.0	8,500	151	50	6.38
Oakmulgee Cr., 15 mi.N of SelmaTallade	ega									
NF; RIOE; TI9N; Sect. 26	CL CL	39.17	50	1,333	40	240.0	24,412	15,	20	27.42
Shades Cr.,9 mi.SW of Bessemer;										
R5W;T2IS;Sect. 2	œ	123.30	83	1,000	68	440.0	30,353	15'	20	98.64
cosa Subbasin										
Baker Cr., 1 mi.SE of Goodwater;										
R20E;T24N;Sect. 23	LF	2.92	48	143	40	800.0	2,180	15'	20	2.19
Cave Cr. on Ft. McClellan;										
R8E;T15S;Sect. 11	LF	1.69	36	40	33	828.0	705	$7\frac{1}{2}$	20	1.18
Tallaseehatchie Cr., 5 mi.E of Sylacauge	д э				1.		ſ	,		
R5E;T2IS; Sect.1B2/	LF	23.09	IOB	1406/	620/	604.59/	12,800/	1:4800	10	17,32
Tallaseehatchie Cr., 5 mi.E. of Sylacayo	ga;					/ ~				
R4E;T21S;Sect.23 ^D /	LF	5.62	92	1414	694/	627.03/	6,425 1	1:4800	10	4.22
Waxahatchee Cr.,22 mi.W of Columbiana				,						
RIM; T21S; Sect. 21	LF	12.75	30	374	20	500.0	3,740	15'	20	10.20

Table II- 7--Statistics of potential reservoir sites for water storage needs, by subbasins, Alabama River Basin, 1972.

H	able II- 7cont'd										
I	Site Location	Primary Need 1/	D.A. (sq.mi.)	Dam Height (feet)	Pool Surface area (acres)	Water Depth (feet)	Pool Elevation (msl)	Total Storage Volume Avail. (acft)	Type of Map Used 3/	Map Contour Interval (feet)	Depend- able Yield4 (cfs)
Η	allapoosa Subbasin Calebee Cr., 1 mi.S of Tuskegee; R23E:TI6N:Sect. 1	Li Li	1.75	64	104	32	340.0	1,300	7 <u>1</u> 1	10	1.05
	Horsetrough Cr., 1 mi.NE of Ashland; R22E;T2OS;Sect.168	LL J	1.98	38	58 <u>11</u>	/ 2411/	1046.0 ¹¹ /	, 1,008 <u>12</u> /	1:2400	Û	1.29
	Sougahatchee Cr.,4 mi.NW of Auburn; R26E;T19N;Sect. 2	LL T	5.36	40	178	35	680.0	2,375	$7\frac{1}{2}$ *	10	3.22
	Sougahatchee Cr.,Opelika City Lake; R26E;T19N;Sect.4 <u>13</u> /	I	19.13	55	646	46	680.0	3,620 ¹³ /	$7\frac{1}{2}$ *	10	I
	Wedowee Cr.,3 mi.E. of Wedowee; R12E:T20S:Sect. 3	ΓĿ	14.28	45	188	35	1015.0	3,575	30+	20	9.26
	/ IF - low-flow augmentation, R - water- / This site has a poor depth verse surfi / 7 ¹ / ₂ , 15', and 30' denotes U. S. Geolog: / Estimated as being 50 percent of the a / Presently planned as a multiple-purpoor / Set at 2,938 acre-feet. / Sediment695 acre-feet. / Sediment695 acre-feet. / Set at 4,200 acre-feet. / Set at 4,200 acre-feet. / Set at 576 acre-feet.	-base reco ace area r ical Surve average ar se structure structure rage2,22 age500 a to add 3,6	reation. relationshi ey quadranc nual runof ure in an a 43 acre-fee o acre-fee 320 acre-fee 520 acre-fe	<pre>p. p. f. f. nuthorized t, floodwate floodwate et to its</pre>	 AMS de Public L Public Law ublic Law ater dete ater dete r detenti present 	notes Arm aw 566 Wa 566 Wate 566 Wate ntion2, on432 a storage v	y Map Servi tershed Wor cre-feet; rshed Work 225 acre-f cre-feet. olume. Ho	ice, scale rk Plan. floodwater Plan. eet. wever, thi	1:250,000 detentior). 8,862 a	cre-feet

4-32888 3-73

Ground Water

Ground water studies have been completed by U. S. Geological Survey and Geological Survey of Alabama in most of the counties, although all are not published. The Alabama River Basin is located partially in the three major physiographic divisions of Alabama based on the topography type and age of rocks: the Piedmont, the Plateau and the Coastal Plain. The similarity of rock types within each area implies a similarity of occurrence of ground water within each area.

The rocks in the Piedmont are the oldest in Alabama. They contain some cracks, crevices and joints, but the openings usually extend downward 200 to 300 feet. The average drilled-well yield in the Piedmont is only about 30 gallons per minute although wells occasionally provide higher yields. In general, dug wells have low yields and many go dry during droughts. The yield is limited by the very low rate of water flow through the fine tightly-packed material in the weathered zone. Springs in the Piedmont are numerous but generally have small yields. Water obtained from wells and springs in the Piedmont is relatively free from mineral content.

The Plateau can be subdivided as follows: limestone valley, coal measures, valley and ridge. Ground water exists in cracks, crevices, solution channels, and in the mantle overlying the rock. Here both dug wells and drilled wells are used; their yield varies from a few gallons to more than 300 gallons per minute. Topography is an important factor in locating a successful well. It is sometimes necessary to drill one or more test wells to find openings in the bedrock capable of supplying the desired quantity of water. Wells intersecting faults or larger fracture zones can furnish substantial quantities of water. In the limestone area, ground water is developed from wells intersecting solution channels and cavities and from large springs issuing from limestone. Water in the rocks of the Plateau is generally of suitable quality, though water obtained from sandstone and shale sometimes contains objectionable quantities of iron.

The consistent occurrence of good water-bearing sand and gravel beds through large areas of the Coastal Plain make the development of largecapacity wells relatively easy. Shallow wells, usually less than 100 feet in depth can be developed in sand and gravel beds. Drilled wells, ranging in diamet-r from 4 to 18 inches and in depth from a few feet to as much as 1,500 feet are the most efficient and practical means of developing ground water from the better water-bearing sands and gravels in the Coastal Plain. These wells range from small domestic and farm wells pumping 5 to 10 gallons per minute to large municipal or industrial wells producing as much as 1,000 gallons per minute. Ground water quality is generally good in the Coastal Plain.

The water use study 1/reveals that all public supplies in the Alabama River Subbasin are from ground water except some water for Montgomery that comes from the Tallapoosa River and Pine Hill from the Alabama River.

<u>1</u>/<u>Use of Water in Alabama</u>, 1970, Geological Survey of Alabama, Information Series 42.

Land

Land Use

Approximately 72 percent of the land within the Alabama River Basin is in forest use. Cropland and pasture each comprise 13 percent of the basin. The remaining 2 percent is used for other purposes. This land use distribution varies only slightly except in the Cahaba subbasin where 83 percent of the area is in forest, 7 percent in cropland, 8 percent pasture, and 2 percent in other uses. The Alabama subbasin has about 65 percent in forest use which is slightly less than the basin average, and 15 percent and 18 percent cropland and pasture respectively which is slightly grea er than the basin average. More detailed information on land use by soil capability class and subclass is presented in Table II-8.

The land use map (Figure II-5) is the result of a 1972 reconnaissance survey by field personnel of the Soil Conservation Service. Land use was mapped on county road maps and the data compiled and tabulated by MIADS (Map Information and Display System). The survey is intended to show the pattern of land use and is not intended for operational planning. Land use was categorized in large blocks by the predominant characteristic of the block. Minor inclusions of one or more non-mapped land use may make up nearly half of any mapped unit. Land use categories and percentages of the basin are:

Water	2 percent
Woodland	62 percent
Strip mines and quarries	Trace
Urban or built up areas	3 percent
Orchards	Trace
Mixedpasture and cultivated cropland	
(more than one-third of each)	8 percent
Cropland (more than two-thirds culti-	
vated cropland)	7 percent
Grassland (more than two-thirds pasture)	18 percent

These percentages differ from the 1967 CNI land use shown in Table II-8 because the CNI accounts for the total acreage of each land use regardless of size of the area. The land use map (Figure II-5) shows proportion of the basin by dominant land use without attempting to account for every acre of each land use.

Land Capability Classification -- Capability classification is a grouping of soils to show, in a general way, their suitability for various uses. It is a practical classification based on the degree and kind of permanent soil limitations. The degree of limitation is designated by Roman Numerals I through VIII; the numerals indicating progressively greater limitations and narrower choices for practical use, defined as follows:

Class I lands have few limitations that restrict their use.

- Class II lands have moderate limitations that reduce the choice of plants or require moderate conservation practices.
- Class III lands have severe limitations that reduce the choice of plants or require special conservation practices, or both.
- Class IV lands have very severe limitations that restrict the choice of of plants, require careful management, or both.
- Class V lands have little or no erosion hazard but have other limitations that are impractical to remove that limit their use largely to pasture, forest land, or wildlife.
- Class VI lands have severe limitations that make them unsuitable for cultivation and limit their use largely to pasture, woodland, or for wildlife food and cover.
- Class VII lands have very severe limitations that make them unsuitable to cultivation and restruct their use largely to woodland or wildlife. Some can be used for grazing.
- Class VIII lands have limitations that preclude their use for commercial plant production and restrict their use to recreation, wildlife, water supply, or aesthetic purposes.

The kind of limitation is designated by a small letter, e, w, or s following the class numeral; e.g. IIe, IIw, IIs. The letter "e" indicates the main limitation is erosion, "w" indicates that the main limitation is excess water in or on the soil, and "s" indicates the limitation is due to soil properties such ad drouthiness or limited soils depth for root growth.

Table II-8 shows major land uses by land capability classes and subclasses for the total basin and for each subbasin. The major portion, or 74 percent, of the cropland is on land capability classes I, II, and III. Pastureland is about equally distributed on land capability classes II, III, and IV, and about 78 percent of all pastureland is on these three capability classes. Only about 19 percent of all forest is on class I, II, and III land, however 55 percent of all forest land is on capability classes VI and VII.

Land ideally suited to modern agriculture is a very limited resource. Fairly large acreages of land in capability classes I and II are used for woodland or pasture. This strongly indicates the need for protection from urban enroachment and to identify it for planning purposes. The use of land in capability classes I and II for forest and pasture is not an abuse of the land because land in these classes has few limitations that restrict its use. Lands in these capability classes lend themselves to easy planting, growing, and harvesting of all crops including pasture and timber. However, this land should be identified and if possible kept in a use that would not preclude its use for growing food crops. For example, in a food or fiber emergency it would be preferable to increase the acreage allocated to crop production on class I and II land and increase pasture and woodland acreage on classes III through VI.

It is not intended to advise the strict zoning of land for agriculture but to emphasize the danger of irreversible shifts in use of a nonexpandable resource. It should not be assumed that all land in classes I and II could or should be shifted to crop production. There are many small scattered acreages within areas of these classes of land not suited to cropping, and many areas owned by individuals or corporations whose operation is not adapted to cropping. All large blocks of class I and II land should be identified so that they remain in the agricultural base and their potential can be realized as economics or need dictates. This land could be economically placed in crop production if an unexpected situation develops, in preference to shifting less productive, more erodible land to crop production.

		Alabama River	Basin		
		La	nd Use		
Class and	Cropland	Pasture	Forest	Other	Total
00001035		1110 4			
I	136	48	38	11	233
IIs	7	7	20	1	35
W	123	163	167	10	463
е	349	184	271	44	848
IIIs	29	10	40	3	82
W	55	88	259	12	414
е	241	238	601	33	1,113
I∀s	46	34	151	11	242
W	38	127	441	8	614
е	136	182	663	29	1,010
Vw	13	52	575	2	642
VIs	18	13	126	5	162
е	57	120	893	16	1,086
VIIs	13	21	1,364	18	1,416
W	-	-	8	-	8
е	12	40	1,489	11	1,552
VIIIs	-	-	2	1	3
Total Basin	1,273	1,327	7,108	215	9,923
Percent of To	otal 13	13	72	2	100
			Thous	and Acres	
lotal invento	oried land			9,923	
Irban and	huilt un land		420		
Federallv-	owned land		408		
Water area	S		245		
Total non-in	ventoried land			1,073	
Unclassified				19	
Total Basin	Area			11,015	

Table II-8--Land use by capability class and subclass by subbasins, Alabama River Basin1/.

1/ Alabama Conservation Needs Inventory 1967.

Table	II-8	(Cont'd)
-------	------	----------

	Α	labama River S	ubbasin		
		L	and Use		
Class and Subclass	Cropland	Pasture Tho	Forest usand Acres	Other	Total
I	85	27	16	4	132
IIs W	3 76	4 115	6 103	- 6	13 300
е	160	89	115	23	387
IIIs w e	28 14 84	9 33 111	38 55 208	3 7 10	78 109 413
IVs w e	17 20 19	15 89 66	47 307 127	4 5 4	83 421 216
Vw	8	25	338	1	372
VIs e	5 15	3 51	41 287	1 5	50 358
VIIs w e	6 - 2	5 - 16	277 8 408	1 - 2	289 8 428
Subtotal	542	658	2,381	76	3,657
Percent of I	Total 15	18	65	2	100

Table II-8--(Cont'd)

		Cahaba River S	ubbasin		
		La	nd Use		
Class and Subclass	Cropland	Pasture Thou	Forest sand Acres	Other	Total
I	6	5	4	-	15
IIw	11	8	22	l	42
e	27	15	27	3	72
IIIw	6	3	13	l	23
e	7	15	67	3	94
IVs	1	2	12	-	15
W	5	6	29	1	41
e	C	10	83	Ţ	99
Vw	1	3	62	-	66
VIs	-	-	2	-	2
е	3	6	75	2	84
VIIs	-	2	108	4	115
е	-	3	314	1	317
VIIIs	-	-	l	-	1
Subtotal	72	78	819	17	986
Percent of]	Total 7	8	83	2	100

	(Coosa River Su	ıbbasin		
		La	and Use		
Class and Subclass	Cropland	Pasture Thou	Forest Isand Acres	Other	Total
I	25	7	9	2	43
IIs	4	3	14	1	22
e	19	48	18 96	13	275
IIIs	-	1	1	-	2
W e	20 88	34 51	131 198	13	350
IVs	17	9	85	6	117
W e	8 53	10 39	46 207	_ 14	64 313
Vw	-	5	27	1	33
VIs	4	6	55	3	68
e	14	18	242	0	280
VIIs e	4 2	11 4	649 467	8 3	672 476
Subtotal	382	259	2,245	74	2,960
Percent of	Total 13	9	76	2	100

Table II-8--(Cont'd)

Table II-8--(Cont'd)

	Tallapoosa River Subbasin						
		Laı	nd Use				
Class and Subclass	Cropland	Pasture Thous	Forest sand Acres	Other	Total		
I	20	9	9	5	43		
IIw	17	27	24	2	70		
е	44	32	33	5	114		
IIIs	1	-	1	-	2		
W	9	18	60	1	88		
е	62	61	128	7	258		
IVs	11	8	7	1	27		
W	5	22	59	2	88		
- e	59	67	246	10	382		
Vw	4	19	148	-	171		
VIs	9	4	28	1	42		
e	25	45	289	3	362		
VIIs	3	3	330	5	341		
e	8	17	300	5	330		
VIIIs	-	-	1	1	2		
Subtotal	277	332	1,663	48	2,320		
Percent of T	otal 12	14	72	2	.100		

Land Ownership

The inventory of land ownership within the basin was based on information obtained from local sources within each county. Ownership was divided between private, federal, and state holdings. The results of this study shows that approximately 10,486,000 acres are held by private individuals. About 455,000 acres are held by the federal government and 74,000 acres are owned by the State of Alabama. Included in all categories of ownership are about 245,000 acres of water and 10,770,000 acres of land. The land ownership map (Figure II-7) shows the general location of holdings of private individuals and private corporations as well as a breakdown of lands owned by the state and federal government.

Forest industry ownership is small in the Alabama and Mississippi Blackland Prairie and Sand Mountain land resource areas, but substantial in other areas of the basin. Industrial ownership comprises approximately 21 percent of the entire basin (Figure II-6).

The U. S. Forest Service administers 310,201 acres of forest land in the basin, which is about 4 percent of the total commercial forest land. Table II-9 lists the distribution of National Forest acreage by subbasins, counties, and administrative units.

The National Forest location map (Figure II-8) shows the boundaries of purchase units. These areas include federal and private lands. The area of the Oakmulgee Division is 55 percent private land while the Talladega Division purchase area is 51 percent private land. The purchase area of the Tuskegee National Forest is 32 percent private land.

Forest Service lands east of the Cahaba River in the Oakmulgee Division (the large segment lying in eastern Bibb and in Chilton and Perry Counties) and all those of the Talladega Division were purchased under the Weeks Law during the depression years of the 1930's. These lands were given National Forest status in 1936.

Forest Service lands west of the Cahaba River in the Oakmulgee Division were purchased early in the 1930's, under the National Industrial Recovery Act (N.I.R.A.) and the Economic Recovery Act (E.R.A.). These lands were managed briefly by the Resettlement Administration and then transferred to the Forest Service and designated National Forest in 1940.

Forest Service lands of the Tuskegee National Forest were purcahsed from 1935 to 1938 under the Bankhead-Jones Farm Tenant Act. These lands were managed by various federal agencies before becoming a National Forest in 1959.

Figure II-6--Ownership of commercial forest land, Alabama River Basin, 1962.

Table II-9--Distribution of National Forests in the Alabama River Basin, land by administrative units and subbasins, 1970.

	Si	ubbasins		
Alabama	Cahaba	Coosa	Tallapoosa	·Total
		Acres		
125	40,302	-	-	40,427
7,415	14,010	-	-	21,425
64	4,920	-	-	4,984
-	29,132	-	-	29,132
-	100	-	-	100
7,604	88,464	-	-	96,068
-	_	15,234	_	15,234
_	_	56,377	9,895	66,272
-	_	59,548	20,015	79,563
-	-	42,286	_	42,286
_	-	173,445	29,910	203,355
-	_	_	10.778	10,778
-	-	-	10,778	10,778
7,604	88,464	173,445	40,688	310,201
	Alabama 125 7,415 64 - - 7,604 - - - - - - - - - - - - -	ST Alabama Cahaba 125 40,302 7,415 14,010 64 4,920 - 29,132 - 100 7,604 88,464 - - <td>Subbasins Alabama Cahaba Coosa Acres Acres 125 40,302 - 7,415 14,010 - 64 4,920 - - 29,132 - - 100 - 7,604 88,464 - - - 56,377 - - 59,548 - - 42,286 - - 173,445 - - - 7,604 88,464 173,445</td> <td>Subbasins Alabama Cahaba Coosa Tallapoosa Acres Acres 125 40,302 - - 7,415 14,010 - - 64 4,920 - - - 29,132 - - - 100 - - - 100 - - 7,604 88,464 - - - - 59,548 20,015 - - 173,445 29,910 - - - 10,778 - - - 10,778 - - - 10,778 - - - 10,778</td>	Subbasins Alabama Cahaba Coosa Acres Acres 125 40,302 - 7,415 14,010 - 64 4,920 - - 29,132 - - 100 - 7,604 88,464 - - - 56,377 - - 59,548 - - 42,286 - - 173,445 - - - 7,604 88,464 173,445	Subbasins Alabama Cahaba Coosa Tallapoosa Acres Acres 125 40,302 - - 7,415 14,010 - - 64 4,920 - - - 29,132 - - - 100 - - - 100 - - 7,604 88,464 - - - - 59,548 20,015 - - 173,445 29,910 - - - 10,778 - - - 10,778 - - - 10,778 - - - 10,778

II-47

Soils

Preliminary Soil Association

The general soil map (Figure II-9-pocket) shows the distribution of soil associations. The name of each soil association is tentative and may be changed when more detailed information is available. Becasue of the small scale of the map does not provide information about individual farms or small tracts of land and is not designed for detailed or operational planning. Information on smaller areas or tracts for planning can be obtained from detailed soil maps at Soil Conservation Service offices.

Each soil association is a broad landscape that has a repeating pattern of soils and is named according to the one or more most extensive soil series. Each area also includes other soils which are less extensive and may or may not be like the dominant soils.

Number	Association Name	Description
2	Bodine-Minvale-Fullerton	Cherty, well drained, loamy and clayey soils in the limestone valleys. Depth to rock is 5 to 40 feet. Slopes range from 6 to 35 percent.
3	Boswell-Susquehanna- Luverne	Well drained to somewhat poorly drained, clayey soils on fairly broad ridgetops and moderately steep hillsides in the Coastal Plain uplands. Slopes range from 2 to 15 percent.
5	Cecil-Appling-Louisburg	Well drained, loamy and clayey soils on fairly broad ridgetops and steep hill- sides in the Piedmont. Depth to rock is 2 to 5 feet or more. Slopes range from 2 to 25 percent.
6	Cecil-Grover-Pacolet	Well drained, loamy and clayey soils on fairly broad ridgetops and steep hill- sides in the Piedmont. Depth to bed- rock is 5 to 10 feet. Slopes range from 2 to 40 percent.
7	Clymer-Allen-Rockland	Well drained, stony and gravelly, loamy soils on very steep hillsides. Rockland is very steep, sandstone or quartzite escarpment. Slopes range from 20 to 50 percent. Depth to bedrock is 20 to 40 inches for Clymer and more than 6 feet for Allen.

Number	Association Name	Description
8	Colbert-Hollywood- Rockland	Moderately well drained to somewhat poorly drained, clayey soils in the limestone valley. Slopes range from O to 6 percent. Depth to rock is 20 to 40 inches for Colbert, 4 to 8 feet for Hollywood and in Rockland, limestone outcrops cover more than one-half the area.
9	Conasauga-Firestone- Talbott	Well drained and moderately well drained, clayey soils in the ridges and valleys. Slopes range from 0 to 6 percent. Depth to limestone or calcar- eous shale bedrock is 20 to 60 inches.
10	Davidson	Well drained, dark red, clayey soils on broad, smooth ridgetops in the Piedmont. Depth to rock is more than 6 feet. Slopes range from 0 to 10 percent.
11	Decatur-Dewey-Allen	Deep, well drained, loamy and clayey, dark red and associated browner soils in the limestone valley. Slopes range from O to 10 percent.
15	Dothan-Fuquay-Wagram	Deep well drained, loamy and sandy soils on gently sloping to strongly sloping uplands of the Coastal Plain. Slopes range from 2 to 7 percent.
18	Eustis-Troup-Lucy	Deep, somewhat excessively drained and well drained, sandy and loamy soils on nearly level and gently sloping uplands and stream terraces in the Coastal Plain. Slopes range from 0 to 6 per- cent.
19	Eutaw-Mayhew-Wilcox	Somewhat poorly and poorly drained. Nearly level and gently sloping clayey soils in the Blackbelt and Coastal Plain. Depth to shale or chalk is 30 to 80 inches or more. Slopes range from 0 to 5 percent. The shrink-swell potential is high.
22	Fullerton-Bodine-Minvale	Cherty, well drained, loamy and clayey soils in the limestone valleys. Depth to rock is 5 to 40 feet. Slopes range from 2 to 25 percent.

4-32888 3-73

1

Number	Association Name	Description
23	Hartsells-Linker- Albertville	Well drained, loamy and clayey soils on narrow ridgetops on Sand Mountain. Slopes range from 2 to 15 percent. Depth to interbedded sandstone and shale bedrock is 20 to 72 inches.
24	Hartsells-Tilsit- Albertville	Well drained and moderately well drained, loamy and clayey soils on broad ridgetops on Sand Mountain. Tilsit soils have a fragipan. Depth to rock is 20 to 72 inches. Slopes range from 0 to 15 percent.
27	Hiwasee-Gwinnett-Cecil	Well drained, clayey, dark red soils on fairly broad ridgetops and steep hill- sides in the Piedmont. Depth to rock is more than 5 feet. Slopes range from 2 to 30 percent.
28	Holston-McQueen-Chewacla	Deep, well drained and somewhat poorly drained, loamy and clayey soils on first bottoms and stream terraces. Slopes range from O to 6 percent.
29	Iredell-Mecklenburg	Well drained to moderately well drained, clayey soils on broad, mooth landscapes in the Piedmont. Depth to rock is 40 to 72 inches. Slopes range from 2 to 10 percent.
30	Jones-Lucedale-Troup	Deep, well drained, sandy and loamy soils on narrow ridgetops and steep hillsides in the Coastal Plain. Slopes range from 5 to 30 percent.
32	Lucedale-Ruston	Deep, well drained, dark red and red, loamy soils on broad, nearly level up- lands in the Coastal Plain. Slopes range from O to 5 percent.
33	Lucedale-Ruston-Troup	Well drained, loamy and sandy, dark red and associated browner solls on fairly broad gently sloping and sloping uplands in the Coastal Plain. Slopes range from 2 to 10 percent.
34	Luverne-Boswell-Maben	Deep, well drained and moderately well drained clayey soils on highly dissected landscapes in association with the Tallahatta Burstone. Slopes range from 6 to 30 percent.
4-34888	3 = 13	

II-50

Number	Association Name	Description
35	Luverne-Boswell-Ruston	Deep, well drained and moderately well drained, loamy and clayey soils on very narrow ridgetops and steep hillsides in the Coastal Plain. Slopes of 10 to 30 percent are predominate.
36	Madison-Tallapoosa	Well drained, loamy and clayey soils on fairly broad ridgetops and steep hill- sides in the Piedmont. Slopes range from 2 to 25 percent. Depth to rock ranges from 10 to 48 inches.
38	Mashulaville-Stough- Savannah	Deep, moderately well to poorly drained, loamy soils with fragipans in the lower subsoil. They are on stream terraces and broad upland flats in the Coastal Plain. Slopes range from 0 to 6 per- cent.
39	Montevallo-Townley- Enders	Well drained, loamy and clayey soils on narrow ridgetops and steep hillsides. Depth to shale bedrock ranges from 10 to 60 inches or more. Slopes range from 6 to 40 percent.
40	Musella-Gwinnett- Hiw as ee	Well drained, loamy and clayey, dark red soils on narrow ridgetops and steep hillsides in the Piedmont. Depth to rock is 3 to 8 feet or more. Slopes range from 6 to 40 percent.
41	Myatt-Chewacla-Wickham	Well to poorly drained, loamy soils on major stream flood plains and terraces. Slopes range from 0 to 5 percent. Sub- ject to flooding.
44	Rains-Troup-Esto	Deep, well drained to poorly drained, sandy to clayey, nearly level and gently sloping soils in the "coastal flatwoods". Slopes range from O to 5 percent.
45	Red Bay-Orangeburg- Dothan	Deep, well drained, loamy dark red and associated browner soils on fairly broad gently sloping and sloping up- lands in the Coastal Plain. Slopes range from 2 to 10 percent.
46 4-32888 3	Red Bay-Orangeburg-Lucy -73	Deep, well drained, dark red and red, loamy soils on broad, nearly level up- lands in the Coastal Plain. Slopes range from 0 to 5 percent. I-51

7

]

Number	Association Name	Description
48	Ruston-Ora-Savannah	Deep, well drained and moderately well drained, loamy soils on broad, smooth uplands in the Coastal Plain. Ora and Savannah soils have a fragipan. Slopes range from 0 to 6 percent.
51	Smithdale-Luverne	Deep, well drained, highly dissected, loamy and clayey soils on very narrow ridgetops and steep hillsides in the Coastal Plain. Slopes range from 6 to 35 percent.
52	Smithdale-Luverne- Faceville	Deep, well drained, loamy and clayey soils on fairly broad ridgetops and steep hillsides in the Coastal Plain. Slopes range from 2 to 25 percent.
54	Sumter-Demopolis- Oktibbeha	Well drained and moderately well to well drained, clayey and loamy soils in the Blackbelt. Slopes range from 3 to 17 percentDepth to chalk ranges from 4 to 54 inches. The shrink-swell potential is high.
55	Sumter-Oktibbeha-Trinity	Well drained to somewhat poorly drained. Clayey, very sticky and plastic soils in the Blackbelt. Depth to chalk ranges from 20 to 72 inches or more. Slopes range from 0 to 12 percent. The shrink-swell potential is high.
56	Tallapoosa-Madison	Well drained, loamy and clayey soils on narrow ridgetops and steep hill- sides in the Piedmont. Depth to rock ranges from 10 to 48 inches. Slopes range from 6 to 40 percent.
57	Tallapoosa-Tatum	Well drained, loamy and clayey soils on very narrow ridgetops and steep hillsides in the Talladega Hills. Depth to slate ranges from 10 to 60 inches. Slopes range from 6 to 50 percent.
59	Troup-Luverne-Lucedale	Well drained, sandy to clayey soils on narrow ridgetops and steep hill- sides in the Coastal Plain. Slopes of 10 to 30 percent predominate.

Number Association Name

60 Troup-Ruston-Esto

Description

Deep, well drained or moderately well drained, sandy to clayey soils on highly dissected landscapes in the Coastal Plain. Slopes range from 2 to 25 percent.

<u>Soil Association Interpretations</u> -- The general soil map and the interpretations are useful for providing information about the soil resources of communities, parts of counties, whole counties, or the river basin. This information can be used for broad, general land use planning of large areas and can assist with the planning and development of major parts of all of the river basin.

Interpretations utilize information prepared by the Soil Conservation Service for all major land resource areas. Table II-10 gives some important soil properties and degrees of limitations for nine land uses. The terms <u>slight</u>, <u>moderate</u>, and <u>severe</u> appraise each association according to the characteristics of the dominant soils and their major limitations.

Soil limitations defined as <u>slight</u> are expected to impose only slight limitations on the particular use; difficulties or hazards in construction or maintenance, due to soil conditions can be readily and economically overcome. <u>Moderate</u> limitations are expected to impose moderate limitations on the particular use; difficulties or hazards in construction or maintenance, due to soil conditions, can be overcome, and it may be economical to do so. <u>Severe</u> limitations are expected to impose difficulties or hazards in construction or maintenance, due to soil conditions, that will be hard and costly to overcome, if at all.

Status of Publication of Soil Surveys in the Alabama River Basin --Follwoing is a report on the status of county-wide published soil survey reports:

Basin counties with modern published soil survey and publication date.

Baldwin	1964	DeKalb	1958
Calhoun	1961	Montgomery	1960
Chambers	1959	Randolph	1967

Basin counties with field mapping completed and report scheduled for publication.

Autauga	1975	Escambia	1974
Chilton	1973	Talladega	1974
Clay	1974		

Basin counties with soil survey under way and date for completion of field surveys (unpublished maps are available for consultation in field offices of the Soil Conservation Service).

Blount	1973	Dallas	1977
Bullock	1975	Etowah	1976
Cherokee	1973	Jefferson	1976
Clarke	1979	Lee	1976
Cleburne	1974		

Counties with no modern soil survey (some counties have a published survey, not adequate by modern standards and out of print, but available for consultation in offices of the Department of Agriculture).

Bibb	Lowndes	Russell
Butler	Macon	Shelby
Coosa	Marengo	St. Clair
Crenshaw	Monroe	Tallapoosa
Elmore	Perry	Wilcox

Following is a list of basin communities and locations for which reports have been prepared concerning soil interpretations for town and country planning. These are unpublished reports available for inspection at Regional Planning Commission offices or at the state headquarters of the Soil Conservation Service in Auburn.

Alabaster	Centre	Selma Industrial Areas (3)
Anniston	Centre Landfill	TallasseeCarrville
Ashland	Collinsville	Uniontown
Birmingham	Fort Payne	Valley Dale
Calera	Hobson City	Wadley
Camden	Lincoln	Wilton
Camden State Park	Lineville	
Cedar Bluff	Marion	

	Soil Associ	stion		Dominant Soil	Propert.	ies			Soil Lim	itations	For	Soil Suit	ability f	or Agri.	Soil L	imitations a	or Rec.
Map vmbol	Name & Appr Percentage nant Soil Se	oximate of Domi- eries	Percent Slope	Drainage <mark>l</mark> ⁄	Texture Subsoil	Reaction2	Erosion Hazard	Roads & Streets	Septic Tank Systems	Light Industry	Dwellings Without Basement	Cropland	Pasture	Woodland	Camp F Areas P	icnic Areas laygrounds	Paths & lrails
2	Bodine-Minvale Bodine	-Fullerton 45%	10 to 35	5 well or excessively	cherty silt	strongly acid	severe	severe	severe	severe	severe	лоод	fair	good	severe	Severe	moderate
	Minvale	10%	6 to 35	well	loam cherty silty clay	strongly acid	severe	severe	severe	severe	severe	poor	fair	good	severe	severe	moderate
	Fullerton	35%	6 to 20	well	loam cherty clay	very strongly a cid	severe	• mod •	• mod	severe	. mod	poor	fair	pood	• mod	• pou	moderate
ω.	Boswell- <u>Susque</u> Boswell	anna-Luvern 25%	e 2 to 15	mod.well	clay	strongly acid	severe	severe	severe	severe	severe	poor	fair	good	. mod	. mod.	slight
	Susquehanna	20%	2 to 15	somewhat poorly	clay	very strongly acid	severe	severe	severe	severe	severe	poor	fair	good	• mod	. mod.	slight
	Luverne	20%	2 to 10	well	silty clay	very strongly acid	mod.	severe	Severe	• mod	• mod	fair	good	boog	• mod	slight	slight
5	Cecil-Appling-I	ouisburg															
	Cecil	35%	2 to 15	well	clay	strongly	• pou	• pou	•pou	• pou	mod.	fair	good	poob	slight	slight	slight
	Appling	25%	2 to 15	well	sandy clav	strongly acid	. mod	• pou	•pom	severe	mod.	fair	good	good	slight	slight	slight
	Louisburg	15%	5 to 25	well	sandy loam	medium acid	severe	• pou	severe	severe	• pou	poor	poor	good	severe	severe	moderate
9	Cecil-Grover-P Cecil	acolet 30%	2 to 15	well	clay	strongly acid	. mod	. mod	. mod	mod.	. mod	fair	good	good	slight	slight	slight
	Grover	25%	2 to 25	we l l	sandy clay loam	strongly acid	• mod	severe	severe	severe	• mod	fair	fair	good	. mod	. mod	slight
	Pacolet	20%	10 to 40	0 well	clay	very strongly a cid	severe	Severe	severe	severe	severe	poor	poor	good	severe	severe	moderate
2	Clymer-Allen-R Clymer	ockland 22%	20 to 50	0 well	l oam	strongly acid	severe	severe	severe	severe	severe	poor	poor	poob	severe	severe	severe
	Allen	15%	20 to 5(0 well	clay loam	strongly acid	severe	severe	severe	severe	severe	poor	poor	good	severe	severe	Severe
	Rockland	100/	J = - + OC	(1 0 0 9	200		000000	010101	C 01/01/0

			¢		Deconst				C.4.1 1 25		Eor C.	citta	nility for	Acr:	Soil Lim	tations for	Rec
	Soil Associ	ation	10/1	UINANT SOLL	TI TACO TA	0			177 TTO	SIIOTABATI	101 11000	01TD0 TT0		• + + 50		1010101000	->->-
Map Symbol	Name & Appr Percentage nant Soil S	of Domi- eries	Percent Slope	Drainage <mark>l</mark> ⁄	Texture Sub soil	Reaction ^{2/1}	azard	Roads & Streets	septic Tank Systems_]	Light Industry I	Without Basement CI	ropland	Pasture Wo	podland	Camp Pic Areas Pla	cnic Areas Aygrounds	Paths & Trails
00	Colbert-Holly Colbert	wood-Rockland 45%	0 to 6	mod.well	Clay	very strongly	• pou	Severe	Severe	Severe	severe	fair	good	fair	Severe	severe	slight
	Hollywood	20%	0 to 6	mod.well to some-	silty c la y	acid mildly alkaline	mod.	Severe	severe	Severe	severe	fair	pood	fair	severe	severe	moderate
	Rockland	15%	0 to 6	what poor	1	variable	1	severe	severe	Severe	severe	poor	poor	poor	severe	severe	moderate
6	Conasauga-Fire Conasauga	estone-Talbot 35%	t 0 to 6	mod.well	silty clav	strongly	•pou	severe	severe	severe	severe	fair	poog	poob	. mod	slight	slight
	Firestone	20%	2 to 6	well	clay	strongly	. pom	Severe	severe	• pou	• pou	fair	pood	boog	• pou	slight	slight
	Talbott	20%	2 to 6	well	clay	acid acid	• pou	severe	severe	. mod	• pom	fair	good	good	• pou	slight	slight
10	Davidson Davidson	75%	0 to 10	well	clay	neutral to strongly a cid	slight	• mod	• mod	• pou	moderate	pood	pooó	poob	slight	slight	slight
11	Decatur-Dewey. Decatur	-Allen 25%	0 to 10	well	clay	very strongly acid	slight	• mod	• mod	mod.	mod.	good	poob	poob	slight	slight	slight
	Dewey	25%	0 to 10	well	clay	strongly acid	slight	• mod	slight	. mod	. mod	poob	good	poob	slight	slight	slight
	Allen	15%	0 to 10	well	clay loam	strongly acid	slight	• pou	slight	• pou	• pou	good	poob	poob	slight	slight	slight
15	Dothan-Fuqua-V Dothan	Vagram 30%	2 to 10	well or mod.well	sandy clay loam	strongly acid	slight	. mod	Severe	• mod •	slight	boog	good	poob	slight	slight	slight
	Fuquay	25%	2 to 10	well	sandy clay loam	strongly acid		.mod	• pou	• pou	.mod	fair	good	boog	. mod.	mod.	severe
	Wagram	20%	6 to 17	well	sandy clay loam	strongly acid	severe	. pom	. mod.	severe	. mod	poor	fair	good	• pou	• pou	moderate

.

1

lable II-10--cont'd

	Soil Associ	ation	Doi	minant Soil	Properti	és			Soil Li	mitations	5 For	Soil Suita	ability fo	r Agri.	Soil Lim	itations for	Rec.
Map Symbol	Name & Appı Percentage nant Soil S	coximate of Domi- eries	Percent Slope	Drainage ^{1/}	Texture Subsoil	Reaction2/F	rosion F	s loads & treets S	Septic Tank ystems I	I Light ndustry E	Without ()	Cropland	Pasture	Woodland	Camp Pi Areas Pl	cnic Areas aygrounds	Paths & Trails
18	Eustis-Troup- Eustis	Lucy 30%	0 to 6	somewhat exces-	loamy fine	strongly	mod.	slight	slight	slight	slight	fair	fair	good	mod.	severe	severe
	Troup	25%	0 to 6	sively well	sand sandy clay	strongly acid	. mod	slight	slight	slight	slight	fair	fair	good	. mod.	severe	severe
	Lucy	25%	0 to 6	well	loam sandy clay loam	strongly acid	• pou	slight	slight	slight	slight	fair	good	good	slight	slight	slîght
19	<u>Eutaw-Mayhew-</u> Eutaw	<u>Wilcox</u> 20%	0 to 3	poor	clay	extremely	slight	severe	Severe	severe	severe	poor	fair	good	severe	severe	severe
	Mayhew	30%	1 to 5	poor	silty clay	acia very strongly	slight	severe	severe	severe	severe	rooq	fair	boog	severe	severe	severe
	Wîlcox	30%	1 to 5	somewhat poor	silty clay	acid very strongly	slight	severe	severe	Severe	severe	poor	fair	good	severe	. mod	moderate
22	Fullerton-Bod Fullerton	ine-Minvale 40%	2 to 15	well	cherty clay	very strongly	mod.	mod.	mod.	severe	mod.	fair	good	pood	. mod	mod.	moderate
	Bodîne	25%	6 to 25	well or exces-	cherty silt	acid strongly acid	Severe	Severe	severe	severe	. mod	fair	good	good	. mod	mod.	moderate
	Minvale	15%	2 to 25	sively well	loam cherty silty clay	strongly acid	Inod .	severe	mod.	severe	. mod	fair	good	goog	mod.	mod.	moderate
cc	1.2 T - I fortwoll	1 introd 1 nor			loam												
3	Hartsells Hartsells	20%	2 to 15	well	sandy clay loam	very strongly acid	. mod	• pou	severe	. mod	. mod	fair	good	good	slight	slight	slight
	Linker	20%	2 to 15	well	sandy clav	very stronalv	• pou	mod.	severe	moderate	moderate	fair	good	good	slight	slight	slight
	Albertville	35%	2 to 15	well	loam silty clav	acid strongly acid	mod.	severe	• pou	moderate	moderate	fair	good	good	. mod	slight	slight

	Soil Assoc	iation	Dc	minant Soil	Properti	ies			Soil Lim	itations	For	Soil Suita	bility fo	Nr Agri.	Soil Li	mitations fo	r Rec.
Map Symbol	Name & App Percentage nant Soil	roximate of Domi- Series	Percent Slope	Drainage <u>l</u> /	Texture Subsoil	Reaction2∕	Erosion Hazard	Roads & Streets	Septic Tank Systems	Light Industry	Dwellings Without Basement C	ropland	Pasture W	loodland	Camp P Areas P	icnic Areas laygrounds	Paths & Trails
24	Hartsells-Til:	sît-Albertvîi	lle														
	Hartsells	40%	0 to 15	well	sandy clay loam	very strongly acid	slight	• pou	severe	• pou	• pou	boog	good	good	slight	slight	slight
	Tilsit	20%	0 to 6	mod.well	loam	strongly	slight	slight	severe	• pou	• mod	poob	good	boog	slight	slight	slight
	Albertville	15%	2 to 15	well	silty clay	strongly acid	• pou	severe	. mod	. mod	• pou	fair	good	good	• pou	. mod	slight
27	Hiwassee-Gwin Hiwassee	nett-Cecil 30%	4 to 10	well	clay	medium	.mod.	. mod	. mod.	. mod	mod.	good	good	good	- slight	slight	slight
	Gwinnett	30%	6 to 30	well	clay	acid very strongly	severe	severe	severe	severe	severe	poor	fair	good	severe	: severe	moderate
1	Cecil	20%	2 to 15	well	clay	acid strongly acid	• pou	. mod	• pou	• pou	mod.	fair	good	good	slight	slight	slight
28	Holston-McQue	en-Chewacla 30%	0 to 6	well	clay loam	very stronolv	slight	slight	slight	slight	slight	good	good	good	slight	slight	slight
	McQueen	20%	0 to 6	well	silty clav	acid strongly	slight	• pou	severe	severe	Severe	good	good	good	slight	slight	slight
	Chewacla	20%	0 to 2	somewhat poorly	loam	strongly acid	slight	severe	severe	Severe	severe	fair	good	good	severe	severe	moderate
29	Iredell-Meckle Iredell	20%	2 to 10	mod.well +0_como_	clay	neutral	. mod	severe	severe	severe	severe	fair	poob	good	. mod	mod.	moderate
	Mecklenburg	15%	2 to 10	what poorly well	clay	slightly acid	. mod.	severe	severe	severe	severe	fair	good	good	. mod.	mod.	slight
30	Jones-Lucedale Jones	e - Troup 25%	5 to 30	well	sandy loam	slightly acid	severe	severe	severe	severe	severe	poor	fair	good	mod.	mod.	slight
	Lucedale	25%	5 to 15	well	clay loam	strongly	• pou	mod.	. mod	moderate	moderate	fair	good	good	slight	· pom	slight
1	Troup	25%	5 to 30	well	sandy clay loam	strongly acid	severe	severe	severe	severe	severe	poor	лооd	good	• mod	mod.	slight

	Soil Assoc	iation	Dor	ninant Soil	Properti	es			Soil Lin	nitations	For	Soil Sui	tability	for Agri.	Soil Li	mitations fo	I Rec.
:	Name & App.	roximate							Septic		Dwellings				(:
Symbo]	Percentage	of Domi- Series	Percent Slope	Drainage ¹ /	/ Texture Subsoil	Reaction2	,Erosion Hazard	Roads & Streets	Tank Systems	Light Industry	Without Basement (Cr op l and	Pasture	Woodland	Camp F Areas F	icnic Areas laygrounds	Paths & Trails
32	Lucedale-Rusto	<u>u</u>				- - - - -											
	Lucedale	35%	0 to 5	well	clay loam	strongly acid	slight	slight	slight n	nod.	slight	good	good	good	slight	slight	slight
	Ruston	25%	0 to 5	well	sandy clay loam	strongly lacid	slight	. mod	slight	slight	slight	good	good	good	slight	slight	slight
34	Luverne-Boswel	1-Maben												A North Control of the state of the			
	Luverne	30%	6 to 30	well	silty clav	strongly acid	severe	severe	severe ;	severe	Severe	poor	poor	good	severe	severe	moderate
	Boswell	30%	6 to 30	mod.well	clay	strongly	severe	severe	severe	severe	severe	rood	poor	good	severe	severe	moderate
	Maben	20%	6 to 30	well	clay	strongly acid	severe	severe	severe	severe	severe	poor	poor	good	severe	severe	severe
35	Luverne-Boswel	<u>l-Ruston</u>		;	:												
	Luverne	30%	10 to 30	well	silty clay	strongly acid	severe	severe	severe	severe	severe.	poor	poor	good	severe	severe	moderate
	Boswell	30%	10 to 30	mod.well	clay	strongly acid	severe	severe	severe ;	severe	severe	poor	poor	good	severe	severe	moderate
	Ruston	20%	10 to 30	well	sanly clay	strongly acid	severe	severe	severe :	severe	severe	poor	rood	good	severe	severe	moderate
36	Madicon-Talla				TOAM												
00	Madison	45%	2 to 20	well	clay	strongly acid	severe	severe	mod.	severe	moderate	fair	fair	good	. mod.	.mod.	slight
	Tallapoosa	35%	2 to 25	well	silty clay loam	very strongly acid	severe	severe	severe	severe	severe	poor	fair	good	severe	severe	moderate
38	Mashulaville-S	tough-Savann	ah														
	Mashulaville	30%	0 to 2	poorly	loam	strongly ačid	slight	severe	severe	severe	severe	poor	fair	poob	severe	severe	Severe
	Stough	15%	0 to 2	somewhat poor	loam	strongly acid	slight	severe	severe	severe	severe	fair	good	good	severe	.mod	moderate
	Savannah	25%	0 to 6	mod.well	loam	very	slight	. mod	severe n	. pod	mod.	poog	good	good	slight	slight	slight
						s u ungi y acid											
39	Montevallo-Tow	nley-Enders															
	OTTPACION	%C7	6 t0 40	Nell	sılt loam	strongly acid	sèvere	severe	severe	severe	severe	poor	poor	good	severe	severe	severe
	Townley	20%	6 to 40	well	silty clav	strongly	severe	severe	severe	severe	severe	poor	rood	good	severe	severe	severe
	Enders	15%	6 to 15	well	silty	very	. mod	severe	severe s	severe	mod.	fair	fair	good	. mod	. mod	slight
					clay	strongly acid											

4-32888 3-73

II-59

		0+:00	Dol	ninant Coil	Dronerti	9			coil [;	mitation.	For	Soil Suita	bilitv fo	r Agri.	Soil Lim	itations for	Rec.
Map	Name & Appi Percentage	roximate of Domi-	Percent	1	Texture	Posc+ion2/	Erosion F	Soads &	Septic Tank	Light	Wellings Without	ronland	Dacture W	oodland	Camp Pi Areas Pl	cnic Areas avorounds	Paths & Trails
40	Musella-Gwinne	ett-Hiwassee			1100000	1075 00 01	5 + 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7	2		1100011							
	Musella	60%	6 to 40	well to somewhat	gravelh	/ med.acid	severe	severe	severe	severe	severe	poor	poor	good	Severe	severe	severe
	Gui nno++	15%	04 04 9	excessively well	Loam	etronolv	CPUNTP	CAVATA	CAVATA	SPVPTE	SEVERE	DOOL	DOOL	aood	Severe	Severe	Severe
		2/2 -	2	4 4		acid						-					
	Hiwassee	15%	4 to 10	well	clay	med.acid	mod.	mod.	. pom	mod.	mod.	fair	poo	good	slight	slight	slight
41	Myatt-Chewacl	a-Wickham											1	2000	040100	040700	0.40100
	Myatt	30%	0 to 3	poor	sandy	very strondly	slight	severe	severe	severe	severe	poor	ITEI	good	a.Tanas	P T P V P V	ה ערבע ה
					loam	acid											
	Chewacla	20%	0 to 3	somewhat poorlv	loam	strongly acid	slight	severe	severe	severe	severe	fair	fair	good	Severe	mod.	moderate
	Wîckham	20%	0 to 5	well	sandy	strongly	slight	severe	severe	severe	severe	good	good	good	. mod	mod.	slight
					clay loam	acid											
44	Rains-Troup-E: Rains	sto 20%	0 to 2	POOL	sandy	Very	slight	severe	Severe	severe	severe	poor	fair	good	severe	Severe	severe
				-	clay	strongly)										
	Train	25.00	ر + د		loam	acid etronaly	eliaht	tdoila	clicht	icht	slicht	fair	fair	good	mod.	severe	severe
	100 T	2	4	TTOM	clay	acid	1	1	1 1 1	2 1 1 1 1	1	6 8 5 4	4 4 5 4	5 5 5 5			
	Esto	20%	2 to 5	well or	clay	very	. mod.	· pou	severe	. mod	. mod.	fair	good	good	slight	slight	slight
				mod.well		strongly acid											
45	Red Bay-Orange	sburg-Dothan												1			
	Red Bay	35%	2 to 10	well	sandy clay	strongly acid	• pou	slight	slight	mod.	slight	fair	good	good	slight	. mod	slight
					loam												
	Orangeburg	35%	2 to 10	well	sandy	very strondlv	mod.	slight	slight	mod.	slight	fair	good	good	slight	mod.	slight
					loam	acid											
	Dothan	15%	2 to 10	mod.well	sandy clay	strengly acid	mod.	slight	severe	mod.	slight	fair	good	good	slight	mod.	slight
					loam												

÷

Table II-10--cont'd

	Soil Assoc	siation	Ď	ominant Soil	Propert	ies			Soil L.	imitation	s For IS	oil Suite	bility fo	br Agri.	Soil Lir	nitations fo	r Rec.
Map Symbol	Name & App Percentage nant Soil	oroximate : of Domi- Series	Percent Slope	Drainage <mark>l</mark> /	Texture Subsoil	Reaction ² /	,Erosion Hazard	Roads & Streets	Septic Tank Systems	Light Industry	Dwellings Without Basement C	ropland	Pasture V	lood1 and	Camp P Areas P	icnic Areas Laygrounds	Paths & Trails
46	Red Bay-Orang	eburg-Lucy					- - - -	- - - -	-	_		-	-	-			-
	кеа вау	35%	0 to 5	Mell	sandy clay loam	strongiy acid	lugils	lugils	11g11s	moderate	tugils	0000	good	900d	lugits	INGLIS	lugits
	Urangeburg	25%	0 to 5	well	sandy clay loam	very strongly acid	slight	slight	slight	slight	slight	boog	pood	poob	slight	slight	slight
	Lucy	10%	0 to 5	well	sandy clay loam	strongly acid	slight	slight	slight	slight	slight	fair	poob	boog	slight	slight	slight
48	Ruston-Ora-Sa Ruston	vannah 45 <u>%</u>	0 to 6	well	sandy clay	strongly acid	slight	• pou	slight	slight	slight	boog	good	poob	slight	slight	slight
	Ora	25%	0 to 6	mod.well	loam clay loam	strongly arid	slight	• pou	severe	moderate	moderate	boog	good	poo6	• pou	. mod	slight
	Savannah	15%	0 to 6	mod.well	loam	very strongly acid	slight	mod.	severe	moderate	moderate	boog	poo6	good	. mod	slight	slight
51	Smithdale-Luv Smithdale	erne 45%	6 to 35	well	sandy c la y	strongly acid	severe	severe	severe	severe	severe	poor	fair	poog	severe	severe	moderate
	Luverne	30%	6 to 35	well	loam silty clay	strongly acid	severe	severe	severe	severe	severe	poor	fair	boog	severe	severe	moderate
52	Smithdale-Luv Smithdale	erne-Facevill 30%	e to 25	well	sandy clay	strongly acid	severe	severe	severe	Severe	severe	poor	fair	good	severe	severe	moderate
	Luverne	45%	6 to 25	well	loam silty clav	strongly	severe	severe	severe	severe	severe	poor	fair	poob	severe	severe	moderate
	Faceville	10%	2 to 15	well	clay clay	strongly acid	. mod	.mod	• pou	severe	• pou	fair	boog	boog	slight	•рош	slåght
54	Sumter-Demopo Sumter	lis-Oktibbeha 30%	3 to 12	well	silty	mod.	severe	severe	severe	severe	severe	fair	good	fair	severe	Severe	severe
	Demopolis	20%	3 to 17	well	silty clay	alkaline	severe	severe	severe	severe	severe	poor	fair	fair	• pou	• mod	moderate
	Oktibbeha	35%	3 to 12	mod.well to well	clay	very strongly acid	severe	severe	severe	severe	severe	rood	boog	bood	severe	severe	Severe

4-32000 3-73

II**-**61

	Soil Associa	ation	Dom	inant Soil F	Propertic	S			Soil Lin	mitations	For L	Soil Suits	bilitv fo	r Adri.	Soil Lin	nitations fo	r Rec.
Map Symbol	Name & Appr Percentage on nant Soils S	oximate of Domi- Series	Percent Slope	Drainagel	Texture Subsoil	Reaction2/	Erosion Hazard	Roads & Streets	Septic Tank Svstems	Light Industrv	Wellings Without Basement	Cropland	Pasture V	Voodland	Camp Pi Areas Pl	icnic Areas Lavarounds	Paths & Trails
55	Sumter-Oktibbeh	a-Trinity 3000														í.	
	TATIMO	0/00	7T 01 T	TTƏM	sılty clay	alkaline	Severe	severe	severe	severe	severe	Ialr	good	Talr'	severe	severe	severe
	Oktibbeha	40%	1 to 8	mod.well to well	clay	very strongly acid	sv.re	Severe	Severe	severe	severe	fair	good	good	severe	severe	severe
	Trînity	25%	0 to 5	mod.well to some- what poor	clay	mod. alkaline	slight	severe	severe	severe	severe	good	boog	fair	severe	severe	severe
56	<u>Tallapoosa-Madi</u> Tallapoosa	55%	6 to 40	well	silty	very	severe	severe	severe	severe	severe	poor	DOOL	dood	severe	severe	severe
		200			clay loam	strongly acid											
	Madlson	KCr	0 t0 40	TTƏM	стау	strongly acid	severe	severe	severe	severe	Severe	poor	poor	good	severe	severe	severe
57	Tallapoosa-Tatu Tallapoosa	<u>때</u> 65%	6 to 50	well	silty	very	severe	severe	severe	severe	severe	poor	poor	poob	severe	severe	severe
					clay loam	strongly acid								•			
	Tatum	15%	6 to 50	well	silty clay	very strongly	severe	severe	severe	severe	severe	poor	poor	good	severe	severe	severe
59	Troup-Luverne-L Troup	ucedale 35%	10 to 30	well	sandy	strongly	severe	severe	severe	severe	severe	DOOL	DOOL	poob	severe	severe	moderate
					clay loam	acid)) 				
	Luverne	20%	10 to 30	well	silty clav	strongly acid	Severe	severe	severe	severe	severe	poor	rood	good	severe	Severe	moderate
	Lucedale	10%	10 to 15	well	clay loam	strongly acid	Severe	• mod •	. mod.	severe	mod.	poor	fair	good	. mod	moderate	slight
60	Troup-Ruston-Es	to											and a second				
	Iroup	35%	2 to 25	well	sandy clay loam	strongly acid	severe	severe	severe	severe	severe	poor	poor	boog	. mod.	mod.	slight
	Ruston	30%	2 to 25	well	sandy clay loam	strongly acid	severe	severe	severe	severe	severe	poor	fair	poob	severe	severe	severe
	Esto	15%	2 to 8	well or mod.well	clay	very strongly acid	severe	• pou	severe	. mod	• mod	poor	fair	good	slight	slight	slight

Forests

Forest Resources

Seventy-two percent of the Alabama River Basin is in commercial forest land.

Figure II-10--Distribution of timber types in the Alabama River Basin, 1962.

The oak-gum-cypress and elm-ash-cottonwood types are bottomland hardwoods and usually grow on the most productive soils. These hardwoods provide essential habitat for wildlife and serve as natural flood corridors. Oak-hickory types listed grow mainly in upland areas.

Competition for use of bottomland areas has caused a slight reduction of this forest type between 1963 through 1970. The conversion of bottomlands from forests to other uses is estimated at approximately 2,400 acres, or 0.2 percent of the basin.

The upland areas are experiencing the opposite trend. Upland timberlands have increased by approximately 113,000 acres, or 1 percent of the basin during the same time period. The conversion of crops and pasture to forest is caused by the purchase of lands for forest industry. These lands are planted to rapid-growth pine by the corporations. Some marginal cropland and pastures are abandoned and regenerate naturally to upland pine stands.

State tree nurseries distribute over 22 million seedlings annually to landowners throughout the basin. Ninety-eight percent of these tree species are pines.

The conversion of hardwood areas to pine is gradual and not causing a dramatic impact on the natural environment. The vegetation conversion is

slowly decreasing bottomland hardwood types while gradually increasing pine forest acreage. The total long-range effect could improve timber production of the forests since pine is grown on short rotations. The impact could potentially affect the distribution and populations of wildlife species in the basin through the forest type conversion.

Timber Types and Associated Species (See Figure II-11)

Longleaf-Slash Pine -- Forests with 50 percent or more of the stand in longleaf or slash pines, singly or in combination.

Common associated species on dry sites are turkey, bluejack, blackjack, post, southern red, and live oaks and persimmon in the overstory with yaupon, low bush acorns, and high bush huckleberry in the understory.

Common associated species on wet sites are water, willow, and laurel oaks; cabbage palmetto, redbay, holly, and blackgum in the overstory, with crabapple, gallberries and titi in the understory.

Wildlife Rating:

E - Excellent	G - Good	F - Fair	P - Poor
Quail - G		Deer - F	Dove - F
Turkey - G		Squirrel - F to P	

Loblolly-Shortleaf Pine -- Forests with 50 percent or more of the stand in southern pines other than longleaf or slash, singly or in combination.

Common associated species are sand, pond, pitch, table mountain, and Virginia pines and eastern red cedar. Associated hardwoods include post, red, southern red, black, scarlet, scrub, laurel, water, willow, and white oaks along with persimmon and blackgum. Sixty years or older loblolly, shortleaf, or pitch pine stands carry a 20 percent component of associated oaks, hickories, and blackgum, occasionally supporting fair gray squirrel populations.

Wildlife Rating:

Deer -	F	Quail - G	Doves - F	(winter)
Turkey	- G	Squirrel - P	Waterfowl	- limited

<u>Oak-Hickory</u> -- Forests with 50 percent or more of the stand in upland oak and hickory, singly or in combination. Southern pines or red cedar makeup less than 25 percent of the stand. Most of the oak-hickory type lies in scattered patches in the loblolly shortleaf area shown on the map.

Common associated species are post, black, chestnut, white, northern red, southern red, southern scrub, live, bluejack, scarlet, and bear oaks; maple, elm, yellow poplar, and blackgum in the overstory and high bush and low bush huckleberries and dogwood with Japanese honeysuckle and yaupon locally in the understory.

Wildlife Rating:

Gray Squirrel - F to G Turkey - G Deer - G

<u>Oak-Pine</u> -- Forests with 50 percent or more of the stand in hardwood usually upland oak, southern pines make up 25 to 49 percent of the stand. Includes eastern red cedar-hardwood, shortleaf pine-oak, Virginia pinesouthern red oak, loblolly pine-hardwood, slash pine-hardwood, and pitch pine-oak.

Common associated species are oaks, hickories, blackgum, black cherry, maples, elm, beech, walnut, pecan, pines and such understory species as hawthorns, dogwood, grape, blueberries, hornbeam, hazelnut, persimmon and viburnums.

Wildlife Rating:

<u>Oak-Gum-Cypress</u> -- Bottomland forests with 50 percent or more of the stand in tupelo, blackgum, sweetgum, oak, and southern cypress, singly or in combination. Southern pines makeup less than 25 percent of the stand.

Common associated species are cottonwood, willow, ash, elm, hackberry, maple, oaks, hickory, pecan, beech, sugarberry, magnolia, sweetbay, redbay, and boxelder. Various understory plants used for wildlife food include grape, mulberry, muscadine, hornbeam, hop hornbeam, silverbell, sourwood, fringetree, huckleberry, red haw, dogwood, holly, spice bush, switch cane, palmetto, and many others.

Wildlife Rating:

Waterfowl - E Squirrel - E Turkey - E Deer - E

Non-typed -- Less than 10 percent forested.

Figure II-12--Ten most prevalent species in the basin (order of growing stock volume), 1962.

*Includes southern red, water, nuttals, scarlet, and black oaks. **Includes white, swamp chestnut, swamp white, and chinquapin oaks. ***Includes chestnut, post, and overcup oaks.

The river basin contains an impressive volume of timber growing stock and emphasizes the existing use and potential for forest industry in the state (Figure II-13). This information was derived from the 1962 forest survey conducted by the Southern Experiment Station of the U. S. Forest Service. A new survey is scheduled for completion in early 1973 and will be incorporated in the final draft of the river basin study. The 1970 timber resource inventory figures on National Forest lands in the basin provide additional statistics on total inventory, net annual growth and harvest comparisons. Figure II-13--Volume of growing stock on commercial forest land in the Alabama River Basin, 1962.

Figure II-14--Total growing stock inventory on National Forest, Alabama River Basin, 1970.

Figure II-15--Sawtimber growth inventory on National Forest within the Alabama River Basin, 1970.

Figure II-16--Poletimber growing stock inventory on National Forests in the Alabama River Basin, 1970.

Figure II-17--Average per acre inventory, net annual growth, and cut on National Forest, Alabama River Basin. 1970.

4-32888 3-73

II-72

Volumes per acre on National Forest exceed the basin's average in both softwoods and hardwoods. This is probably due to more intensive forest management practices applied in these stands. Growth far exceeds cut on National Forest and indicates a definite sustained yield of wood products for the future.

Figure II-18--Stand size class on National Forest Lands, 1962.

Sawtimber dominates the size class range with poletimber and seedlings comprising approximately 29 percent of the forest. This relates a vigorous timber supply and favors a variety of game populations. Stand size classes are dispersed to provide a variety of habitat requirements for wildlife species.

The Alabama Forestry Commission has made a significant contribution to private timberland owners in the basin. During the past 10 years, the Commission answered 3,371 landowners' requests for forestry assistance and provided forest management expertise on 285,500 acres. This involved marking 18,450,000 board feet of sawtimber and over 13,000 cords of pulpwood which resulted in a \$625,000 return to woodland owners. The Agricultural Stabilization and Conservation Service has provided funds on a costsharing basis for achieving improved forestry practices on privately owned lands. A summary of ASCS forest accomplishments for 1971 indicates that planting forest trees occurred on slightly more than 6,900 acres on 254 farms at a cost-sharing amount of about \$152,900. During this same time, timber stand improvement was accomplished on 102 farms covering about 3,100 acres with cost-sharing amounting to approximately \$44,500.

The state's forest management practices also increased the growth and productivity in managed stands as well as enhanced recreation and wildlife benefits.

In the basin, on lands belonging to Soil and Water Conservation District Cooperators, the Soil Conservation Service assisted landowners in planning and establishing, over a six-year period, 62,400 acres of tree

planting. Also during this same period the District Cooperators selectively harvested timber from 348,800 acres and improved the timber stand on 65,300 acres. These practices will help bring the private woodland of the basin into a higher productive condition by fully stocking this woodland and by maintaining it in a good growing condition.

Minerals

The Alabama River Basin is rich in mineral resources and supports a valuable mineral industry. Inventories are incomplete, but statewide minerals exploration is in progress, and the value of the basin minerals production continues to increase as industry expands and exploration progresses. The accompanying tables show the approximate basin share of 1969 production (Tables II-11 thru II-14) of selected minerals by counties, and portions of counties within the basin. More detailed information is available from Bureau of Mines Minerals Yearbooks [/and the Geological Survey of Alabama, Tuscaloosa.

The maps included with this text2/are indicators of the approximate area of appreciable quantities of minerals. These maps cannot be used to determine tonnage reserves or to indicate commercial quality (Figure II-19 thru II-22). Production figures (1969) indicate that some minerals occur in the basin but are not being mined at present; however, apparent reserves of many minerals within the basin show that potential exists for establishment of additional minerals based industry. All, or almost all, of Alabama's reserves of mica, talc, asbestos, graphite, tin, gold, copper, barite, and marble is found within the basin. The approximate basin share of other important mineral reserves is: sand and gravel, one-third; lignite, one-third; coal, one-fourth; and iron, one-fourth.

<u>1</u>/ Bureau of Mines Minerals Yearbook, 1969, United States Department of the Interior; Chapter on The Mineral Industry of Alabama by H. L. Riley and W. Everett Smith.

<u>2</u>/ Unpublished map and text. Mineral Resource Map of Alabama, by Oscar E. Gilbert, Jr.; Geological Survey of Alabama.
County	Whole County Value (Thousand)	Pe Minerals produced in order of value ir	rcentage of County the Basin
Autauga	\$ 171	Sand and gravel.	100
Baldwin	M	Petroleum, sand and gravel, miscellaneous	ω
Bibb	4,404	clay. Coal, limestone, dolomite, sand and gravel,	94
		miscellaneous clay.	
Blount	1,865	Coal, cement, iron ore, fire clay, sandstone	1
Bullock	I	None reported.	43
Butler	I	None reported.	20
Calhoun	2,140	Fire clay, limestone, miscellaneous clay.	100
Chambers	ı	None reported.	45
Cherokee	M	Sand and gravel.	100
Chilton	W	Sand and gravel.	100
Clarke	M	Sand and gravel, petroleum.	28
Clay	ι	None reported.	100
Cleburne	I	None reported.	100
Coosa	l	None reported.	100
Crenshaw	M.	Sand and gravel.	ന
Dallas	W.	Sand and gravel.	100
DeKalb	M	Limestone.	40
Elmore	M	Sand and gravel, miscellaneous clay.	100
Escambia	M	Petroleum, sand and gravel, miscellaneous	4
		clay.	
Etowah	1,189	Limestone, coal, sand and gravel.	80
Jefferson	111,878	Coal, cement, iron ore, dolomite, limestone,	25
		miscellaneous clay, sandstone.	
Lee	M	Limestone.	46
Lowndes	M	Bentonite, sand and gravel.	26
Ma con	1,126	Sand and gravel.	26
Marengo	M	Cement, limestone, sand and gravel.	14

Table II-11--Value of mineral production in the Alabama River Basin. by counties 1/

4-32888 3-73

Table II-11--Cont'd

4

County	Whole County Value (Thousand)	Minerals produced in order of value	Percentage of County in the Basin
Monroe	\$	Sand and gravel.	06
Montgomery	1,999	Sand and gravel, miscellaneous clay.	88
Perry	I	None reported.	84
Randolph	W	Mica.	88
Russell	M	Miscellaneous clay, sand and gravel.	m
Shelby	31,804	Lime, cement, limestone, coal, dolomite,	100
		miscellaneous clay.	
St. Clair	M	Cement, limestone, coal, miscellaneous cla	y. 100
Talladega	11,525	Marble, limestone, talc.	100
Tallapoosa	I	None reported.	100
Tuscaloosa	10,503	Coal, sand and gravel, iron ore.	0
Wilcox	I	None reported.	100
Undistributed $\frac{2}{1-3}$	96,708 275 364		
T T D A D T	t 00 °C - V		

Adapted from Bureau of Mines Minerals Yearbook, 1969, The Mineral Industry of Alabama by H. L. Riley W Withheld to avoid disclosing individual company confidential data; included with "Undistributed." and W. Everett Smith - Table 2. L

Includes value of natural gas liquids and values indicated by symbol W (Values of "W" for entire state, others by counties within the basin). 2

Data may not add to totals shown because of independent rounding. 0

II-77

	(Thousa	ind short tons	and thousand do	llars)	
County	Quantity	Value	<u>Alabama Ba</u> Quantity	sin Share Value	(Approximate)
Bibb	M	M	M	M	
Blount	204	M	. 0	M	
Etowah	M	M	M	M	
Jefferson	8,518	68,453	2,147	17.250	
St. Clair	M	M	M	M	
Shelby	M	M	M	M	
Tuscaloosa ₂	1,868	M	35	M	
Other Counties	7,586	40,457	67	14,588	
Total ⁴ /	17,456	130,405	3,151	31,838	

Excludes mines producing less than 1000 short tons. Includes production and value indicated by symbol W and counties outside Alabama River Basin. M) (1)

Data may not add to totals shown because of independent rcunding.

4-32888 3-73

II-78

			Alahama Dar	
	State Produc	tion 1969	ALADAINA DAS Approxi	imate)
County	Quantity	Value	Quantity	Value
Autauga	256	171	256	171
Crenshaw	M	M	M	M
Elmore	469	M	469	M
Escambia	465	270	17	21
Etowah	M	W	M	M
Ma con	M	1,126	M	1,090
Monroe	M	52	M	47
Montgomery,	2,210	M	1,927	M
Other Counties /	4.926	7,509	1,357	2,099
Totals	8,323	9,427	4,026	3,428

3/ Data may not add to totals shown because of independent rounding.

Alah County Quarries Quantity Value Quanti		
County Quarries Quantity Value Quanti	Alabama Basi (Approxin	in Share nate)
	Quantity	Value
Jetterson 8 4,226 5,287 I,077	1,073	1,332
Shelby, 9 4,952 7,024 4,952	4,952	7,024
Other Counties ² / 28 8,544 10,058 4,487	4,487	5,462
Total ^{3/} 45 17,752 22,371 10,512	10,512	13,818

Includes Bibb, Calhoun, Colbert, Covington, DeKalb, Etowah, Franklin, Jackson, Lee, Limestone, Madi-son, Marengo, Marshall, Morgan, St. Clair, Talladega, and Washington Counties. $\overline{\mathbf{N}}$ 0

Data may not add to totals shown because of independent rounding.

4-32888 3-73

II-80

Methods of Inventory and Evaluation

An inventory and evaluation of the fish and wildlife resources in the Alabama River Basin were made by a multiple-agency work group composed of representatives from the Bureau of Sport Fisheries and Wildlife, Department of Conservation and Natural Resources, Auburn University, U. S. Forest Service, and the Soil Conservation Service. The Soil Conservation Service representative was designated as chairman of the work group.

This report presents basic information regarding opportunities for sport and commercial fishing, hunting, and such non-consumptive aspects of fish and wildlife as bird watching and nature photography in the Alabama River Basin.

Resource capacities are based on standards developed for the basin from research studies, recorded data, and by field observations conducted by one or more members of the work group.

The status of rare and endangered vertebrate species in the river basin included in this report focuses attention on this important aspect of the native fauna. Detailed location maps will be available for the final report.

The objective of the work group was to determine the problems, needs, and possible solutions in the management of fish and wildlife resources in the basin.

<u>Fisheries Resource</u> -- It was necessary to inventory areas of freshwater habitat to establish a breakdown of the different types of fishing waters of varying capacities in the basin. Acres of fresh water were inventoried as follows: large impoundments (over 500 acres), small impoundments (both public and private), rivers, streams, and put, grow, and take ponds. The following agencies contributed to the water resource data; Department of Conservation and Natural Resources, U. S. Forest Service, Corps of Engineers, Alabama Power Company, Auburn University Agricultural Experiment Station, and the Soil Conservation Service.

Appraisal of the man-day fishing capacity in each type of fresh water habitat was based primarily on (1) the standing crop of sport fishes, (2) the ratio of the standing crop to the harvestable crop, and (3) the average catch in pounds per man-day.

The standing crop, measured in pounds of fish per surface acre of water, is used as the index for productivity of a given body of water. The standing crop varies because habitat quality, fishing success, management of waters, fish migrations, and many other factors vary from season to season and from year to year. It was agreed that the average harvestable crop of fish is one-half of the standing crop. It was agreed, also, that two pounds of fish is the standard harvest per man-day of fishing.

4-32888 3-73

True fishing capacity is reached when increased fishing activity decreases fishing success to the extent that the number of new fishermen being attracted is balanced by those who stop fishing because of an unsatisfactory creel return. The minimum acceptable creel is understandably nebulous and varies by location, type of fishing, tolerance to crowding and disturbance, past fishing experience, availability of other fishing, and numerous other factors. An average catch of two pounds per man-day appears to be a realistic standard for this basin.

Outstanding wade and float fishing streams were selected by a concensus of field biologists and work group members. Size, productivity, water quality, and aesthetic values were considered in making the selections.

<u>Wildlife Resource</u> -- Wildlife resources within the basin were inventoried as a basis for establishing their potential capacities. Acreage of small game, big game, and waterfowl habitat available for public use was determined by a field survey in each county and from information supplied by the Department of Conservation and Natural Resources.

Capacity standards 1/developed by the Agricultural Experiment Station of Auburn University were used to convert acres of habitat to man-days of hunting. The following standards were used.

Hunting Activity	Number of Hunters/Ac. of Habitat	Daily Rate of Turnover	Length of Hunting Season(Days)	Activity Occasions/Ac. of Habitat
Big Game	0.0055	1	90	0.50
Small Game	0.0167	1	120	2.00
Waterfowl	0.0167	1	60	1.00

Table II-15--Conversion of acres of wildlife habitat to man-days of hunting.

The above calculations of hunting capacities are based on average sustained harvest figures. They assume accessibility to all areas and uniform distribution of hunting in keeping with wildlife populations.

A potential habitat suitability map for the major game species was compiled from data gathered on field surveys in each county. Relative ratings of well-suited, suited, and poorly suited are used to describe existing habitat conditions. As a guideline, description of the essential components in well-suited habitat for each species was prepared by the work group.

<u>1</u>/ <u>Participation in Outdoor Recreation in Alabama</u>, Agricultural Experiment Station, Auburn University, Agricultural Economics Series 20, October 1970.

Basic data to determine habitat suitability were obtained by sampling the major soil associations in each county of the river basin. One or more representatives section(s) (640 acres) exhibiting typical land use of the soil association were located on aerial photographs and county road maps. This section(s) was then surveyed on the ground to determine its suitability for each major game species.

Wildlife habitat variations do not correspond to county boundary lines. Therefore, it is difficult to delineate. However, an assumption is made that a high correlation exists between soil associations, land use, and wildlife populations.

Wildlife population studies in the basin are rather limited, consequently, much of the information obtained represents the best estimate of professional biologists and other field personnel. Deer and turkey populations were estimated in each county by experienced persons with knowledge of check station data, field studies, hunter surveys, or other information.

. Estimates of hunting activity for small game were derived from the 1970-1971 mail survey conducted by the Department of Conservation and Natural Resources. In the survey, questionnaires were mailed to 4,478 randomly chosen individuals who had purchased hunting licenses. Technical assistance was provided for the survey by Dr. Don Hayne of the School of Statistics of the University of North Carolina.

The land area of the river basin is approximately 33 percent of the total land area of the state; and the percentages of cropland, woodland, pastureland, and other land in both the state and basin are almost identical. Therefore, with the exception of waterfowl, it is assumed that 33 per percent of the total small game killed in Alabama is harvested in the Alabama River Basin.

The potential for developing hunting and fishing as recreational activities is summarized from recent county outdoor recreation potential studies. Information on non-consumptive activities related to fish and wildlife was gathered by a review of published literature and personal communications.

Rare and Endangered Vertebrates -- A symposium on rare and endangered vertebrates in Alabama was held November 4-6, 1971, in Birmingham, Alabama. This meeting was sponsored by the Alabama Department of Conservation and Natural Resources. During the meeting, a proposed list of rare and endangered vertebrate species in Alabama was compiled. This report includes that list.

For the final report, the list will be refined to include only those rare and endangered species suspected to be within the Alabama River Basin. Wherever possible, maps will be used to pinpoint known locations of rare and endangered vertebrates.

4-32888 3-73

<u>Supply</u>

<u>Fisheries</u> -- The most common species of sport fish in the freshwaters of Alabama are largemouth bass, smallmouth bass, striped bass and spotted bass, crappies, various catfish, bluegill, and redear sunfish.

The supply of freshwater fishing available for public use in the Alabama River Basin is presented in Table II-16. There is a total of approximately 189,000 acres of fishing waters currently available in the basin with an estimated capacity of 4,085,000 activity occasions. Almost 50 percent of the available fish habitat is located in the Coosa Subbasin. Construction of additional large impoundments on major river systems in the basin (Table II-17) will be somewhat restricted as the number of feasible sites has become limited.

Approximately 478 miles of free-flowing rivers remain in the basin, and many of these miles are polluted to the extent that utilization for tishing is very limited. Pollution has also decreased utilization of man/ small streams that were an important source of fishing during the 1930's and 1940's. However, many productive streams are not now receiving the normal fishing activity due to lack of accessibility and for other reasons. Ten important fishing streams in the basin are listed in Table II-18. These streams were selected on the basis of productivity, water quality, utilization, and aesthetic value.

The most productive fishery habitat in the basin is found in small impoundments. In small ponds and lakes, many factors affecting productivity can be controlled to varying degrees. There are approximately 44,000 acres in privately-owned, small impoundments, 475 acres in stateowned lakes, and 40 acres in lakes owned by the federal government (Table II-19). There is an additional 325 acres of public fishing in small watershed impoundments sponsored by city or county governing bodies. The state and federal hatcheries have provided the initial stocking for most of these ponds. (Table II-20)

Major facilities at the state-operated lakes, as of 1971, are shown in Figure II-23 and are listed below (letters refer to map):

- A. Clay County Lakes three lakes totaling 65 acres, on a 360 acre tract, 2 miles west of Delta and 30 miles south of Anniston: first lake opened in 1951; concession stand with restrooms, 16 picnic tables, and 13 boats for rent.
- B. Oak Mountain State Park this park is located in Shelby County approximately 16 miles south of Birmingham. Two 85-acre fishing lakes are located in the northeast end of the park, and there is an 18-acre lake near the middle of the park. Facilities presently available include swimming, rental boats, fishing, and boat access areas.
- C. Dallas County Lake 100-acre lake on 306-acre site, 15 miles south of Selma; restrooms, picnic tables, rental boats, and earthen launching ramp.

D. Monroe County Lake - 94-acre lake on 245-acre site; 1 mile from Beatrice; opened in 1969, concession stand, 31 boats for rent, and concrete launching ramp.

Under Alabama law, drum, buffalo, carp, channel catfish, and all other members of the catfish family, spoonbills, spotted sucker and all other members of the sucker family including red horse and black horse have been designated as commercial or non-game species. Legal commercial fishing gear includes hoop and fyke nets, gill nets, trammel nets, setlines, trotlines, snag lines, and certain types of fish traps. Local and state regulations prohibit the use of certain types of the above gear in certain counties and areas.

Each person who participates in commercial fishing activities must have a commercial fishing license. Such licenses can be obtained from the Commissioner of Licenses, the Judge of Probate, or from persons appointed by the Commissioner of Conservation and Natural Resources to issue licenses. During the Fiscal Year 70-71, a total of 702 commercial fishing licenses were issued in the counties of the Alabama River Basin. Table II-21 indicates the number issued in each county during that year.

Data on the amount and value of the commercial fishing catch in the basin are extremely limited. Catfish are the preferred catch and bring the best price on the market. However, there is a good market for buffalo. Blue catfish, channel catfish, flathead catfish, drum, buffalo, quillback, black sucker, golden red horse and black horse are commercial species that have been taken from the Alabama River.

Subbasin	Existing Acreage	Annual <u>l</u> / Harvestable Production/Ac.	Activity Occasions Per Acre <u>2</u> /	Total Activity Occasions
Alabama Rivers Streams Large impoundments ^{3/} Small impoundments ^{4/} Put, grow & take Subtotal	4,916 1,362 35,650 3,085 <u>279</u> 45,2 9 2	80 lbs. 12.8 67.4 100 800	40 6.4 33.7 50 400	196,640 8,717 1,201,405 154,250 <u>111,600</u> 1,672,612
Cahaba Rivers Streams Large impoundments Small impoundments Put, grow & take Subtotal	1,440 185 1,000 541 <u>83</u> 3,249	20 lbs. 12.8 17 86 800	10 6.4 8.5 43 400	14,400 1,184 8,500 23,146 <u>33,200</u> 80,430
Coosa Rivers Streams Large impoundments Small impoundments Put, grow & take Subtotal	2,663 2,073 81,313 2,958 430 89,437	35 lbs. 21 29.6 88.8 800	17.5 10.5 14.8 44.4 400	46,600 21,766 1,203,432 131,335 <u>172,000</u> 1,575,133
Tallapoosa Rivers Streams Large impoundments Small impoundments Put, grow & take Subtotal	3,091 1,362 43,125 2,513 <u>452</u> 50,543	30 lbs. 16.4 19.4 80 800	15 8.2 9.7 40 400	46,300 11,205 418,312 100,520 <u>180,800</u> 757,137
Total	188,521			4,085,312

Table II-16--Freshwater fish habitat available for public use, and associated capacity, Alabama River Basin, 1971.

1/ Based on information from district fishery biologist, Department of Conservation and Natural Resources.

- 2/ Two pounds per acre used as standard.
- 3/ Impoundments larger than 500 acres.
- 4/ Availability for public use estimated by state and federal agencies in each county, includes all public fishing lakes.

Subbasin	Acreage
Alabama Jones Bluff Lake Wm. F. Dannelly Lake Claiborne Lake Total	12,300 17,200 <u>5,800</u> 35,300
Coosa Weiss Lake H. Neely Henry Lake Logan-Martin Lake Lay Lake Mitchell Lake Jordan Lake Total	30,200 11,200 15,263 12,000 5,850 <u>6,800</u> 81,313
Cahaba Lake Purdy	1,053
Tallapoosa Martin Lake Yates Lake Thurlow Lake Opelika City Lake Total	40,000 2,000 574 <u>560</u> 43,187

Table II-17--Large impoundments in the Alabama River Basin, 1971

Stream	Miles of Fishing	Acres of Fishing	Type <u>l</u> / of Fishing	Subbasin
Choccolocco	48	301	B,W,F	Coosa
Cane (Calhoun)	20	44	B,W,F	Coosa
Canoe	29	105	B,W,F	Coosa
Hatchett	40	181	B,W,F	Coosa
Kelley (St. Clair)	14	34	B,W	Coosa
Ketchepedrakee	10	24	B,W	Tallapoosa
Talladega	40	117	B,W,F	Coosa
Uphapee	16	68	B,W,F	Tallapoosa
Weogufka	22	67	B,W	Coosa
Yellowleaf (Shelby)	33	176	B,W	Coosa

Table II-18--Ten important fishing tributaries in the Alabama River Basin.

1/ B-Bank, W-Wade, F-Float.

Table II-19--Total acreage, use, and ownership of small impoundments in the Alabama River Basin, 1971.1/

				Private Ou	wnership
	Total of all	Public Ownership2/		Open to	Used For Commercial
Subbasin	Impoundments	(Acres)	Total	Public	Production
Alabama	19,310	194	19,116	2,891	624
Cahaba	2,733	189	2,544	352	62
Coosa	11,725	281	11,444	2,677	216
Tallapoosa	11,163	176	10,987	2,337	85
Total	44,931	840	44,091	8,257	987

 $\underline{1}/$ Less than 500 acres, more than .25 acres.

 2_{ℓ}^{\prime} Include some P.L.-566 structures.

County	Number	Acreage
Autauga	200	1,194
Baldwin	349	2 919
Bibb	112	547
Bullock	882	2,347
Butler	576	1,377
Calhoun	392	1,652
Chambers	280	1.274
Cherokee	92	271
Chilton	314	804
Clarke	198	485
Clay	260	973
Cleburne	229	1,112
Coosa	200	667
Dallas	356	1,839
DeKalb	1,217	1,911
Elmore	566	1,857
Etowah	371	1,223
Jefferson	401	2,760
Lee	697	3,406
Lowndes	971	4,674
Macon	464	2,029
Monroe	230	804
Montgomery	1,990	6.437
Perry	187	1,099
Randolph	243	877
Shelby	441	2,361
St. Clair	360	1,091
Talladega	225	1,490
Tallapoosa	357	934
Wilcox	277	751
Total	13,437	51,165

Table II-20--Numbers and acres of ponds stocked by State and Federal Hatcheries through September 30, 1970, by counties, Alabama River Basin.

USDA-SCS-FORT WORTH, TEX. 1973

		· · · · · · · · · · · · · · · · · · ·			
			Fiscal Year	<u>·s</u>	
County	1966-67	67-68	68-69	69-70	/0-/1
Autauga	4	6	6	3	2
Baldwin	51	55	82	83	59
Bibb	17	17	17	22	24
Bullock	0	0	0	2	0
Butler	0	0	2]	2
Calhoun	62	47	62	56	47
Chambers	3	3	3	7	2
Cherokee	37	31	31	50	36
Chilton	4	5	5	5	1
Clarke	59	68	84	71	38
Clay	2	1	3	3	6
Cleburne	0	0	3	4	2
Conecuh	2	1	3	1	4
Coosa	5	6	6	6	5
Crenshaw	0	1	0	1	0
Dallas	29	30	27	24	37
DeKalb	2	4	4	3	6
Elmore	12	11	9	10	7
Escambia	25	30	24	16	18
Etowah	36	31	31	53	53
Jefferson	114	115	130	131	117
Lee	1	0	3	2	3
Lowndes	3	2	1	0	1
Macon	0	0	0	0	0
Marengo	23	29	27	38	34
Monroe	59	58	75	71	63
Montgomery	3	1	1	5	8
Perry	5	5	4	1	0
Randolph	0	7	8	4	7
Russell	4	9	12	13	13
Shelby	20	13	6	2	0
St. Clair	44	39	44	49	54
Talladega	4.9	54	23	33	26
Tallapoosa	24	16	10	13	6
Wilcox	29	_26	29	23	21

Table II-21--Total number of commercial fishing licenses issued υ_2 counties, Alabama River Basin.

Total

721

775

808

702

728

<u>Wildlife-Hunting</u> -- The wildlife resource in Alabama is as varried and abundant as any state in the southeast. The most frequently hunted game animals in Alabama include the white-tailed deer, turkey, squirrels, quail, rabbits, and dove. The respective hunting seasons are long and bag limits are liberal. The primary responsibility for administering wildlife resources, except the federally protected migratory birds, is vested in the Department of Conservation and Natural Resources.

A detailed field survey revealed approximately 3,086,120 acres available for some form of public hunting in the basin. However, of this total, 631,800 acres of club leased lands and 7,620 acres of shooting preserves were not counted as being open to the general public because of restricted or limited memberships (Table II-22). Less than 15 percent of the public hunting acreage is managed by the state or federal government.

Table II-22--Available supply of public hunting acreage in the Alabama River Basin, 1971.1/

Subbasin	State Mgt. Areas	Company Owned Lands	Private Owned Lands	National Forest	Club Leased Lands	Shooting Preserves
Alabama	15,000	377,000	158,700	5,000	279,000	_
Cahaba	50,500	109,700	28,200	33,900	1,300	-
Coosa	102,700	571,000	369,500	107,000	174,000	6,620
Ta llapoosa Total	<u> 30,000</u> 198,200	$\frac{217,000}{1,274,700}$	<u>223,700</u> 780,100	$\frac{47,800}{193,700}$	$\frac{177,500}{631,800}$	$\frac{1,000}{7,620}$

<u>1</u>/ Data obtained from selected state and federal agencies in each county. Duplication of recorded acreage was avoided.

Table II-23--Estimated hunting and harvest effort in the Alabama River Basin, 1970-1971.

· · · · · · · · · · · · · · · · ·	Estimated Fall	Estimated	Man-Days	Total
Species	Population	Harvest	Per Kill	Man-Days
Deer	117,100 1/	11,710 4/	19.00	222,490
Turkey	$69.255 \ \overline{1}/$	6,926 4/	13.00	90,038
Rabbit	-	$296,767 \ \overline{2}/$	0.83	246,317
Squirrel	-	625,182 <u>2</u> /	0.61	381,361
Dove	-	1,107,826 2/	0.20	221,567
Quail	-	764,999 <u>2</u> /	0.35	267,749
Ducks	-	17,800 <u>1</u> /	0.69	12,282
Geese	-	440 <u>1</u> /	4.21	1,852 _ /
Others <u>3</u>	-	-	-	144,366 5/
Total				1,588,022

1/ Data obtained from conservation officers and field biologist.

 $\frac{2}{2}$ Data obtained from Alabama Mail Survey 1970-71 using 33% of state totals. 3/ Includes fox, bobcat, oppossum, raccoon, etc.

4/ Harvest estimated as 10% of fall population.

5/ Effort estimated as 10% of total effort of all other game species.

4-32888 3-73

The estimated hunting effort in the basin during the 1970-1971 season was in excess of 1.5 million man-days (Table II-23). Estimated harvest data for selected species were taken from the Alabama Mail Survey or from field biologists and technicians.

The potential for the development of hunting was summarized from the individual county outdoor recreation studies and presented in Figure II-24. Generally, the basin rates high for both big game and small game and low for waterfowl. $\underline{1}$ /

The deer herd in Alabama is estimated to be approaching 500,000 animals. This may be more deer than roamed the state when Indians were the only hunters. Deer are present in every county of the state and all counties have an open hunting season.

The population of deer in the river basin was estimated to be in excess of 117,000 animals (Figure II-25). Every county in the basin had an open season on deer in 1972-1973. Figure II-26 shows the relative deer concentration in a heavily populated county may exceed, in animals per acre, an area of highest concentration in a sparsely populated county. With the exception of Cleburne County, the highest deer populations are located in the southwestern portion of the river basin.

The eastern wild turkey, perhaps the most magnificent of all game birds, is native to the southeast. Through a dedicated program of trapping. relocation and protection, Alabama has become one of the leading states in the production of wild turkeys. The state population is estimated to be in excess of 250,000 with approximately 70,000 in the Alabama River Basin.

Turkeys are found throughout the basin with highest populations concentrated in the southwestern portion primarily in Dallas, Lowndes, Wilcox, Monroe, and Clark Counties (Figure II-27). There was an open season for turkey hunting during 1972-1973 in every county of the basin except DeKalb, Cherokee, and Etowah. Figure II-28 shows the relative concentration of turkeys within each county of the basin. Turkey populations normally fluctuate from year to year with changing environmental conditions. However, the encroachment of more intensive human activities where large tracts of diversified tree cover are cleared for monocultural practices will certainly have an overall adverse affect on wild turkey populations.

The mourning dove, squirrels, rabbits, and quail are the most popular small game animals in Alabama. According to a mail survey conducted by the Alabama Department of Conservation and Natural Resources, over seven million of these animals were harvested in Alabama during the 1970-1971 hunting season. About 2.8 million, 40 percent, small game animals were harvested within the basin. They provided 1.1 million man-days of hunting.

I/ Guide to Making Appraisals of Potentials For Outdoor Recreation Developments, USDA-SCS, 1966.

|| - 101

11 - 102

Twenty-six different species of wild ducks and four species of wild geese have been observed in Alabama and in coastal waters off the state. Only one of them--the wood duck--normally breeds in Alabama to any appreciable extent. To some extent, ducks utilize nearly all ponds, lakes, reservoirs and other water areas in Alabama. However, results of a recent wood duck production study in Alabama indicate that 80 to 90 percent of the young wood ducks are produced in beaver ponds and natural ponds.

During the 1970-1971 season, approximately 18,000 ducks and geese were harvested in the river basin. They afford 13,000 man-days of hunting.

Other game animals in the basin that provide some hunting opportunity include raccoon, opossum, fox, bobcat, snipe, and woodcock. Estimated hunting effort expended in pursuit of these species in the basin during 1970-1971 was 144,000 man-days. The total effort in the state exceeded 450,000 man-days and the harvest was approximately 387,000 animals.

<u>Wildlife--Non-Harvest Values</u> -- Wildlife values can be classified as either positive or negative. Positive values enhance the quality of human life; negative values, on the other hand, detract from it. This section discusses the positive values that can be realized from wildlife witnout actually harvesting the animals or removing them from their natural surroundings.

Every year more and more people are becoming interested in wildlife; yet the proportion of hunters in the total population is decreasing. For example, more people are visiting wildlife refuges than ever before; but the sale of duck stamps is below the levels reached two or three decades ago. People are becoming more and more interested in watching, hearing, seeing, photographing, and otherwise enjoying wildlife without harvesting it. This is somewhat of a departure from tradition, of course. It is an interest that must be reckoned with in managing wildlife not only for the present, but also for future generations.

How widespread is this non-harvest interest in wildlife? Over eight million people participated in bird watching in 1965 and over three million people age 12 and over took nature walks during that year. By comparison, the same study revealed that slightly less than 17 million people age 12 and over participated in hunting in 1965. The most striking aspect of these figures is the change from a similar study in 1960. About 1.5 million more people took nature walks in 1965 than in 1960, but 100,000 fewer people participated in hunting. Other published reports reveal the same general pattern--an increased interest in non-harvest aspects of wildlife.

In all probability, the demand for wildlife and wildlife-oriented recreational activities within the Alabama River Basin will continue at an accelerated pace. It appears, therefore, that a desirable wildlife management objective should be to provide the greatest satisfaction from wildlife for all the people. This would include effective habitat preservation and management for all wildlife not only for consumptive purposes but also for non-consumptive uses. Bird watching and wildlife photography are aspects of hunting, but they require no hunting and no game is killed. The number of watchers and/ or photographers who can occupy the same tract of woods or clearing is limited only by their ability to keep quiet. Bird watching especially is most often a group activity with many members of a group or club wandering the same woods. An element of competition is present.

<u>Rare and Endangered Vertebrates</u> -- The following is an explanation of some of the terms used in this inventory.

- Rare-1 A rare species or subspecies is one that, although not presently threatened with extinction, is in such small numbers that it may be endangered if its environment worsens.
- Rare-2 A species or subspecies that may be quite abundant where it does occur but is known in only a few localities or in a restricted habitat within Alabama.
- Endangered Any species or subspecies occurring in Alabama threatened with extinction through: The destruction, drastic modification, or severe curtailment, or the threatened destruction, drastic modification or severe curtailment, of its habitat, or its over-utilization for commercial or sporting purposes, or the effect on it of disease or predation, or other natural or man-made factors affecting its continued existence.
- Status A species or subspecies that has been suggested as Undetermined possibly rare or endangered, but about which there is not enough information to determine its status. More information is needed.

RARE-1 VERTEBRATES

Mammals

Southeastern Shrew Florida Yellow Bat Meadow Jumping Mouse

Birds

Great White Heron

Amphibians and Reptiles

Dusky Gopher Frog Flatwoods Salamander Black Pine Snake

<u>Fishes</u>

Blue Shiner Bluestripe Shiner Skygazer Shiner Lowland Banded Sculpin Tuscumbia Darter (Unnamed) Snubnose Darter Blenny Darter Freckle Darter Sorex l. longirostris Lasiurus floridanus Zapus hudsonius americanus

Ardea occidentalis

Rana areolata sevosa Ambystoma cingulatum Pituophis melanoleucus lodingii

Notropis caeruleus Notropis callitaenia Notropis uranoscopus Cottus carolinae infernatus Etheostoma tuscumbia Etheostoma sp. (undescribed species) Etheostoma blennius Percina lenticula

RARE-2 VERTEBRATES

Mammals

Southeastern Myotis Hoary Bat Common Black Bear Florida Black Bear

Birds

Swallow-tailed Kite Sharp-shinned Hawk Cooper's Hawk Golden Eagle Sandhill Crane American Oystercatcher Bewick's Wren Myotis a. austroriparius Lasiurus cinearous cinearous Ursus a.americana Ursus americana floridanus

Elanoides forficatus Accipiter straitus Accipiter cooperii Aquila chrysaetos Grus canadensis Haematopus palliatus Thryomanes bewickii

RARE-2 VERTEBRATES (Cont'd)

Amphibians and Reptiles

Least Tree Frog River Frog Greater Siren Red-backed Salamander Midland Mud Salamander Barbour's Map Turtle Florida Softshell Turtle Florida Green Water Snake Northern Florida Black Swamp Snake Pinewoods Snake Red Milk Snake

Fishes

Atlantic Sturgeon Streamline Chub Popeye Shiner Bigeye Shiner Warpaint Shiner Dusky Shiner Sawfin Shiner Sand Shiner Suckermouth Minnow Southern Redbelly Dace Spotted Bullhead Stonecat Brindled Madtom Southern Cavefish Pygmy Killifish Bluefish Killifish Mottled Sculpin Apalachicola Redeye Bass Slenderhead Darter

Hyla ocularis Rana hecksheri Siren lacertina Plethodon cinereus ssp. Pseudotriton montanus diastictus Graptemys barbouri Trionyx ferox Natrix cyclopion floridana Seminatrix p. pygaea Rhadinaea flavilata Lampropeltis doliata syspila

Acipenser oxyrhynchus Hybopsis dissimilis Notropis ariommus Notropis boops Notropis coccogenis Notropis cummingsae Notropis sp. (undescribed species) Notropis stramineus Phenacobius mirabilis Phoxinus erythrogaster Ictalurus serracantbus Noturus flavus Noturus miurus Typhlichthys subterraneus Leptolucania ommata Lucania goodei Cottus bairdi Micropterus coosae Percina phoxocephala

ENDANGERED VERTEBRATES

Mammais

Indiana Myotis White-Fronted Beach Mouse (no common	Myotis socalis		
name) Serdido Bay Beach Mouse (no common	Peromyscus polionotus ammobates		
name) Red Wolf Cougar	Peromyscus polionotus trissyllepsis Canis niger niger Felis concolor croyi		

ENDANGERED VERTEBRATES (Cont'd)

<u>Birds</u>

Brown Pelican Mottled Duck Bald Eagle Osprey Peregrine Falcon Ruffed Grouse Snowy Plover Red-cockaded Woodpecker Ivory-billed Woodpecker Bachman's Warbler

Amphibians and Reptiles

Sipsey Waterdog Red Hills Salamander Seepage Salamander Tennessee Cave Salamander Mississippi Alligator Flattened Musk Turtle Florida Pine Snake Eastern Indigo snake Alabama Red-bellied Turtle

<u>Fishes</u>

Shovelnose Sturgeon Frecklebelly Madtom (Unnamed) Cavefish Cahaba Shiner Pygmy Sculpin Crystal Darter Coldwater Darter Watercress Darter Slackwater Darter Goldline Darter

Mammals

Marsh Rabbit Bayou Gray Squirrel White-footed Mouse Prairie Vole Pelecanus occidentalis Anas fulvigula Haliaeetus leucocephalus Pandion haliaetus Falco peregrinus anatum Bonasa umbellus Charadrius alexandrinus Dendrocopos borealis Campephilus principalis Vermivora bachmanii

Necturus maculosus Phaeognathus hubrichti Desmognathus aeneus Gyrinophilus palleucus ssp. Aligator mississippiensis Sternothaerus depressus Pituophis melanoleucus mugitis Drymarchon carais couperi Pseudemys alabamensis

Scaphirhynchus platorynchus Noturus minitus (undescribed genus and species) Notropis sp. (undescribed species) Cottus pygmaeus Ammocrypta asprella Etheostoma ditrema Etheostoma nuchale Etheostoma sp. (undescribed species) Percina aurolineata

STATUS UNDETERMINED

Sylvilagus p. palustris Sciurus carolinensis fuliginosus Peromyscus leucopus Microtus ochrogaster

STATUS UNDETERMINED (Cont'd)

Birds

Reddish Egret Gray Kingbird

Amphibians and Reptiles

Three-toed Amphiuma Gopher Tortoise Atlantic Loggerhead Mississippi Diamondback Terrapin Rainbow Snake Hellbender Gulf Salt Marsh Water Snake

Fishes

American Brook Lamprey Lake Sturgeon Alabama Shad Flame Chub Blue Sucker Harelip Sucker Whiteline Topminnow Least Killifish Pygmy Sunfish Bluespotted Sunfish Ashy Darter Trispot Darter Dichromanassa rufescens Tyrannus dominicensis

Amphiuma tridactylum Gopherus polyphemus Caretta c. caretta Malaclenys terrapin pileara Abastor erythrogrammus Cryptobranchus a. alleganiensis Natrix fasciata clarki

Lampetra lamottei Acipenser fulvescens Alosa alabamae Hemitremia flammea Cycleptus elongatus Lagochila lacera Fundulus albolineatus Heterandria formosa Elassoma sp. Enneacanthus gloriosus Etheostoma cinereum Etheostoma trisella

4-32888 3-75

SECTION

HUMAN AND ECONOMIC RESOURCES

General

The following discussion presents only a cursory examination of economics. Detailed analyses and projections are available in a separate report, <u>An Economic Base Study of the Alabama River Basin</u> <u>Area</u>, June 1971, prepared by the Economic Research Service and Forest Service. Information herein is largely a summary of selected items in the more extensive base report.

Population and Urban Growth

Historically, basin population growth has been slower than that of the state. Over the past 30 years, population of the study area has increased by 13 percent, compared to Alabama's 27 percent. Total population was 998,000 in 1970, representing about 29 percent of the state's inhabitants, a share which has been slowly declining (Table III-1). Basin population grew by only 22,000 persons between 1960 and 1970 with 22 of the area's 35 counties losing inhabitants.

Population projections for the study area counties and the state are based on estimates for Water Resource Subregions in Alabama prepared by the U. S. Department of Commerce, Office of Business Economics for use in river basin planning. These projections assume Census of Population Series C growth rates which result in a doubling of U. S. population between 1968 and 2020. Alabama's population is projected to reach 5.8 million by 2020, with about 1.6 million residents in the Alabama River Basin. Autauga and Montgomery Counties should continue to be the fastest growing basin counties, followed closely by Lee, Shelby, St. Clair, and Calhoun Counties.

In the Alabama Basin, urbanization has occurred steadily and uniformly in all subbasins as shown in Table III-2. One-half of the basin population was listed as urban in 1950, two-thirds in 1970, and projections indicate about three-fourths of the population will be urban by 1990.

Income

Personal income growth in both the study area and Alabama kept pace with national growth during the 1959 to 1969 period when measured in terms of constant dollars. Table III-3 indicates income in each of the three areas increased by about 55 percent in the 10-year period with basin income exceeding \$2.3 billion. In 1940, income was only \$580 million, approximately one-fourth that amount.

In both 1959 and 1969, basin counties accounted for 28 percent of the state's total income. This share is projected to remain constant through 1990, reaching nearly \$6 billion by that time. This is a 4.1 percent annual increase in total personal income within the study area. National income growth is expected to be only slightly higher, 4.2 percent.
						<u>с</u> ,	'rojected 1/	
Area	Unit	1940	1950	1960	1970	1990	2000	2020
United States	Thous.	131,669	151,323	179,323	204,766	269,759	306,782	399,013
Southeastern U. S.T. Alabama	I nous. Thous.	1/,218 2,833	100,21 3,062	3,267	2/9413 3,444	4,210	ot Avallabl 4,670	е 5,800
Alabama Basin								
Study Area:	Thous.	887	949	967	966	1,203	1,324	1,624
Alabama Subbasin	Thous.	291	298	312	308	374	413	496
Cahaba Subbasin	Thous.	06	96	66	102	116	126	154
Coosa Subbasin	Thous.	322	366	381	393	486	534	678
Tallapoosa Subbasin	Thous.	182	189	184	195	227	251	296
Alabama U. S.	Pct.	2.2	2.0	1 • 8	1.7	1.6	1 • 5	1.5
Alabama	Pct.	31.3	30.9	29.9	29.0	28.6	28.4	28.0
1/ Economic Research Ser Business Economics data c	vice, USD distribut	A populatio ed by the W	n projectio ater Resour	n data; and ces Council	U. S. Depa for river	rtment of C basin planr	Commerce, Of Ling.	fice of

Includes Alabama, Florida, Georgia, Louisiana, Mississippi, South Carolina, and Tennessee. S. Bureau of the Census, Census of Population (Selected Years) • N

2

4-32888 3-73

Table III-1--Population trends, Alabama River study area, Alabama, southeastern states and the United States

III-2

Table III-2--Urban-rural composition of the population, 1950, 1970, and projected to 2020, Alabama River Basin and subbasins.

				Projec	ted
	1950	1970	1990	2000	2020
	Thous.	Thous.	Thous.	Thous.	Thous.
Alabama River Basin					
Total population	949	998	1,203	1,324	1,624
Urban	474	655	887	1,045	1,365
Rural	475	343	316	279	259
Farm ¹	319.4	88.3	67.7	63.0	56.0
<u>Alabama Subbasin</u>					
Total population	298	308	374	413	496
Urban	162	213	287	332	416
Rural	136	95	87	81	80
Farm ¹ /	105.8	36.0	27.3	25.5	23.0
<u>Tallapoosa Subbasin</u>					
Total population	189	195	227	251	296
Urban	72	113	159	186	237
Rural 1/	117	82	68	65	59
Farm-/	76.9	19.4	14.5	13.6	12.2
<u>Coosa Subbasin</u>					
Total population	365	393	486	534	678
Urban	196	255	342	415	570
Rural 1/	169	138	144	119	108
Farm	117.1	29.0	22.7	20.9	18.2
<u>Cahaba Subbasin</u>					
Total population	96	102	116	126	154
Urban	44	74	99	112	142
Rural	52	28	17	14	12
Farm±⁄	19.6	3.9	3.2	3.0	2.6

<u>1</u>/ Alabama Social Science's Advisory Committee estimates of 1970 farm population and projections to 2020.

U. S. Bureau of the Census, <u>Census of Population</u>, 1950, and Economic Research Service, USDA, population projections.

Table III-3--Total personal and per capita income, United States, Alabama, and the Alabama River Basin study area, 1959, 1969, and projected 1990, 2000, and 2020.

				Pr	ojected	
Income	Units	1959	1969	1990	2000	2020
Total personal					-	
United States	Bil.Dols.	437.4	678.2	1,735	2,650	5,935
Alabama	Mil.Dols.	5,373	8,305	21,170	32,330	72,410
Basin	Mil.Dols.	1,514	2,340	5,960	8,670	18,630
<u>Per capita</u>						
United States	Dollars	2,474	3,359	6,432	8,644	14,874
Alabama	Dollars	1,685	2,424	5,029	6,927	12,483
Basin	Dollars	1,557	2,355	4,954	6,548	11,472

<u>1</u>/ 1967 dollars

U. S. Department of Commerce, <u>Personal Income by States Since 1929</u> and <u>Survey of Current Business</u>. Projections developed from U. S. Department of Commerce estimates of U. S. economic growth to 2020.

A breakdown of basin earnings reveals that 95 percent of all earnings are from non-farm sources.

Only one basin county reported a 1969 per capita income above the United States average, Figure III-1. Most counties were well below the national mean; in fact, 17 reported per capita incomes below \$1,800, less than one-half the United States figure.

Employment

Substantial employment gains were registered in the basin between 1960 and 1970. The most notable were in service and manufacturing employment, Table III-4. These data account for civilian employment only and represent a work force of persons 14 years old and over. Total employment increased 25 percent, while population was increasing by only 2 percent during this period. Most of the employment growth in the basin paralleled the national growth rate, rather than increasing as a result of attractive employment conditions in the area.

Agricultural employment is declining rapidly. In 1970, less than one job in 20 was agricultural. By 1990, agricultural employment is expected to represent about 2 percent of total employment.

Unemployment has decreased considerably since 1960. In that year, the basin unemployment rate reached a high of 6.8 percent. Since that time, the rate has steadily declined, dropping to 4.4 percent in 1970, slightly lower than the national average.

The employment projections shown in Table III-4 are OBERS baseline estimates which are consistent with a projected national framework. The

4-32688 3-73

Figure III-1--Per capita income in Alabama River Basin counties compared to the United States, 1969.

Table III-4--Employment by major categories, Alabama River Basin study area, 1940 to 1970, and projected 1990, 2000, and 2020.

Emulormant Catedories	0761	1 95.0	1960	1970	0661	Projecte	2020
	Number	Number	Number	Number	Number	Number	Number
Agricultural	121,037	77,373	32,276	19,360	9,040	7,618	7,162
Mining	5,664	3,439	1,881	1,200	*	*	*
Contract Construction	8,732	17,023	20,765	24,079	28,518	31,152	36,542
Manufacturing	54,817	80,910	87,274	111,748	129,483	140,658	164,123
Transportation, Comm., and Utilities	10,101	16,105	16,721	17,445	21,217	23,768	28,871
Wholesale & Ret. Trade	26,692	45,580	52,118	64,280	78,110	87,111	105,065
Finance, Ins., & Real Estate	3,557	6,397	9,099	10,948	14,404	16,485	20,916
Services	49,388	61,096	76,830	120,858	154,189	174,862	221,612
Government	10,163	19,968	31,867	43,044	52,219	57,486	68,419
Total	290,151	327,891	328,381	412,962	487,180	539,140	652,710
*Less than 500							

U. S. Department of Commerce, <u>Census of Population</u>, 1940, 1950, 1960, and Department of Industrial Relations, State of Alabama, 1970.

4-32888 3-73

III-6

national and regional OBERS projections were prepared jointly by the Office of Business Economics, U. S. Department of Commerce, and the Economic Research Service, U. S. Department of Agriculture, for use in river basin planning. Employment projections should not be considered to be an optimum or idealized level of activity. They are simply conditional forecasts of the future based on an extension of past relationships.

As indicated in Table III-4, total employment in the study area should reach 487,000 by 1990, an increase of 18 percent during the next 20 years. Most rapid gains are forecast in finance, insurance, and real estate, followed by services and trade employment.

Industrial Development

Alabama finished last among eight southern states in expanding industrial employment in the last half of the 1960's.

The problem is not going unnoticed. The Alabama Development Office is placing top priority on attracting industry. In 1970, a record 148 new industries located in the state, up substantially from the 128 reported in 1969.

Basin industrial development is compared to statewide growth in Table III-5. Overall, the study area has been attracting a proportionate share of the new plants coming to Alabama; however, average capital investment per new or expanding industry is far below the average investment for the remainder of the state. A total of \$500 million was invested in Alabama plants in 1969, but only \$52 million went for developments in the study area. Consequently, it is evident that the typical basin plant is a small labor extensive operation substituting unskilled labor for more expensive labor saving technology. During the 1967-1969 period, 68,237 new industrial jobs were created statewide, with 32 percent going to basin plants.

Urban Land Use

In 1967 there were 1,364,000 acres of urban and built-up acreage in the state (Table III-6). Urban and built-up areas are defined to include cities, villages, other built-up areas of more than ten acres, industrial sites, railroad yards, cemeteries, airports, golf courses, shooting ranges, institutional and public administrative sites, and similar types of areas. Non-farm rural residences are not included in urban.

Of the total, 420,000 acres were located in the Alabama River Basin. From 1958 to 1967, urban acreage in Alabama increased by 34 percent, meaning that about 38,600 acres shifted from rural to urban uses annually.

	1	1		
Item	Units	1967	1968	1969
New Industries				
Plants	No	31	33	31
Capital Inv.	\$1.000	15.252	13,266	18,718
New Jobs Created	NO	2,201	3.762	3.075
Avg. Inv.	\$1.000	492	402	604
Avg. No. Jobs	No	71	114	00
Expanded Industries	NO.	1 1	T T -1	
Plante	No	50	75	60
Capital Inv	\$1,000	106 004	36 005	33 600
Now Tobe Created	JI,000	2 250	6 000	2,240
New JODS Created	¢1.000	3,230	0,900	2,540
Avg. Inv.	Φ1,000		483	000
Avg. No. Jobs	NO.	60	92	39
Basin as a Percent of				
the State's				
New Industries:				
Plants	Percent	33	28	24
Capital Inv.	Percent	7	9	11
New Jobs	Percent	22	38	17
Expanded Industries:				
Plants	Percent	33	34	35
Capital Inv.	Percent	18	12	10
New Jobs	Percent	31	46	24

Table III-5--Industrial Development, Alabama River Basin, 1967-1969.

Alabama Development Office, Industrial Development Report, 1967, 1968, 1969.

Table III-6--Urban land use, Alabama, Alabama River Basin, and selected subbasins, 1958 and 1967.

Area	1958	1967
	Thousand Acres	Thousand Acres
Alabama	1,016	1,364
Alabama Basin	300	420
Coosa	110	185
Alabama	63	93
Tallapoosa	71	88
Cahaba	46	54

Alabama Conservation Needs Inventory, 1958 and 1967.

Agricultural Land Use

There are 11.0 million acres of land in the study area. Of this, 7.4 million acres are in commercial forest land, largely in private holdings. Forty-one percent of the area or 4.5 million acres, was in farms in 1969 (Table III-7). This was a reduction of 2.7 million acres in 15 years, including the loss of over 700,000 acres in the five years between 1964 and 1969. This was about one-half of all farm land shifting to other uses in the state during the period. Obviously basin farm land is undergoing change much faster than in other parts of the state. Much of the transition has been in marginal cropland. Between 1954 and 1969, cropland losses averaged almost 50,000 acres annually.

Table III-7--Trend in agricultural land use, Alabama River Basin, 1954-1969.

				the second se
Item	1954	1959	1964	1969
	Thousand	Thousand	Thousand	Thousand
	Acres	Acres	Acres	Acres
Agricultural		· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·
In farms	7,203	5,643	5,267	4,543
Cropland, total	2,374	1,803	1,455	1,626
Harvested	1,304	969	784	678
Irrigated	5	8	3	2
Pastured	707	556	442	747
Idle	363	278	229	261
Woodland, total	3,594	2,687	2,550	1,868
Pastured	1,777	1,272	1,146	N.A.
Not pastured	1,817	1,415	1,404	N.A.
Pasture	1,045	996	1,106	Ν.Α.
Other land	190	157	156	<u>989*</u>
	1 1050 10	1 10(0		

<u>Census of Agriculture</u>, 1954, 1959, 1964, 1969.

*Includes pasture other than cropland or woodland pasture.

Less than one-half of the total cropland is harvested annually about 678,000 acres in 1969. Sharp cuts in corn and cotton acreage account for the recent drop in harvested acreage.

Irrigated acreage in the basin was reported at 4,500 acres in 1971, down from 10,500 acres in 1970. There is no indication that irrigation will increase in importance in the future.

The 1967 Conservation Needs Inventory (CNI) inventoried a total of 9,923,000 acres in the study area (Table III-8). Federal lands and urban and built-up areas are not included in this figure. Together they comprise 1,004,000 acres.

Table	III-8Distribution	of	land	use	by	subbasin,	Alabama	River	Basin,
1967.									

	Total		Subba	sins	
Land Use	Study Area	Alabama	Cahaba	Coosa	Tallapoosa
	Thousand	Thousand	Thousand	Thousand	Thousand
	Acres	Acres	Acres	Acres	Acres
Cropland	1,273	542	72	382	277
Row crops	601	267	28	195	111
Close grown	95	39	9	26	21
Rot. hay and pasture	25	7	*	10	8
Hayland	101	56	9	19	17
Orchards, vineyards	23	12	*	5	6
Conservation use	206	90	9	41	66
Idle and other	222	71	17	86	48
Pasture	1,327	658	78	259	332
Improved	531	263	31	104	133
Forest	7,108	2,381	819	2,245	1,663
Grazed	524	422	20	21	61
Other land	215	76	17	74	48
Total land inventory	9,923	3,657	986	2,960	2,320

*Less than 500 acres

Alabama Conservation Needs Inventory, 1967.

According to the CNI, approximately 72 percent is forest, 13 percent is cropland, 13 percent is in pasture, and 2 percent is other land.

Agricultural Economy

During the decade of 1959-1969, farm numbers in the study area decreased by 40 percent, dropping from 35,120 farms to 20,795 (Table III-9). This rate of reduction was much greater than the national decline of around one-third of all farms during the same period. Farm land values in Alabama are increasing faster than anywhere in the Nation. Between 1970 and 1971, Alabama and Delaware led the U. S. with a 12 percent increase in average value of farmland. This has placed additional pressure on the small operator, making it difficult to obtain good agricultural land, while creating a lucrative opportunity for him to sell out and turn to other types of employment. Of the 20,795 farms, only 7,913 were classified as commercial, i.e. with sales of \$50 or more. Almost two-thirds of the basin's farms were operated on a part-time or part-retirement basis. Table III-9--Farm characteristics, Alabama River Basin, and Alabama, 1954-1969.

Item	1954	1959	1964	1969
Number of farms			* * * * ** **	
Study Area	56,620	35,120	29,044	20,795
Alabama	176,956	115,788	92,530	72,491
Commercial				
Study Area	26,628	16,350	14,925	7,913
Alabama	95,101	57,840	51,912	29,639
Average Size, Acres				
Study Area	127	161	181	218
Alabama	118	143	164	188
U. S. Bureau of the	Census, Cens	us of Agricul	ture, Alabama	, selected
years.				

Table III-10--Value of products sold by source, Alabama River Basin, 1959 and 1969.

Item	19591/	1969 ¹ /	Share of State Sales 1969 ¹
	Thousand	Thousand	
	Dollars	Dollars	Percent
Total receipts	145,177	204,048	28
Livestock receipts	101,177	161,298	30
Poultry	39,955	84,238	30
Cattle and calves	38,097	47,569	37
Dairy	16,213	18,599	38
Hogs	6,912	10,892	18
Crop receipts	44,000	42,750	21
Cotton	32,673	15,420	32
Soybeans	200	7,514	22
Vegetables & potatoes	1,962	7,022	26
All other crops	9,165	12,794	14
1/ Current dollars			

U. S. Bureau of the Census, <u>Census of Agriculture</u>, Alabama, 1959, and <u>Alabama Agricultural Statistics</u>, 1971, Alabama Crop and Livestock Reporting Service.

The trend as reflected by Table III-10 shows that poultry is firmly established as the most important enterprise in the basin, accounting for two-thirds of the increase in agricultural sales during the 1959-69 period. Soybeans is emerging as a leading money crop and is expected to surpass cotton in value of sales statewide by 1990.

Crop Production

Crops are no longer the major source of agricultural receipts. In 1969, only one of every five dollars received in farming was from crop sales.

The production of major basin crops is shown in Table III-11. Acreage declined steadily between 1964 and 1970, dropping 48,000 acres from 726,000 to 678,000 acres. Feed crops comprise slightly more than one-half of the harvested acreage, while oil and fiber crops account for 44 percent. Only 4 percent of the acreage is utilized for food crops.

Table	III-11.	Principal	crops:	acres	harvested	and	production,	Alabama
River	Basin,	1964 and 19	970.					

	Unit of	1	.964		1970
	Production	Acres	Production	Acres	Production
Feed crops					
Нау	Tons	195,700	294,000	207,500	316,000
Corn	Bushels	262,257	8,526,000	133,135	2,905,000
Oats	Bushels	13,210	538,000	9,415	357,700
Grain sorghum	Bushels	2,087	50,666	8,075	258,000
Oil and fiber					
Cotton	Bales	217,870	277,328	152,971	156,143
Soybeans	Bushels	14,704	407,400	140,962	3,177,000
Peanuts	Pounds	3,159	2,290,000	2,288	2,157,000
Food crops					
Wheat	Bushels	5,914	164,400	15,133	430,000
Vegetables	Cwt	10,134	608,000	7,100	669,000
Potatoes	Cwt	886	83,600	1,200	152,650
Total acres		725,921		677,779	

Census of Agriuclture, Alabama, 1964, and Alabama Crop and Livestock Reporting Service estimates for 1970.

In 1959, 576,000 acres of corn was harvested in the basin; this dropped to 262,000 acres in 1964. The 6-year period between 1964 and 1970 showed a similar reduction from 262,000 to 133,000 harvested areas. The 1970 season was marked by an outbreak of corn blight which reduced yields to the lowest level since 1954, 22 bushels per acre. This, coupled with other problems resulted in the lowest Alabama corn production on record, 12,535,000 bushels, of which 23 percent came from basin farms. Most specialists are doubtful that production will drop below 10 million bushels statewide. Oats and grain sorghum, the remaining feed crops, are of minor importance at present.

Trends in cotton production are very similar to those of corn. Acreage has declined, yields are erratic, and production is trending downward over the long run. Output in both the state and basin reached record lows in 1967, but has climbed steadily since that time. Production is still well below the 1964 level of 227,000 bales. Cotton acreage has shifted from south to north Alabama in particularly to the Tennessee Valley area. 4-32688 3-73 Future prospects for growth will depend largely on government programs and acceptance of synthetic fibers.

Soybean production is booming in all parts of the south and the study area is no exception. Production is up from 407,000 bushels in 1964 to a record 3,177,000 bushels in 1970. Acreage is almost ten times the 1964 level with an increased share of the state's soybeans being grown on basin farms. Basin farmers produce nearly one-fourth of Alabama's total crop, compared to 10 percent in 1964. Production is concentrated in the Alabama Subbasin.

Livestock and Livestock Products

Poultry is the single most important basin livestock enterprise with sales of \$84 million in 1970. Broiler production alone contributed as much income as all crops combined, about \$42 million.

Table III-12--Livestock and livestock products sold, Alabama River Basin, 1959, 1964, and 1970.

Livestock and		Qı	uantity Sold	
Livestock Products	Units	1959	1964	1970*
Livestock				
Cattle and calves	Number	241,900	270,900	303,600
Hogs and pigs	Number	206,000	165,000	230,000
Broilers	Thousand	40,961	59,045	97,500
Turkeys	Number	74,360	273,050	8,900
Sheep and lambs	Number	5,862	2,053	935
Livestock products				
Whole milk	Thousand lbs.	230,800	292,500	304,400
Cream	Thousand lbs.	9,232	10,003	11,870
Chicken eggs	Million	315	632	843

*Estimated

<u>Census of Agriculture</u>, Alabama, 1959 and 1964, and Alabama Crop and Livestock Reporting Service estimates for 1970.

Egg sales produced \$31 million in 1970 to rank third behind broilers and cattle in value of sales.

Cattle and calf sales have increased slowly since 1959, with the basin's share of state sales remaining approximately the same, at about 37 percent. Sale of 303,600 animals in 1970 yielded \$47.6 million. Over half of the sales occur in the Alabama Subbasin, primarily in the Montgomery market area.

In 1970, 550 million pounds of beef and veal were produced in Alabama; 202 million pounds were from basin cattle.

Milk production in the study area has increased substantially while the number of dairy cows has actually declined. Average production per cow remains about two-thirds the national average. In 1970, there were 51,675 milk cows reported averaging 5,890 pounds for a total production of 304.4 million pounds of whole mile. By 1990, average yield is expected to reach 10,500 pounds. The number of hogs and pigs on farms has fluctuated widely over the past 20 years, ranging from a high of 260,000 in 1959 to a low of 141,000 in 1964. There were 165,000 on basin farms in 1970 with sales of 230,000 hogs and pigs during the year. Sales grossed \$11 million.

Sheep and lambs are almost non-existent in the study area. Only 935 were marketed in 1970.

Forestry

The basin contains 7,400,759 acres of commercial forest land. $\underline{l}/$ Ownership is as follows:

Table III-13--Ownership of commercial forest land, Alabama River Basin, 1970.

Owner	Area	Percent
National forest	313,385	4
Other federal	61,815	l
State forest & parks	26,059	(less than 1.0)
Private <u>l</u> /	6,999,500	95

I/ Includes small areas of miscellaneous public lands such as school board and university lands and state lands being developed for public recreation.

Classification of commercial forest land according to timber type is shown in Table III-14.

The oak-gum-cypress type is found mostly on flood plains. The other types are found essentially in the uplands.

The 1962 forest survey shown in Table III-15 shows the following values for the commercial forest area and total volume of growing stock for the state and basin.

Table III-14--Classification of commercial forest land by timber type, whole county area, Alabama River Basin, 1970

Туре	Percent of Total Area
Lobolly-shortleaf pine	38
Oak-pine	24
Oak-hickory	18
Longleaf-slash pine	10
Oak-gum cypress	10

¹/ Based on 1967 CNI data with preliminary estimates used for forest land distribution in partial counties.

Table III-15--Commercial forest area and volume of growing stock, Alabama and Alabama River Basin, 1962.

	Area		Total Volume Growing Stor	e c k
Alabama	<u>1,000 Acres</u> 32,678.4	Percent 100.0	Million Cu.Ft. 14,477.9	Percent 100.0
River Basin	7,400.6	22.6	4,772.1	33.0

These figures indicate the current importance of the Alabama River Basin as an industrial wood supply area.

Forest Industry

Since the early 1960's increased capital investments in forest industry have resulted in some increased primary production, as well as an increase in values added by additional manufacture in the state. A summary of new investments is given in Table III-16.

Table III-16--Investment in Alabama forest industries, 1965-1971.

	Pla	nts	
	New	Expanded	Capital Investment
Lumber and wood products	115	79	\$113,350,713
Paper and allied products	15	45	561,714,100
Furniture and fixtures	31	27	16,789,260
Total	161	151	\$691,854,073

Substantial portions of this new industry have been developed within the study area. Three paper mills have been constructed in the basin since 1964.

The map in Figure III-2 shows manufacturing plants of <u>primary</u> forest industry. These installations are the principal processors of roundwood from the Alabama River Basin and other state supply areas. There are numerous pulpwood yards and some wood concentration centers on, and near, the basin that are not shown. Almost all of the wood supplies shipped from these facilities are used by the industries shown in Figure III-2. Plants engaged in the manufacturing processes of secondary forest industry are not shown. These plants produce millwork, pre-fabricated housing, converted paper products, furniture, wood and veneer boxes and crates, and other products. The secondary manufacturing installations in the basin depend on primary forest industry of the basin and adjacent areas for almost all their bulk wood and paper supplies.

Employment

Average monthly employment and total annual wages for forest-related industries in 1970 are shown in Table III-17.

Table III-17--Average monthly employment and total annual wages for forest-based industries, Alabama Basin, whole-county area, 1970.

	Type of Activity	No. of Employees	Total Annual Wages
I.	Management and harvesting $\frac{1}{2}$	1,291	\$ 4,643,598
II.	Mostly primary manufacturing (with integrated secondary manufacturing processes)		
	Sawmills, veneer mills, preser- vation treatment plants, & misc.	4,819	22,210,670
	Wood pulp mills	3,042	30,397,148
	Gum & wood chemicals	13	99,033
III.	Secondary manufacturing processes (only)		
	Millwork; prefab. housing; structural members; wood, plywood, & veneer boxes & crates; wood furniture & fixtures; & others	1,874	9,177,525
	Paper converting plants and some paper mills	547	2,574,296
IV.	Associated industry & supported activity ²		
	Carpentering, wood floor laying; paper glazing Total	425 12,011	<u>2,445,103</u> 71,547,373

 \underline{l} Much of the part-time employment in forestry services is not reported and is not shown here. Some part-time employment and on-farm labor in timber harvesting is likewise missing from these data. Forest management activity by the State of Alabama and the U. S. Government is not reported here.

2/ This list is not comprehensive and complete. Considerable employment in construction, transportation, and marketing is attributable to the wood raw materials involved. Employment in utilities supply, fuely supply, equipment supply and repair, food industry, medical services and other fields is supported by the manufacturing activity generated by wood raw materials from the forest area of the whole-county basin area.

1970 Production

The 1970 Severance Tax Report for Alabama is the latest data on roundwood production in the state. Table III-18 gives estimates for (1) the entire state, and (2) the Alabama River Basin. Approximately 34.5 percent of the state's roundwood production comes from the basin.

Table III-18--Roundwood production in Alabama and the Alabama River Basin, 1970.

Item	Unit	Alabama	Alabama River Basin
Pine pulpwood	Million Cu.Ft.	240.4	108.7
Hardwood pulpwood	Million Cu.Ft.	157.4	44.2
Pine sawlogs & veneer logs	Million Cu.Ft.	160.3	43.6
Hardwood sawlogs & veneer logs	Million Cu.Ft.	55.5	17.0
Poles & piling (pine)	Million Cu.Ft.	13.4	2.9

Stumpage Values

Estimates made from the 1970 Severance Tax Report show the following returns in stumpage value for the products harvested in the Alabama River Basin. (Table III-19)

Table III-19--Stumpage values for products harvested in the Alabama River Basin, 1970.

Product	Stumpage Values for the Whole-county Area
Pine sawlogs & veneer logs	\$ 9,216,608
Hardwood sawlogs & veneer logs	3,776,586
Pine pulpwood	9,655,799
Hardwood pulpwood	1,574,496
Poles (pine)	1,053,945
Piling (pine)	182,620
RR and mine ties (hardwood)	166,524
Coal mine props (hardwood)	5,125
Total	\$25,691,731

Agribusiness Importance

The Alabama Resource Development Committee conducted an agribusiness survey of all Alabama counties in 1967 to determine the nature and importance of the agribusiness economy in the state. This survey identified 3,690 agribusiness firms with a volume of \$1.8 billion in the 1966-67 business year. Almost 1,600 of these firms are located within the basin study area (Table III-20). Of the 1,571 agribusiness firms, 63 percent were related to timber and wood products.

Over 40,000 persons were employed in agribusiness occupations in the study area, 90 percent full-time. This represents one of every ten persons employed.

Business volume totaled \$529 million in 1967, for an average of \$337,000 per firm. Capital investment in agribusiness was an estimated \$374 million.

Table III-20--Agribusiness industry; type, employment, volume of sales, and capital, Alabama River Basin, 1966-1967.

	Located in		B a sin As a
	Alabama	Relative	Portion of
Item	River B asin	Distribution	the State
	Number	Percent	Percent
Industry			
Feed & chemical mfg.	66	4	28
Food processing	101	6	31
Field crop firms	150	1.0	29
Machinery sales & mfg.	74	5	25
Agri-supply retailers	125	8	29
Livestock markets	19	1	21
Nursery crops	52	3	23
Forest products	984	63	63
Total	1,571	100	43
Employment			
Full	35,984	90	38
Part-time	4,561	10	36
Total	40,122	100	37
Business volume (1000s/\$)	528,822	-	30
Total capital (1000s/\$)	374,214	-	29

PROBLEMS AND NEEDS

IV. PROBLEMS AND NEEDS

Natural Resources

Flood Prevention

The size of the study area, its physiographic variations, and storm characteristics are such that major flood producing storms covering the entire area have rarely occurred. During the spring months, particularly March, high winds of cyclonic origin come into the area from the west and often produce intense local storms with heavy rainfall accompanied by tornadic winds. A pre-record flood of March-April 1886, the greatest known in the basin, resulted from a general storm which centered over the Coosa River at Centre, Alabama. This storm produced the highest known stages along most of the principal streams with the exception of the lower Alabama River. flooding was especially severe along the Coosa and Upper Alabama Rivers. It is estimated that the peak discharge for this flood was 322,000 c.f.s. at Montgomery on the Alabama River. The flood of April 1938 resulted in heavy damage because it occurred during the early part of the planting season. This flood produced the highest flow ever recorded in the basin, 298,000 c.f.s. at the Coosa River station just below Jordan Dam. This flood was also critical along the lower Alabama River where near-record stages occurred. Damaging overflows, however, were recorded at practically all stations in the basin.

Flood problems along the middle and lower reaches of the major streams are largely caused by comparatively infrequent storms covering large areas for prolonged periods of time. When such flood producing storms occur, they cause considerable urban and industrial damages as well as damages to agriculture. Flood plain acreage and land use along the major rivers of the basin is shown in Table IV-1. The total acres subject to flooding along these major rivers is estimated to be 398,180 acres. Average annual damage to agricultural crops, urban properties, and roads. and railroads is inclu included in Table IV-2. The total damage along the major rivers is estimated to be \$1,316,000 annually.

Violent local storms, of both frontal and convective types, in the tributary areas create flash floods, the force of which is dissipated before the flood flows progress very far downstream. However, those floods often cause severe land damages to stream banks and channels and to adjoining bottom lands. Also, prolonged periods of rainfall in the Piedmont Plateau area cause overflow of longer duration on tributary streams. These tributary flows are often absorbed by the impoundments on the main streams without appreciable rises in stage.

Flood damages which may be alleviated by improved cover conditions, floodwater retarding structures, channel improvement, or a combination of these are predominantly those which occur on the flood plains of tributary streams and on the upper reaches of the Cahaba and Tallapoosa Rivers, principally above the fall line. On the tributaries, an average of about

three to four floods occur annually. Damages due to inundation occur on all the Southern Appalachian and Piedmont tributaries and on many Coasta Plain tributaries.

Flood plain land use and flood damage estimates for the small watersheds (250,000 acres or less) listed on Table IV-3 were based on a reconnaisance study. The primary purpose for including this information is to indicate the general magnitude of the flood problem. Watershed investigation reports have not been prepared and more detailed information will be needed prior to preparation of such reports. The total area subject to flooding in these small watersheds is estimated to be more than 731,000 acres. Flood damage on this area amounts to about \$2,029,000 annually.

In addition to the watersheds listed in Table IV-3, other small watersheds within the basin have been planned or developed for flood prevention and other purposes. The area which can be protected from flooding by these projects amounts to about 129,000 acres. Average annual damage on this area was estimated to be about \$1,806,000 prior to project planning and development. More detailed information on these water resource developments is shown in Table IV-4 and Figure IV-1.

List of water resource development projects shown in Figure IV-1.

Coosa Valley RC&D Projects

R-6 - Fox Creek R-7 - Glencoe Creek
R-8 - Little Hillabee Creek R-9 - Shoals Creek
<pre>16 - Crooked Creek 17 - Talladega Creek 18 - Tallaseehatchie Creek 19 - High Pine Creek 20 - Mill Creek 21 - Weogufka Creek 22 - Mulberry Creek 23 - Blue Girth-Beech Creek 24 - Mill Creek 25 - Lowndes-Cypress Creek 26 - Big Swamp Creek 27 - Mush Creek 28 - Line Creek 29 - Old Town Creek 30 - Cubahatchee Creek</pre>

- l Claiborne Lock & Dam
- 2 Miller Ferry Lock & Dam
- 3 Jones Bluff Lock & Dam
- 4 Prattville Levee & Clearing & Snagging
- 5 Clanton Clearing & Snagging

- 6 Trussville Clearing & Snagging
- 7 Glencoe Clearing & Snagging
- 8 Black Creek Clearing & Snagging
- 9 Collinsville Levee & Clearing & Snagging

Alabama Power Company Projects

- 1 Bouldin Dam
- 2 Jordan Lake
- 3 Mitchell Lake
- 4 Lay Lake
- 5 Logan-Martin Lake

- 6 H. Neely Henry Lake
- 7 Weiss Lake
- 8 Martin Lake
- 9 Yates Dam
- 10 Thurlow Dam

Table IV-1--Flood plain areas along the principal streams of the Alabama River Basin. L

4-32888

3-73

E State

2,000 2,900 5,400 45,700 61,050 41,200 37,800 93,100 8,600 13,500 11,200 4.900 9,280 7,950 56,000 200 55,630 233,150 Total -91 m 4101 1,650 6,000 1,000 1,780 350 3,130 Urban 7,650 -----1 1 1 1 1 1 1 1 1 1 acres -L 2,000 2,900 5,400 45,700 59,400 35,200 37,800 93,100 Flood plaïn area 200 8,600 13,500 4,900 7,500 7,600 56,000 225,500 52,500 Total 8 25,700 13,800 16,300 75,000 3,600 6,700 5,100 3,200 2,700 25,500 1,000 1,500 2,900 20,600 26,000 4,100 Woods 100 130,800 Rural 1 6,800 5,000 5,100 1,700 4,800 33,700 21,400 21,500 1,000 1,400 2,500 30,000 27,000 18,100 94,700 25,100 Cleared 100 493.4 245.4 203.9 142.3 36.6 0.0 123.6 112.2 462.4 333.3 314.4 314.4 0•0 92.0 0.0 0.0 540.1 520.7 414.1 Stream mile2/ From To 0 314.4 245.4 203.9 142.3 36.6 569.6 540.1 520.7 493.4 414.1 569.6 314.4 137.7 123.6 112.2 112.2 49.7 462.4 Tallapoosa River 137.7 Alabama River Coosa River Subtotal for Tallapoosa River Tallapoosa River Callapoosa River Tallapoosa River Subtotal for Subtotal for Alabama River Alabama River Alabama River Alabama River Alabama River Coosa River River River River River Coosa River Coosa River Stream Coosa Coosa Coosa Coosa

IV-5

Table IV-1 (cont'd)							
				F l oo d	p lain area j	in acres	
	Stream n	nile 2/		Rural			
Stream	From	To	Cleared	Woods	Total	Urban	Total
Cahaba River	00 00 00	64.8	4,900	5,700	10,600	-	10,600
Cahaba River	64.8	25.1	14,100	15,900	30,000	1	30,000
Cahaba River	25.1	00 • 2	8,800	4,000	12,800	1	12,800
Subtotal for							
Cahaba River	00 00 00	8. 2	27,800	25,600	53,400	-	53,400
Total for Basin							
Within Alabama			179,500	207,900	387,400	10,780	398,180

Adapted from Corps of Engineers Data, Mobile District; area based on approximately the 100 year storm. Miles shown are from the mouth of each respective river except that miles for Coosa River are from mouth of Alabama River.

Gadsden, Alabama M4101014

Childersburg, Alabama

Wetumpka, Alabama

Montgomery, Alabama

Selma and Selmont, Alabama

4-32888 3-73

IV-6

10

4-3288	Table IV-2Estimated ave	erage ann	ual damag	e a lon g the	principal	streams of t	he Alabama K	iver Basi	n. <u>1</u> /
8 Э				Agr	icultural Da	amage			
-73		Stream	Mile 2/		Other Th an		Roads		
	Stream	From	To	Crops	Crops	Subtotal	Railroads	Urban	Total
	Coosa River	569.6	540.1	\$ (000	\$ 1,400	\$ 2,000	\$ 2,000	ı ب	\$ 4,000
	Coosa River	540.1	520.7	2,000	3,000	5,000	- 1	I	5,000
	Coosa River	520.7	493.4	6,000	31,000	37,000	8,000	ı	, 45,000
	Coosa River	493.4	462.4	38,000	46,000	84,000	11,000	40,000 <u>3</u>	/135,000
	Coosa River	462.4	414.1	12,900	8,100	21,000	4,000	1	, 25,000
	Coosa River	414.1	333.3	3,800	5,200	9 ,000	I	5,0004	/ 14,000
	Coosa River	333.3	314.4	31,700	9,300	41,000	1,000	3,000 ⁵	45,000
	Subtotal for								
	Coosa River	569.6	314.4	95,000	104,000	199,000	26,000	48,000	273,000
]	Alabama River	314.4	245.4	71,000	17,000	88,000	4,000	178,000	/270,000
[V-	Alabama River	245.4	203.9	45,800	11,200	57,000	2,000	201,0007	260,000
7	Alabama River	203.9	142.3	40,800	10,200	51,000	l	I	51,000
	Alabama River	142.3	36.6	112,700	27,300	140,000	14,000	I	154,000
	Alabama River	36.6	0.0	I	I	1	1	1	1
	Subtotal for								
	Alabama River	314.4	0.0	270,300	65 , 700	336,000	20,000	379,000	735,000
	Tallapoosa River	137.7	123.6	16,000	4,000	20,000	2,000	I	22,000
	Tallapoosa River	123.6	112.2	31,800	8,200	40,000	3,000	I	43,000
	Tallapoosa River	112.2	92.0	7,300	2,700	10,000	2,000	I	12,000
	Tallapoosa River Subtotal for	49.7	0.0	88,700	24,300	113,000	1,000	1	114,000
	Tallapoosa River	137.7	0*0	143,800	39,200	183,000	8,000	I	191,000

			Total	\$ 23,000	40,000	54,000		117,000	1,316,000
			Urban	। ⇔	I	1		1	427,000
		Roads and	Railroads	\$ 2,000	3,000	8,000		13,000	67,000
	nage		Subtotal	21,000	37,000	46,000		104,000	822,000
	cultural Dar	Other Than	Crops	\$ 000 \$	13,500	15,500		37,000	245,900
	Agri		Crops	13,000	23,500	30,500		67,000	576,100
				\$					
		Mile <u>2</u> /	To	64.8	25.1	8.2		0.0	
		Stream	From	00 • 00 00	64 . 8	25.1		00 00 00	
Table IV-2 (cont'd)			Stream	Cahaba River	Cahaba River	Cahaba River	Subtotal for	Cahaba River	Total for Basin Within Alabama

Adapted from Corps of Engineers Data, Mobile District.

Miles shown are from the mouth of each river; Coosa River mileage is from mouth of Alabama River. -101017100-

Gadsden, Alabama

Childersburg, Alabama

Wetumpka, Alabama

Montgomery, Alabama Consists of \$145,000 at Selma and \$56,000 at Selmont, Alabama.

lable IV-3--Estimated flood plain land use and flood damage by watersheds and subbasins, in the Alabama River Basin, 1972.

		Flood P.	lain Land Use	Distributi	on (Acres)			Avera	ge Annual Fl	poo
Watershed	CNT NO.1	Drainage Area	Flood Plain	Cropland	Fasture	Forest	Misc.	Crop And Pasture	Other And Indirect	Total
			Alabama	River Subb	asin (35a				200	12201
Mulberry River Valley Creek	1,2,4,5 3 10 15	174,296	17,430	2,614	3,486	10,458	872	48,800	18,300	67,100
Naticy Citer	0,479,409 16	55.727	2.786		418	2.368		3.300	1.300	4 600
Little Mulberry Ck.	6.7	76.529	7,653	77) (C) 1 (C) 1 (C)	7,193		3,700	1.400	
Swift Creek	. 0 . 0	97,820	7,782	. 6	489	9,195		4.700	1.800	6.500
Upper Alabama -	10,11,13,			1)))
West Tribs.	14,19,20	210,300	21,030	210	631	20,189		6,700	2,50C	9.200
Blue Girth Beech Ck.	17	43,210	12,963	1,296	4,926	6,482	259	49.800	18,700	68,500
Upper Alabama Tribs.	18,32-36	164,589	32,918	2,633	5,267	24,689	329	63,200	23,700	86,900
Galbraith Mill Creek	21	33,595	11,785	5,892	1,179	2,946	1,768	56,600	21,200	77,800
Boguechitto Creek	23-27,29,									
	30	225,557	22,557	2,256	4,511	15,790		54,100	20,300	74,400
MIddle Alabama	28,31,44,									
Tribs.	55	180,891	9,045		905	8,140		7,200	2,700	9,900
Wilcox Tribs.	42,43,53, 53,53,									
	24,28,29,				L ()					
(03,04,07	428,2UI	Z69° GZ		3,854	21,838		30,800	11,600	42,400
Cypress (Lowndes) Uk.	38	29,766	2,971	60	893	2,024		7,600	2,500	10,500
Pintlalla-Tallawassee	39,40,47									
Creek	49	195,492	25,413	254	9,657.	15,248	254	79,300	29,300	108,600
Catoma Creek	41,50-52	243,056	24,306		10,937	10,937	2,432	87,500	32,800	120,300
Cedar Creek	45,61,62	175,249	17,525	175	6,835	10,515		56,100	21,000	77,100
Dry Cedar Creek	56	83,075	8,308	332	3,157	4,819		27,900	10,500	38,400
Lower Alabama -										
West Tribs.	57,73	244,620	36,693	1,468	2,202	33,023		29,400	11,000	40,400
Flat Creek	68-70	241,031	36,155	3,616	7,232	25,307		86,800	32,500	119,300
Lower Alabama Tribs.	71,72,									
	74-81	207,742	6,232		312	5,920		2,500	006	3,400
Subtotal			0G2 , 155	20,981	67,274 2	237,081	5,914	706,000	264,400	970,400
			Cool	sa River Suk	obasin (35	ia -1)				
Chattooga & Littl ϵ	2,3,									
Rivers	2	197,612	3,952	988	1,581	1,383		20.600	7.700	28.300
Big Wills Creek	1,6	164,347	8,217	41	7,395	740	41	59,500	22,300	81,800
Upper Coosa Tribs.	4,9	132,902	6,645	1,994	465	3,654	532	19,700	7,400	27,100
Little Wills - Black	7	96,362	4,818	241	3,372	964	241	28,900	10,800	39,700
Upper Middl $_{ m C}$	8,11-13,									
Coosa Tribs.	17	178,641	3,572	357	1,072	1,786	357	11,400	4,300	15,700

4-32888 3-73

IV-9

		Flood I	Plain Land Use	e Distributio	on (Acres)			Averag	ge Annual Fl	ood	1
		Drainado						Crop	Other		1
Watershed	CN IT	Area	Flood Plair	n Cropland	Pasture	Forest	Misc.	Pasture	Indirect	Total	
			Coosa River S	Subbasin (35a	1 - 1), (c	ont'd)					I
Big Cane Creek	10,16	164,247	24,637	246	2,217	20,942	1,232	19,700	7,400	27,100	
Ohatchee Creek	18	56,102	2,805	280	533	1,964	28	6,500	2,400	8,900	
Tallahatchee Creek	20	86,811	5,209	1,042	1,042	3,021	104	16,700	6,300	23,000	
Middle Coosa Tribs.	22,26-28,										
	34	205,210	10,261	103	103	9,952	103	1,600	600	2,200	
Kelly Creek	24,25	123,515	6,176	31	62	5,990	93	700	300	1,000	
Yellowleaf Creek	31-33,										
(Shelby)	36	152,633	7,632	763	763	5,724	382	12,200	4,600	16,800	
Waxahatchee Creek	37,42	134,949	6,747	135	202	6,073	337	2,700	1,000	3,700	
Yellowleaf-Walnut Ck.	48,52	92,424	9,242		462	8,780		3,700	1,400	5,100	
Lower Middle Coosa	38,39,44,										
Tribs.	45,49	136,388	13,639	273	3,410	9,820	136	29,500	11,000	40,500	
Cedar Creek											
(Talladega)	43	33,737	3,374	101	844	2,395	34	7,600	2,800	10,400	
Hatchet Creek	41,51,54	239,300	7,179	144	862	6,101	72	8,000	3,000	11,000	
Lower Coosa Tribs.	53,55-59,										
	61	217,373	6,521	326	1,565	4,565	65	15,100	5,700	20,800	
Yellow-Taylor Ck.	60,62	67,768	2,033	102	407	1,524		4,100	1,500	5,600	
Subtotal			132,659	7,167	26,357	95,378	3,757	268,200	100,500	368,700	
			Tallanonse	a River Subba	sin (35a-	(0)					
	C	510 31	1 4 1 1 4 7 0 0 1			707	0	000			
Muscadine Ureek		/TO ⁶ CT	TOK	C77	90	470	20	000,2	200%	0,400	
Upper lallapoosa	, 2, 0, 0, α, , 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	300 07 F		0.9 5	001	031 7				000 30	
ITIDS.	or cr fr	T00, 120	00,4,6	LOT	< , 107	00T 60		TO, CUU	0,000	20,000	
Chickasanoxee - Chitablainin (mini)	לאד, אב, אב, אב, אב, אב, אב, אב, אב, אב, אב										
Clia raliospee Creek	10, 1/, 1/-	138-047	6.902	68	1.726	5.108		14.400	5.400	19,800	
lake Martin - West			1)							
	10 01	131 124	6.556	59	328	6.163		3.100	000.1	4.300	
Isko Martin - Eact	10 46-50		0000)	00160		00+00			
HAND BOH CHI TRUC	10, 01, 01 01, 01 00, 0000000000	041 050	10 003	L C L		10 763		10 600		14 000	
ITIDS.		Z4T \$002	12,0040	777	T 9 4 U 7		ć	0000 ° 0 T	0000 6 t	14 2000	
Sougahatchee Ck.	93,54,59	T.29,19U	3,870			3,031	0 4				
Uphapee-Storie;	60-64,										
Sawac kl ahatchee-	72										
Opintlocco Crock		129,712	25,942	1,038	5,188	19,457	259	49,800	18,700	68,500	
Nubahatchee Creek	69	82,225	12,334	987	4,070	7,030	247	40,500	15,200	55,700	
Ualebee Creek	70,71,74	124,661	19,946	1,995	6,981	10,571	399	71,800	26,900	98,700	
Lower Tallapoosa -							/ 0				
South Tribs.	66,67	51,335	5,134	1,283	l,284	1,284]	,2834/	20,500	7,700	28,200	

Table IV-3 (cont'd)

Table IV-3 (cont'd)

		Flood Pla	ain Land Use D	istributio	n (Acres)			Averag Dama	e Annual Flo ge (Dollars	poc	
141-4-0-4-0-14 141-4-0-4-0-14	CNT NO 1/	Drainage	בן הכין ד	pro Lucro		+ > { 	() () () ()	Crop And	Other And		
Wa LET SREA	CIN T NO	ALCO	Tallapoosa	River Sub	basin (35a	19101 Parts	MITSC.	Fasture	TUGITECT	lotal	
Lower Tallapoosa-	55-57,65		i) i i i i i i								
North Tribs. Clannahatchee Ck.	51,58	122,/40 40,118	24,548 2,006	1,364	4,910 301	12,274 1,605		98,200 3,200	36,800 1,200	135,000 4,400	
Middle Tallapoosa Tribs.	26,27,31- 34.37	175.891	17.589	088	0.087	14.071	351	0E 300	0 500	3.4 ROO	
Subtotal		1/2/2-1	149,365	14,388	31,941	100,368	2,668	370,500	139,000	509,500	
			Cahaba	River Subba	asin (35a-	-3)					
Upper Cahaba Tribs. Shades Creek	1,2,4,5 3	230,589 86.546	4,612 1.731		50 50	4,520	46 17	400 400	100	500	
Upper Middle Cahaba)]	 	-)	1		
Tribs.	8-10,14	142,387	14,239	71	142	13,670	356	1,700	600	2,300	
Cahaba Valley Ck.Trib Little Cahaba Tribs.	s.6,7 11.12.15.	50,288	2,514	25	503	1,860	126	4,200	1,600	5,800	
	16	190,297	19,030	190	1,142	17,698		10,700	4,000	14,700	
Affonee Creek	13	121,435	14,572	438	874	13,260		10,500	3,900	14,400	
Middle Cahaba Tribs.	17,18	100,559	10,056	2,011	3,017	4,525	503	40,200	15,100	55,300	
Lower Cahaba -	19,20,23,										
Oakmulgee Tribs.	24	202,501	40,500	810	2,835	36,450	405	29,200	10,900	47,300	
Lower Middle Cahaba Tritc	21,32	73,408	11,011	661	3,303	6,607	110	34,400	12,900	47,300	
• SAT 11											
Subtotal			118,265	4,536	11,914	100,252	1,563	131,700	49,300	181,000	
Total Basin			731,539	47,072	137,486	533,079	13,902	1,476,400	,553,200	2,029,600	

 $\underline{1}/Alabama$ Conservation Needs Inventory, 1967.

2/Gravel pits.

-15

		Flood	Plain Land Us	e Distribut	cion (Acre	s)		Averaç Dama	ge Annual Floo age (Dollars)	pc	
Subbasin and Name Of Watershed	CNI No.	Drainage Area	Flood Plain	Cropland	Pasture	Forest	Misc.	Crop And Pasture	Other And Indirect	Total	
<u>COOSA - 35a - 1</u> Terrapin Creek	14	183.675	13.786	5.927	3.309	4.135	415	144.979	28.502	173 481	
Choccolocco Creek	21	240,600	16,129	3,871	10,000	2,258) -	169.611	58.782	228.393	
Blue Eye	29	14,131	1,402	308	883	211		10,049	11.416	21,465	
Cheaha	30	72,934	4,341	1,216	2,865	217	43	34,860	14,778	49,638	
Talladega	35	105,970	5,014	1,705	2,105	1,052	152	42,000	50,000	92,000	
Tallaseehatchie	40	131,077	10,139	1,014	3,547	5,070	506	72,606	154,375	226,981	
Weogufka Shoal Creek	46,47,50 19	85,632 21,120	4,000 831	160 14	1,200 322	2,600 453	40 41	33,400 2,474	31,600 1,094	65,000 3,568	
Subtotal			55,642	14,215	24,223	15,996	1,197	509 , 979	350,547	860,526	
TALLAPOOSA - 35a - 2											
Cahulga	4	12,032	378	132	170	45	31	7,657	4,456	12,113	
Dynne	7	16,200	1,1,83	331	544	284	24	7,685	8,446	16,131	
Ketchepedrakee	6	35,110	2,367	876	1,184	284	23	24,814	9,301	34,115	
Lost	13	17,139	666	375	510	80	30	7,851	2,449	10,300	
Fox	23	27,237	800	56	440	264	40	4,446	2,525	6,971	
Crooked	25	63,558	3,896	234	2,493	1,169		10,672	3,517	14,189	
High Fine	28	069,10	3,495	69/	1,398	1,328	(50,818	13,456	64,274	
UTd Town	73	106,554	15,902	1,272	6,679	7,633	318	127,587	63,695	191,282	
Little Hillabee	30	44,894	1,240	155	481	604		13,657	8,550	22,207	
Subtotal			30,256	4,200	13,899	11,691	466	255,187	116,395	371,582	
<u>ALABAMA - 35a</u> Mill Creek	21	6.790	679	20	41	75	543*		24.590	24.590	
Upper Big Swamp	37	83,667	14,445	578	5,489	8,378		146,072	54,532	200,604	
Lower Big Swamp Mush	37 46	100,045 38,726	25,821 3,100	775 2.294	9,554 620	15,492 186		218,571 44,400	75,141	293,712 55.400	
	1)))))))	
Subtotal			44,045	3,667	15,704	24,131	543	409,043	165,263	574,306	
САНАВА - 35а - 3	No Flood Co	ontrol Plan	S								
Total Basin			129,943	22,082	53,082	51,818	2,206	1,174,209	632,205	1,806,414	
* Urban - Residential			Note: These	watersheds	are in v	arious s	tages of	E planning ar	nd developmen.	t.	

Table IV-4-- Estimated flood plain land use and flood damages within P.L. 566 and RC&D Watersheds by subbasins, Alabama River Basin, 1972.

Erosion and Sediment Control

Erosion and sedimentation are natural processes that cannot be completely halted; but erosion and sedimentation are more profoundly affected by man's activities than most other natural processes. Man can cause the cycle to "run wild" or can, by sound land use and conservation, bring erosion and sedimentation within acceptable limits, so that, in spite of natural erosion, the soil remains fertile and stable. The effects of erosion/sedimentation are four-fold: erosion depletes the resources of the land, sediment impairs the quality of water in which it is transported, damages land and channels where it is deposited and eventually fills lakes and estuaries.

Soil erosion in the Alabama Basin is caused almost entirely by precipitation and storm runoff. Much erosion occurs on agricultural lands; however, other important sources are road construction and land development, road banks and ditches, streambanks and gullies, and recently logged forest. Originally, the soil conservation movement concentrated on holding productive soil on agricultural land. Agricultural erosion is still a very serious problem both as depletion of a natural resource and source of damaging sediment. This was and is of vital concern, but as the nation's farmers have learned to use less land for agriculture, the emphasis has shifted. Locally, the effects of construction erosion and other point erosion sources such as road banks may be very severe and the damage longlasting and effects widespread. In areas where construction or strip mining has altered the soil and removed the vegetation, erosion may be hundreds of times greater than on well protected farmland, pastureland or, woodland.

Erosion computations indicate that 53.4 million tons of soil are eroded annually from Alabama River Basin lands. Average annual erosion rates for subbasins are shown in Figure IV-2. All eroded soil does not become damaging sediment; however, all erosion in excess of that which natural processes can rebuild, is destructive.

Land use projections indicate that approximately the same acreage of openland can be expected to remain in agricultural and urban use through the year 2020. If the present level of land treatment on erosion sources continues, the erosion damages will continue at the present rate for this period. An accelerated rate of land treatment is needed before satisfactory gains can be realized on conservation accomplishments.

Maximum conservation treatment appears to be an unrealistic goal. However, in small projects, where land treatment is emphasized as the first increment of flood and sediment control, it is common to achieve 25 to 30 percent reduction in erosion by voluntary methods alone. Projection of erosion rates, land use, and needed conservation treatment, indicate that total erosion could be reduced about 75 percent. A wide range land treatment program implemented to ease the initial investment cost to individual landowners, could pay fantastic dividends in terms of increased aesthetic values, clean water, decreased sediment cleanup costs, and increased productivity of the land.

A definite need exists for project measures to control point erosion sources (non-agricultural). It is much less expensive to hold soil on construction sites and road banks than to remove the same soil from lands or waters downstream. Inventories of erosion are incomplete but some information is available. Land treatment needs for strip-mined land is shown in Table IV-5. Areas most subject to gully or roadside erosion (greatest hazard) are shown in Figure IV-3. Acreage of strip-mined land is shown in Table IV-5. Analysis of treatment needs and needed project measures will be suggested by further studies.

Sediment damage may occur in the form of reduced productive capacity of flood plain soils and as damage to water quality and deposits in streams and reservoirs. Soil damage is a long-term damage caused by deposition of infertile material which must be improved by natural processes over a long period of time. This type of damage occurs where water transporting a high sediment concentration is slowed at the base of slopes or where flood flows spill out over the flood plain. Sediment damages from individual floods occur as damage to growing crops, pastures, houses, streets, and roads. Reservoir damages include loss of storage capacity, damage to fish habitat, increase in water treatment costs, and as lowered aesthetic values. Channel filling damages fish habitat, and aesthetic values and causes increased flood water and sediment damage to flood plain lands.

Some areas have major sediment source areas but have large channels and/or small flood plains so that sediment is efficiently transported through the watershed. This may cause only minor damage within the watershed but high sediment yields result in significant downstream damages to major streams and impoundments. These types of damages become more detrimental as recreational and environmental values increase even though the power and/or water supply storage in major reservoirs is not immediately threatened. For example, areas in Dallas, Lowndes, and Wilcox Counties have fairly high erosion rates but, because of large channels and other factors, have only minor sediment problems.

North of the Alabama River in Dallas, Autauga, Chilton and Elmore Counties the topography and soils are conducive to excessive channel type erosion (gullies, roadbanks, and road ditches). The resultant sediment causes significant damage when deposited on downstream flood plains. This deposition is caused in part by the heavy timber growth in the flood plain and by beaver dams and other channel plugs which screen out the coarse sediment before it reaches the main stem of the Alabama River. Thus the Alabama River is largely protected from sediment damage at the cost of damage to the flood plains of tributary streams.

The Piedmont area in Chambers, Tallapoosa, Clay, Randolph and Cleburne Counties is part of an area that was one of the most eroded areas of the United States, 30 years ago. Land use changes (woodland improvement and other soil conserving practices) have reduced erosion, runoff, and sediment damage in most but not all areas. In some areas sediment-filled channels cause very frequent flooding and overbank deposition of sediment; an example of the long-term effect of land abuse. Estimates of sediment damages were made by SCS personnel during field examinations of sub-watersheds. These are shown in Table IV-6 and on Figure IV-4. There is a general relationship between sediment damage and (1) size of area flooded, (2) frequency of flooding and, (3) value of damaged property. In this relationship flood plain percentage indicates the magnitude of the problem area and to some extent its value. Annual flood frequency reflects weather patterns, channel capacity and upland land use. Sediment damage, expressed as percentage of total flood damage, reflects damageable values and the amount of sediment available for delivery to downstream areas.

Estimates of average annual sediment yield are shown for major subbasins and selected streams in Tables IV-7 and IV-8. Projections of possible sediment and erosion reduction will be made later as part of detailed studies of project proposals.

Studies of water resource projects indicate that conservation land treatment can reduce erosion and sediment by 25 to 30 percent with only average participation from landowners. The amount of reduction varies with natural erosion rates, land use, and previous level of conservation treatment. Sediment yields to downstream points may be further reduced by installation of reservoirs which trap sediment either as a project purpose or incidentally along with water storage. Estimates of sediment reduction by structural methods can only be accurately estimated after program formulation and site selection for projects are complete. Sediment reduction due to structures is dependent upon area controlled, design of structures and the texture of the sediment in the system.

IV - 18

Table IV-5--Land treatment needs on strip mined areas within the Alabama River Basin.1/

County	Mined A c res <u>2</u> /	Reclaimed Acres <u>2</u> /	Needs Cons. Treatment Acres 2/	County	Mined Acres <u>2</u> /	Reclaimed Acres <u>2</u> /	Needs Cons. Treatment Acres <u>2</u> /
Autauga	290	70	220	Escambia	74	5	59
Baldwin	32	15	17	Etowah	1,254	0	1,254
Bibb	12,446	11,502	943	Jefferson	2,980	25	2,955
Blount	77	41	36	Lee	3	0	3
Bullock	108	22	86	Lowndes	276	0	276
Butler	1,418	626	792	Macon	653	73	581
Calhoun	1,638	1,038	600	Marengo	12	1	11
Chambers	2,376	1,017	1,359	Monroe	240	5	235
Cherokee	15,385	50	15,335	Montgomery	2,634	878	1,756
Chilton	1,300	0	1,300	Perry	25	4	21
Clarke	147	7	140	Randolph	285	0	285
Clay	94	0	94	Russell	53	3	50
Cleburne	1,050	0	1,050	Shelby	1,540	540	1,000
Coosa	985	945	40	St. Clair	1,375	375	1,000
Crenshaw	232	28	204	Talladega	2,720	2,420	300
Dallas	900	400	500	Tallapoos	a 465	1	464
DeKalb	248	208	40	Tuscaloos	a <u>1</u> 33	19	114
Elmore	472	145	327	Wilcox	100	Ο	100

1/ Source: Estimate of Strip Mined Land in Alabama USDA-SCS - January 1, 1972.

2/ Acreages for counties partially within the basin estimated by percent of county within the basin.

Area Name	CNI Watershed No• <u>l</u> /	Percent of the Area Subject to Flooding	Average Number Damaging Floods Per Year	Sediment Damage as Percent of Total Flood Damage
Соо	sa River Subba	sin 35al <u>2/</u>		<u> </u>
Chattooga-Little River	3-2,3,5	2	3	3
Big Wills Creek	1,6	5	3	5
Upper Coosa Tribs.	4,9	5	3	15
Little Wills-Black Creeks	7	5	4.5	15
Upper Middle Coosa Tribs.	8,11,12,13,17	2	2.25	90
Big Canoe Creek	10,16	15	4.5	5
Terrapin Creek	14	10	2.25	5
Ohatchee Creek	18	5	4.5	10
Tallahatchee Creek	20	6	4.5	10
Cane Creek (Calhoun)	23	5	4.5	10
Beaver-Shoal Creeks	19	10	4.5	10
Choccolocco Creek	21	6	4.5	10
Middle Coosa Tribs.	22,26,27,28,3	4 5	2.25	5
Kelly Creek	24,25	5	· 2.25	5
Blue Eye Creek	29	10	4.5	5
Cheaha Creek	30	6	4.5	20
Yellowleaf Creek (Shelby)	31,32,33,36	5	4.5	24
Talladega Creek	35	5	6.5	20
Waxahatchee Creek	37,42	5	2.25	5
Yellowleaf-Walnut Creeks	48,52	10	1.5	8
Lower Middle Coosa Tribs.	38,39,44,45,4	9 10	4.5	20
Cedar Creek (Talladega)	43	10	4.5	10
Tallaseehatchie Creek	40	10	4.5	10
Hatchet Creek	41,51,54	3	2.25	10
Weogufka Creek	46,47,50	8	5.5	10
Lower Coosa Tribs.	53.55.56.57.	3	1.5	5
	58,59,61	0	1.0	0
Yellow-Taylor Creeks	60,62	3	1.5	5
Tallap	oosa River Sub	basin 35a2 ²	/	
Cane Creek (Cleburne)	1	5	4.5	5
Muscadine Creek	2	6	4.5	5
Upper Tallapoosa Tribs.	3,5,6,8,10, 15,18	5	2.25	5
Cahulga Creek	4	10	4.5	5
Dynne Creek	7	7	4.5	5
Ketchepedrakee Creek	9	7	4.5	10
Little Tallapoosa Tribs.	11,12,14,16,1	7, 2 4	2.25	9
Lost Creek	13	7	1	5
Fox Creek	23	15	6.5	5
Crooked Creek	25	7	6.5	10
4-32888 3-73			_	

Table IV-6--Estimate of sediment damages within subareas of the Alabama River Basin, 1972.

Table IV-6--Cont'd

1

			Average	Sediment
		Percent of	Number	Damage as
	CNI	the Area	Damaging	Percent of
	Watershed	Subject to	Floods	Total Flood
Area Name	No. 1/	Flooding	Per Year	Damage
		-		
Tallapoosa	River Subbas	in 35a22/(Co	nt'd)	
Middle Tallapoosa Tribs.	26.27.31.32.	10	6.5	10
	33.34.37			2.0
High Dine Creek	28	7	5.5	13
Hillabeo Creek	20 30 36	10	4 5	10
Chikacnovoa-Chatabacnoa Ck	- 38 39 13 11	15 5	3	10
Lake Mastin West Tribe	• 30, 39, 43, 44,	40 0	5	10
Lake Martin West Iribs.	40,41	5	0.0	
Lake Martin East Iribs.	42,46,47,48, 49,50,52	C	C•0	
Sougahatchee Creek	53,54,59	3	3.5	~ -
Uphapee & Others	60,61,62,	20	2.25	10
	63,64,72			
Cubahatchee Creek	69	15	4.5	20
Calebee Creek	70.71.74	16	4.5	20
Line Creek	68	18	6 5	7
Old Town Crook	72	10	6.5	7
Lawar Tallerages Couth	13	10	0.05	7
Lower Tallapoosa South Tribs.	00,07	10	2.20	C
Lower Tallapoosa North Tribs.	55,56,51,65	20	2.25	10
Channahatchee Creek	51,58	5	1.5	5
Caba	ha River Subh	$a_{sin} 35a^{2}/$		
Upper Cababa Tribs.	1245	2	3.75	5
Shadaa (maak	2	2	1 5	50
Upper Middle Cababa Tribe	0 0 10 14	10	4.0	0
Opper Middle Canaba Tibs.	0, 9, 10, 14	IU	2.20	7
Canaba Valley Creek Iribs.	0,/	C	2.20	10
Little Cahaba River	11,12,15,16	10	2.25	25
Attonee Creek	13	12	2.25	20
Middle Cahaba Tribs.	17,18	10	3	20
Lower Cahaba-Oakmulgee Trs	19,20,23,24	20	4.5	50
Lower Middle Cahaba Tribs.	21,22	15	2.25	30
Alab	ama River Sub	basin 35a ^{2/}		
Mulberry River	1.2.4.5	10	1.5	40
Valley Creek	3 12 15 16	5	4.5	20
Little Mulberry Creek	6 7	10	15	20
Swift Crook	0,7	10	1.5	60
Juner Alebara West Tribe	\circ, \forall	10	1.J	55
upper Alabama west Iribs.	10, 11, 13, 14, 19, 20	10	C•1	CC
Blue Girth-Beech Creeks	17	30	1.5	30
Upper Alabama Tribs.	18,32,33, 34,35.36	20	2.25	15
Mill Creek	21	10	1.5	10
4-32888 3-73				

Area Name	CNI Watershed No• <u>1</u> /	Percent of the Area Subject to Flooding	Average Number Damaging Floods Per Year	Sediment Damage as Percent of Total Flood Damage
Alabama R	<u>iver Subbasin</u>	35a2/(Cont'	<u>d)</u>	
Galbraith Mill Creek	22	35	1.5	5
Boquechitto Creek	23,24,25,26, 27,29,30	10	2.25	10
Middle Alabama Tribs.	28,31,44,55	5	2.25	10
Wilcox Tribs.	42,43,53,54, 58,59,63,64,6	6 57	3	10
Big Swamp Creek	37	18	3	5
Cypress Creek (Lowndes)	38	10	4.5	5
Pintlalla-Tallawasee Cks.	39,40,47,48,4	49 13	4.5	5
Catoma Creek	41,50,51,52	10	4.5	5
Cedar Creek	45,61,62	10	2.25	5
Mush Creek	46	· 8	2.25	
Dry Cedar Creek	56	10	2.25	5
Lower Alabama West Tribs.	57,73	15	2.25	10
Pine Barren Creek	60,65,66	10	2.25	5
Flat Creek	68,69,70	15	2.25	8
Lower Alabama Tribs.	71,72,74,75, 76,77,78,79, 80,81	3	4.5	

1/ Alabama Conservation Needs Inventory, 1967.

2/ Subbasin No., Atlas of River Basins of the United States, Second Edition, June 1970, USDA-SCS, Washington, D. C. 20250.

Table IV-7--Estimated average annual sediment yield to main stream reservoirs in the Alabama River Basin, 1972

etch Fer Area Area Reservoirs Sediment (Est. ESK) Reservoirs 113poosa System Sq. Mi		Erosion Rate Tons	Uncontrolled Drainage	Sediment From Uncontrolled	Sediment From Upstream	Total	Sediment Trapped	Sedimen Passing To Next
Alleboose System Sq. Mi Sq. Mi Sq. Mi 2,048 1,741 307 To Martin Lake to 3456 2,963 2,048 2,048 1,741 307 Nartin Lake to 3456 302 2,048 2,048 1,741 307 Vates Dam to 3456 302 2,048 2,048 1,741 307 Thurlow Dam to 3456 302 2,048 307 547 465 82 Thurlow Dam to 3456 1,367 945 18 963 963L Constluence with 0 3,784 2,226 131 2^{\prime} 2,357 2,003 354 Constluence with 2941 1,330 782 1,136 966 170 Weiss Lake to H. Neely Henry 2941 1,330 782 2,357 2,003 354 Neely Henry 2941 1,330 782 2,357 2,003 729 129 Neely Henry 2941 1,330 782 1,316 <t< th=""><th>each</th><th>Per</th><th>Area</th><th>Area</th><th>Reservoirs</th><th>Sediment</th><th>(Est. 85%)</th><th>Reservoil</th></t<>	each	Per	Area	Area	Reservoirs	Sediment	(Est. 85%)	Reservoil
Jlieboose System To Martin Lake 3456 2,963 2,048 2,048 1,741 307 Martin Lake 3456 302 2,40 307 547 465 82 Vates Dam to 3456 302 2,40 307 547 465 82 Vates Dam to 3456 32 349 82 121 102 18 Vates Dam to 3456 32 349 82 121 102 18 Vates Dam to 3456 1,367 945 18 963 963_L Confluence with Coosa 3456 1,367 945 18 963 963_L Coosa 3456 1,367 945 18 963 963_L Constluence with Coosa 33784 2,226 131 2^2 2,357 2,003 354 Weiss Lake to H. Weiss Lake to Logan Neely Henry 2941 1,136 966 170 Neely Henry 2941 1,330 782		Sq.	, Mi			.,000's tons-		
Anstrin Lake to Natrin Lake to Amartin Lake to Thurbow Dam 3456 302 240 307 547 465 82 Vates Dam to Thurbow Dam 3456 302 240 307 547 465 82 Thurbow Dam 3456 32 39 82 121 102 18 Thurbow Dam 3456 $1,367$ 945 18 963 $$ $963L$ Confluence with Coosa 3456 $1,367$ 945 18 963 $$ $963L$ Coosa 3456 $1,367$ 945 1312^2 $2,357$ $2,003$ 354 Coosa 2941 $1,330$ 782 $2,357$ $2,003$ 354 Neely Henry Neely Henry 2941 $1,330$ 782 $2,357$ $2,003$ 354 Meels Lake to Logan $1,170$ 688 170 858 729 129 Heely Henry $1,170$ 688 170 858 729 129 Lake to Logan 2941 $1,170$ <td< td=""><td>allapoosa System To Martin Take</td><td>2155</td><td>063</td><td>arc c</td><td></td><td>870 0</td><td>LV7 L</td><td>202</td></td<>	allapoosa System To Martin Take	2155	063	arc c		870 0	LV7 L	202
Yates Dam345630224030754746582Yates Dam to Thurlow Dam345632398212110218Thurlow Dam34561,367945139631896318Thurlow Dam34561,36794518963963963Confluence with Coosa34561,36794513963963963Sea SystemErom Georgia to Weiss Lake to H.3,7842,226613122,3372,003354Neely Henry Lake to Logan Neely Henry29411,3307823541,136966170H. Neely Henry Lake to Logan Martin Lake to Lay Lake to Sofan Martin Lake to Lay Lake to Sofan Lay Lake to Sofan Lay Lake to Sofan Lake to 	Martin Lake to		2 07 4 7	010			T +- > 6 T	
Yates Dam to Thurlow Dam345632398212110218Thurlow Dam <to </to Thurlow Dam <to </to Thurlow Dam <to </to Thurlow Dam <to< td="">34561,36794518963963_LThurlow Dam<to </to Confluence with Costal use is Coosa34561,36794518963_L963_LSosa System Coosa System Coosa System From Georgia to Weiss Lake to H.3,7842,2226131_2'2,3572,003354Neely Henry Neely Henry Lake to Logan Martin Lake Lay Lake to Lay Lake to Lay Lake to Lay Lake to Logan Martin Lake to Lay Lake to Lay Lake to Lay Lake to Lay Lake to Lay Lake to Lay Lake to Lay Lake to Confluence with Tallapoosa1312,226131_2'2,3572,003354Sourdan Lake to confluence with Tallapoosa1,170688170858729129Sourdan Lake to confluence with1,170688170858729129Sourdan Lake to confluence with1,170136727618109Sourdan Lake to confluence with174118109227272_2</to<>	Yates Dam	3456	302	240	307	547	465	82
Thurlow Dam 3456 32 39 82 121 102 18 Thurlow Dam'to Confluence with 0001 1,367 945 18 963 963 Thurlow Dam'to Confluence with 0005 3,456 1,367 945 18 963 963 Coosa 3,456 1,367 945 131 2 953 963 Prom Georgia to 2941 3,784 2,226 131 2,357 2,003 354 Weiss Lake to H. 2941 1,330 782 354 1,136 966 170 Neely Henry Lake to Logan 1,170 688 170 858 729 129 Lake to Logan Lake to Logan 1,170 688 170 858 729 126 Logan Martin Lake 2941 1,317 775 129 904 768 136 Logan Martin Lake 2941 1,317 775 129 904 768 136 Logan Martin Lake 2941 1,005 591	Yates Dam to							
Thurlow Dam'to Thurlow Dam'to Confluence with 3456 $1,367$ 945 18 963 $$ $963L$ Consa 3456 $1,367$ 945 18 963 $$ $963L$ Consa 3456 $1,367$ 945 $1312'$ $2,357$ $2,003$ 354 Prom Georgia to 2941 $3,784$ $2,2226$ $1312'$ $2,357$ $2,003$ 354 Weiss Lake to H. Neely Henry 2941 $1,330$ 782 354 $1,136$ 966 170 Neely Henry 2941 $1,170$ 688 170 858 729 129 Neely Henry 2941 $1,170$ 688 170 858 729 129 Lake to Logan Martin Lake $1,317$ 775 129 904 768 136 Logan Martin Lake $1,317$ 775 129 904 768 129 Logan Martin Lake 2941 $1,005$ 591 136 727 618 <td>Thurlow Dam</td> <td>3456</td> <td>32</td> <td>39</td> <td>82</td> <td>121</td> <td>102</td> <td>18</td>	Thurlow Dam	3456	32	39	82	121	102	18
Coosa 3456 $1,367$ 945 18 963 $963J$ $\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \\ \\ \\ \\ \end{array}\end{array}\end{array}\end{array}}$ $\begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \\ \\ \\ \\ \end{array}\end{array}\end{array}$ $\begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \\ \\ \\ \end{array}\end{array}\end{array}$ $\begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \\ \\ \end{array}\end{array}\end{array}$ $\begin{array}{c} \begin{array}{c} \\ \\ \\ \end{array}\end{array}$ $\begin{array}{c} \begin{array}{c} \\ \\ \\ \end{array}\end{array}$ $\begin{array}{c} \begin{array}{c} \\ \\ \\ \end{array}\end{array}$ $\begin{array}{c} \\ \\ \end{array}\end{array}$ $\begin{array}{c} \begin{array}{c} \\ \\ \\ \end{array}\end{array}$ $\begin{array}{c} \\ \\ \end{array}\end{array}$ $\begin{array}{c} \begin{array}{c} \\ \\ \end{array}\end{array}$ $\begin{array}{c} \\ \\ \end{array}\end{array}$ $\begin{array}{c} \\ \\ \end{array}$ $\begin{array}{c} \end{array}$ $\begin{array}{c} \\ \\ \end{array}$ $\begin{array}{c} \end{array}$ $\begin{array}{c} \\ \\ \end{array}$ $\begin{array}{c} \end{array}$ \end{array} $\begin{array}{c} \end{array}$ \end{array} $\begin{array}{c} \end{array}$ \end{array} $\begin{array}{c} \end{array}$ \end{array} <td< td=""><td>Thurlow Dam[^]to Confluence wit</td><td>th</td><td></td><td></td><td></td><td></td><td></td><td></td></td<>	Thurlow Dam [^] to Confluence wit	th						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Coosa	3456	1,367	945	18	963	1	963 <u>1</u> /
From Georgia to Weiss Lake to H. $3,784$ $2,226$ $1312^{/}$ $2,357$ $2,003$ 354 Weiss Lake to H.Neely Henry Neely HenryNeely Henry 966 170 Neely Henry Lake $1,130$ 782 354 $1,136$ 966 170 H. Neely Henry 	oosa System							
Weiss Lake 2941 $3,784$ $2,226$ $1314'$ $2,357$ $2,003$ 354 Weiss Lake to H.Neely HenryNeely Henry966170Neely HenryNeely Henry1,330782 354 1,136966170H. Neely HenryLake 2941 1,310782 354 1,136966170H. Neely HenryNartin Lake 2941 1,170 688 170 858 729129Martin Lake 2941 1,317775129904768136Logan Martin Lake1,317775129904768136Lay Lake toJordan Lake to1,005591136727 618 109Jordan Lake toConfluence with174118109 2272 $$ 2722	From Georgia to				10			
Weiss Lake to H. Neely Henry 1,330 782 354 1,136 966 170 Neely Henry Neely Henry 1,330 782 354 1,136 966 170 H. Neely Henry Lake to Logan 1,170 688 170 858 729 129 H. Neely Henry Lake to Logan 1,170 688 170 858 729 129 Logan Martin Lake 2941 1,317 775 129 904 768 136 Logan Martin Lake 2941 1,317 775 129 904 768 136 Lay Lake to Jordan Lake to 591 136 727 618 109 Jordan Lake to Confluence with 174 118 109 227 272	Weiss Lake	2941	3,784	2,226	1315/	2,357	2,003	354
Neely Henry Lake 1,330 782 354 1,136 966 170 H. Neely Henry Lake to Logan Martin Lake 2941 1,330 782 354 1,136 966 170 H. Neely Henry Lake to Logan Martin Lake 2941 1,170 688 170 858 729 129 Logan Martin Lake 2941 1,317 775 129 904 768 136 Lay Lake to 1,317 775 129 904 768 136 Lay Lake to Jordan Lake to 591 136 727 618 109 Jordan Lake to 2941 1,005 591 136 727 618 109 Jordan Lake to 2041 174 118 109 227 2272	Weiss Lake to H.							
Lake 2941 1,330 782 354 1,136 966 170 H. Neely Henry Lake to Logan 1,170 688 170 858 729 129 Lake to Logan Martin Lake 2941 1,170 688 170 858 729 129 Logan Martin Lake 1,317 775 129 904 768 136 Lay Lake 2941 1,317 775 129 904 768 136 Lay Lake to Jordan Lake 2941 1,005 591 136 727 618 109 Jordan Lake to confluence with 174 118 109 227 272 272	Neely Henry							
H. Neely Henry Lake to Logan Martin Lake 2941 1,170 688 170 858 729 129 Logan Martin Lake to Lay Lake 2941 1,317 775 129 904 768 136 Lay Lake to Jordan Lake to Jordan Lake to Jordan Lake to Confluence with Tallapoosa 2941 174 118 109 227 2272	Lake	2941	1,330	782	354	1,136	996	170
Lake to Logan Lake to Logan 729 129 Martin Lake 2941 1,170 688 170 858 729 129 Logan Martin Lake 1,317 775 129 904 768 136 Lay Lake to 0.04 1,005 591 136 727 618 109 Jordan Lake to 0.ordan Lake to 727 618 109 207 272 272 Tallapoosa 2941 174 118 109 227 272 272	H. Neely Henry							
Martin Lake 2941 1,170 688 170 858 729 129 Logan Martin Lake 1,317 775 129 904 768 136 Lay Lake to 0.131 1,317 775 129 904 768 136 Lay Lake to 0.005 591 136 727 618 109 Jordan Lake to 0.005 591 136 727 618 109 Jordan Lake to 0.011uence with 174 118 109 227 2272	Lake to Logan							
Logan Martin Lake 1,317 775 129 904 768 136 Lay Lake to 1,005 591 136 727 618 109 Jordan Lake to 0 136 727 618 109 Jordan Lake to 0 136 727 618 109 Jordan Lake to 0 174 118 109 227 2272	Martin Lake	2941	1,170	688	170	858	729	129
to Lay Lake 2941 1,317 775 129 904 768 136 Lay Lake to Jordan Lake 2941 1,005 591 136 727 618 109 Jordan Lake to Confluence with 174 118 109 227 2272	Logan Martin La	Ke						
Lay Lake to Jordan Lake 2941 1,005 591 136 727 618 109 Jordan Lake to confluence with Tallapoosa 2941 174 118 109 227 2272	to Lay Lake	2941	1,317	577	129	904	768	136
Jordan Lake 2941 1,005 591 136 727 618 109 Jordan Lake to confluence with Tallapoosa 2941 174 118 109 227 2272	Lay Lake to							
Jordan Lake to confluence with Tallapoosa 2941 174 118 109 227 2272	Jordan Lake	2941	1,005	291	136	727	618	109
confluence with Tallapoosa 2941 174 118 109 227 2272	Jordan Lake to							
Tallapoosa 2941 174 118 109 227 ² /	confluence wi	th						Ċ
	Tallapoosa	2941	174	118	109	227		2272/

\sim
σ
Ļ
u U
Ō
LV-7
ole
g

	Erosion		Sediment	Sediment			Sediment
	Rate	Uncontrolled	From	From		Sediment	Passing
	Tons	Drainage	Uncontrolled	Upstream	Total	Trapped	To Next
Reach	Per	Area	Area	Reservoirs	Sediment	(Est. 85%)	Reservoir
	Sq.	Mi		[]	,000's tons-		
Jahaba System							
To confluence							
WITH ALADAM	~						10
River	2881	1,821	1,049	1	1,049	1	1,0492/
Alabama syster fluence of C	n c o n-						
Tallapoosa t	o Jones						
Bluff Lock &	Dam	1,370	1,069	1,1904/	2,259	1,920	339
Jones Bluff L	ock &						
Dam to Wm. 1	•						
Dannelly				1			
Reservoir	3902	4,400	3,434	1,388-7	4,822	4,099	723
Wm. F. Dannel	١y						
Reservoir to	0						
Claiborne Lo	ock						
& Dam	3902	820	640	723	1,363	1,159	204
Claiborne Locl	ŝ						
Dam to Tomb.	igee						
Cut-Off	3902	1,128	968	204	1,171	-	1,171

 $\underline{l}/$ Passed downstream to Jones Bluff Lock and Dam.

Sediment passed downstream from lakes on Coosa Tributaries in Georgia. 2

3/ Passed downstream to Wm. F. Dannelly Reservoir.

4/ Combined sediment passing Thurlow Dam and Jordan Lake.

Combined sediment from Cahaba system and sediment passed through Jones Bluff Lock and Dam. 2

4-32888 3-73

Alabama River	
the	
чц.	
streams	
selected	-
of	
mouth	
the	
at	
yield	
sediment	
annual	
average	
V-8Estimated 1972.	
Table I Basin ,	

4-32888

	Drainage	On-Site	Sediment	Total		Suspended	Sediment	
	Ared 1,000	Rate	Ratio	1,000	1,000	1,000 (trațion	
Watershed	Acres	Ton/Ac.1/	(%)2/	Ton/Yr.	Ton/Yr. <u>3</u> /	Ton/Yr.3/	PPM4/	
		C	osa River S	ubbasin				
Hatchet	239.3	2.6	23	143.1	57.2	85.9	156	
Weoka	70.9	00 • •	25	67.3	26.9	40.4	247	
Weogufka	81.9	3.6	25	73.7	29.5	44.2	234	
Walnut	33.6	3.2	27	29.0	11.6	17.4	225	
Yellowleaf (Lower)	58.9	3.2	26	48.9	19.6	29.3	216	
Waxahatchee	134.9	4.3	23	133.5	53.4	80.1	257	
Yellowleaf (Upper)	152.6	4.2	24	153.8	61.5	92.3	262	
Tallaseehatchee	128.3	5.4	24	166.3	66.5	99.8	337	
Talladega	125.5	4.1	24	123.5	49.4	74.1	256	
Kelly	123.5	2.8	24	83.0	33.2	49.8	175	
Chocculacco	315.7	6.7	22	465.4	186.1	279.3	334	
Dye	2.7	3.1	32	12.2	4.9	7.3	257	
Cane	60.8	2.6	26	41.1	16.4	24.7	176	
Ohatchee	142.9	0°0	23	98.6	39.4	59.2	180	
Big Canoe	164.2	4.2	24	165.6	66.2	99.4	262	
Big Wills	220.1	4.7	23	237.9	95.1	142.8	281	
Terrapin	197.1	0°0	23	136.0	54.4	81.6	179	
Chattooga	262.0	а. 2	22	184.4	73.8	110.6	183	
Little River	171.2	3.2	23	126.0	50.4	75.6	192	
Spring	30.6	9.4	28	80.5	32.2	48.3	685	
Chestnut	49.2	00 °	26	48.6	19.4	29.2	257	
		r f	Ē					
		TTPT	ADUUSA RIVE	UTSPAANS J				
Line	205.6	5.9	23	279.0	55.8	223.2	471	
Cubahatchee	82.2	9.1	25	187.0	37.4	149.6	789	
Calebee	124.7	10.8	24	323.1	64.6	258.5	899	

	Drainage Area 1,000	On-Site Erosion Rate	Sediment Delivery Ratio,	Total Sediment 1,000	Bedload 1,000	Suspended Material 1,000	Sediment Concen- tration	
Watershed	Acres	Ton/Ac.1/	/元(%)	Ton/Yr.	Ton/Yr.3/	Ton/Yr.3/	PPM4/	
		Tallapo	osa River S	Subbasin (Cc	nt'd)			
Uphapee	290.5	7.7	22	492.1	196.8	295.3	441	
Sougahatchee	129.2	3.6	24	111.6	44.6	67.0	225	
Sandy	241.9	4.2	23	233.6	93.4	140.2	251	
Elkahatchee	16.4	3.7	29	17.6	7.0	10.6	279	
Hillabee	179.3	5 • 1	23	210.3	84.1	126.2	305	
Chatahospee	87.1	4.6	26	104.2	41.7	62.5	311	
High Pine	49.1	4.9	26	62.5	25.0	37.5	331	
Crooked	62.9	2.7	26	93.2	37.3	55.9	386	
Cahulga	17.6	5.1	29	26.0	10.4	15.6	385	
Wedowee	37.1	5.0	27	50.0	20.0	30.0	351	
Shoal	14.3	5.0	29	20.7	с. 8	12.4	377	
			ahaba Rîver	Subbasin				
Big Oakmulgee	155.2	5.1	24	189.9	75.9	114.0	318	
Rice Creek	27.6	6.4	28	49.5	19.8	29.7	466	
Little Cahaba(Lower)	190.3	3.5	23	153.2	61.3	91.9	209	
Shades	86.5	10.4	25	225.0	90.06	135.0	677	
Buck	50.3	3.9	26	51.0	20.4	30.6	264	
Patton	40.8	2.0	27	30.8	12.3	18.5	197	
Little Cahaba(Upper)	80.0	2.0	25	.56.0	22.4	33.6	182	
Upper Cahaba	109.8	2.8	24	73.6	29.4	44.2	175	
		Al	abama River	Subbasin				
Little River	85.1	4.6	24	93.9	18.8	75.1	383	
Randons	55.1	5.9	27	87.8	17.5	70.3	553	
Limestone	127.3	5.9	22	165.2	33.0	132.2	450	
Big Flat	209.7	3.6	23	173.7	34.7	139.0	287	
Purslev	72.3	5.0	25	90.4	18.1	72.3	434	

Table IV-8--Cont'd

4-32868 3-73

Table IV-8--Cont'd

4-32888

3-73

Sediment Concen-	tration PPM 4/		351	350	399	647	351	408	394	367	629	439	471	625	649	
Suspended Material	1,000 Ton/Yr.3/		195.1	85.2	150.8	336.2	209.1	22.6	50.6	147.5	148.6	164.9	263.9	140.9	90.3	
Bedload	1,000 Ton/Yr.3/	(12	48.8	21.3	37.7	84.0	52.3	5.6	12.6	36.9	37.2	41.2	65.9	35.2	22.6	
Total Sediment	1,000 Ton/Yr.	asin (Cont'o	243.9	106.5	188.5	420.2	261.4	28.2	63.2	184.4	185.8	206.1	329.8	176.1	112.9	
Sediment Delivery	<u>Ratio</u> (%)2/	River Subb	23	24	23	23	23	28	27	23	25	23	23	25	26	
On-Site Erosion	Rate Ton/Ac.l/	Alabama	4.4	4.2	5.0	8.1	4.4	4.2	4.2	4.6	7.6	5.5	5.9	7.2	7.2	
Drainage Area	l,000 Acres		241.0	105.7	163.9	225.6	258.3	24.0	55.7	174.3	97.8	162.9	243.1	97.8	60.3	
	Watershed		Pine Barren	Chilatchee	Turkey	Boguechitto	Big Cedar	Big Swamp	Valley	Big Mulberry	Swift	Pintlalla	Catoma	Autauga	Mortar	

Average annual gross erosion rates from selected watershed studies by USDA-SCS, Auburn, Alabama.

IV-27

Delivery ratio is the percentage of sediment delivered to a given point compared to the gross erosion; from curves developed by USDA-SCS. 2

3/ Estimated.

Average annual suspended sediment concentration--related to average annual runoff; expressed as parts per million. 4

<u>Conservation Treatment Needs</u> -- The conservation treatment needs for agricultural lands by subbasins are shown in Table IV-9. These estimates were determined by a conservation needs inventory. More detailed information for the state and individual counties can be obtained from the document <u>Alabama Conservation Needs Inventory (1970)</u> which is available in most offices of agencies of the United States Department of Agriculture.

The conservation needs inventory is a detailed land use, treatment. and soils inventory on randomly selected samples of two percent of the land area of Alabama. Sample data was expanded to county areas and adjusted by committees of agricultural workers in each county. The inventory includes cropland, pastureland, forest land, and other land; but excludes federal non-cropland, urban and built-up areas and water. The CNI data is a useful tool in long-range planning, both in solving existing problems and in preventing future ones. An analysis of treatment needs indicates the need and location of land use adjustments, the magnitudes of soil conservation problems and the need for input to solve the problems.

About 81 percent of the cropland in the basin needs one or more conservation practices, in addition to those now being carried out, to protect the soil and maintain or increase its productivity. Adequate conservation treatment may be defined as treatment that keeps erosion within allowable limits and which enables the land to be used for its intended purpose which is to maintain yields on a long-term basis. Allowable erosion usually ranges from three to five tons per acre per year; that is, land eroding at greater than allowable rates cannot maintain good tilth, structure and organic content and usually is continually reduced in fertility, permeability and resistance to erosion. About 50 percent of the treatment needs are simple-type measures relatively inexpensive to install and requiring no earth movement or change of land use. These measures include crop residue or annual cover crops, grasses in rotation with crops, or contouring only. About 23 percent of the cropland needs moderate-type measures such as strip cropping, terraces or diversions. About 8 percent of the cropland should have intensive treatment such as drainage or change of land use to trees or grass.

Pastureland that is inadequately treated is not producing forage at its potential and needs protection to prevent spot erosion from becoming critical. About 9 percent of the pastureland needs simple-type treatment such as protection from over grazing. About 53 percent needs moderate-type treatment such as improvement in plant cover. About 26 percent of the pastureland needs intensive treatment such as reestablishment of plant cover and about 0.1 percent needs a change of land use to trees.

The 1967 inventory indicates that establishment and reinforcement of timber stands are needed on about 36 percent of the forest land in the basin and about 40 percent needs timber stand improvement. About 24 percent of the forest land is adequately treated and producing at or near optimum levels. Most forest land treatment is not strictly for erosion control since even poorly stocked woodland offers fair erosion protection. Most erosion of forested land results from poorly designed firebreaks and harvesting trails, and site preparation. The treatment needs listed here are mainly for improvement of present woodland stands for more uniform growth and coverage and thereby the improvement of infiltration and the reduction of 4-32886 3-73

undesirable rapid runoff. Establishment and reinforcement may be defined as the planting of desirable trees rather than waiting for hit-or-miss natural seeding; and timber stand improvement is defined as the removal of we weed trees and/or thinning and culling to improve the growth and uniformity of desirable species.

Acreage defined as "other land" in the inventory consists of non-urban land used for home sites, farm roads, feed lot, ditch banks and similar areas. About 40 percent of the "other land" in the inventory needs some kind of conservation treatment to protect it from erosion and deterioration and to prevent damage to adjacent land. Since this category has such a wide variation in land uses and conditions, the treatment needs cannot be easily categorized but include a high percentage of intensive-type treatment such as critical area planting of perennial vegetation, water diversions, or drainage systems.

A problem identified in the study of the basin is land that is eroding so badly that it is, itself, damaged by excessive loss of top soil and producing sediment and/or runoff in such quantities that it damages adjacent or downstream lands. This type of erosion is known as "critical erosion." A measure of critical erosion potential is land in Capability Classes VI and VII on which steepness or erosion (Subclass "e") is recognized as the dominant hazard. These lands are generally considered to be non-arable lands but are useable for hay, pasture, orchards, and forest land.

Table IV-10 shows the acreages of land by subbasins in Capability Subclasses VIe and VIIe that are used for cropland and pasture and the acreage classified as needing intensive conservation treatment. This needed treatment consists of conversion of cropland to permanent vegetation (pasture or woodland) and conversion of pastureland to woodland or complete reestablishment of pasture grasses. The lands in Subclasses VIe and VIIe, are not all "critical" nor is critical erosion possible only on Classes VI and VII. These lands represent approximately the extent of the basin land subject to critical erosion and the percentage of those lands that are eroding critically and need treatment to arrest this erosion. Table IV-9--Land treatment needs by subbasin in the Alabama River Basin, 1967.

	Total		Subbas	ins	
Conservation	Study				Talla-
Treatment Needs	Area	Alabama	Cahaba	Coosa	poosa
Cropland		1,	000's Ac	res	
Land Adequately Treated	241	74	13	60	94
Treatment Needs:			2.0		
Crop Residues or Annual					
Cover Crons	392	229	28	88	47
Sod in Botation	207	63	11	85	48
Contouring Only	36	21	2	2	10
Strip Cropping, Terraces	and	<u> </u>	~	2	11
Diversions	202	110	13	116	53
Change to Permanent Cover	~ ~ ~ ~	110	10	110	00
Grass or Trees	., 83	27	3	20	23
Drainage	22	0	0	11	20
Total Nooding Treatmont	(1022)	(160)	(50)	(200)	1 (102)
Total Granland	(1032)	(400)	(09)	(322)	(103)
Desturaland	12/3	J4Z	12	302	211
Fastureland	162	16	12	57	17
Treatment Net Tensible	103	40	15	57	47
Treatment Not reasible	2	Ţ			Ţ
Pretection from Over					
protection from Over-	110	07	10	21	5.0
grazing	118	27	10	31	30
Improvement in Plant Cove	er 097	382	47	113	100
Reestablishment of vegeta		000	0	5 /	70
Classes of Land Mas to Tra	340	202	8	ac	19
Tatal Needing Treatment	(1160)	((1))	((5)	(000)	(004)
Total Needing Treatment	(1102)	(611)	(65)	(202)	(284)
Total Pastureland	1327	800	18	209	332
Forest Land	1707	570	100	546	101
Land Adequately Ireated	$\perp / \geq /$	578	199	046	404
Treatment Needs:					
Establishment and	05.04	0.47	001	707	FOO
reinforcement	2024	846	291	797	590
Timber Stand Improvement	2857	(1000)	329	902	669
Total Needing Treatment	(5381)	(1803)	(620)	(1699)	(1259)
lotal Woodland	/108	2381	819	2245	1663
Uther Land	100			4.5	
Land Adequately Ireated	130	46	10	45	29
Land Needing Ireatment	68	30	7	29	19
lotal Uther Land	215	76	17	74	48
lotal Land in the Inventory	9923	3657	986	2960	2320

Source: Alabama Conservation Needs Inventory, 1967

Table IV-10--Acreage of cropland and pasture land needing intensive treatment for capability classes VIe and VIIe by subbasins in the Alabama River Basin.¹

		Croplan	d		Pasture	9
		Needing	Need		Need	Need
		Intensive	Intensive		Intensive	Intensive
Subbasin	Total	Treatment	Treatment	Total	Treatment	Treatment
	Thousan	ds of Acres	Percent	Thousand	ds of Acres	Percent
Tallapoosa	36	19	53	66	18	27
Coosa	16	14	88	25	7	28
Cahaba	4	2	50	9	1	11
Alabama	15	9	60	51	19	37
Total Alabama Basi	n 71	44	62	151	45	30

1/ Source: Alabama Conservation Needs Inventory, 1967.

Urban and Industrial Water Use and Needs

An expanding population and an increase in industry will necessitate the development and protection of safe, adequate water supplies. Hydrologic data shows that the basin has an adequate supply of good quality water from surface and ground water sources to meet present and prospective needs. Table IV-11 gives withdrawal use of water by source, and principal use by subbasins. Total water withdrawal in 1970 was about 1.5 billion gallons per day. About 94 percent was surface water drawn from streams or reservoirs, while about 6 percent was ground water drawn from wells or springs. If distributed equally among the basin residents, this withdrawal rate would provide every person with nearly 1,500 gallons of water each day. Figure IV-5 presents water use in Alabama from 1955 to 1970 which is comparable to water use in the basin.

Public water systems furnished water to over 60 percent of the basin's 998,000 people and 30 percent of the water utilized by industry. Seventy two percent of the projected population is expected to use public water systems by 2020. Table IV-12 shows present and projected public water supply needs by subbasin. Estimated gross public water supply demands are given in Table IV-13 and Figure IV-6. On the average about 10 percent of the water withdrawal is consumed through public water systems and about 6 percent through industrial water systems.

Total water withdrawal is projected to increase almost three times from 1970 to 2020. This trend is shown in Table IV-14 and does not include hydroelectric and thermoelectric use. Estimated water use by hydroelectric and thermoelectric plants is shown in Table IV-15. Water use in Table IV-11 shows 1,373 MGD withdrawn from surface water and 1.008 MGD used by thermoelectric plants. The remaining 365 MGD is used by industrial and municipal water systems. A 10 percent consumptive use for public and industrial systems gives a maximum net commitment against the potential surface water supply of 37 MGD. A summary of water supply and use is as follows:

Total Water Use	1,373	MGD
Thermoelectric Plants	1.008	MGD
Industrial and Municipal Systems	365	MGD
10 Percent Maximum Consumptive Use	37	MGD
Gross Potential Water Supply	2,120	MGD
(Average Outflow at Claiborne, Ala.)	

Based on the above data the net reduction in surface water is small. With regard to quantity, there is no general limitation on water within the basin; and with good management of surface water, none should occur except in isolated areas.

Figure IV-5--Trends in total water withdrawal, population, and per capita daily use, 1955-1970, state of Alabama.

Source: Use of Water in Alabama, 1970, Geological Survey of Alabama.

Figure IV-6--Public water supply needs, Alabama River Basin.

Table IV-11--Withdrawal use of water (million gallons per day) by source and principal use by subbasin in the Alabama River Basin, 1970.

	Publi	c Supply				Rural U	Se			Self-s	supplied	Thermo	Jelectric			
			Domestic	Lives	tock	Irriga	tion	Catfish	Farming	Indu	lstry	Power	Plants	Subt	otal	Grand
River Basin	Ground water	Surface water .	Gr o und water	Gr o und water	Surface water	Gr o und water	Surface water	Ground water	Surface water	Gr o und water	Surface water	Groun(water	d Surface water	Ground water	Surface water	Total
Alabama	6.61	0	5.69	1.45	2.42	0.34	0.73	1.24	0.69	4.02	51.35	0	0	19.35	55.19	74.54
Cahaba	2.16	54.00	1.51	0.29	0.38	0.03	0.03	0.11	0.02	2.44	2.17	0	0	6.54	56.60	63.14
Coosa	21.58	13.52	8°38	1.22	1.16	0.65	1.32	0.56	0.26	15.56	213.02	0	1,008.40	47.95	1,237.68	1,285.63
Tallapoosa	12.53	17.54	4.32	0•96	1.12	0.63	1.57	0.31	0.70	0.86	3.21	0	0	19.61	24.14	43.75
Total, by source	42.88	85 . 06	19.90	3.92	5.08	J. •65	3.65	2.22	1.67	22.88	269.75	0	1,008.40	93.45	1,373.61	1,467.06
Total by subcategory			19,90	6	00	5.	30	°.	89							1,467.06
Total by category	12	7.94				(m	8.09			292.	.63	1,00	3.40			

Source: Use of Water in Alabama, 1970, Geological Survey of Alabama.

Table IV-12--Present and projected public water supply needs by subbasins in the Alabama River Basin.

	Ι	1				
		Pop. Served	Residential	Needs	Total	Needs <u>l</u> /
Subbasin	Year	Thousands	Per Capita	Total	Per Cap	ita Total
			abq	mgd	gpd ,	mgd
Alabama	1970	194.1	314/	15.7	1364/	26.4
	1990	257.9	101	26.0	156	40.2
	2020	379.1	140	53.1	195	73.1
Coosa	1970	219.7	78	17.1	160	35.1
	1990	294.7	99	29.2	172	50.7
	2020	491.1	138	67.8	220	108.0
Tallapoosa	1970	74.7	81 <u>2</u> /	6.0	136 <u>2</u> /	10.1
	1990	105.1	101	10.6	156	16.4
	2020	156.7	140	21.9	195	30.6
Cahaba	1970	72.4	116 <u>3</u> /	8.4	₂₃₈ 3/	17.2
	1990	96.9	141	13.7	263	25.5
	2020	138.9	175	24.3	297	41.3
Alabama Basin Total	1970	560.9	84	47.2	158	88.8
	1990	759.6	105	79.5	175	132.8
	2020	1168.9	143	167.1	194	253.0

1/ Total includes industrial and commercial from public supply. Per

capita use extended at present rate.

2/ For Alabama and Tallapoosa Basins combined.
3/ Average use of Black Warrior and Cahaba Basins.

Location	1970 <u>1</u> /	1990 2/	2020 2/	Net Needs (1970-2020)
		million gall	lons per dav	
Alabama Subbasin		j		
Mappa auilla	0.00	1 10	2 00	1 10
Monroeville	0.90	T.T.	2.00	1.10
Frisco City	0.10	0.19	0.32	0.22
Camden	0.15	0.25	0.38	0.23
Pine Hill	0.09	0.15	0.37	0.28
Ft. Deposit	0.10	0.16	0.40	0.30
Selma	5.70	7.88	13.73	8.03
Orrville	0.05	0.07	0.13	0.08
Prattville	2.88	5.04	12.59	9.71
Montgomery	34.00	51.16	91.39	57.39
Coosa Subbasin				
Wetumpka	0.68	0.97	3.28	2.60
Goodwater	0.21	0.26	0.53	0.32
Clanton	1.16	1.38	2.17	1.01
Jemison	0.15	0.19	0.29	0.14
Calera	0.18	0.29	1.05	0.87
Columbiana	0.45	0.75	1.93	1.48
Harpersville	0.09	0.15	0.29	0.20
Vincent	0.20	0.38	0.78	0.58
Wilsonville	0.25	0.41	0.78	0.53
Svlacauga	3 07	5 30	12.06	8 99
Childershurd	0.69	1 07	2 36	1 67
Talladoga	2 75	5.25	10.22	6 17
Lincoln	0.14	0.20	0.56	0.47
	1 07	0.29	0.56	7 6.
Peri City Decland	1.07	0.02	9.50	0.45
	0.13	0.23	0.00	0.40
Asnville	0.22	0.48	1.23	
Anniston	18.00	27.61	62.79	44.19
Piedmont	0.75		2.44	1.69
Oxford	0.20	0.42	0.86	0.66
Jacksonville	1.40	1.95	3.99	2.59
Gadsden	8.10	9.69	20.65	12.55
Attalla	0.75	1.07	2.06	1.31
Glencoe	0.50	0.93	2.37	1.87
Centre	0.29	0.45	0.66	0.37
Ohatchee	0.06	0.11	0.28	0.22
Fort Payne	1.56	1.99	3.81	2.25
Collinsville	0.21	0.35	0.67	0.46
Tallapoosa Subbasin				
Union Springs	1.80	2.39	2.98	1.18
Tuskegee	1.50	2.50	5.85	4.35
Notasulga	0.10	0.14	0.17	0.07
Auburn	3.46	5.58	9.81	6.35
Opelika	3.50	5.91	10.55	7.05
Tallassee-Carrville	1.58	1.91	4.77	3.19
Alexander City	0.79	1.10	2.02	1.23

Table IV-13--Estimated gross public water supply demands by towns and subbasins in the Alabama River Basin.

4-32888 3-73

1

7

Table	IV-13	-Cont'	d
-------	-------	--------	---

Location	1970 <u>1</u> /	1990 2/	20 <u>20</u> <u>2</u> /	Net Needs (1970-2020)
	m	illion gallo	ns per day-	
Camp Hill	0.27	0.36	0.62	0.35
Dadeville	0.46	0.74	1.16	0.70
LaFayette	0.43	0.56	0.79	0.36
Roanoke	0.72	0.94	1.38	0.66
Wedowee	0.10	0.13	0.29	0.19
Ashland	0.36	0.52	0.81	0.45
Lineville	0.43	0.60	0.93	0.50
Heflin	1.00	1.40	2.50	1.50
Fruithurst	0.04	0.06	0.13	0.09
Ranburne	0.05	0.07	0.16	0.09
Edwardsville	0.03	0.05	0.12	0.09
Wadley	0.98	1.27	1.71	0.73
<u>Cahaba Subbasin</u>				
Centrevillé	0.50	0.81	1.26	0.76
Brent	0.15	0.22	0.31	0.16
Montevallo	0.97	1.73	3.91	2.94
Pe lha m	0.10	0.18	0.40	0.30
Helena	0.10	0.15	0.34	0.24
Alabaster	0.25	0.38	0.75	0.50
Marion	1.30	2.01	2.87	1.57
Leeds	1.44	2.05	3.34	1.90
Trussville	2.16	3.60	7.22	5.06

<u>1</u>/ Maximum usage in million gallons per day. Alabama State Department of Public Health Public water supplies on record, Oct 1969.

<u>2</u>/ Maximum usage in million gallons per day projected per capita based on 1970 use. Table IV-14--Present and projected withdrawal of water for residential, industrial, commercial, and rural use by subbasin in the Alabama River Basin.1/

		Water Withdrawa	al
Subbasin	1970	1990	2020
	(millio	n gallens per da	ay)
Alabama	150	249	377
Coosa	191	317	481
Tallap oo sa	95	157	239
Cahaba	50	82	125
Alabama Basin Total	485	805	1,222

<u>1</u>/ Source: Use of Water in Alabama 1970 by Geological Survey of Alabama. Water use by hydroelectric and thermoelectric not included.

Table IV-15--Estimated water use by hydroelectric and thermoelectric plants by subbasins in the Alabama River Basin, 1970.

Subbasins		Gross	Average	Average
Hydroelectric	1/	Power	Annual	Water
Plants	Owner 1/	Need	Generation	Use
		(ft)	(1,000 mwh)	(mgd)
Coosa River				
Weiss	APC	56	216	4,200
H. Neely Henry	APC	43	202	5,100
Logan Martin	APC	69	400	6,270
Lay	APC	83	639	8,300
Mitchell	APC	67	351	5,680
Jordan	APC	103	212	2,260
Walter Bouldin	APC	127	691	5,880
Tallapoosa River				
Martin	APC	146	321	2,390
Yates	APC	55	133	2,650
Thurlow	APC	96	253	2,840
Alabama Ri ${f v}$ er				-
Jones Bluff	C of E	-	329	-
Millers Ferry	C of E	-	434	-
Subbasins				
Thermoelectric				
Plants				
Coosa				
Gadsden	APC			144.4
E. C. Gaston	SEGCO			864.0
Total				1,008.4
1/ APC - Alabama F	ower Compan	y, C of E -	- Corps of Enginee	ers, SEGCO -
Southern Electr	ic Generati	ng Company.	•	*

Source: Use of water in Alabama, 1970 by Geological Survey of Alabama.

4-32888 3-73

Rural and Agricultural Water Use and Needs

Agricultural water requirements along with rural domestic use and needs are presented in Table IV-16 for 1970 and 1990. Projected water requirements for agriculture show an increase of 58 percent by 1990 or a total demand of 63.4 MGD by that time. These quantities of water reflect the growing needs of agriculture.

The rural domestic water demand of 31.4 MGD in 1990 is expected to be 44 percent greater than in 1970, Table IV-16. The increase can be attributed almost entirely to increased per capita consumption. Population living on farms and rural areas not serviced by public water utilities in 1970 was estimated at 437,000 and anticipated to increase to 443,000 by 1990 and to 455,000 by 2020.

Table IV-16--Rural withdrawal use of water, 1970 and 1990, by subbasins in the Alabama River Basin.

							Catf	ish		
	Dom	estic	Lives	tock	Irrig	ation	Farm	ing	Tot	al
Subbasin	1970	1990	1970	1990	1970	1990	1970	1990	1970	1990
	(N	IGD)	(MG	D)	(MG	D)	(M	GD)	(MC	D)
Alabama	5.69	8.13	3.87	8.77	1.07	1.24	1.93	3.86	12.56	22.00
Coosa	8.66	13.39	2.38	4.40	1.97	2.28	0.82	1.64	13.83	21.71
Tallapoosa	6.02	8.53	2.08	3.79	2.20	2.55	1.01	2.02	11.31	16.89
Cahaba	1.48	1.34	0.67	1.16	0.06	0.07	0.13	0.26	2.34	2.83
Total	21.85	31.39	9.00	18.12	5.30	6.14	3.89	7.78	40.04	63.43

Irrigated acreage is increasing slowly in both the state and basin. The Extension Service reported 7,500 acres irrigated in the basin in 1965. This figure climbed to 10,500 acres in 1970, then dropped to a 20-year low of 4,500 acres in 1971 as a result of abundant rainfall and good growing conditions. As changes occur in farming patterns and there is a shift to vegetable crops that are more sensitive to water requirements for quality, quantity, and income efficiencies, the need for additional irrigation will continue. Over the long run, Alabama's irrigated land has been increasing about one percent per year. If the basin continues at this pace, about 12,200 acres would be under irrigation in 1990. As agricultural technology and better management methods are developed, soil moisture deficiency is likely to become a more generally limiting factor in crop yields.

No significant increase in the demand for irrigation water is expected during the next 20 years. With acreage irrigated increasing slightly less than one percent yearly, total use should increase from about 5.3 MGD in 1970 to about 6.1 MGD by 1990. Demand will continue to be strongest in the Tallapoosa and Coosa Subbasins, Table IV-16. Livestock water requirements should double in the next two decades reaching 18.1 MGD by 1990, Table IV-16. Other rural uses such as catfish farming are expected to require around 7.8 MGD.

Agricultural Water Shortages -- The average annual rainfall for the study area is 54 inches. However, this rainfall is not distributed uniformly throughout the growing season. Lack of sufficient soil moisture during parts of the growing season reduces yields and sometimes causes crop failures. Evapotranspiration requirements are greater during hot months of the growing season. This often gives rise to drought conditions at the very time when plants are most in need of water. Tables IV-17 through IV-19 give, at different levels of probability, the number of drought days each month from April through October for soils with different available soil moisture capacities. It can be readily seen that there is insufficient available moisture at some time during the growing season to equal the water potential required to meet the evapotranspiration of the plants so that their production is limited from lack of water.

The rate of plant growth is affected greatly by the amount of available moisture in the soil. The vertical distance between available moisture and potential evapotranspiration curve in Figure IV-7 is an indication of irrigation needs for the respective months for maximum plant growth. For the months of June, July, August, and September, three to four inches of water is needed to sustain maximum plant growth and to maintain the original soil moisture base. The soil moisture deficit is due to the fact that precipitation is not sufficient during the summer months to replace the amount lost from the soil by evaporation and to meet the needs of growing plants.

There are no serious shortages of water for livestock and rural domestic purposes in the basin. The source of water for livestock is generally streams and farm ponds and only during an extended drought period is the water supply limited. Wells are the normal source of water for rural domestic use and few cases of water shortages occur. These are generally caused by faulty pumping equipment or wells that are too shallow.

4-32888 3-73

Table IV-17--Minimum number of drought-days for different months, soil storage capacities and probabilities in the Alabama River Subbasin.

·		Minimum o	drought days	if soil has	available
Month 1/	Prob.	l inch	2 inches	3 inches	5 inches
April	1 in 10	16	9	0	0
	2 in 10	14	6	0	0
	3 in 10	12	3	0	0
	5 in 10	8	0	0	0
Мау	l in 10	26	21	15	5
	2 in 10	23	18	12	0
	3 in 10	21	15	10	0
	5 in 10	18	11	6	0
June	1 in 10	26	25	23	19
	2 in 10	24	22	20	15
	3 in 10	22	20	18	12
	5 in 10	19	16	13	6
July	l in 10	22	20	19	19
	2 in 10	18	16	15	14
	3 in 10	16	13	12	11
	5 in 10	12	8	6	5
August	l in 10	28	26	24	22
	2 in 10	24	21	17	15
	3 in 10	21	16	12	9
	5 in 10	16	10	4	0
September	1 in 10	25	25	24	21
	2 in 10	21	21	19	16
	3 in 10	19	18	16	11
	5 in 10	16	11	8	2
October	1 in 10	28	28	27	27
	2 in 10	26	25	25	23
	3 in 10	24	23	21	19
	5 in 10	21	18	15	11

January, February, March, November, and December not shown because crops are rarely damaged by drought in these months. Source: Bulletin 316 Agricultural Drought in Alabama September 1959, Alabama Agricultural Experiment Station. Table IV-18--Minimum number of drought-days for different months, soil storage capacities and probabilities in the Cahaba and Tallapoosa 'ub-basins.

		Minimum (drought days i	if soil has	available
Month 1/	Prob.	l inch	2 inches	3 inches	5 inches
April	1 in 10	15	7	0	0
	2 in 10	12	5	0	0
	3 in 10	11	2	0	0
	5 in 10	8	1	0	0
Мау	l in 10	25	21	19	7
	2 in 10	23	18	14	4
	3 in 10	21	16	11	1
	5 in 10	17	12	6	0
June	l in 10	25	25	24	21
	2 in 10	23	22	20	16
	3 in 10	20	19	18	12
	5 in 10	17	14	13	6
July	1 in 10	22	20	20	18
	2 in 10	18	17	16	14
	3 in 10	16	13	13	11
	5 in 10	12	9	7	5
August	l in 10	22	18	17	16
	2 in 10	19	14	12	10
	3 in 10	17	12	8	6
	5 in 10	14	8	3	0
September	1 in 10	26	25	24	21
	2 in 10	22	20	20	15
	3 in 10	20	17	16	10
	5 in 10	16	12	8	3
October	l in 10	26	26	26	26
	2 in 10	24	23	22	22
	3 in 10	22	20	18	16
	5 in 10	19	14	8	1

 January, February, March, November, and December not shown because crops are rarely damaged by drought in these months.
 Source: Bulletin 316 Agricultural Drought in Alabama September 1959, Alabama Agricultural Experiment Station.

4-32888 3-73

Table IV-19--Minimum number of drought-days for different months, soil storage capacities and probabilities in the Coosa River Subbasin.

		Minimum drought days if soil has available			
Month 1/	Prob.	l inch	2 inches	3 inches	5 inches
April	l in 10	14	5	0	0
	2 in 10	11	0	0	0
	3 in 10	9	0	0	0
	5 in 10	5	0	0	0
May	l in l0	24	21	14	1
	2 in l0	21	16	8	0
	3 in l0	18	12	4	0
	5 in l0	14	6	0	0
June	1 in 10	25	25	25	17
	2 in 10	22	20	19	11
	3 in 10	19	17	15	7
	5 in 10	16	12	8	1
July	l in 10	23	22	20	17
	2 in 10	20	17	15	12
	3 in 10	17	13	11	8
	5 in 10	13	7	5	1
August	l in 10	21	18	15	13
	2 in 10	18	14	11	7
	3 in 10	16	11	7	3
	5 in 10	13	6	2	0
September	1 in 10	25	24	22	19
	2 in 10	21	19	16	13
	3 in 10	18	16	12	8
	5 in 10	14	10	5	0
October	l in 10	25	23	22	21
	2 in 10	21	18	17	15
	3 in 10	18	15	12	10
	5 in 10	14	9	6	3

1/ January, February, March, November, and December not shown because crops are rarely damaged by drought in these months. Source: Bulletin 316 Agricultural Drought in Alabama September 1959, Alabama Agricultural Experiment Station.

Figure IV-7--Monthly precipitation and monthly evapotranspiration for Alabama.

4-32888 3-73

Impaired Drainage -- Approximately 2,178,462 acres of agricultural land in the study area have some kind of water problem. Most of the land is located in the flood areas adjacent to stream channels.

Drainage problems vary widely throughout the four subbasins. The major streams of the basin provide good outlets for surface drainage. In some areas the smaller streams are so choked with sediment and tree growth that overbank flow is common. Damage from beaver ponds is a problem throughout the basin. The clogged channels do not provide proper outlets for drainage of surface waters from the tributaries. Frequent overbank flows and sediment deposition have resulted in a swamping condition of many areas of fertile bottom land. Watersheds in the Autauga and Dallas County area have a widespread problem of sediment deposition and/or beaver dams. Land with drainage problems is shown in Table IV-20. Subclass (w) is made up of soils where excess water is the dominant hazard or limitation in their use. Poor soil drainage, wetness, high water table, and susceptibility to overflow are the criteria for determining which soils belong in this subclass.

Land Class	Land Use					
Subclass (w)	Cropland	Pastureland	Forest Land	Other	Total	
<u>_</u>			Acres			
Alabama Subbasin						
IIw	64,205	77,128	141,065	7,067	289,465	
IIIw	23,608	69,199	79,368	4,969	177,144	
IVw	21,423	110,812	437,564	5,339	575,138	
Vw	1,430	3,011	214,347	841	219,629	
VIW	,		244		244	
VIIw		319	7,361		7,680	
Total	110,666	260,469	879,949	18,216	1.269,300	
Coosa Subbasin	*	,				
IIw	33,988	29,970	62,690	2,885	129.533	
IIIw	12,818	18,179	115,280	1,211	147,576	
IVw	5,927	15,506	52,871	1,008	75,312	
Vw			311		311	
Total	52,733	63,655	231,152	5,104	352,732	
Tallapoosa Subba	sin					
IIW	13,678	17,289	19,304	1,467	51,738	
IIIw	8,484	25,515	74,926	2,372	111,297	
IVw	8,896	39,212	195,881	1,978	245,967	
Vw	355	226	3,458		4,039	
VIIW				409	409	
Total	31,413	82,242	293,569	6,226	413,450	
Cahaba Subba sin						
IIw	11,189	8.982	35,186	1,145	56,502	
IIIw	1,378	1,044	5,262	223	7,907	
IVw	2,821	6,185	60,125		69,131	
Vw	245	1,046	10,215		11,506	
Total	15,633	17,257	110,788	1,368	145,046	
Alabama River Basin						
IIw	123,060	133,369	258,245	12,564	527,238	
IIIw	46,288	113,937	274,836	8,775	443,836	
lVw	39,067	171,715	746,441	6,347	963,570	
Vw	2,030	4,283	228,331	841	235,485	
VIW		319	244		563	
VIIW			7,361	409	7,770	
Total	210,445	423,623	1,515,458	28,936	2,178,462	

Table IV-20--Land with drainage problems by land class and land use by subbasins in the Alabama River ${\rm Basin}.1/$

1/ Alabama Conservation Needs Inventory, 1967.

Surface Storage for Low-Flow Augmentation, Recreation, and Municipal Water.

Certain specific water needs have been recognized during the early phase of the basin study that might be met best through surface storage. The Alabama Water Improvement Commission has identified a number of point areas along streams and tributaries which have or will have a pollution problem during periods of low stream flow, (see Table IV-21). The Economic Research Service has projected a demand for water-based recreation in the Cahaba River Subbasin. There will exist a need for additional municipal water throughout the river basin. A portion of this need will have to be met through the use of surface storage.

The areas where low-flow augmentation can possibly alleviate the pollution problem were studied to locate available reservoir sites. These sites are located upstream from the problem area to utilize gravity flow. A number of areas identified as having existing or potential pollution problems cannot be solved using low-flow augmentation. These areas were either physically located such that an upstream reservoir did not exist or the required minimum flow need during periods of low flow was greater than the dependable yield from the drainage area.

Four sites have been tentatively located in the Cahaba River Subbasin to provide surface area for water-based recreation. A potential site located on Shades Creek in Bibb and Jefferson Counties will require considerable clean up of the water draining into the reservoir before this reser voir could be used for water contact sports. These and other potential reservoirs can serve as multiple-purpose structures. The floodwater retarding structures which are planned or where planning is pending under the small watershed program should be utilized as multiple-purpose structures whenever possible.

Statistical data for the reservoir sites located during this study are shown in Table II-7, Page II-29.

Table IV-21--Location of existing and potential water pollution problems, status of impoundment possibility for low-flow augmentation, and minimum flow requirements, Alabama River Basin, 1972.

	Minimum	Reservoir	Dependable Yield
	Flow	Site	Fr o m Drainage Area
1/	Required	Available	and Reservoir
Location =/	cis 2/	3/	cis <u>4</u> /
Alabama River Subbasin			
Catema Creak at Mentgemery	30	Voc	37 05
Wilcox County	50	IES	37.95
Dursley Creek at Camden	2	Ves	3 97 8 3 715
Chilton County	2	100	••)/ 0 0•/-
Middle Fork of Mulberry at			
Thorsby		No	
Cahaba River Subbasin			
Shelby County			
Buck Creekvicinity of Silu	iria		
& Alabaster		No	
Jefferson County			
Cahaba Rivervicinity of Hi	gh-		
way 280	-	Yes	9.51, 8.52, 7.85
			3.065/
Jefferson County			
Little Cahaba Ri v er vicin it	y of		
Leeds		No	
Perry County			
Rick Creekvicinity of Mari	on	No	
Coosa River Subbasin			
Doka County Roken Greek at Coodwater	1 5	Voc	2 10
DeKalb County	C.I	res	2.19
Big Wills Creek at Fort Payn	e 150	$v_{PC}7/$	_
Shelby County	100	103-	
Buxahatchee Creek at Calera		No	
Calhoun County			
Cave Creek at Anniston-Fort			
McClellan	4	Yes	1.18
St. Clair County			
Dye Creek at Pell City		No	
St. Clair County			
Kelly Creek at Pell City		No	
lalladega County			
Shirtee Creek at Sylacauga		No	
lalladega County			
Talladega Creek at Talladega	-	Ye s <u>8</u> /	-
Tallahatchoo Crook at Jackey	- 20		
rillo	0	No	
Talladega County	0	INU	
Tallaseehatchie Creek at			
Sylacauga	31.5	Yes	17.32 & 4.225/
-32888 3-73			

Table IV-21 (cont'd)

	Minimum Flow Required	Reservoir Site Available	Dependable Yield From Drainage Area and Reservoir
Location 1/	cfs2/	3/	cfs 4/
Chilton County			
Walnut Creek at Clanton		No	
Shelby County			
Waxahatchee Creek at Columb	iana 4.5	Yes	10.20
<u>Tallapoosa River Subbasin</u>			
Cleburne County			
Cahulga Creekvicinity of			
Heflin		No	
Macon County			
Calebee Creekvicinity of			
Tuskegee	2.5	Yes	1.05
Randolph County			
High Pine Creekvicinity			
of Roanoke		No	
Clay			
Horsetrough Creekvicinity			
Of Ashland	8	Yes	1.29
Bullock County			
Old Town Creekvicinity of Union Springs		No	
Lee County			
Parkerson Mill Creekvicin	itv		
of Auburn	- 4	No	
Lee County			
Sougahatchee Creekvicinit	y		
of Auburn-Opelika	23	Yes	3.22
Randolph County			
Wedowee Creekvicinity of			
Wedowee	0.5	Yes	9.26

1/ Location of problem areas were identified by Alabama Mater Improvement Commission.

2/ Flow required to maintain 5 ppm dissolved oxygen in stream. Furnished by Alabama Water Improvement Commission.

3/ For detail location and reservoir statistics see Table II-14.

4/ Estimated as being 50 percent of the average annual runoff.

5/ Two sites available. 6/ Four sites available.

- $\overline{7}$ / Several sites are available above problem area, however, these sites will not meet the flow requirements. Each site would involve an acquisition of extensive land rights.
- 8/ Low-flow augmentation storage has been incorporated in the Public Law 566 Work Plan for the Talladega Creek Watershed. This Work Plan has not been approved for operation as of this date.

4-32888 3-73

Recreation and Related Needs

Introduction -- Alabamians now spend more hours engaging in recreation activities outdoors than ever before, and the demand for leisure-time facilities is soaring. Actually, the demand for outdoor recreation in the Alabama River Basin is increasing much faster than the population (Figure IV-8). Participation in recreation is often measured in terms of "activity occasions", i.e., participation in a recreation activity for at least 30 minutes a day. In 1971, residents of the Alabama River Basin and tourists recreating within the basin participated in over 27 million activity occasions. By 1990, the number of occasions is expected to double, and by the year 2020, the number of recreationists is expected to be almost four times greater than in 1971, Table IV-22.

Table IV-22--Projected demand for outdoor recreation by residents and tourists in the Alabama River Basin, 1971, 1990, and 2020.

	Deman	DemandActivity Occasions			
Activity	1971	1990	2020		
		1000			
Swimming	10,004	19,860	37,020		
Picnicking	6,250	9,930	14,100		
Boating	2,755	6,280	12,930		
Hunting	2,159	2,788	3,666		
Fishing	2,001	2,900	4,370		
Camping	1,520	3,910	8,330		
Golfing	1,326	2,934	5,868		
Water Skiing	944	2,845	5,525		
Hiking	511	1,080	1,810		
Total	27,470	52,527	93,619		

Water is vital to most outdoor recreation activity. In 1971, more than 60 percent of all basin recreation activity was water based. Water also enhances land based recreation such as camping and picnicking. Consequently, the recreational use of water must not be overlooked in planning.

Several state agencies are concerned with preserving and improving the recreational environment of Alabama. Chief among these is the Alabama Department of Conservation and Natural Resources, Division of Outdoor Recreation. In 1970, Auburn University completed an extensive Comprehensive Outdoor Recreation Plan for Alabama under contract with the Alabama Department of Conservation and Natural Resources. This plan is being updated. Since the planning regions in the state study did not coincide with the hydrologic boundaries of the basin, and because of unexpected changes in the level of projected population, it became necessary to develop a separate recreational analysis for the basin study area.

4-32888 3-74
Figure IV-8--Outdoor recreation versus population growth Alabama River Basin within Alabama.

Methodology -- The methodology involved in the basin analysis is the same as that used by Auburn University in developing the comprehensive state plan. A detailed discussion of the methodology involved has been published as a separate planning document by Auburn University.1/ A sample worksheet used in estimating facilities is presented in Table IV-23. Facility needs can be estimated from population projections alone, however, much background research has been accomplished to derive the coefficients found in supporting Tables IV-24, IV-25, and IV-26. The Auburn study considered 13 socio-economic factors such as age, education, race, mobility, income, sex, residence, employment, and family size among other factors in estimating local demand for various activities. For purposes of the Alabama Basin Study, the coefficients for Region 2 in the state plan were applied to the Coosa and Cahaba Subbasins, while estimates for Region 4 were used for the Alabama and Tallapoosa Subbasins. An example of the derivation of picnicking facility needs for the Alabama Subbasin is shown in Table IV-23. In 1971, 185 acres developed for public picnicking were needed along with 1,543 tables. The next step was to accurately inventory all recreation facilities available to the public. This was accomplished by updating the 1968 inventory of facilities reported in Volume 3 of the State Recreation Plan, Supply of Outdoor Recreation Resources in Alabama By Counties.

Fishing and hunting resources were inventoried independently by Soil Conservation Service biologists working closely with state and county conservation personnel. Once supply and demand were determined, the obvious step was to pinpoint areas of need, both current and anticipated. Following the picnicking example for the Alabama Subbasin, 300 acres of developed picnicking acreage was available in 1971 along with 566 tables. Acreage is more than sufficient to satisfy current demand, but there is an immediate need for almost 1,000 tables throughout the subbasin. Results are shown in Table IV-33 under picnicking.

The final step was to identify the general area where the facilities should be located to satisfy the greatest demand. The average distance traveled to participate in recreation generally ranges from 20 miles for swimming to 65 miles for camping. Thus, facilities should be located near more populous areas where the possibility exists. Using this philosophy, growth centers in the basin were determined and facility needs distributed based on anticipated population growth. Results for 1990 are shown in Figures IV-9 through IV-16. Because of the nature of some acitivites such as fishing, it was not possible to pinpoint facility needs to the county level. The recreation population was assumed to be those persons 12 years of age and over, except for swimming, camping, boating, and picnicking. For these four activities, persons under 12 were considered as recreating also. Tourist demand for recreation in the basin was estimated from the projected regional tourist demand data found in Volume 2 of the Comprehensive State Recreation Plan.2/ Table IV-27 sets forth the criteria used to determine the unit need for recreation activities.

<u>I</u>/<u>Participation In Outdoor Recreation In Alabama (A Guide For Establishing Recreational Needs)</u>, Agricultural Economics Series 20, Agricultural Experiment Station, Auburn University, October 1970.

2/ Demand For Outdoor Recreation in Alabama, Agricultural Economics and Rural Sociology Department, Auburn University, Vol. 2, pages 67-77, May 1970.

Alabama Subbasin Source Factor Picnicking 1. Area population 308,000 OBERS Projections 2. Percentage participation by Appendix Table 1 37 region residents (insert local estimates when available) 3. Number of residents partici- 1 x 2 113,960 $(156,607)^{\pm}$ pating 4. Average number of activity Appendix Table 2 14 occasions per participant per year (insert local estimates when available.) 5. Total resident activity 3 x 4 2,206,498 occasions 6. Percentage resident partici- Appendix Table 3 50 pation within State (insert local estimates when available) 7. Total resident within State 5 x 6 1,103,249 activity occasions 8. Percentage resident partici- Local Data 90 pation within local area 9. Total resident activity 7 x 8 992,924 occasions within local area 10. Number of tourist activity Local Data 873,676 occasions 11. Total activity occasions in 9 + 10 1,866,600 local area 12. Conversion standard for Table III-14 10,058 A.O. per Ac. activity (insert local esti-1,210 A.O. per mates when available) Table 13. Facility needs 'for local area 11 ÷ 12 185 ac.--1,543 Table Includes all ages over 12 years. The existing supply facilities should be subtracted from facility needs to determine numet needs.

Table IV-23--A sample of the worksheets used for estimating facility needs, Alabama River Basin, 1970.

Activity	C oo sa and Cahaba Subbasins			Alab	Alabama and Tallapoosa Subbasins		
	1971	1990	2020	1971	1990	2020	
Picnicking	45	54	66	37	45	51	
Fishing, All waters	29	30	40	24	26	32	
Swimming	27	31	37	30	35	37	
Playing golf	5	6	7	5	6	7	
Boating	15	20	28	13	17	22	
Water skiing	6	8	12	4	6	10	
Camping	8	10	12	6	8	9	
Hiking	12	13	10	5	5	4	
Hunting	11	11	11	11 <u>1</u> /	, 11 <u>1</u> /	/ 11 <u>1</u> /	

lable IV-24--Present and projected percentage of the population participating in selected activities by subbasin, Alabama River Basin, 1971, 1990, and 2020.

1/ 12 percent in the Tallapoosa

Source: <u>Participation In Outdoor Recreation In Alabama (A Guide for</u> <u>Establishing Needs</u>), Auburn University, Agricultural Economics Series 20, October 1970. Table IV-25--Annual per person present and projected activity occasions of participation in selected activities by subbasins, Alabama River Basin, 1971, 1990, and 2020.

Activity	Coos	a and Car Subbasing	naba	Alabam	Alabama and Tallapoosa Subbasins	
	1971	1990	2020	1971	1990	2020
Picnicking	10	10	9	14	12	12
Fishing, all waters	8	9.5	11	9	13	15
Swimming	25	28	46	24	28	32
Playing golf	26	33	64	27	36	71
Boating	16	21	30	21	26	37
Water skiing	21	28	37 -	26	38	50
Camping	13	22	33	20	30	44
Hiking	6	11	20	16	32	42
Hunting	15	20	20	31	41	41

Source: Participation In Outdoor Recreation In Alabama (A Guide for Establishing Needs), Auburn University, Agricultural Economics Series 20, October 1970. Table IV-26--Present and projected percentage of within state activity occasions of selected activities by subbasins, Alabama River Basin, 1971, 1990, and 2020.

Activity	Coosa	and Cah	aba	Alab	Alabama and Tallapoos	
	1971	1990	2020	1971	1990	2020
Picnicking	54	58	70	50	62	70
Fishing, all waters	98	90	80	96	90	80
Swimming	73	67	66	69	67	61
Playing golf	82	58	51	77	61	55
Boating	67	59	55	63	62	59
Water skiing	59	62	60	59	65	65
Camping	32	23	21	28	27	24
Hiking	53	48	43	48	52	47
Hunting	95	93	90	97	97	97
Courses Donticipation	In Outdoor	Poemoati		hama (A Cu	ido for	

Source: <u>Participation In Outdoor Recreation In Alabama (A Guide for</u> <u>Establishing Needs)</u>, Auburn University, Agricultural Economics Series 20, October 1970.

Item	Activity Occasions ¹ /			
	Urban Areas	Rural Areas		
Fishing per acre of water:				
Lakes and reservoirs Rivers and streams	10 5	10 5		
Small impoundments Put, grow and take ponds	15 1,250	15 1,250		
Hunting per acre of habitat:				
Big game	0.5	0.5		
Waterfowl	1	1		
Boating per acre of water	72	36		
Swimming per acre of beach:				
Lakes and reservoirs per sq. ft. in pools	23,100 8	11,800 4		
Water skiing per acre of water	45	18		
Camping per acre of land:				
Tent Trailer	1,620 2,700	850 1,440		
per bed, group	90	90		
<u>Hiking</u> per mile of trail	1,400	462		
Picnicking per acre	12,150	5,400 900		
Golfing	1,000	200		
per 9 hole course per 18 hole course	23,760 31,680	15,840 23,760		

Table IV-27--Annual use standards for selected outdoor recreation activities, Alabama River Basin.

1/ Urban-rural standards were weighted to arrive at a single use standard for each activity on the basis of the urban-rural composition of the population in each subbasin in each time period. Source: Participation In Outdoor Recreation In Alabama, Agricultural Experiment Station, Auburn University, Agricultural Economics Series 20, October 1970. Demand, Supply, and Facility Needs -- Nine land and water based activities were selected for analysis. They are fishing, hunting, boating, swimming, water skiing, camping, hiking, picnicking, and golfing. These are the primary recreation activities in the area and are those that would potentially be affected by land and water development activities. Each will be discussed separately. It is realized that much of the land and water area required can be used to satisfy several needs, either concurrently or at different seasons of the year. There is no general rule regarding how much of an area can serve dual purposes. This depends on the nature of the particular area.

Boating: Boating demand is projected to increase from 2.755,000 activity occasions in 1971 to 6.3 million by 1990 and 12.9 million occasions by 2020 (Table IV-28). Boating thus ranks third behind water skiing and camping in the rate of increase anticipated during the next 50 years. Currently, no need exists for additional boating waters as there are about 186,000 acres available for public use. One-half of this acreage is in the Coosa Subbasin, consequently, this area has the largest surplus of acreage. The basin can presently satisfy 11 million activity occasions of boating and no serious shortage of boating waters is expected by the year 2020. If boating demand is to be satisfied in the local area, a minor need exists for 2,800 acres in the Cahaba Subbasin within the next 20 years. As has been pointed out, however, this demand could easily be satisfied on one of the many reservoirs in the Coosa Subbasin.

Swimming: Demand for swimming should about double by the year 1990, resulting in the need for an additional 320 acres of beach (Table IV-29). Currently, the basin has 530 acres of beach and 119 public pools together providing the opportunity for 13.3 million activity occasions of swimming. Present demand is for 10.0 million occasions, therefore it is evident that basin facilities are nearing capacity. Most of the new beaches required during the next two decades will be needed in the Alabama Subbasin. Currently, this area can supply only 934,000 activity occasions of swimming, while demand for 3.2 million activity occasions in 1971 was much higher. At present, 117 acres of beach would be required to meet unsatisfied demand. The need in the Alabama Subbasin is expected to increase to 230 acres by 1990. Figure IV-9 indicates the most desirable location for new beaches in each subbasin between 1971 and 1990. Current beach acreage is also shown. With a metropolitan population approaching 200,000 in the Montgomery area, there is increasing pressure on the recreational resources of this area. No beach areas were reported in either Montgomery or Autauga Counties in 1971 hence a real need exists in these counties.

Water Skiing: This activity is expected to have the greatest relative increase in demand throughout the planning period; however, the percentage of the population participating will remain low. In 1971, only five persons in 100 participated in water skiing. By 1990, the estimate is for eight persons per 100 to participate. Demand is expected to climb from 944,000 occasions in 1971 to 2.8 million by 1990 and 5.5 million by 2020 (Table IV-30). Public large water impoundments can currently satisfy skiing demands in each of the four subbasins, but by 1990, 1,100 acres will be needed in the Cahaba area (Figure IV-10). A large surplus of water for skiing is available in the Coosa Subbasin. As with boating, unsatisfied

```
4-32888 3-73
```

demand in the Cahaba region could easily be met in the Coosa Subbasin if residents were willing to travel 100 miles or more to ski. In the past. most have not been willing or able to do so; consequently, a need will soon exist for skiing waters particularly in the populous Jefferson County area.

Camping: Camping demand is usually satisfied in one of three ways-through tent camping, trailer camping, or group camping in cabins or lodges. In 1971, there were 1,716 individual sites in the basin developed especially for tent camping, 1,853 sites for trailer/tent camping, and 4,200 beds in group camping facilities. Combined they had a capacity of 3.8 million activity occasions (Table IV-31). More than one-half of these facilities are located in the Coosa Subbasin. The demand for camping facilities is expected to increase second only to water skiing among the nine activities considered. Total demand is expected to rise from 1.5 million occasions in 1971 to 3.9 million by 1990 and 8.3 million by the end of the planning period. Only one area -- the Alabama Subbasin -- has an immediate need for additional developed camping facilities. As pointed out, the need can be satisfied in several ways; consequently, Table IV-31 specifies facility needs in terms of both acreages and beds. Likewise, it appears that by 1990 only the Alabama Subbasin will need additional facilities (Figure IV-11).

Hiking: Public hiking trails in the basin can satisfy only about onehalf of the current demand. A total of 239 miles of trail exist, while another 235 miles are needed at present (Table IV-32). By 1990 an additional 720 miles will be required to meet demands (Figure IV-12). None of the four subbasins has sufficient trails, but the bulk of the current deficit is centered in the Alabama Subbasin where only 16 miles of developed trails are reported. The area has a present need for about 140 miles of trail. No other activity appears to be so lacking in facilities as is hiking. With demand expected to double by 1990, there is a real need for additional public trails throughout the basin particularly near the more populated areas.

Picnicking: Picnicking demand is not expected to increase as rapidly as most other activities. Demand by 1990 should be about 9.9 million occasions, 60 percent greater than in 1971 (Table IV-33). Presently. there are about 2,000 acres developed for picnicking in the basin. Four thousand tables are available; 2,000 are in the Coosa Subbasin. The Alabama Subbasin contains only 570 tables for a population of 300,000: consequently. the immediate need is much greater here than in other subbasins. By 1990, however, needs of the Coosa area will surpass those in the Alabama Subbasin because of the heavy tourist activity in the Coosa area. During the next 20 years, an additional 4,200 tables will be needed within the basin--1,800 of these in the Coosa Subbasin and 1,600 in the Alabama Subbasin. The proposed location of these facilities is shown in Figure IV-13. The locations were derived from anticipated population growth, tourist activity, and densities in terms of numbers of persons per table in each county.

Golfing: The current capacity of all courses in the basin is 1.8 million activity occasions, while demand is for 1.3 million occasions. With demand increasing to 2.9 million occasions by 1990 and 5.9 million by 2020,

the need for numerous new or expanded courses is quite evident. Currently. only one additional 18-hole golf course is needed to satisfy basin demand, that being in the Alabama Subbasin in the Montgomery area. By 1990, however, demand is expected to change dramatically as 45 additional 18-hole courses will be needed to satisfy demands (Table IV-34). This is double the number of 18-hole courses available in 1971. There are also 26 9-hole courses. The general location of the proposed 45 new courses is shown in Figure IV-14. The locations were determined in a manner similar to that discussed under picnicking, with densities expressed in terms of number of persons per course.

Fishing: Fishing demand has been estimated for four types of water groups--lakes and reservoirs, rivers and streams, small impoundments, and put, grow and take ponds. Brackish and salt water fishing is not available in the basin. This classification into separate types of fishing demand follows the method set forth in Volume 6 of the State Recreation Plan and is consistent with other fishery research being conducted as a part of the basin study.

Large impoundments, i.e., lakes and reservoirs exceeding 500 acres are estimated to supply over one-half of all current fishing demand (Table IV-35). Roughly 50 percent of all such reservoir fishing is available in the Coosa Subbasin. The current capacity in fishing activity occasions is shown in Table IV-35. For purposes of this study, a man-day of fishing is assumed to equal one activity occasion. Each reservoir, lake, river and stream in the basin was analyzed separately regarding man-days of fishing and sustained harvestable production of fish per acre. The total capacity of all public fishing areas in 1971 was slightly more than four million activity occasions compared to a demand of two million occasions. However, only the Alabama Subbasin has sufficient resources to satisfy all four types of fishing demand. About 30,000 additional acres need to be developed for fishing to meet present needs; the figure increases to 59,000 acres by 1990 (Figure IV-15). By far the greatest demand is for additional river and stream fishing. There appears to be enough reservoirs and put, grow. and take ponds to satisfy this type of demand through the next 20 years. Total fishing demand is exptected to increase about 50 percent during this period.

Hunting: Three types of hunting demand are considered in this studybig game, small game, and waterfowl. The supply of land assumed available for hunting includes state management areas, National Forests, and all company and privately owned land open to the public. Shooting preserves and club leased lands were not a part of the land supply. In all, 2.4 million acres are available for public hunting in the basin. Almost one-half, 1.1 million acres, are in the Coosa Subbasin.

Hunting demand is strongest in the Alabama and Tallapoosa Subbasins. A hunter in these two areas normally participates in about 29 hunting occasions per year, whereas in other parts of the basin the rate is only 15 occasions. Current basin demand is for about 2.2 million activity occasions of hunting annually (Table IV-36). Seventy percent of the demand is for small game. The capacity of basin public hunting lands at present is 6.1 million occasions, hence no serious shortages exist overall. There are however, a few problems in satisfying particular types of hunting. All areas

4-42888 3-73

are deficient in acreage for waterfowl hunting. Currently 30,000 acres are available with an additional 18,000 acres needed to satisfy 1971 demand. By 1990 the need for waterfowl hunting acreage is expected to increase by 55,000 acres (Figure IV-16). The remaining area of need is for additional big game acreage in the Alabama Subbasin. Approximately 555,000 acres are available; 44,000 additional acres are needed to meet current damand with another 100,000 acres needed by 1990. The three other subbasins have a surplus of both big and small game acreage which should safisfy 1990 demand. Table IV-28--Boating demand, public supply, and development needs, by subbasins, Alabama River Basin, 1971, 1990, and 2020.

	Ala. River	Subbasin				
Item	Basin	Alabama	Coosa	Tallapoosa	Cahaba	
<u>1971</u>		1000	Activity Occ	asions		
Demand Existing facilițies	2,755	945	1,060	600	150	
Water, acres <u>l</u> / Ramps, number Supply capacity	186,440 392 11,000	44,820 51 2,735	88,725 282 5,235	49,915 58 2.845	2,980 1 185	
Surplus (+) Water need, acres.	+8,245	+1,790	+4,175	+2,245	+35	
1990						
Demand Public supply Deficit or surplus Water need, acres.	6,280 11,000 +4,720 . 2,800	1,950 2,735 +785 0	2,780 5,235 +2,455 0	1,180 2,845 +1,665 0	370 185 -185 2,800	
2020						
Demand Public supply Deficit or surplus Water need, acres.	12,930 11,000 -1,930 38,300	3,720 2,735 -985 14,900	6,210 5,235 -975 14,800	2,220 2,845 +625 0	780 185 -595 8,600	

Source: Alabama Statewide Comprehensive Outdoor Recreation Plan and inventory material provided by the U.S.D.A.

1/ Includes all streams, rivers, and impoundments open to the public.

	Ala.River	Subbasin				
Item	Basin	Alabama	Coosa	Tallapoosa	Cahaba	
<u>1971</u>		1000	Activity C	ccasions		
Demand Existing capacity:	10,004	3,219	3,784	2,019	982	
Beach Pools Total	10,055 3,259 13,314	294. 640 934	7,305 1,533 8,838	2,456 764 3,220	0 322 322	
surplus (+) Beach needed, acres.	+3,310	-2,285 117	+5,054 0	+1,201	-660 33	
1990						
Demand Public Supply Deficit or surplus Beach needed, acres.	19,860 13,314 -6,546 322	5,670 934 -4,736 230	8,660 8,838 +178 0	3,460 3,220 -240 12	2,070 322 -1,748 80	
2020						
Demand Public supply Deficit Beach needed, acres.	37,020 13,314 -23,706 1,100	9,080 934 -8,146 380	18,290 8,838 -9,452 440	5,410 3,220 -2,190 100	4,240 322 -3,918 180	

Table IV-29--Swimming demand, public supply, and development needs, by subbasins, Alabama River Basin, 1971, 1990, and 2020.

Source: Alabama Statewide Comprehensive Outdoor Recreation Plan and inventory material provided by the U.S.D.A.

Table IV-30--Water skiing demand, public supply, and development needs by subbasin, Alabama River Basin, 1971, 1990, and 2020.

	Ala. River			Subbasin	
Item	Basin	Alabama	Coosa	Tallapoosa	Cahaba
		1000 Ac	tivity Occa	sions	
1971					
Demand Capacity of	944	265	420	230	29
large impoundments Deficit (-) or	5,733	1,319	2,927	1,447	40
surplus (+) Additional water need	+4,789 ds,	+1,054	+2,507	+1,217	+11
acres		0	0	0	0
1990					
Demand Public supply Deficit or surplus Additional water peer	2,845 5,733 +2,888	780 1,319 +539	1,340 2,927 +1,587	640 1,447 +807	85 40 -45
acres	1,000	0	0	0	1,100
2020					
Demand Public supply Deficit or surplus Additional water need	5,525 5,733 + 208	1,240 1,319 +79	2,960 2,927 -33	1,150 1,447 + 297	175 40 -135
acres	3,940	0	800	0	3,140

Source: Alabama Statewide Comprehensive Outdoor Recreation Plan and inventory material provided by the U.S.D.A.

Table IV-31--Camping demand, public supply, and development needs, by subbasin, Alabama River Basin, 1971, 1990, and 2020.

	Ala. River	Subbasin					
Item	Basin	Alabama	Coosa	Tallapoosa	Cahaba		
1971		1000 Ac	ctivity Occa	sions			
Demand Existing capacity <u>l</u> / Deficit (-) or	1,520 3,776	446 300	631 1,975	279 961	164 540		
surplus (+) Additional Needs:	+2,256	-146	+1,344	+682	+376		
or	. 105 19,	105	0	0	0		
acres	. 65	65	0	0	0		
beds	.1,620	1,620	0	0	0		
1990							
Demand Public supply Deficit or Surplus Additional needs:	3,910 3,776 -134	1,135 300 -835	1,685 1,975 +290	685 961 +276	405 540 +135		
or	580	580	0	0	0		
acres or Group camping,	¹ g, 350	350	0	0	0		
beds	9,300	9,300	0	0	0		
2020							
Demand Public supply Deficit Additional needs:	8,330 3,776 -4,554	2,220 300 -1,920	3,900 1,975 -1,925	1,320 961 -359	890 540 -350		
or	3,050 Ig,	1,280	1,290	230	250		
acres	. 1,830	770	770	150	140		
beds	50,600	21,330	21,390	3,990	3,890		

1/ Developed public camping facilities.

Source: Alabama Statewide Comprehensive Outdoor Recreation Plan and inventory material provided by the U.S.D.A.

Table IV-32--Hiking demand, public supply, and development needs, by subbasin, Alabama River Basin, 1971, 1990, and 2020.

		00	INNASTU	
asin .	Alabama	Coosa	Tallapoosa	Cahaba
	1000 Ac	tivity Occa	sions	
51 <u>1</u> 239	159 16	202 154	98 59	52 10
253 258	18 -141	165 -37	59 -39	11 -41
235	125	35	40	35
080 253 327 720	360 18 -342 290	400 165 -235 210	220 59 -161 150	100 11 -89 70
310 253 557	490 18 -472 380	840 165 -675	290 59 -231	190 11 -179
	980 253 227 20 20 20 253 257 290	980 360 253 18 327 -342 20 290 310 490 253 18 257 -472 290 380	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

Source: Alabama Statewide Comprehensive Outdoor Recreation Plan and inventory material provided by the U.S.D.A.

Table IV-33--Picnicking demand, public supply, and development needs, by subbasin, Alabama River Basin, 1971, 1990, and 2020.

	Ala River				
Item	Basin	Alabama	Coosa	Tallapoosa	Cahaba
		1000 /	Activity	Occasions	
1971					
Demand	6,250	1,867	2,545	1,179	659
Capacity of:					
De v eloped Acreage	18,730	3,017	10,620	3,894	1,199
Tables	4,707	685	2,354	1,254	414
Deficit(-) or surplu	s(+)				
of acres	+12,480	+1,150	+8,075	+2,715	+540
of tables	-1,543	-1,182	-191	+75	-245
Additional acres					
needed	0	0	0	0	0
Additional tables					
needed	1,329	977	157	0	195
1990					
Demand	9,930	2,680	4,570	1,600	1,080
Public supply:		,	1		
Existing acres	18,730	3,017	10,620	3.894	1.199
Existing tables	4,707	685	2,354	1.254	414
Deficit or surplus:	*		<i>y</i> –	-)	
of acres	+8,800	+337	+6,050	+2.294	+119
of tables	-5,223	-1.995	-2.216	-346	-666
Additional acres					
needed	0	0	0	0	0
Additional tables					
needed	4,220	1,600	1,820	280	520
2020					
Demand	14.100	3.900	6.100	2 500	1 600
Public supply:		0,700	0,100	2,000	1,000
Existing acres	18,730	3.017	10.620	3,804	1,100
Existing tables	4.707	685	2.354	1 254	414
Deficit or surplus:	.,	000	2,004	1,20-	-, T -,
of acres	+4.630	-883	+4.520	+1 304	-401
of tables	-9.313	-3.215	-3.746	-1 246	-1 186
Additional acres	,,	0,210	0,140	1 9 Z - V	1,100
needed.	6.850	1,100	4,100	1 300	350
Additional tables	- ,	-,-00	-,	1,000	000
needed	7,340	2,520	2,930	900	900
	/ •	_,	-, /00	120	200

Source: Alabama Statewide Comprehensive Outdoor Recreation Plan and inventory material provided by the U.S.D.A.

Table IV-34--Golfing demand, public supply, and development needs, by subbasin, Alabama River Basin, 1971, 1990, and 2020.

	Ala River		Subbasin			
Item	Basin	Alabama	Coosa	Tallapoosa	Cahaba	
		1000	Activity C)ccasions		
1971						
Demand	1,326	393	543	249	141	
Existing capacity Deficit (-) or	1,829	378	649	280	522	
surplus (+) Additional needs:	+503	-15	+106	+31	+381	
9 hole or	1	l	0	0	0	
18 hole courses .	1	1	0	0	0	
1990						
Demand Public supply Deficit or surplus	2,934 1,829 -1,105	932 378 -554	1,161 649 -512	564 280 -284	277 522 +245	
9 hole or 18 hole courses .	. 62 . 45	25 18	24 17	13 10	0 0	
2020						
Demand Public supply Deficit Additional needs:	5,868 1,829 -4,039	1,830 378 -1,452	2,401 649 -1,752	1,092 280 -812	545 522 -23	
9 hole or 18 hole courses.	. 181 . 134	65 48	78 58	37 27	1	

Source: Alabama Statewide Comprehensive Outdoor Recreation Plan and inventory material provided by the U.S.D.A.

Table IV-35--Fishing demand, public supply, and development needs, by subbasins, Alabama River Basin, 1971, 1990, and 2020.

	Ala, River		Subl	basin	
Item	Basin	Alabama	Coosa	Tallapoosa	Cahaba
		1000	Activity	Occasions	
<u>1971</u>					
Demand In:	1 070	071	510	0.40	4.1
Lakes & reservoir	S 1,078	271	107	240	41
RIVERS & Streams	370	122	127	09	38
	.5=/ 447	100	TOT	107	40
Put, grow & take	100	20	12	03	6
	2 001	20	43	23	121
IOLAI	2,001	244	849	407	121
Capacity of:					
Lakes & reservoir	s 2,832	1,201	1,205	418	8
Ri v ers & streams	347	205	68	58	16
Small impoundment	s 409	154	131	101	23
Put, grow & take	498	112	172	181	33
Total	4,086	1,672	1,576	758	80
	2	2	~		
Total deficit or					
surplus	+2,085	+1,118	+727	+291	-51
Additional Needs:					
Lakes & reservoir	`S.				
acres	. 3.300	_	_	-	3,300
Rivers & streams.	• • • • • • • • •				0,000
acres.	. 22.400	_	11,800	6,200	4.400
Small impoundment	S .		; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;	•) - • •	.,
acres	. 3,950	_	2,000	400	1,550
Put, grow & take,					_ ,
acres	. –	-	-	-	-
Total, acres.	. 29,650	-	13,800	6,600	9,250
<u>1990</u>					
Demand:					
Lakes & reservoir	s 1,720	490	680	400	50
Rivers & streams	560	200	170	140	50
Small impoundment	s 570	200	180	140	50
Put, grow & take	150	50	50	40	10
Total	2,900	940	1,080	720	160
Dublic ourslu	4 070	1 670	1 664		00
Total deficit or	4,070	1,072	1,004	/54	80
surplus	+1,170	+732	+484	+34	-80
JUTHIUS		102		10-	00

Table IV-35 (cont'd)

	Ala. River	Subbasin				
Item	Basin	Alabama	Coosa	Tallapoosa	Cahaba	
<u>1990</u> (cont'd) Additional Needs:		1000	Activity	Occasions		
Lakes & reservoirs, acres Rivers & streams	. 4,200	-	-	-	4,200	
acres	. 43,600	-	20,400	16,400	6,800	
acres Put, grow & take	. 10,720	3,050	3,270	2,600	1,800	
acres Total, acres .	. 58,520	3,050	23,670	19,000	12,800	
2020 Demand: Lakes & reservoirs Rivers & streams Small Impoundments Put, grow & take Total	2,440 760 850 320 4,370	700 250 280 90 1,320	1,080 260 280 140 1,760	580 180 210 70 1,040	80 70 80 20 250	
Public supply	4,070	1,672	1,564	754	80	
Total deficit or surplus	-291	+352	-196	-277	-170	
Additional Needs: Lakes & reservoirs, acres	. 23,400	-	-	16,200	7,200	
acres	. 82,600	9,000	38,400	24,400	10,800	
acres Put, grow & take	. 29,400	8,400	9,930	7,270	3,800	
acres Total acres	135,400	17,400	- 48,330	47,870	- 21,800	

1/ Under 500 acres.

Source: Alabama Statewide Comprehensive Outdoor Recreation Plan and inventory material provided by the U.S.D.A., Alabama Department of Conservation and Natural Resources, and Bureau of Sport Fisheries and Wildlife U.S.D.I.

	Ala. River Basin		Subbasin				
Item		Alabama	Coosa	Tallapoosa	Cahaba		
		1000	Activity	Occasions			
<u>1971</u> Demand:							
Big game	640	300	145	165	30		
Small game	1,470	645	355	390	80		
Waterfowl	49	19	15	11	4		
Total	2,159	964	515	566	114		
Existing capacity:							
Big game	1.223	278	575	259	111		
Small game	4.893	1.111	2.300	1.037	445		
Waterfowl	31	15	4	8	4		
Total	6,147	1,404	2,879	1,304	560		
Deficit(-) or surplu	us(+)						
Big game	+583	-22	+430	+94	+81		
Small game	+3,423	+466	+1.945	+647	+365		
Waterfowl	-18	-4	-11	-3	0		
Total	+3,988	+440	+2,364	+738	+446		
Hunting Needs:							
Big game, acres	44,000	44,000	0	0	0		
Small game, acres	0	0	0	0	0		
Waterfowl, acres	18,000	4,000	11,000	3,000	0		
Total, acres	62,000	48,000	11,000	3,000	0		
1990							
Demand:							
Big game	782	350	200	190	42		
Small game	1,920	850	490	480	100		
Waterfowl	86	40	21	21	4		
Total	2,788	1,240	711	691	146		
Public Supply	6,147	1,404	2,879	1,304	560		
Deficit or surplus:							
Big game	+441	-72	+375	+69	+69		
Small game	+2,973	+261	+1,810	+557	+345		
Waterfowl	-55	-25	-17	-13	0		
Total	+3,359	+164	+2,168	+613	+414		
Needs:							
Big game, acres	144,000	144,000	0	0	0		
Small game, acres	0	0	0	0	0		
Waterfowl, acres	55,000	25,000	17,000	13,000	0		
Total, acres	199,000	169,000	17,000	13,000	0		

Table IV-36--Hunting demand, public supply, and development needs, by subbasin, Alabama River Basin, 1971, 1990, and 2020.

Table IV-36 (cont'd)

	Ala.River	Subbasin				
Item	Basin	Alabama Coosa		Tallapoosa	Cahaba	
		1000	Activity	Occasions		
2020						
Demand:						
Big game	1,020	460	260	250	50	
Small game	2,530	1,130	650	620	130	
Waterfowl	116	50	30	30	6	
Total	3,666	1,640	940	900	186	
Public supply	6,147	1,404	2,879	1,304	560	
Deficit or surplus:						
Big game	+203	-182	+315	+9	+61	
Small game	+2,363	-19	+1,650	+417	+315	
Waterfowl	-85	-35	-26	-22	-2	
Total	+2,481	-236	+1,939	+404	+374	
Needs:						
Big game, acres Small game, acres Waterfowl, acres	364,000 10,000 85,000	364,000 10,000 35,000	0 0 26,000	0 0 22,000	0 0 2,000	
Total, acres	459,000	409,000	26,000	22,000	2,000	

Source: Alabama Statewide Comprehensive Recreation Plan and inventory material provided by the U.S.D.A., Alabama Department of Conservation and Natural Resources, and Bureau of Sport Fisheries Wildlife, U.S.D.I.

Fish

Needs for additional fishery and wildlife habitat are discussed in the section "Recreation and Related Needs".

There are many problems affecting the fishery resources in the Alabama Basin. Pollution and lack of accessibility seem to be the most important, however.

Sediment and many chemical pollutants affect the use and appearance of the water and the reproduction of fish. Tons of sediment from urban and rural construction, roadbanks, unstable stream channels, farm lands, and other sources pass into our waterways annually.

Poor accessibility to fishing waters has resulted in limited utilization of several high quality fishing streams. There are few, if any. established float-fishing areas with adequate facilities within the basin.

Other problems exist, such as aquatic weeds; but they do not appear to be a major limiting factor in management of the fishery resources.

Wildlife

There are numerous problems affecting the management and utilization of the wildlife resources within the basin. Private landowners are becoming more restrictive with the use of their land for public hunting, for various reasons including increased hunting pressure and increased values for wildlife resources. Some species such as deer are heavily hunted while other game animals such as the oppossum, woodcock, and snipe, to mention a few, are underharvested.

Obviously, the problem is to stimulate public interest in the sporting qualities of some of the less important species.

Illegal hunting or poaching is a problem of serious magnitude in many counties. This appears to be a limiting factor on big game population in several areas.

Although Alabama is not in a direct migration route, thousands of waterfowl pass through the state each year from both the Atlantic and Mississippi flyways. The basin does not have the attractive waterfowl habitat found in the Mobile Bay area, but there are many acres of streams. lakes, reservoirs, and beaver ponds with some waterfowl potential. The basin does not contain a waterfowl refuge or management area; and most of the existing wetland habitat receives little, if any, management from private, state, or federal sources. The location of a potential waterfowl management area in the Alabama Subbasin will be discussed in more detail in the final report.

Beaver control seems to be the most prevalent wildlife problem in the river basin. There is no doubt that beaver population need close regulation even where impounded areas are managed for waterfowl or fish, however, most authorities agree that total eradication must be avoided. Many biologists

are of the opinion that most of the beaver damage in Alabama occurs on areas with inferior, second-growth hardwood of rather low value. However. a forestry-oriented economist can show staggering monetary losses of raw materials from the estimated 75,000--100,000 forest acres that are flooded by beaver ponds in the state.

Table IV-37-shows the results of an aerial survey that was conducted of beaver ponds in 1967. Nine counties were chosen at random, beaver ponds were counted on all waterways, and the data were expanded for all counties in the state. The final report will contain a discussion of the beaver problem and an assessment of the beaver's status within the basin.

Table IV-37 -Results of Aerial Beaver Pond Survey in Alabama with expanded data and estimates in each county, Alabama River Basin, 1967.

	Beaver	Pond	Stream		Beaver	Pond	Stream
County	Ponds	Acres	Miles	County	Ponds	Acres	Miles
Autauga	222	3112	230	Jefferson	48	119	160
Baldwin	212	1121	305	Lee	179	2510	185
Bibb	272	3389	185	Lowndes	179	2510	185
Bullock	169	2369	175	Macon	188	2636	195
Butler	237	2853	250	Marengo	266	1926	240
Calhoun	47	74	125	Mobile	181	957	260
Chambers	70	133	160	Monroe	160	846	230
Cherokee	53	83	140	Montgomery	183	2566	190
Chilton	199	2480	135	Perry	199	1441	180
Clarke	163	862	235	Randolph	81	154	185
Clay	75	108	130	Shelby	57	141	190
Cleburne	59	93	155	St. Clair	97	186	220
Coosa	73	139	165	Talladega	79	150	180
Dallas	316	2288	285	Tallapoosa	86	163	195
DeKalb	70	110	185	Wilcox	238	1723	215
Elmore	198	2776	205				
Etowah	53	83	140	Total	4,091	40.101	7.215

Source: Alabama Beaver Symposium, 1967.

Environmental Quality

The environmental quality of the Alabama River Basin is influenced by various factors. It is impossible to properly evaluate even the most important factors in this report. Therefore, attention is given to some of the more significant problems that face the resource planner, manager, or administrator. Aspects of the river basin environment that are identified include; aesthetic quality, forest environment, confined livestock waste problems, county-wide solid waste disposal systems, and selected sites of historical, archaeological, and scenic value.

Aesthetic Quality -- The Alabama River Basin originates in the Appalachian Plateau displaying both geological and topographical diversity as it extends southwestwardly across the state. For the most part, the basin has a pleasant rural and open country character enhanced by a variety of land uses, lakes, and streams. Generally, the landscape is attractive and pleasing to both city dwellers and rural residents. Approximately 72 percent of the area is in woodland, 26 percent in openland use and 2 percent other uses. The upper portion of the basin offers scenic vistas of wooded hills and valleys with checker-board patterns of openland farmsteads. A scenic vista of wooded hills is best typified in the brilliant colors of fall foilage as viewed from Cheaha Mountain, the state's highest elevation at 2,407 feet. Much of the lower basin is occupied by bottomland hardwoods with commercial value. Large areas of these hardwoods are located along the flood plains and contribute a seemingly infinite flora and fauna for man's enjoyment and welfare. Also, in the flood plain of the lower basin are natural areas such as the Blue Girth-Beech Creek Swamp in Dallas County that are recognized for their unique aesthetic and wildlife value.

The Alabama basin has a temperate, humid climate typical of the southeastern part of the United States. Severe cold weather seldom occurs. The pleasant climate, adequate rainfall, and long growing season provide an environment favorable for the production of plants and animals needed for man's existence.

However, basin inhabitants have not always displayed good stewardship of the natural surroundings. The basin environment has been altered by a never ending quest to have more and better goods and services. The resulting environmental damages to soil and water resources have been significant. Large areas of land are being used for cultivation and other open uses that are best suited for timber production. Other areas of prime agricultural land are being used for residential sections, industrial parks. and other developments. Water resources are being polluted by sediment and less than adequately treated sewage discharged into rivers and small streams. Lack of interest in environmental improvements is exemplified by run-down farmsteads, abandoned houses, idle land, poorly managed woodlands, and eroded cropland, and roadbanks. These and many other related environmental problems of equal importance confront resource managers.

Forest Environment -- The basin forest plays a major role in man's activities. From this dynamic ecosystem man acquires many of the necessities required to maintain a healthy society and improve his quality of life. The forest ecosystem provides important social aspects including intellection, 4-32888 3-73

Figure IV-17--Man and the forest ecosystem.

perception, sensation, and an understanding of cultured husbandry at the same time it supplies vital renewable resources such as oxygen, wood, wild-life, water, and recreation (Figure IV-17).

The satisfaction of physical needs is man's primary concern and will continue to govern forestry conservation efforts. Wood products for building materials, paper, and synthetics are emphasized; and needs for these essential commodities are constantly expanding. The demands are real but forest ecosystems provide other valuable benefits also which often go unnoticed. The healing and mending characteristics of the forest reduces noise, cleanses the air and retards sediment and pollutants from entering rivers and streams. All are primary links in the chain which leads to a quality environment.

Enhancement of the visual resource, increasing knowledge and understanding of nature, and recreation experiences are readily available in forest environments. Vegetative screening and visual resource management along travel and water corridors can greatly restore the visual quality of the basin landscape. Green belts and open spaces in and near urban areas can provide a precarious and vital balance between greenery and concrete. This impact can not only improve the visual quality of the city, but also provide accessible areas for leisure, inspiration, and nature education. These uses of the forest resources are virtually untapped in the Alabama River Basin.

The forest provides easy occasion for meaningful leisure opportunities. The associated forest wildlife resource and backcountry areas provide a setting where man can still enact the challenge of man against beast or survival in nature or enjoy the quiet tranquility of the natural environment. Outdoor recreation also provides an opportunity for family activities, especially those related to family cohesiveness through the shared experiences of camping, sightseeing, and hiking activities.

Forest ecosystems are a part of our heritage and a major element in our aesthetic lives. They not only supply vital materials and secondary effects for our primary physical needs, but also offer the manifold aspects for improving our social environment. Wise forest resource planning and management must incorporate highly imaginative and innovative programs to blend the diverse forest resources to satisfy the diverse needs of man.

<u>Livestock Waste</u> -- With the abundant availability of synthetic nitrogen fertilizers at low cost following World War II, it became more economical for the farmer to supply plant nutrients to his fields from the fertilizer bag rather than meet the expense of hauling manure from barnyard or feedlot. Further, the general trend in mechanizing and streamlining production was given impetus by labor shortages during and after the war. Manure accumulated in vast quantities. Disposal of the waste became a problem of both engineering efficiency and aesthetics.

The value of manure as a resource changed rapidly. For example, the 1938 Yearbook of Agriculture carries this statement:

"One billion tons of manure, the annual product of livestock on American farms, is capable of producing \$3,000,000,000 worth of increase in crops. The potential value of this agricultural resource is three times that of the nation's wheat crop and equivalent to \$440 for each of the country's 6,800,000 farm operators. The crop nutrients would cost more than six times as much as was expended for commercial fertilizers in 1936. Its organic matter content is double the amount of soil humus annually destroyed in growing the nation's grain and cotton crops."

Obviously, the optimistic outlook has changed drastically. The change occurred because livestock and poultry production in the basin became concentrated in large scale, confinement-type-enterprises. Such large concentrations of animals have greatly magnified the problems of handling wastes, including health hazards and aesthetic nuisances. Economic studies indicate that the costs of handling manures make them no longer competitive in price with chemical fertilizers.

A study of the extent of livestock waste problems in the Alabama River Basin was conducted by gathering data in each basin county through the Soil Conservation Service District Conservationist. This information will be used by the Alabama Development Office (ADO) and the Alabama Water Improvement Commission (AWIC) in preparing a State Water Quality Management Plan for each subbasin. The information gathered includes pertinent data on (1) all beef cattle feedlots where 100 animals or more are kept in continuous confinement, (2) all hog parlors, (3) all dairy operations where cows are kept in continuous confinement, (4) and all dairy operations milking more than 100 cows.

Table IV-38 summarizes the results of the confined livestock inventory for the total basin and each subbasin. According to the survey, 301 operators had approximately 75,890 hogs, dairy cattle, and beef cattle confined as set forth in the above paragraph. This varies from about 6,000 animals in the Cahaba Subbasin to 40,000 animals in the Alabama Subbasin.

Approximately 168 hog parlor operators are housing 51,330 hogs in the Alabama River Basin. The survey indicated 27 operators with 7,395 confined hogs in Autauga County, the largest county total for the basin. The Alabama Subbasin had 90 hog parlor operators handling 29,200 hogs, contrasted to 7 operators and 2,000 animals in the Cahaba Subbasin. The percentage of operations with some type of waste treatment facility range from 50 percent in the Alabama Subbasin to 86 percent in the Cahaba Subbasin. The adequacy of the facilities or the efficiency of the treatment is not a part of this inventory.

Operators of 116 dairies are milking more than 100 cows each, or keeping smaller herds in continuous confinement. Less than half, 47 percent, have some type of waste treatment facility. The Coosa Subbasin has the largest number of operators (53), and reported 5,860 cows in confinement or large herds, the largest number in any subbasin.
Table IV-38--Confined livestock operations by type and subbasin in the Alabama Basin, 1972.1/

	1	log Parlor	S		A TT PA		ns		Catt	le Feedlo	ts	
bbasin	No. of Operators	No. of Animals	Treat No.	ment %	No. of Operators	No. of Animals	Trea No.	tment %	No. of Operators	No. of Animals	Treat No.	cment %
0 S A	33	11,105	17	52	41	5,860	28	68	9	2,640	9	100
haba	7	2,000	9	86	23	3,635	17	74	ł	ł	1	i I
a bama	06	29,200	58	64	27	4,919	8	30	œ	5,350	9	75
llapoosa	38	9,025	23	60	13	1,756	2	15	m	400	5	67
TAL	168	51,330	104	62	104	16,170	55	53	17	8,390	14	82

- - Inventory includes all hog parlors, dairy herds kept in continuous confinement dairy herds exceeding 100 head, and beef cattle feedlots exceeding 100 animals. 2

4-32888 3-73

IV-88

Of the 17 beef cattle feedlots inventoried in the basin, 8 were in the Alabama Subbasin, 6 in the Coosa Subbasin and 3 in the Tallapoosa Subbasin. The survey indicated that in November, 8,390 beef cattle were in feedlots handling more than 100 head per feedlot. The largest operation, feeding 3,000 cattle was reported in Lowndes County. Only 3 of 17 beef cattle feedlots inventoried did not have waste treatment facilities.

As shown in Table IV-39, the total solid waste production of the confined animals will exceed 280,000 tons annually if the total number does not increase. More than half of the solid waste is generated by dairy cows. Using an average population equivalent factor from several sources, the 75,890 confined animals inventoried in this report will create a waste treatment problem equivalent to a human population of approximately 500,000.

Additional information on livestock waste disposal problems for a specific area may be available from the State Public Health Department, Extension Service, Agricultural Experiment Station, and the Soil Conservation Service Field Offices.

Livestock	Population	Total Production of solid wastel	Total Production of liquid wastel
	Thousands	Thousands tons/yr.	Thousands tons/yr.
Beef Cattle	8	75.2	29.1
Hogs	51	55.1	32.7
Dairy Cattle	16	150.4	58.4
Total	75	280.7	120.2

Table IV-39--Production of wastes by confined livestock in the Alabama River Basin, 1972.

<u>I</u>/ Source: "Wastes in Relation to Agriculture and Forestry", U.S.D.A. Miscellaneous Publication No. 1065. <u>Solid Waste Systems</u> -- The following is a brief summary of the solid waste disposal systems in each county that is partially or wholly within the Alabama River Basin as of November, 1972. The information was obtained from a questionnaire sent to each Soil Conservation Service Field Office. The information was reviewed by the Division of Solid Waste, State Department of Public Health. Approximately 64 percent of the counties within the basin meet the requirements for the collection and disposal of solid waste set forth by the State Department of Public Health.

A rating system which measures various factors relating to the collection and disposal of solid waste is used as the basic criteria for determining the approval of a waste disposal system. However, the maximum state standards for a land disposal site require that; (1) no burning of refuse be permitted, (2) refuse be compacted and covered daily as used, (3) no pollution of ground or surface water occurs, (4) all hazardous waste such as pesticide containers be properly managed. Detailed information on the requirements of an approved county-wide solid waste system may be obtained from the State Department of Public Health--Division of Solid Waste.

Following is a list of counties having an approved solid waste disposal system as of November 1972:

COUNTY

DESCRIPTION OF SYSTEM

- Autauga Autauga County uses a system of 75 bulk containers to collect solid waste in rural areas. These containers are serviced by county packer disposal trucks and hauled to a sanitary landfill operated in cooperation with the city of Prattville.
- Baldwin Baldwin County has two sanitary landfills for disposal of solid waste. The county contracted with individual collectors to service the rural areas.
- Calhoun Calhoun County handles solid waste pickup in bulk containers serviced by a private contractor. The county owns a sanitary landfill and the city of Anniston provides personnel and equipment for operation.
- Chambers Chambers County owns and operates a sanitary landfill for the disposal of solid waste. Approximately 75 percent of the rural households are served by private collectors. The collectors, in turn, pay a use fee when dumping in the sanitary landfill.
- Cherokee County has a bulk container system for solid waste collection. The containers are serviced by two county vehicles and the waste is hauled to a sanitary landfill.
- Chilton Chilton County owns and operates a bulk container system for solid waste disposal. The containers are picked up twice weekly and hauled to a county owned sanitary landfill. The

Chilton towns of Maplesville, Jemison, Thorsby, and Clanton haul (Cont'd) waste to the county landfill.

- Clarke Clarke County has a county-wide solid pickup service with dispersal at an approved landfill site near Grove Hill. A supervisor is employed and two packer trucks are routed through the rural areas. The county furnishes a front-end loader and operator to compact and cover refuse daily.
- Cleburne Cleburne County and the city of Heflin have a waste disposal system agreement. The county picks up solid waste countywide through use of bulk containers and hauls it to a sanitary landfill near Heflin. The city provides labor and equipment to operate the landfill.
- Coosa County uses a bulk container system in the collection of solid waste. The county empties these containers each week in a centrally located landfill approximately five miles north of Rockford.
- DeKalb DeKalb County has a county-wide system of solid waste collection using a private contractor. The contractor maintains a sanitary landfill.
- Elmore Elmore County handles solid waste in bulk containers which were purchased by the county and Alabama Power Company. Containers are serviced by two trucks which haul to three sanitary landfills.
- Escambia Escambia County operates two sanitary landfills and furnishes equipment to maintain them. Rural pickup services are made available to the entire county by a private firm.
- Etowah Etowah County has bulk containers located throughout the county. These containers are serviced three times weekly and hauled to a sanitary landfill which is operated by the county.
- Jefferson Most of the Jefferson County area is covered by a solid waste pickup service using private contractors. The county maintains several landfills periodically.
- Lee There is a county-wide solid waste garbage service for Lee County. The soild waste is picked up in the county by both public and private operators and is dumped in both public and private sanitary landfills.
- Macon Macon County owns and operates a bulk container system which is serviced by county trucks and hauled to a sanitary landfill at Tuskegee

- Montgomery Montgomery County provides county-wide solid waste pickup twice weekly for \$4.00 per month. Services are contracted from a private operator. All solid wastes are hauled to one county-maintained sanitary landfill and two sanitary landfills operated by the city of Montgomery.
- Randolph Randolph County has a county-wide solid waste collection system. Collections are made house-to-house each week by a private contractor. The waste is hauled to a sanitary landfill operated by the county.
- St. Clair St. Clair County contracts the collection of solid waste to an independent operator. Collections are made house-tohouse each week and hauled to a sanitary landfill operated by the contractor.
- Tallapoosa Tallapoosa County uses a bulk container system to collect solid waste in rural areas. The waste is hauled to a county operated sanitary landfill, and to a sanitary landfill operated by Alexander City.
- Tuscaloosa Tuscaloosa County has bulk containers which are serviced by county trucks. The solid waste is hauled to a central county-municipal sanitary landfill in the city of Tuscaloosa.

Following is a list of counties that do not have an approved solid waste disposal system as of November 1972:

- COUNTY DESCRIPTION OF SYSTEM
- Bibb County has 40 acres approved by the health department for a sanitary landfill. The county will furnish the trucks to pickup and haul the solid waste to a centrally located sanitary landfill located near Brent.
- Blount Blount County has engaged a private firm to collect solid waste. The contractor operates a sanitary landfill near Hendrix.
- Bullock Bullock County has a new sanitary landfill for disposal of solid waste operated in cooperation with the city of Union Springs, but does not have an organized pickup service in the rural areas. Plans are pending to contract pickup services from independent operators.
- Butler Butler County does not have a solid waste collection program in the rural areas. Each family is still dispersing of its solid waste at this time. A cooperative sanitary landfill is in operation at Greenville.

- Clay Clay County does not have a solid waste program in operation. However, a sanitary landfill site has been purchased and, in addition, the county plans to buy bulk containers to implement the planned collection system.
- Crenshaw Crenshaw County has contracted solid waste collection with a private firm. The waste will be picked up in plastic bags and carried to a sanitary landfill operated by the county. The system is in an early stage of implementation.
- Dallas Dallas County has three landfills located throughout the county to which residents and private collectors can carry solid waste. Two of these sites are operated as sanitary landfills, and the third site is not yet fully implemented.
- Lowndes Lowndes County has postponed implementation of a solid waste collection program until January 1, 1973.
- Marengo Marengo County does not have a solid waste disposal plan in operation at this time. However, they are working on a sanitary landfill and a road to it. They expect to have it in operation by December 1, 1972, with county-wide pickup expected to begin March 1, 1973. The pickup will be let on contract. The county will operate the fill with financial support from the cities.
- Monroe Although Monroe County does not have a rural solid waste collection program, county officials are considering implementing a program in the near future. A sanitary landfill operated in cooperation with the municipalities is in use.
- Perry Although Perry County does not have a solid waste program in operation, the county commissioners have ordered trucks and bulk containers to handle the problem. The county will also furnish an operator and bulldozer at the sanitary landfill, in cooperation with the city of Marion.
- Russell Russell County is planning a solid waste program that will involve house-to-house collection. Some bulk containers have been placed in several communities by civic groups. These containers are serviced by county equipment.
- Shelby There is no organized collection of solid waste in rural areas. However, independent collectors service municipalities and part of the rural area. The solid waste is hauled to two sanitary landfills operated by the county.
- Talladega Talladega County does not have an approved solid waste program. Plans are being formulated for house-to-house collection program, and two sanitary landfills.

Wilcox Wilcox County does not have an approved solid waste collection and disposal system. Open dumps scattered throughout the county are used to dispose of the solid wastes.

<u>Places of Historical, Archeological and Scenic Value</u> -- The National Historic Preservation Act of 1966 (80 Stat. 915) provides for the preservation of certain properties including historic districts, sites, buildings, structures, and objects that are significant in American history, architecture, archeology and culture. Section 106 of the act requires that all federal agencies must take into account the effect of any work undertaken on sites that appear on the National Register of Historic Places.

In this study, an attempt was made to identify these sites that were, (a) listed on the National Register of Historic Places, (b) battle sites, or Indian villages that played a significant role in the early settlement of the state, (c) covered bridges, (d) undeveloped natural and scenic areas of unusual aesthetic or scientific value. In general, homes, stores, churches, graveyards, museums, and monuments were not included.

Basic data was collected from the Federal Register, Alabama Historical Commission, Alabama Regional Planning and Development Commissions, and the Appraisal of Potentials for Outdoor Recreation Development for each county in the river basin. These sources should be consulted for a more comprehensive listing.

In the following list of Places of Historical, Archaeological and Scenic Value, special notation has been given to certain items and is indicated by the number (1) places appearing on the National Register of Historic Places, (2) places designated by historic highway markers, or (3) places of scenic value recorded in the Appraisal of Potentials for Outdoor Recreation Development of each county.

32888

4 - 32	COUNTY	SITE AND LOCATION
2888 3-73	Calhoun (Cont'd)	Tallahatchee TownThree miles southwest of Jacksonville; large Upper Creek town; site of battle between Creeks and General John Coffee, November 3, 1813; one of the first engagements of the Creek War; first American victory to avenge Fort Mim.(2)
	Chambers	Bibby's Ferry15 miles northwest of LaFayette; operated since mid-1800's; last county operated ferry in Alabama; still in use.
		Ripville5 miles south of Bibby's Ferry; beautiful waterfall and rock formation.(3)
	Cherokee	Cornwall Furnace1862; made iron for Confederacy; best preserved furnace in the state Cedar Bluff area.(1)
		Yellow Creek Falls-Blue Pond; Near U.S. 411; beautiful waterfall off Lookout Mountain into Lake Weiss.(3)
	Chilton	VerbenaSettled by people fleeing from epidemics of Yellow Fever; the town once had a gold mine, and was one of the leading producers of gold in Alabama.
		H. H. Miller Grist MillCane Creek Community, $l_{\overline{Z}}^{1}$ miles off Lay Dam Road; only water grist mill in county. (3)
	Clay	Hillabi TownOn Koufadi or Little Hillabi Creek; near the line of Clay and Tallapoosa Counties, in the vicinity of Gilbert's Mill, opposite to, and a short distance from, present Pinkneyville; a main Hillabee town which prior to 1761 threw off several settlements nearby.
		Potus-Hatchi (Potchushatchi)On the headwaters of Hatchet Creek, six miles from the present town of Hatchet Creek and a short distance from the present community of Coleta; this was an Upper Creek Town that extended one mile up and down the creek.
		Hugo Black Home15 miles south of Ashland, birthplace of Hugo Black, U. S. Supreme Court member.

IV-96

4-328	COUNTY	SITE AND LOCATION
88 3-73	Cleburne	OakfuskeeOn the Tallapoosa River; Upper Creek town; considered the largest Creek community of the Creek Confederacy.
9		Cheaha MountainAble; highest mountain in Alabama, elevation 2407 feet.(3)
		Arbacoochee5 miles from Heflin on Highway 9; scene of gold discovery and mining operations.
	Cosa	Itaba (Itawa)On Hatchett Creek, 4 miles north of Rockford, on highway from Rockford to Sylacauga at point where the stream flows through deep gulches; an Upper Creek town of great antiquity; visited by DeSoto in 1540.
]		Okachoy Covered BridgeSoutheast of Rockford on Alabama 22, turn right on Ala. 9 near Noxburg; built of homemade timber, one-span 56 foot modified Queenpost brid 1915.
[V-97		SakapatayiOn Socapatoy branch of Hatchett Creek, a few miles west of Kellyton; a small Upper Creek town of some importance.
		Shepherd FallsHissop; 1 mile north of Highway 22; 30 foot waterfall surrounded b natural wooded area.(3)
	Dallas	Cahawba Historic DistrictSite of Alabama's first permanent capital 1820-26; coun seat of Dallas County, 1820-66; Confederate Prison during the Civil War. (2)
		CaxaOn the Alabama River, Just below the mouth of Cedar Creek; Indian village vi by DeSoto's expedition in 1540.
		Morgan (Sen. John T.) House719 Tremond St., Selma; two story frame. Home of confederate general and U.S. Senator. (1)
		Live Oak CemeteryDallas Avel, Selma; mausoleum contains the remains of William R King, Vice-President of the United States; a marble shaft marks the grave of U.S. Senator John T. Morgan.

4 – 3		
2888	COUNTY	SITE AND LOCATION
3 – 7 3	Dallas (Cont'd)	Sturdivant Hall713 Mabry St., Selma; 1853; designed by Thomas Helm Lee for Edward T. Watts; two story brick and stucco; Neo-classic architecture. (1)(2)
		TalasiAt Durant's Bend, 35 miles from Montgomery; an aboriginal town of great antiquity; DeSoto stayed here for 20 days in 1540.
		Water Avenue Historic District (21 structures)Water Avenue, Selma, 19th Century commercial structures.
		Blue-Girth Swamp6 miles east of Selma; 200 acre natural swamp of exceptional wildlife value.(3)
	DeKalb	Fort Payne Opera HouseFort Payne; 1889 structure from Fort Payne's days as a "Boom town"; built from native stone. (1) (2)
IV-98		Manitou CaveFort Payne; home of early man, 250 million years old; Indians camped here; large cave room used as ballroom during the ante-bellum and Civil War periods.
3		Will's TownWill's Valley; a short distance north of present Lebanon, 6 miles south Fort Payne; Cherokee town of considerable importance founded in 1770.
		Railway TerminalFort Payne; c. 1889; large hewn stone block construction; Richardsonian Romanesque. (1)
	Elmore	Bibb (William Wyatt)Grave site; private cemetery near home, Millbrook; first governor of Alabama, 1819-1820; only governor of Alabama Territory 1817-1819.(2)
		FuoihatchiOne mile above Ware's Ferry, on the right bank of the allapoosa River, two miles below the old Indian town of Huithelwalli; an Upper Creek town; some Kaisa tribe united with the Creeks here.
		Hoithlewalli (Ulibahali) Jown and MoundOn the right bank of the Callapoosa River, east of the influx of Mitchell Creek and extended one-half mile back from the Creek; this town was visited by DeSoto on August 31, 1540. Extensive mound located on this site.

COUNTY	SITE AND LOCATION
Elmore (Cont'd)	Ikan-Hatki MoundsAbout opposite the influx of the Eight Mile Creek into the Tallapoosa River; extensive mounds.
	KoasatiOn the right bank of the Alabama River, three miles below the confluence of the Coosa and Tallapoosa Rivers, near Coosada; this was an Alibamon town of the Upper Creeks.
	Tomonfa (Tomopa)On the west bank of the Coosa River, opposite old Fort Joulouse; an Alibamon town of great antiquity which lost its identity to the Indian town of Witumpka.
	Fort Toulouse (Fort Alabamu: Fort Jackson Site); Within the junction of the Tallapoosa and the Coosa Rivers, three miles west of Alabama Highway 9, about 13 miles from Montgomery; built in 1714 by Frency Captain de La Tour, by orders of Bienville, at the request of the Chiefs of the Alibamu for a trading center; here in 1814 William Weatherford, the Red Eagle surrendered to Gen. Andrew Jackson, signalling the end of the Creek War.(1) (2)
	Tuckabatchi Mound (Tookabatcha)Large mound on the west bank of the Tallapoosa River, two and one-half miles below the present city of Tallassee; site of an influential town and the ancient capital of the Upper Creeks.
	WitumpkaPractically on the site of the present city of Wetumpka; an Upper Creek town, this town incorporated the small Indian village of Tomonpa which was adjoining
	Wi-Wux-Ka (Weewoka)On the left bank of Wewoka Creek, four miles from the Coosa River; an Upper Creek town; the name meaning "Roaring Waters."
	WoksoyudshiEast of the Coosa River, two miles east of Fort Toulouse; an Upper Creek town of several villages adjoining one another at this location.
Etowah	Gilliland Covered Bridge (Old Reece City Bridge)-In Gadsden at Noccalula Falls; 1899; one-span, 40 foot Town bridge; first completely restored covered bridge in Alabama.

1

COUNTY	SITE AND LOCATION
Etowah (Cont'd)	Noccalula Falls ParkGadsden on Alabama Highway 227; park, pioneer museum, botanical garden; contains authentic post office, covered bridge; meeting house, grist mill, barn, and pioneer house; name of falls came from a legend that an Indian girl, Noccalula, jumped to her death when refused permission to marry.
	Natural BridgeGallant, County Highway 35; natural rock bridge on Little Canoe Creek. (3)
Jefferson	Indian BurialNear Pinson; 500-1000 AD; remains 44 corpse.
Lee	Noble HallOn Shelton's Mill Road, N.E. of Auburn; 1854; two story rock and mortar; Greek Revival. (1)
Lowndes	Holy Ground Battle Site (Ikan-A-Cha-Ka)- $-2\frac{1}{2}$ miles due north of Whitehall on Alabama River Creek; Creek Indians soundly defeated here in 1813; now a marked overlook area of the corps of Engineers.
	Lowndes County CourthouseHayneville; 1856; Greek Revival.(1)
Macon	Atassi (Autosee)20 miles east of the mouth of the Coosa River, below and adjoining Calebee Creek, on the south side of the Tallapoosa River; an Upper Creek town shown on De Crenay's map of 1733; Indians from this Red Stick tribe took part in the Fort Mims massacre; in November 1813, General John Floyd burned the town; located on this site is a large flat-topped mound in regular shape.
	ConaligaNear to and west of Society Hill; a Lower Creek village; friendly to white settlers.
	Nafolee (Yufali)On the east bank of the Tallapoosa River, near its confluence with Eufaubee Creek; an Upper Creek town of great antiquity; Oxceola, the great Seminole Chief, was born here.
	ThlobloccoOn the Thloblocco Creek, a tributary of Cubahatchee Creek, and 4 miles east of the Montgomery to Tuskegee Highway, U.S. 80; Upper Creek town; home of Jim Boy, a leader during the Civil War.

SITE AND LOCATION

COUNTY

SITE AND LOCATION	Aboriginal StructureSeven miles northeast of Wedowee; at this point is seen a circular stone structure, two or three feet high, with two entrances, one on the east side and the other on the west; running from this structure, in a northeasterly direction, can be seen traces, for more than a mile, stone pillars about two feet high, located one hundred yards apart.	Kitcho PatakiOn a creek by the same name, locally spelled Ketchapedrakee, at its influx into the Tallapoosa River, a few miles below the present village of Okfuski; this was an Upper Creek town.	LutchapogaOn the Tallapoosa River, nearly opposite the mouth of Corn House Creek, and below Welborne's Ferry; this was an Upper Creek town, the name signifies "Terrapin gathering place."	Wah-Wah-Wee (Wee-Dah-Wee)One-half mile south of Trylett's Ferry, on the west bank of the Tallapoosa River, near the present town of Wedowee, this was the village of the Indian Chief "Wee Dow Wee," whose name was given to the modern town near this location.	Bald RockAlmond, Highway 22; granite rock outcropping, vegetation sparse.	Horton's WaterfallRock stand, off U.S. 431; beautiful waterfall.	LitafatcheeAboriginal Upper Creek town 8 miles north of present Ashville; in 1813 entire village burned at order of Andrew Jackson.	Fort Struther4 miles west of Ohatchee in Calhoun County; erected under the direction of General Andrew Jackson in November, 1813, as a base for his campaign against the Creek Nation; site. (1) (2)	TasquiAboriginal town on the Coosa River; visited by DeSoto on July 14, 1540 and mentioned in his chronicles.	Horse Pens 40Near Steele; unusual rock formation on Chandler Mountain.
COUNTY	ddlolph 335888 3~13						St. Clair			

Talladega Springs; old Upper Creek Village. Chickasaw Town (Tchikachas, Chicachas)On the south bank of the headwaters of Talladega Creek, just north of Chandler Springs; inhabitants were Chickasaws; prior to 1755.	ms Shale of GrdoVician age; roadcut on south side of Alabama Highway 25, 2.3 s west of intersection of Alabama Highway 25 g U.S. Highway 31 in Calera; tolites are preserved as carbonaceous films in dark gray shale. Mansion House and CemeteryMontevallo; 1823; two story brick; first brick cture in the county and had first glass windows to be used in that part of the e; oldest building on campus. (1) uhabsho (Tulawahajah - Old Mad Town)About ten miles south of present Birminghan he east bank of the Cahaba River; Upper Creek town in the extreme northwestern ion of Creek Territory. ing Rock FallsBetween Dogwood and Pearidge; water plunges 60 feet vertically, ual rock formation and plant life. hkaIn Talladega County, near the Coosa River, south of Tallaseehatchie Creek, town was located in the northern limits of the Creek Country; and was a defense ost against hostile tribes from the north. u'dshiFive miles east of the Coosa River, on the right bank of the Tallaseehatc k, on the property of Adam Riser, of Childersburg; inhabitants of this town spoke kasaw, and they lived among white people. r Creek villageOn the Coosa River, at the mouth of Cedar Creek, near present adega Springs; old Upper Creek Village.
Talladega Springs; old Upper Creek Village.	r Creek VillageOn the Coosa River, at the mouth of Cedar Creek, near present adega Springs; old Upper Creek Village.
Cedar Creek VillageOn the Coosa River, at the mouth of Cedar Creek, near present	u'dshiFive miles east of the Coosa River, on the right bank of the Tallaseehatek, on the property ôf Adam Riser, of Childersburg; inhabitants of this town spokeksaw, and they lived among white people.
Abiku'dshiFive miles east of the Coosa River, on the right bank of the Tallaseehat Creek, on the property of Adam Riser, of Childersburg; inhabitants of this town spok Chickasaw, and they lived among white people. Cedar Creek VillageOn the Coosa River, at the mouth of Cedar Creek, near present	hkaIn Talladega County, near the Coosa River, south of Tallaseehatchie Creek, it $2\frac{1}{2}$ miles south of Rendalia; Upper Creek town considered one of the oldest; town was located in the northern limits of the Creek Country; and was a defense ost against hostile tribes from the north.
Talladeqa Abi'hkaIn Talladega County, near the Coosa River, south of Tallaseehatchie Creek, about 2 ² / ₂ miles south of Rendalia; Upper Creek town considered one of the oldest; this town was located in the northern limits of the Creek Country; and was a defense outpost against hostile tribes from the north. Abiku'dshiFive miles east of the Coosa River, on the right bank of the Tallaseehat Creek, on the property of Adam Riser, of Childersburg; inhabitants of this town spok Chickasaw, and they lived among white people. Cedar Creek VillageOn the Coosa River, at the mouth of Cedar Creek, near present	ing Rock FallsBetween Dogwood and Pearidge; water plunges 60 feet vertically, ual rock formation and plant life.
Falling Rock FallsBetween Dogwood and Pearidge; water plunges 60 feet vertically, unusual rock formation and plant life. Talladega Abi'hkaIn Talladega County, near the Coosa River, south of Tallaseehatchie Creek, about 2 ¹ / ₂ miles south of Rendalia; Upper Creek town considered one of the oldest; this town was located in the northern limits of the Creek Country; and was a defense outpost against hostile tribes from the north. Abiku'dshiFive miles east of the Coosa River, on the right bank of the Tallaseehat Creek, on the property of Adam Riser, of Childersburg; inhabitants of this town spok Chickasaw, and they lived among white people. Cedar Creek VillageOn the Coosa River, at the mouth of Cedar Creek, near present	uhabsho (Tulawahajah - Old Mad Town)About ten miles south of present Birminghan he east bank of the Cahaba River; Upper Creek town in the extreme northwestern ion of Creek Territory.
<pre>Tulauhabsho (Tulawahajah - Old Mad Town)About ten miles south of present Birmingha on the east bank of the Cahaba River; Upper Creek town in the extreme northwestern section of Creek Territory. Falling Rock FallsBetween Dogwood and Pearidge; water plunges 60 feet vertically, unusual rock formation and plant life. Abi'hkaIn Talladega County, near the Coosa River, south of Tallaseehatchie Creek, about 2¹/₂ miles south of Rendalia; Upper Creek town considered one of the oldest; this town was located in the northern limits of the Creek Country; and was a defense outpost against hostile tribes from the north. Abiku'dshiFive miles east of the Coosa River, on the right bank of the Tallaseehat Creek, on the property of Adam Riser, of Childersburg; inhabitants of this town spok Chickasaw, and they lived among white people. Cedar Creek VillageOn the Coosa River, at the mouth of Cedar Creek, near present</pre>	Mansion House and CemeteryMontevallo; 1823; two story brick; first brick cture in the county and had first glass windows to be used in that part of the e; oldest building on campus. (1)
King Mansion House and CemeteryMontevallo; 1823; two story brick; first brick structure in the county and had first glass windows to be used in that part of the state; oldest building on campus. (1) Tulauhabsho (Tulawahajah - Old Mad Town)About ten miles south of present Birmingha on the east bank of the Cahaba River; Upper Creek town in the extreme northwestern section of Creek Territory. Falling Rock FallsBetween Dogwood and Pearidge; water plunges 60 feet vertically, unusual rock formation and plant life. Abi'hkaIn Talladega County, near the Coosa River, south of Tallaseehatchie Creek, about 2 ³ / ₂ miles south of Rendalia; Upper Creek town considered one of the oldest; this town was located in the northern limits of the Creek Country; and was a defense outpost against hostile tribes from the north. Abiku'dshiFive miles east of the Coosa River, on the right bank of the Tallaseehat Creek, on the property of Adam Riser, of Childersburg; inhabitants of this town spok Chickasaw, and they lived among white people. Cedar Creek villageOn the Coosa River, at the mouth of Cedar Creek, near present	ns Shale of OrdoVician age; roadcut on south side of Alabama Highway 25, 2.3 s west of intersection of Alabama Highway 25 & U.S. Highway 31 in Calera; tolites are preserved as carbonaceous films in dark gray shale.
Shelby Athens Shale of OrdoVician age; roadcut on south side of Alabama Highway 25, 2.3 miles west of intersection of Alabama Highway 25 & U.S. Highway 31 in Calera; graptolites are preserved as carbonaceous films in dark gray shale. King Mansion House and CemeteryMontevallo; 1823; two story brick; first brick structure in the courty and had first glass windows to be used in that part of the state; oldest building on campus. (1) Tulauhabsho (Tulawahajah - Old Mad Town)About ten miles south of present Birmingha on the east bank of the Cahba River; Upper Creek town in the extreme northwestern section of Creek Territory. Falling Rock FallsBetween Dogwood and Pearidge; water plunges 60 feet vertically, unusual rock formation and plant life. Abi'nkaIn Talladega County, near the Coosa River, south of Tallaseehatchie Creek, about 2 [‡] miles south of Renabla i Upper Creek town considered one of the oldestit this town was located in the north. Abi'nkaIn Talladega County, near the Coosa River, south of Tallaseehatchie Creek, on the property of Adam Riser, of the Creek Country; and was a defense outpost against hostile tribes from the north. Abiku'dshiFive miles east of the Coosa River, on the right bank of the Tallaseehat Creek, on the property of Adam Riser, of Childersburg; inhabitants of this town spok Chickaaw, and they lived among white people. Cedar Creek VillageOn the Coosa River, at the mouth of Cedar Creek, near the section.	

ю. Н

COUNTY	SITE AND LOCATION
Talladega (Cont'd)	Cosa (Coca, Coosa Old Town)Between the mouths of the Talladega and Tallaseehatchie Creeks, $l\frac{1}{2}$ miles northeast of Childersburg on the Central of Georgia Railroad; town of great antiquity; DeSoto arrived here with his expedition on July 16, 1540.(2)
	IstapogaAt the mouth of Estaboga Creek, which flows into Choccolocco Creek, about lO miles above it's influx into the Coosa River; Upper Creek settlement, the name meaning "where people reside"; remains of this town are still visible.
	Kymulga Cave18 miles south of Anniston, three miles west of Winterboro; largest natural cave in the state; has colorful stalactites and stalagmite formations and a small lake; supposed to have been used in prehistoric times and is referred to in the Indian tradition and legends.
	Naotche (Nachez)On the flats below the ford of Tallaseehatchie Creek, about four miles west of Sycamore; a Natchez town; the people here were friendly to the whites and they took refuge with other tribes in Talladega County.
	Waldo Covered Bridge4 miles southwest of Talladega on Talladega Creek; one span, ll5 feet long; Town truss; early 20th Century.
	Fort Williams SiteAt the mouth of Cedar Creek, about six miles southwest of Fayette- ville, and three miles below Talladega Springs, erected by General Andrew Jackson as a base of supplies shortly before the Battle of Horseshoe Bend, which was fought in 1814, now underwater (Lay Lake).
	Salt Creek Falls8 miles southeast of Munford near Salt Creek Road; 50 foot waterfall. (3)
	Suplhur SpringsTalladega Springs, 3 miles west of Fayetteville; large boiling springs of sulphur water.
	OakchinawaOn both banks of Oakchinawa Creek, or Salt Creek, near its influx into

IV-105

Big Shoal Creek; Upper Creek town of great antiquity.

COUNTY	SITE AND LOCATION
Talladega (Cont'd)	Talladega County CourthouseTown Square, Talladega; 1834, two story brick; columns and brick design with original brick; unique in 1912 and 25; Greek Revival; damaged but repaired.
Tallapoosa	ChattukchufaulaA short distance north of the present town of East Tallassee; Upper Creek town, home of Peter McQueen, Indian leader of 1813; destroyed 1813 by Indians friendly to the white settlers.
	Horseshoe Bend BattleNow a National Military Landmark; in a bend of the Tallapoosa River, 12 miles north of Dadeville; also site of Fort Tohopeka; known by Indians as Cholocco Litabixee; March 26, 1814; scene of a battle between General Andrew Jackson and the Creek Red Sticks; Jackson's victory broke the power of the Creeks, and on August 9, 1814, they signed a peace treaty at Fort Jackson.(1)(2)
	ImuckfaAt the mouth of Imuckfa Creek near Horseshoe Bend; Upper Creek town used as a concentration point by the Creeks during the Creek War.
	OkfuskiOn both banks of the Tallapoosa River at the mouth of Sandy Creek; largest town in the Creek Confederacy.
	Soapstone QuarryNear Horseshoe Bend; Indian soapstone quarry; three of the larges soapstone bowls found in America have been found near Horseshoe Bend and are believed to have come from here.
	Suk-At-Ispoka12 miles upstream from Okfuski; Upper Creek town; here on May 14, 1760; the first white trader in what is now Alabama was killed by Indians.

Forest Resource Management

The even-aged forest management system currently practiced by the U. S. Forest Service and Forest industries can provide increased quality species composition, volumes per acre, and wildlife benefits. Silviculturally, the method is sound, but has met with public criticism. Users must recognize the hazards of overcutting which can influence timber and wildlife species composition and greatly affect water quality and quantity.

Primary conflicts arise in the misunderstanding of the use of the system and the temporary impairment to aesthetics in newly cutover areas. Aesthetic appeal enhanced through careful stand selection, distribution, and harvesting techniques, would reduce criticism of timber harvest operations. Cuts blended to compliment the natural environment along roadsides, water courses, and on mountainsides can greatly enhance the scenic values of the land. These cuts can also create scenic vistas and generate diversity in the forest setting. An educational program on the even-aged management system should be directed toward gaining public acceptance.

Most forest land ownership is in small private tracts. Even-aged management is often not practical in these timber stands. The owners frequently choose a selection or shelterwood method of harvest so his entire stand is not eliminated in one cutting. These are also effective forest management practices and are used to enhance the forest resource on individual private tracts. Properly managed stands will increase ecological benefits of the forest. Private landowners should be encouraged to seek advice from professional sources which can provide a systematic plan of management for their forested areas.

Forest industries are enlarging the capabilities of their mills. Over-concentration of wood-using industries in a particular area could upset the balance of harvestable forest products. This imbalance would lessen the economic, physical, and social benefits of the forest resource.

Total forest land area has increased during recent years, but the gain is not distributed proportionately between bottomland hardwood and upland pine types (bottomland hardwoods decrease while upland pines increase). The fertile level bottomlands provide higher economic returns for other uses. Much of the land is being converted to cropland, flooded by reservoirs along main streams, or cleared for housing developments. Although the most favorable economic return appears to be through cropland or development, the change could break a vital link in the natural ecosystem.

Bottomland hardwood ecosystems provide most favorable conditions for diverse vegetation, providing escape cover and breeding places for wildlife, thus increasing recreational and educational opportunities through forest use. These deep-soil areas also serve to absorb some overflow during wet periods and lessen flooding conditions.

Hardwood timber values are high, particularly for veneers and solid woods used by furniture industries. Typical hardwood stands in the basin are deficient in trees of quality, sizes, and utility demanded by the distinctive hardwood industries. Hardwoods are now used for pulp and

proper management of stands can utilize the pulpwood harvest for clearing and thinning stands to improve their quality. The market for hardwood fuelwood and posts can be used to the same advantage.

Although the stands have many defective trees, care must be taken to preserve some of these culls in proper distribution to serve as wildlife den trees.

Understory vegetation is often neglected in stand management. This area is where most of the vital ecological processes take place. The understory can influence soil fertility, provide indication of future forest crops, and provide food and breeding places for wildlife. Manipulation of light to the understory can greatly increase vegetation productivity, thus regulate wildlife, water, timber, and range capabilities of the area.

<u>Wildfire</u>--Uncontrolled fire raging through the forest can create tremendous impact on the natural environment. Areas are denuded of vegetation and soils exposed to the erosive forces of nature. Wildlife productivity can be impaired and the aesthetic appeal of the forest is lost.

The upper three fourths of the basin experiences a moderate (51-150 fires annually) to heavy (151 + fires annually) fire occurence. The most severe burning is in the Southern Appalachian Ridge and Valley Resource Area and the Sand Mountain Resource Area. More fires occur during the period of October through April. See Figure IV-18 for locations of heavy fire occurrence.

Although the graph (Figure IV-19) lists causes on a statewide basis, fires in the basin would be similar except for possibly a slight increase in the incendiary column. Some incendiary fires (persons willfully causing fires) in the basin are generated by persons burning areas in hopes of improving wildlife habitat, creating better berry patches, or reducing the numbers of insects. Railroad use in the basin has been a contributing cause of fires.

The Alabama Forestry Commission's fire protection on private and state forest lands is financed with receipts from the Forest Products Severance Tax, landowner funds, county appropriations, county acreage assessments, miscellaneous receipts, state funds, and a federal allotment, (Clark-McNary-2).

Eighty-nine percent of the fires in the basin burned on forest land. Approximately 98 percent burned on Pine-Hardwood timber types. The average annual acreage burned is 62,000 acres by 2,975 fires (See Table IV-40). Timber loss through mortality and reduced growth averages \$16.43 per acre. This creates over \$1,000,000 loss of timber resource annually. Impacts on other resources such as fish and wildlife, recreation, watershed forage, and aesthetics are considerable, but cannot be expressed in monetary terms.

Fire suppression equipment and men are limited. The crawler tractor and plow are the primary tools used for fire fighting. Seventy-four state units serve the basin. This allows one unit for each 227,000 acres of protected area. This does not include fire fighting equipment owned and operated by forest industries or private landowners. All basin counties except five expressed a current need for additional equipment. Forty additional units were requested to provide adequate protection.

The state employs 128 men full-time to engage in fire prevention and suppression activities in the basin. This allows one man for each 128,947 acres of protected area.

Factors leading to difficulty of control include steep topography and limited access in the northern portion of the basin. Limited personnel and equipment also make fire fighting difficult.

The U. S. Forest Service provides fire protection on the total 309,485 acres of National Forest. The U. S. Forest Service also takes action on any fires threatening National Forest lands. Fire occurrence on National Forest land within the basin is shown in Table IV-41. Several fires listed were on private lands and are duplicated in Table IV-40 on fire statistics for state lands.

Some environmental influences associated with the fire situation should be noted.

- Highest fire occurrence is on steep terrain.
- The primary fire season extends from October through April. Fawning and nesting seasons for wildlife begin in March.
- Ninety-eight percent of the fires occur in pine-hardwood types. Heaviest occurrence in oak-pine or loblolly-shortleaf forest types. Fires weaken or kill the hardwoods, reduce mast production and can adversely effect wildlife populations (particularly squirrel and deer). Deer populations in the heavy fire occurrence areas are listed as low to moderate.
- Flood producing storms occur during the winter and spring months. This corresponds with the fire season and fires expose soil to the erosive forces of the storm, thereby adding silt loads to streams, and damages the fisheries habitat.

These influences should be considered in the final analysis of the river basin study. Further study is needed to determine the over-all impact of the wildfire situation.

Table IV-40--Fire statistics summary of all fires occurring on state protected lands in the Alabama River Basin, (1968--1970).

Percent Fires in Forested Areas89Percent Fires Burned in Pine-Hardwood Forest Type98Average Annual Acres Burned62,000Average Annual Number of Fires2,975Average Per-Acre Loss of Timber Through
Mortality and Growth\$16.43Number of Crawler Tractors (State)74Number of Full-Time Personnel (State)128

Table IV-41--Summary of fire occurrence on National Forest land in the Alabama River Basin, (1968-1970).

District	Average Annual No. of Fires	Average Annual N.F. Ac. Burned	Average Annual Pvt. Ac. Burned
Oakmulgee	11	67	27
Shoal	24	187	123
Talladega	42	308	201
Tuskegee	1	3	12
Total	78	565	363

Demand For Food And Fiber

A basic condept of river basin planning is that plans for resource development be related to the projected needs of the Nation as well as regional development. These needs, normally expressed in quantities of agricultural products which will be demanded from the Study Area, should be considered baseline estimates of future production rather than optimum levels of output. Baseline production estimates can be used to pinpoint problems which may arise in the future. These problems may be insufficient land to produce at the projected level, or inefficiencies which could be overcome through resource development. The estimates of future quantities produced are based on historical production relationships between the basin, state, and nation. They are in no way a goal or a constraint on the state or basin's economic activity. Neither are they a constraint in considering alternative levels of growth.

Significant increases are projected in the per capita use of soybeans, sorghum, citrus fruits, beef, and poultry products. This reflects the anticipated higher income allowing consumers to select a more desirable and better balanced diet. Per capita use of cotton, wheat, eggs, and dairy products is expected to be cut sharply. Little change is forecast for other commodities.

Estimates of total U. S. requirements were obtained by multiplying per capita requirements for each commodity by the projected U. S. population. Import-export balances were then projected and analyzed in finalizing U.S. requirements.

Projections for the Alabama River Basin were developed from projections for the State of Alabama. State estimates were prepared using two techniques. One was to allocate a part of the national food and fiber requirements to Alabama based on historical state-national production relationships. The other method was based on linear extension of historical production trends. The results of these two projections were analyzed by commodity, and final Alabama projections were developed. These are shown in Table IV-44.

Projections for the Study Area were developed in a similar manner by relating the basin to the state historically, and by analyzing basin linear production trends (Table IV-45).

Table IV-44--Production of major farm products, 1968-1970 average, with projections to 2020 for Alabama.

		Alabama Production			
Commodity Group	Unit	1968-70	1990	2000	2020
		Thousands			
Crops					
Corn	Bu.	17,294	10,000	10,000	10,000
Cotton	Bales	456	480	500	540
Peanuts	Lbs.	282,000	424,000	480,000	600,000
Soybeans	Bu.	13,767	29,360	33,450	43,750
Wheat	Bu.	2,521	4,400	5,400	7,400
Oats	Bu .	1,049	865	880	915
Grain Sorghum	Bu.	530	1,975	2,225	2,750
Vegetables	Lbs.	236,000	310,000	350,000	450,000
Potatoes	Lbs.	230,000	240,000	245,000	250,000
Нау	, Tons	752	920	1,000	1,150
Livestock Products 1/	/				
Beef and Veal	Lbs.	549,000	885,000	1,020,000	1,365,000
Pork	Lbs.	312,000	380,000	430,000	560,000
Poultry	Lbs.	1,304,000	2,290,000	2,680,000	3,600,000
Eggs	Doz.	225,471	388,700	486,250	615,850
Milk	Lbs.	811,000	875,000	970,000	1,185,000
1/ Livestock estima	ates are	liveweight.		•	

Source: <u>Alabama Agricultural Statistics</u>, 1971, Alabama Crop and Livestock Reporting Service, and ERS, USDA estimates of future production.

Table IV-45--Production of agricultural commodities, 1970, with projections to 2020 for the Alabama River Basin.

			Projected	
Commodity Group	Unit	1970	1990	2020
			Thousa	nds
Crops				
Corn	Bu.	2,905	3,670	2,900
Cotton	Bales	156	140	250
Peanuts	Lbs.	2,840	3,420	2,100
Soybeans	Bu.	3,177	7,100	12,100
Wheat	Bu.	430	2.130	4,960
Oats	Bu.	358	560	520
Grain Sorghum	Bu.	258	27	550
Vegetables	Lbs.	66,900	198.000	375,000
Potatoes	Lbs.	15,265	56,000	120,000
Нау	Tons	316	540	860
Livestock Products				
Beef and Veal	Lbs.	205,000	310,000	480,000
Pork	Lbs.	58,400	57,000	85,000
Poultry	Lbs.	399,000	665,000	1,050,000
Eggs	Doz.	74,800	128,300	203,250
Milk	Lbs.	367,000	395,000	535,000

Source: <u>Alabama Agricultural Statistics, 1971</u>, and Economic Research Service estimates of future production.

Demand For Food And Fiber

A basic concept of river basin planning is that plans for resource development be related to the projected needs of the Nation as well as regional development. These needs, normally expressed in quantities of agricultural products which will be demanded from the Study Area, should be considered baseline estimates of future production rather than optimum levels of output. Baseline production estimates can be used to pinpoint problems which may arise in the future. These problems may be insufficient land to produce at the projected level, or inefficiencies which could be overcome through resource development. The estimates of future quantities produced are based on historical production relationships between the basin, state, and nation. They are in no way a goal or a constraint on the state or basin's economic activity. Neither are they a constraint in considering alternative levels of growth.

Significant increases are projected in the per capita use of soybeans, sorghum, citrus fruits, beef, and poultry products. This reflects the anticipated higher income allowing consumers to select a more desirable and better balanced diet. Per capita use of cotton, wheat, eggs, and dairy products is expected to be cut sharply. Little change is forecast for other commodities.

Estimates of total U. S. requirements were obtained by multiplying per capita requirements for each commodity by the projected U. S. population. Import-export balances were then projected and analyzed in finalizing U.S. requirements.

Projections for the Alabama River Basin were developed from projections for the State of Alabama. State estimates were prepared using two techniques. One was to allocate a part of the national food and fiber requirements to Alabama based on historical state-national production relationships. The other method was based on linear extension of historical production trends. The results of these two projections were analyzed by commodity, and final Alabama projections were developed. These are shown in Table IV-44.

Projections for the Study Area were developed in a similar manner by relating the basin to the state historically, and by analyzing basin linear production trends (Table IV-45). Table IV-44--Production of major farm products, 1968-1970 average, with projections to 2020 for Alabama.

		Alabama Production			
Commodity Group	Unit	1968-70	1990	2000	2020
			Tho	usands	
Crops					
Corn	Bu.	17,294	10,000	10,000	10,000
Cotton	Bales	456	480	500	540
Peanuts	Lbs.	282,000	424,000	480,000	600,000
Soybeans	Bu.	13,767	29,360	33,450	43,750
Wheat	Bu.	2,521	4,400	5,400	7,400
Oats	Bu.	1,049	865	880	915
Grain Sorghum	Bu.	530	1,975	2,225	2,750
Vegetables	Lbs.	236,000	310,000	350,000	450,000
Potatoes	Lbs.	230,000	240,000	245,000	250,000
Нау	, Tons	752	920	1,000	1,150
Livestock Products1/	4				
Beef and Veal	Lbs.	549,000	885,000	1,020,000	1,365,000
Pork	Lbs.	312,000	380,000	430,000	560,000
Poultry	Lbs.	1,304,000	2,290,000	2,680,000	3,600,000
Eggs	Doz.	225,471	388,700	486,250	615,850
Milk	Lbs.	811,000	875,000	970,000	1,185,000
1/ Livestock estima	ates are	liveweight.			

Source: Alabama Agricultural Statistics, 1971, Alabama Crop and Livestock Reporting Service, and ERS, USDA estimates of future production.

Table IV-45--Production of agricultural commodities, 1970. with projections to 2020 for the Alabama River Basin.

			Projected	
Commodity Group	Unit	1970	1990	2020
			Thousan	nds
Crops				
Corn	Bu.	2,905	3,670	2,900
Cotton	Bales	156	140	250
Peanuts	Lbs.	2,840	3,420	2,100
Soybeans	Bu.	3,177	7,100	12,100
Wheat	Bu.	430	2,130	4,960
Oats	Bu.	358	560	520
Grain Sorghum	Bu.	258	27	550
Vegetables	Lbs.	66,900	198,000	375,000
Potatoes	Lbs.	15,265	56,000	120,000
Нау	Tons	316	540	860
Livestock Products				
Beef and Veal	Lbs.	205,000	310,000	480,000
Pork	Lbs.	58,400	57,000	85,000
Poultry	Lbs.	399,000	665,000	1,050,000
Eggs	Doz.	74,800	128,300	203,250
Milk	Lbs.	367,000	395.000	535,000

Source: Alabama Agricultural Statistics, 1971, and Economic Research

Service estimates of future production.

Projection of Agricultural Development

<u>Crops</u> -- Corn production is forecast to continue declining, but it is doubtful basin production will drop much below the current level. Acreage in 1990 should be less than one-half that harvested in 1970 in view of the low production; yield increases are expected to average around 40 percent. Tonnage of hay should be up; however, yields should be about 35 percent above the 1970 level, thereby reducing the land need here also. The other feed crops--oats and grain sorghum--should remain of minor importance.

The outlook for fiber and oil crops is much more optimistic. Soybean production should reach 7.1 million bushels by 1990, an increase of about 125 percent over the 1970 crop. Two factors contribute to this expectation. Alabama is producing a larger share of the U. S. soybean crop, and an increasing amount of Alabama's soybeans is coming from the Study Area--an estimated one-fourth in 1990. Acreage harvested in 1990 is expected to be about 16 percent greater than in 1970.

No significant change is expected in basin cotton production during the next 20 years. Nationally, less cotton is being utilized per person, reducing U. S. needs. Per capita use is projected to drop from 34.7 pounds in 1964 to 22.2 pounds by 1990.

A small increase is anticipated in the production of peanuts, but the total is insignificant when compared to the state. Only one percent of Alabama's peanut crop comes from the basin. Food crops will remain a minor enterprise in the future, probably utilizing less than 50,000 acres in 1990, mostly wheat in the Alabama and Coosa subbasins.

<u>Livestock</u> -- Growth of the livestock industry should continue as in the past with substantial gains in the quantity of eggs, poultry, and beef leading the way. Alabama is contributing an increasing share of the Nation's poultry, meat, and egg production. About 30 percent of the state's poultry industry is located in the Study Area. Broilers will continue to comprise 95 percent of the poultry meat marketed in Alabama.

Small gains are forecast for the dairy industry as a result of the expected decline in per capita utilization. Milk use per individual is expected to drop from 627 pounds to around 460 pounds by 1990.

An analysis of projected crop and pasture yields, production costs, and land requirements necessary to yield the projected production has been completed. The analysis examines the crop production capability of both the state and river basin area. Results of these analyses are presented in a separate report covering projected agricultural land use and production potentials in both the state and basin.

<u>Wood Products</u> -- Comparisons of the projected demands indicate that future supplies, assuming a continuation of recent management levels, would not be large enough to meet expected demands and maintain reasonably stable prices in the projection period. Timber product prices would rise and only part of the projected demands would be met. This would mean higher costs for houses and other products made in whole or in part from wood.

Studies indicate that if forest management programs were substantially accelerated, the demands for timber products in the next decade at least, could be met without significant price increases.

Figure IV-20 indicates supply and demand projections for future timber resources in the Alabama River Basin.

Figure IV-20--Timber supply and demand projections, Alabama River Basin.

The new plant construction and plant expansions since the mid 1960's have created thousands of new jobs in forest industries. New increments of forest industry are expected in the next 10 to 15 years, but probably not on the scale generated by the major installations since 1964.

With the additional wood supply needed by 2000, the trend in improved forest management should continue on lands controlled by forest industry.

Increased mechanization and improved labor efficiency is the current trend in wood harvesting. Use of advanced machinery and careful planning of plant layout for improved efficiency has become general in Alabama forest industry.

Increasing demand for wood products in the next 10 to 20 years may further restrict the size and quality of available wood supplies, but will surely lower the general level of availability of all supplies under current market conditions. Adaptations to restrictions in normally available wood supplies will continue to be made in forest industry.

Reallocation Of Resources

Agricultural Land Use -- Linear programming is being used to help appraise the effects of water resource development in both Alabama and the basin. This analysis requires estimates of future conditions, by soil groups, concerning production costs per acre, yields, acreage restrictions, and production requirements for each crop considered. Agricultural specialists with Auburn University and the U.S.D.A. assisted in the development of coefficients for the model.

Alabama's projected production was discussed under demand for food and fiber. These estimates were derived from projected U. S. requirements. It was assumed that Alabama farmers would attempt to produce this output as efficiently as possible in the long run.

To date, only runs without development have been made. "Without Development" assumes no alleviation of the damages caused by flooding and/or poor drainage, i.e., no change in soil conditions. Yields and technology are assumed to improve as they have historically. Results of these initial runs without accelerated land development measures are shown in Table IV-46.

Under the base conditions and without development, the Alabama River Basin's projected 1990 crop production could be produced on approximately 500 thousand acres. This would be a reduction of about 175,000 acres compared to cropland harvested in 1970. Even though land harvested is declining, projections indicate that basin farmers will be producing an increasing share of the state's crops. According to Table IV-46, the basin contained 26 percent of the state's harvested cropland in 1970 and would account for 29 percent in 1990 and 35 percent by 2020.

The area appears to have a strong comparative advantage in the production of vegetables, hay, corn, and wheat. Cotton is also projected to increase, although not in the near future. The only activity in which the basin is expected to lag is beef production. Beef sales will increase, but not as rapidly as in other sections of Alabama.

One of the most significant changes anticipated during the next 20 years is a shift to vegetable production on Class I land in the Alabama subbasin. The area could easily supply all of Alabama's vegetable needs in both 1990 and 2020, however; it is expected that about one-half of the state's production will come from this subbasin in the future. Harvest labor should be no problem. Some areas currently report as much as 35 percent of the unskilled labor force unemployed. A larger share of Alabama's hay, wheat and corn is also forecast for the Alabama Subbasin.

Cotton and soybeans appear to be the key to agricultural growth in the Coosa Valley. The potential for cotton is particularly strong. Soybean acreage should climb to around 70,000 acres by 1990. The area's strongest comparative advantage is in the production of wheat. The Coosa Subbasin has a large amount of idle and marginal pastureland offering prospects for increased beef production. However, improvement of these pastures will probably not occur until late in the planning period. 4-32888 3-73 Immediate prospects for crop production in the Tallapoosa Subbasin are dim. The area is projected to have the largest relative drop in harvested cropland, from 113,000 acres in 1970 to about 52,000 acres by 1990. With the exception of corn and wheat, production of all crops is expected to gradually shift to other areas of the state. The greatest potential for agricultural growth probably lies in improving marginal pastures for beef production.

Of the four subbasins comprising the Alabama River Basin, the Cahaba has the least potential for agricultural growth. Cropland harvested is projected to drop to 34,000 acres by 1990, a 20 percent reduction from 1970. Soybeans, cotton, and oats offer the most promise for stabilizing the declining farm economy here.

Additional linear programming has been done to examine questions such as: (1) what are the efficiency gains and/or adverse effects of resource development projects, (2) what would be the productive capacity of the state and basin assuming demand for agricultural products was increased and (3) where can additional crops be most efficiently produced? Results are presented in a separate report entitled <u>Alabama Agriculture</u>, <u>Projected and</u> <u>Potential Agricultural Land Use and Returns</u>. Copies may be obtained from the Economic Research Service in Auburn.

Other Social Needs

Migration: Migration is a measure of the desirability of an area. People generally go where job opportunity exists. Other factors, however, can weigh just as heavily in a person's decision to migrate. Marion Clawson recently addressed this point during a series of meetings on balanced growth for the Nation.1/ Speaking on migration, Clawson noted, "By and large, the non-metropolitan areas are deficient in many of the important social services. Schools are generally poorer, medical care is poorer--or nonexistent...Libraries, sports, and cultural activities generally are less available. It is often the poverty of social life as well as the deficiency in job opportunities which drives the young people to leave the smaller towns and rural areas." Apparently, this is the case in the Study Area. Between 1950 and 1960, the migration rate for 20-29 year-olds exceeded 60 percent in five counties, 50 percent in another five, and 40 percent in ten other counties.

Even though outmigration slowed somewhat during the past decade, six basin counties experienced net inmigration while 28 sustained outmigration. This loss of such a large share of the childbearing population must be stopped if healthy economic growth is to occur.

Education and Health: The 1970 Census of Population reported that 41 percent of the Basin's residents over 25 had completed high school compared to only 27 percent in 1960. The State average in 1970 was also 41 percent. Median grade completed was 10.6 years compared to 10.8 years

I/ From a report on the lecture series, "Toward Balanced Growth" presented in Washington, D.C., during November and December 1970 and sponsored by the Graduate School, U.S. Department of Agriculture.

statewide. The pupil-teacher ratio of 27:1 is slightly higher than the national average of 22:1. Overall, the 1969 ratio of white to nonwhite instructors in both the basin and Alabama was 2:1.

During the 1968-1969 school year, there were 3,555 dropouts from among the 253,000 school children, or 14 dropouts per 1,000 children, compared to 38 per 1,000 in the age 5 to 17 population nationwide.

There are definite problems in both the quantity and quality of medical aid, particularly in rural areas of the Alabama River Basin. Lowndes County, for example, with a 1970 population of 12,897, had no doctors, hospitals, or nursing homes in the county. Coosa County had only one doctor and no hospital facilities. The shortage of doctors appears to be most critical in the Coosa Subbasin where there are 200 physicians for a population of almost 400,000 or one doctor per 2,000 persons. The 1970 state average was one per 1,370 persons while the national figure was one per 1,200. Forty-three of Alabama's 140 hospitals are located in the Study Area. Combined they offer approximately 4,000 beds, or one per 250 persons. This ratio is indicative of the severe shortage of hospital beds. In 1968, the American Hospital Association reported one bed for each 120 persons in the U. S.

The importance of good schools and hospitals, skilled physicians, adequate recreational areas, and other social and cultural opportunities is often overlooked. The situation described must be improved if the area is to significantly increase its desirability and growth potential. Table IV-46--Projected agricultural land use, current and projected assuming no accelerated development, for the state of Alabama, the Alabama River Basin and its subbasins.

	1970	1990	2020
		Thousand Acres-	
Alabama			
Cropland harvested	2,566	1,717	1,640
Improved pasture	1,600	2,530	3,350
Total	4,166	4,247	4,990
<u>Alabama Basin</u>			
Cropland harvested	678	503	581
Corn	133	51	32
Cotton	153	96	119
Peanuts	2	1	2
Soybeans	141	164	187
Wheat	15	48	89
Oats	9	7	6
Grain Sorghum	8	1	9
Vegetables	8	22	31
Potatoes	1	2	4
Hay	208	111	102
Improved pasture	590	675	930
Total	1,249	1,178	1,511
Alabama Subbasin			
Cropland harvested	311	213	265
Corn	52	21	13
Cotton	58	26	13
Peanuts	1	1	1
Soybeans	66	76	89
Wheat	8	15	41
Oats	5	2	2
Grain Sorghum	6	1	1
Vegetables	5	18	20
Potatoes	0	0	0
Ha y	110	53	85
Improved pasture	293	353	386
Total	605	566	651
<u>Coosa Subbasin</u>			
Cropland harvested	212	206	224
Corn	52	20	12
Cotton	58	50	94
Peanuts	0	0	O
Soybeans	49	70	75
Wheat	3	21	29
Oats	2	1	3
Grain Sorghum	1	0	0
Vegetables	2	3	2
Potatoes	1	2	4
Hay	44	39	35
	1970	1990	2020
--------------------------------	------	---------------	------
		Thousand acre	S
<u>Coosa Subbasin (Cont'd)</u>		10/	006
Improved Pasture	115	126	206
Total	327	332	430
Tallapoosa Subbasin			
Cropland harvested	113	52	46
Corn	24	8	5
Cotton	27	12	6
Peanuts	1	1	1
Soybeans	14	6	10
Wheat	3	8	3
Oats	2	1	1
Grain Sorghum	1	0	7
Vegetables	1	1	9
Potatoes	0	0	0
Hav	40	15	4
Improved pasture	147	160	281
Total	260	212	327
Cababa Subbasin			
Cropland harvested	42	34	46
Corn	5	2	2
Cotton	10	8	6
Peanuts	0	0	0
Soybeans	12	12	13
Wheat	1	4	16
Oats	0	4	0
Grain Sorghum	0	0	1
Vegetables	0	0	0
Potatoes	0	0	0
Hay	14	4	8
Improved pasture	35	37	56
Total	77	71	102

Table IV-46--Cont'd

Source: Statistical Reporting Service 1970 and Projections developed by Economic Research Service U.S.D.A.

4

140

RESOURCE AREAS SELECTED FOR FURTHER STUDY

V. RESOURCE AREAS SELECTED FOR FURTHER STUDY

Resource Problems and Needs Identified

The inventory of water and related land resources completed at this time reveals a number of problems and needs related to the use of these resources in the Alabama River Basin. Some of the problems and needs identified early in the study are discussed in Section IV. Additional problems and needs deserving consideration for further study have been identified through a series of meetings with representatives of the Alabama Development Office and the Regional Planning and Development Commissions in the basin. The following problems and needs were discussed at these meetings:

1. Areas where soils maps are needed:

Bibb County - general map St. Clair County - general map Birmingham Metropolitan area - detailed map

2. Areas to be considered for land use planning:

Shades Creek (Jefferson County) Upper Cahaba Tributaries (St. Clair, Jefferson, and Shelby Counties) Cahaba Valley Creek and Buck Creek (Shelby County) Blue Girth - Beech Creeks (Dallas County) Catoma Creek (Montgomery County)

3. Areas having flood problems:

A. Urban areas, towns, and communities

Shades Creek (includes Homewood, Irondale & Mountain Brook) Upper Cahaba River Tributaries (includes Trussville, Leeds, Vestavia Hills, Hoover, Green Valley & Patton Creek) Cahaba Valley Creek and Buck Creek (includes Helena and Alabaster)

Cane Creek (Calhoun County)

Catoma Creek	(Montgomery County)	
Glencoe	Selma	Minter
Anniston	Montgomery	Соу
Oxford	Benton	Sprott
Talladega	Autaugaville	Kimbrough
Sylacauga	Prattville	Claiborne

4-32888 3-73

In addition to the preceeding list, the following urban areas having flood problems were identified by the Alabama Development Office from information compiled by several state and federal agencies:

Waxahatchee Creek (Shelby County) Clanton Dadeville Columbiana Fort Payne Jacksonville Gadsden Marion Uphapee Creek (Macon & Lee Counties) Monroeville Montevallo Vincent Pell City Wadley Alexander City Roanoke Tallassee Attalla Auburn Wetumpka Childersburg Opelika

B. Agricultural areas

Upper Mulberry River (Bibb and Chilton Counties) Boguechitto Creek (Perry and Dallas Counties) Cutnose Creek (Randolph County) Pintlalla Creek (Montgomery County) Cedar Creek (Butler, Wilcox, Lowndes, and Dallas Counties)

4. Areas having drainage problems:

A. Urban areas, towns, and communities

Carrville Millbrook Shades Creek, South of Bessemer Selma Orrville

B. Agricultural areas

None identified

- 5. Urban and rural areas having a water supply problem:
 - A. Urban areas

Gadsden Jemison Thorsby Maplesville

B. Rural areas

Cleburne County Jefferson County Shelby County Macon County Chambers County -Northwest guarter 6. Forest Resource Information and Management Needs:

The planning commissions expressed interest in obtaining woodland ownership maps and woodland economic data. The cities of Birmingham and Montgomery would be interested in urban woodland planning assistance.

7. Areas having potential and/or need for recreation development:

Crooked Creek Reservoir (proposed) Allen Creek (Chambers County) Black Creek (Etowah County) Coosa-Alabama River Canoe Trail Bike and cycle trails basin wide

8. Fish and wildlife problems and needs:

A. Areas having potential for waterfowl management

Wm. Dannelly Reservoir Crooked Creek Reservoir (proposed)

- B. Beaver management problems basin wide
- C. Control of illegal night hunting basin wide
- 9. Historic, archaeological or aesthetic sites to be preserved:

The planning commissions are interested in any information developed.

10. Areas where erosion is a problem:

Gully erosion	Roadside erosion
Autauga County Clarke County	Basin-wide
Monroe County	
Dallas County	Erosion from urban
Wilcox County	development
Strip-mined areas	Birmingham
	Anniston
Jefferson County	Gadsden

Jefferson County Cleburne County Bibb County

- 11. Agricultural development needs:
 - A. Evaluation of potential for increasing agricultural income

The planning commissions are interested in any information to be developed by the Economic Research Service. The

Montgomery

4-32888 3-73

Tombigbee-Alabama Rivers Regional Planning Commission is interested in information to be used in an agricultural land use plan. All other commissions were particularly interested in agricultural potentials.

B. Areas having interest in developing the potential for irrigation

Monroe County	Butler County
Clarke County	Macon County
Marengo County	Bullock County
Dallas County	Chilton County
Perry County	Shelby County
Lowndes County	St. Clair County

Resource Areas Scheduled for Further Evaluation

The Field Advisory Committee and the study sponsors have considered all problems and needs identified and nave selected resource are s for further study. Selections were based on the relative significance of the problems and needs, knowledge of studies presently underway, and expertise available to conduct appropriate studies. Selections are consistent with the planning resources expected to be available durin; the final phase of the study. Similar problems and needs occurring in several locations will be studied in the priority listed.

Planning efforts during the final phase of the study will be directed toward the following:

- The inventory of resources in Section II will be updated and or expanded. It is recognized that the inventory of resources is not complete at this time.
- 2. Water and land related problems and needs will be identified in more detail. Where appropriate, projections of needs will be made for the years 1990.2000, and 2020.
- 3. A general soil association map will be completed for the casin area during 1973. Additional soils information and or maps will be prepared for selected areas in the Lasin on a request Lasis and in keeping with resources available.
- 4. Flooding problems will be studied in the following priority order:
 - A. Urban areas, towns, and communities
 - Upper Cahaba Tributaries (includes Trussville, Leeds, Vestavia Hills, Hoover, Green Valley, and Patton Creek.
 - Cahaba Valley Creek & Buck Creek (includes Helena & Alabaster)
 - 3. Glencoe
 - Prattville
 Autaugaville
- 6. Selma
- 7. Montgomery
 - 8. Catoma Creek (Montgomery Co.)

B. Agricultural areas

- 1. Upper Mulberry River (Bibb & Chilton Counties)
- 2. Upper Beaver Creek (St. Clair County)
- 3. Boquechitto Creek (Perry & Dallas Counties)
- 4. Cutnose Creek (Randolph County)
- 5. Cedar Creek (Butler, Wilcox, Lowndes & Dallas Counties)'

The extent of flood studies will vary significantly. Flood plains will be delineated following extensive hydraulic analysis in some problem areas. In other areas, flood plains will be delineated on the basis of soils information. The most feasible solution for alleviating flood damages will be determined in each area.

- 5. Assistance will be provided units of local government or the Regional Planning and Development Commission in developing plans for land use in the following areas:
 - 1. Shades Creek (Jefferson County)
 - 2. Upper Cahaba Tributaries (St. Clair, Jefferson & Shelby Counties)
 - 3. Cahaba Valley Creek and Buck Creek (Shelby County)
 - 4. Blue Girth-Beech Creeks (Dallas County)
 - 5. Catoma Creek (Montgomery County)
- 6. A limited number of sites for storage of water for low-flow augmentation will be studied in detail. These sites will be selected by the study sponsors upon completion of the general low-flow augmentation storage study in early 1973.
- The most feasible source of additional water to meet projected 7. municipal, industrial, or rural system needs will be determined for the following locations:
 - Rural system needs (including municipalities) Α.
 - 1. Cleburne County
 - 2. Jefferson County
 - 3. Shelby County
 - 4. St. Clair County
 - B. Municipal and industrial needs
 - 1. Auburn
 - 2. Opelika
 - 3. Prattville
 - 4. Piedmont.

Where surface water storage is the most feasible source of additional water, an appropriate site or sites for water storage will be selected and preliminary costs will be developed.

6. Macon County

5. Etowah County

7. Chambers County, northwest quarter

6. Wedowee

7. Montgomery

5. Jacksonville

- 8. Urban drainage problems will be studied in the following locations:
 - 1. Carrville 4. Selma
 - 2. Millbrook

5. Orrville

3. Shades Creek, south of Bessemer

The most feasible solution to the problem will be determined and preliminary cost estimates made.

- 9. The potential for increasing agricultural production in the basin will be analyzed as follows:
 - A. Agricultural areas where improved drainage or the use of irrigation would increase production will be located. The selection of these areas will be consistent with soil capabilities and present and projected future land use. The interest in and need for project-type developments to reach production potential will be investigated. Preliminary project-type drainage or irrigation plans will be developed where applicable.
 - B. Through the use of linear programming and other research methods
 - Crops with highest potential for increased production and marketing will be identified.
 - 2. Areas where additional crops can be produced at the least cost will be identified.
 - 3. The agricultural production capacity of the state and basin will be projected.

Results of the above will be presented in a separate land use report due for release in early 1973.

- 10. The market development potential for agricultural products will be determined. The cost of market development for those products with the greatest potential will be estimated.
- 11. The inventory of critically eroded and sediment producing areas will be expanded. The most applicable ways of achieving the needed treatment will be identified. Categories are expected to be:
 - A. Mined land not subject to the strip-mining law.
 - B. Erosion resulting from urban development and highway construction.
 - C. Roadside erosion.

- D. Gullies and streambanks with erosion problems.
- 12. Sediment accumulation studies will be conducted in selected existing reservoirs to provide data for future reservoir planning. Studies will be designed to encompass reservoirs with drainage areas above 20 square miles, and reservoirs with a high rate of construction-induced erosion and other concentrated erosion problems in the watershed.
- 13. A field survey of forest land by soil association grouping will be made. The hydrologic condition, erosion problem, wildlife habitat value, and the potential for timber, range, and recreation uses will be evaluated.
- 14. Sites will be selected for recreational developments to meet projected needs. Preliminary plans will be developed as appropriate. Some identified needs are:
 - A. Impoundments for fishing. A large impoundment is needed only in the Cahaba Subbasin.
 - B. Beach development adjacent to existing or future reservoirs-need exists in all four subbasins.
 - C. Camping areas in the Alabama Subbasin.
 - D. Hiking and cycling trails in all subbasins.
- 15. Proposals will be developed for meeting projected future public hunting and fishing demands. These will include:
 - A. Selection of the most appropriate location for development of waterfowl management areas in the Alabama and Tallapoosa Subbasins in cooperation with the U. S. Fish and Wildlife Service and the State Department of Conservation and Natural Resources. Preliminary plans will be developed as appropriate.
 - B. Selection of streams in each subbasin that are most suitable for public fishing, and investigation of the land rights required to insure public use.
- 16. The severity of damage caused by beavers will be analyzed. Proposals for reducing this damage and capitalizing on impoundments created by beavers will be developed.
- 17. Areas having historical, archaeological, or aesthetic value will be identified. Proposals will be developed to insure appropriate preservation and/or utilization of these areas.
- 18. The economic effects of resource development in the basin will be analyzed and presented in an impact report.

Upon completion of the study in late 1974, a comprehensive river basin report will be prepared for distribution to interested federal, state, and local agencies. The comprehensive report, to be published in late 1975, will include data from this progress report as well as results of the additional studies outlined herein. In accordance with the concept of multi-objective resource planning, the report will include an evaluation of land and water resource potential and a determination of land and water resource requirements. Alternative solutions and programs for resource development and management will be analyzed to display their effect on national economic development, environmental quality, regional development, and social well-being.

APPENDIX AND BIBLIOGRAPHY

T

APPENDIX

Silica (SiO2)Most abundant element in igneous resistant to solution.Iron (Fe)Very abundant in igneous rocks, readily precipitates as hydroxide.Manganese (Mn)Less abundant than iron, present in sedi- mentary and metamorphic rocks.Manganese (Mn)Less abundant than iron, present in sedi- mentary and metamorphic rocks.Manganese (Mn)Less abundant than iron, present in sedi- mentary and metamorphic rocks.Manganese (Mn)Less abundant than iron, present in sedi- mentary and metamorphic rocks.Manganese (Mn)Less abundant than iron, present in sedi- mentary and metamorphic rocks.Manganese (Mn)Dissolved from igneous and carbonate rocks, industrial wastes.Magnesium (Mg)Dissolved from feldspars and other common rocks, industrial wastes.Sodium (Na)Dissolved from feldspars and other common rocks, industrial wastes.Bicarbonate (HCO2)Abundant in many rocks and soils.Bicarbonate (HCO2)Abundant in and soluble from limestone, dolomite, and soils.Sulfate (SO4)Sedimentary rocks, mine water, and industrial wastes.	日 日 日 日 日 日 日 日
<pre>Iron (Fe) Very abundant in igneous rocks, readily precipitates as hydroxide. Manganese (Mn) Less abundant than iron, present in sedi- mentary and metamorphic rocks. Calcium (Ca) Dissolved from most rock, especially limestone and dolomite. Magnesium (Mg) Dissolved from igneous and carbonate rocks, industrial wastes. Potassium (Na) Dissolved from feldspars and other common rocks, industrial wastes. Potassium (K) Abundant in many rocks and soils, but not very soluble. Bicarbonate (HCO2) Abundant and soluble from limestone, dolomite, and soils. Sulfate (SO4) Moundant and soluble from limestone, dolomite, and soils.</pre>	Causes scale in boiler and deposits on turbine blades.
<pre>Manganese (Mn) Less abundant than iron, present in sedi- mentary and metamorphic rocks. Calcium (Ca) Dissolved from most rock, especially limestone and dolomite.</pre> Magnesium (Mg) Dissolved from igneous and carbonate rocks, industrial wastes. Sodium (Na) Dissolved from feldspars and other common rocks, industrial wastes. Potassium (K) Abundant in many rocks and soils, but not very soluble. Bicarbonate (HCO2) Abundant and soluble from limestone, dolomite, and soils. Sulfate (SO4) Sedimentary rocks, mine water, and industrial wastes.	adily Stains laundry and porcelain, bad taste.
Calcium (Ca)Dissolved from most rock, especially limestone and dolomite.Magnesium (Mg)Dissolved from igneous and carbonate rocks, industrial wastes.Sodium (Na)Dissolved from feldspars and other common rocks, industrial wastes.Sodium (Na)Dissolved from feldspars and soils, but not very soluble.Bicarbonate (HCO2)Abundant in many rocks and soils.Bicarbonate (HCO2)Abundant and soluble from limestone, dolomite, and soils.Sulfate (SO4)Sedimentary rocks, mine water, and industrial wastes.Chloride (C1)Most rocks, soils, industrial wastes and	n sedi- Stains laundry and porcelain, bad taste
<pre>Magnesium (Mg) Dissolved from igneous and carbonate rocks, industrial wastes.</pre> Sodium (Na) Dissolved from feldspars and other common rocks, industrial wastes. Potassium (K) Abundant in many rocks and soils, but not very soluble. Bicarbonate (HCO2) Abundant and soluble from limestone, dolomite, and soils. Sulfate (SO4) Sedimentary rocks, mine water, and industrial wastes.	<pre>ly Causes hardness, forms boiler scale, helps maintain good soil structure and permea- bility.</pre>
Sodium (Na)Dissolved from feldspars and other common rocks, industrial wastes.Potassium (K)Abundant in many rocks and soils, but not very soluble.Bicarbonate (HCO2)Abundant and soluble from limestone, dolomite, and soils.Sulfate (SO4)Sedimentary rocks, mine water, and industrial wastes.Chloride (C1)Most rocks, soils, industrial wastes and	te Causes hardness, forms boiler scale, helps maintain good soil structure and permea- bility.
Potassium (K) Abundant in many rocks and soils, but not very soluble. Bicarbonate (HCO ₂) Abundant and soluble from limestone, dolomite, and soils. Sulfate (SO ₄) Sedimentary rocks, mine water, and industrial wastes. Chloride (C1) Most rocks, soils, industrial wastes and	common Injurious to soils and crops, and certain physiological condition in man.
<pre>Bicarbonate (HCO₂) Abundant and soluble from limestone, dolomite, and soils. Sulfate (SO₄) Sedimentary rocks, mine water, and industrial wastes. Chloride (Cl) Most rocks, soils, industrial wastes and</pre>	but Causes foaming in boilers, stimulates plankton growth.
Sulfate (SO ₄) Sedimentary rocks, mine water, and industrial wastes. Chloride (Cl) Most rocks, soils, industrial wastes and	e, Causes foaming in boilers, and embrittle- ment of boiler steel.
Chloride (Cl) Most rocks, soils, industrial wastes and	Excess: cathartic, taste.
sewage, and sea water.	es and Unpleasant taste, increases corrosiveness

	Effects	
-(Cont'd)	Source or Cause	
Appendix Table 1	Constituent	E 1 / 1 /

COUS LT LUEILL	SOULCE OF CAUSE	LIJCOUS
Fluoride (F)	Not very abundant, sparingly soluble, fluorite most common source, seldom found in industrial wastes except as spillage, some sewage.	Over 1.5 ppm causes mottling of children's teeth, 0.88 to 1.5 ppm aid in preventing tooth decay.
Nitrate (NO ₃)	Spoil, sewage, industrial waste, decom- position of plants and animals, bacteria.	High content in water indicates pollution, causes methemoglobinemia in infants.
Hardness as CaCO ₃		Excessive soap consumption, scale in pipes interferes in industrial processes. Up to 60 ppm - soft 61 to 120 ppm - moderately hard 121 to 180 ppm - hard over 180 ppm - very hard

	Objectionable	Recommen	ded limiti	ng concen	tration fo	Ir indicated	(maa) esu	1/
	features of	Public		Food	Pulp &	Plastics		Textile
Constituent	excessive concentration	water supply2/	Cooling water	process ing	- paper making	manu- facturing	Boilers	manu- facturing
Sulfate	Diuretic effect, bitter taste.	250		20-250				100
Hardness as CaCO ₃	Boiler scale, pro- duces insoluble "curd" when it		50	10-400	100-200		2-80	0-50
Dissolved	ledets will soap. Diuretic effect, unnlessant taste.	500		850	200-500	200	50-3,000	
Iron	Unpleasant taste, stains porcelain	0•3	0.5	0.2	0.1-1.0			0.1-1.0
Manganese	Unpleasant taste, stains porcelain and linen.	0.05	0.2-0.5	0.2	0,05-,5	0.02		0.1-1.0
Aluminum Suspended Solids <u>3</u> /	Boiler scale. Clogs treatment facilities and	Û	50	1-10	10-100		0-3 0-10	0.3-25
pH4/	water courses. Increases corrosive- ness.			2°2			8.0-9.6	

California Water Quality Control Board (1963). U. S. Public Health Service (1962).

-1010141

Turbidity, as silica, in parts per million. Value not to be less than limits shown.

Appendix Table 3--Chemical composition of selected streams in Alabama River Basin.

(Chemical constituents are in parts per million. Analyses are by U. S. Geological Survey.)

	Temperature Temperature		48	44	54	64	72	D L
	Hq		6.5	7.2	7.1	7.2	6.7	α S
() auce	specific conduct)		126	92	68	68	83	с С
s c 03	a) Brodibonov		Г	0	0	0	\sim	_
Hardne as CaC	(muiola), muieanpem		44	34	25	20	30	9
1. 10	stneutitence		74	52	40	40	48	50
	tion (180°C)		76	58	46	300	22	26
- 64	Nitrate (NO ₃)		0.2	0.2	0.5	0.0	0.0	C
	(F)	De r V	-] •	Ţ,	•]	Ţ.,	0	_
	(CL)	1 nt dom	.0	2.2	2.0	2.6	3.2	< c
	(40 (504)	bbasir Par Mu	9.6	5°8	5.2	1.6	5.4	с 7
	Bicarbonate (HCO ₃)	Ver Su	52	41	28	30	34	0[
	muiesetoq (X)	1.4	1.2	1.0	<pre>// [</pre>			
	muibo2 (EN)	5.0	2.0	ю. С	б . С	с с		
	(GM) (GM)	1.0	1.6	2.4	لر ا			
	muisle) (s)	7.0	5.2	0.0	0			
	nojjulos ni norl (9 ⁴)	.066	.057	.10	.16	.10	ц С	
	silica (SiO ₂		4.7	5.9	4.1	8.1	0.0	7
	epraroeiu (sîc)	51,800	9,080	8,050	0000 0			
uo	13091100 to 916U		1- 7-71	2- 4-71	3-16-71	4-19-71	5-24-7I	12-00-2

)			V				5		-	=) 	-	-)	Ш С	-)	d	L
					ł	Alabam	a Riv	er Su	ibbasi	u									
				0	124200	Alaba	ma Ri	ver r	near M	ontgor	nery								
1- 7-71	41,800	4.7	.066	12.0	з. Э	0°0	1.8	52	9.6	0.0	Γ,	0.2	76	74	44	-	126	6 •9	48
2- 4-71	25,700	5.9	.057	9.1	2.7	5.0	1.3	41	0°0	2.2	Γ,	0.2	58	52	34	0	92	7.2	44
3-16-71	51,800	4.1	.10	7.0	1.8	2.0	1.4	28	5.2	2.00	•	0.5	46	40	25		68	7.1	54
4-19-71	9,080	8.1	.16	5.2	1.6	ю. С	1.2	30	1.6	2.6	[•	0°°0	300	40	20	0	68	7.2	64
5-24-71	8,050	0.0	.10	0.0	2.4	о°С	1.0	34	5.4	3.2	0	°.0	22	48	30	\sim	83	6.7	72
6-28-71	8,320	7.4	•02	00 • •	1.5	3.2	1.4	19	3.4	2.4	•]	0.1	36	32	16	Ч	53	6 .0	74
8- 9-71	15,800	6.7	·05	11.0	വ ന ന	5°3	1.3	47	7.4	5.0	, _ ,	0.4	50	64	42	4	114	7.1	82
9-22-71	12,900	4.5	.02	12.0	က က	5.4	1.4	22	9	5.0	Γ,	1.1	78	68	46	0	126	7.8	79
11-30-71	22,000	6.7	•03	12.0	4.0	6.5	1.7	56	6.2	6.5	-	1.4	74	73	47	_	120	7.6	52
10-26-71	5,320	4.2	•00	9.2	с. С.	5.4	1.5	43	5.6	4.4	Γ,	1.2	50	56	37	\sim	101	7.1	72
12-20-71	37,100	5°.	.08	11.0	3.6	7.1	1.7	51	7.6	0.7	Ţ,	1.0	64	70	43	Ţ	128	7.2	59
1-25-72	62,000	6 • 3	.13	9.9	2.0	2.6	1.0	26	6.4	2.4	-	0.2	42	41	25	4	67	6.4	51
2-23-72	24,000	7.4	.12	°.9	2.7	3.4	1.5	36	ۍ ۵	с. С.	Γ,	1.0	20	52	32	ന	86	7.4	50
4- 3-72	36,000	2.7	.15	12.0	3.2	4.3	1.3	48	2°	3.2	-	1.6	65	61	43	4	94	6.9	60
5-12-72	20,500	1.1	.23	10.0	3.2	4.2	1.1	40	00 ლ	00 ლ	-	0.3	52	52	38	0	101	6.7	68
6-20-72	1,000	7.7	0	°.0 0	3.2	4.8	1.2	40	6.4	4.2	•]		63	56	34	Γ	80	6.7	22

	48	22	5	50		5	6	12	27		45		37			55	70	77	8]	73	79	<u>4</u>	69		55	48	50	45	64	81	60	86
	8.0	7.7	0.0	7.1		ς α	1 C	7.6	7.3	7.3	0.8	7.0	7.6	7.1	7.1	G•7	7.4	7.2	7.2	7.6	6.9	7.3	7.3		7 °0	7.1	6.1	7.0	7.1	7 °0	6.9	6 , 8
	230	126	ß	188		262	264	231	323	220	216	21	192	394	150	299	282	292	302	195	254	298	214		39	41	26	34	43	37	4 8	41
	13	<i>с</i> с	C	14		ά			0	œ	ß	ß	13	45	0	31	20	12	12	17	14	ß	9		0	-	9	ന	0	0	0	0
	100	28	70	84		121	160	103	161	98	65	94	100	194	68	150	140	140	140	98	120	132	88		12	12	00	10	11	11	12	12
				112			197	129	I	123		113		237	85	174	164	171	164		137	158	113									
				126			216	1,200		126		125		230	109	183	172	178	174		164	203	115									
			(0.4			[0	0,1		0.2		0.1		0.2	0.5	0.4	0°3	1.2	0.2		0.6	0	0.1									
				-	borc) 8) }	~			•]		-1		2,	2,	Γ.	ကိ	ကိ	2		2	Γ.	•1	ں م								
	1.0	4 c	α I V	7.2	wndea	9.9		5.6	0.6	7.6	0.0	2.0	4.6	2.0	2.8	0.8	6.9	7.3	9.2	3.6	6.0	0.8	1.0	Jone	2.0	2.8	1.4	2.0	2.7	2.0	2.0	2.0
Creek			(15.0	ear Lo	1	10.10	12.0		6.4	1	2.0]		41.0]	5.4	24.0	17.0	15.0	7 . 0		00 00	7.0	2.8]	eek at								
oma	06	60	00	86	ek N		000	19	85	18	10	08	06	82	80	46	47	22	56	66	30	55	00	< C L	16	14	ന	œ	14	14	18	16
Cat	Ē		1	m	Cre		00	2	Γ	.4]	1	.9	Ē	- 6	9.	•0	•4	.9	Э.		•0	.7 1	•6 1	berr								
24210			(2	amp	<u>}</u>	4	0		പ		8		6	8	5 1	٦ ٦	00	8		5	9	6	Mul								
00				4	Bia S		2	4		4		ົດ		7.	- -	ۍ ۵	ں	4.	4.		3	4	4	24225								
				1.6	4220 I		2.5	1.9		2.0		2.1		0,8	0.8	2.2	2.0	2.0	1.5		1.6	2.3	2.0	0								
				31 M	02		60	38		36		34		73	26	55	52	54	52		42	49	32									
			(0.24				0.56		0.61		0.42		0.74	0.74	1.3	0.79	0.09	0.09		0.11	0.23	0.44									
			ι (n n			6.2	7 . 9		0,0		1.4		6.7	5.7	ō.6	5 . 5	0 . 2	с. С.		7.2	5 • 5	7.1									
	ن ا ا	02) C	03		40	4	9	-	ц	73	6		28	50	15	0,	14	л Г	6.	13	6.	с,		49	48	20	66	49	68	60	63
	15	ц 2, с	T,C			C.	54	60		C	۰	0	60		1,9	0	50			59		0	0			1	з, 5	1	0	7		
	12- 8-70	3- 1-71 0 7 7 7	$\frac{2}{1} - 2 = 0$	1-25-72		3-27-70	5- 7-70	6-16-70	9-11-70	11-10-70	12- 8-70	12-15-70	1-18-71	1-20-71	2-23-71	4- 7-71	5-11-71	6-16-71	7-19-71	8- 2-71	9- 7-71	10- 4-71	11- 3-71		10-29-68	12- 6-68	1-20-69	3-13-69	4-16-69	5-27-69	7- 8-69	8-27-69

4-32888 3-73

	Temperature Temperature			59	45	4 0	59	68	72			09	55	69	79	80	82	81	73
	Нq			6.8	7.2	00 0	6.7	6.3	6 . 8		6.6	7.1	.0	6.7	9.9	7.2	7.3	7.2	7.1
C) DCG	stoubnoo oitiooq2 ⁰ 22 te eonmoroim)			43	37	00 M	30	37	30		114	92	85	65	62	104	95	107	104
ess CO3	StenodreanoN			0			_	Г	0		_	m	9	ന	9		Ц		_
Hardn as Ca	,muicle) muiengem			10	10	10	00	11	00		00 (C)	35	34	97 84	35	36	34	38	35
	benimieteb fo mus constituents							26	30		62	0 2	400	53	54	59	52	09	09
- e.	Residue on evapor (J ⁰ 081) noit										67	61	22	55	58	62	68	62	61
	ajerjiN (SON)		d.)					0.2	0.1		0.2	0.4	0.2	0.2	0.2	с. О	0.1	0.2	7.0
	(F) Flouride	<u> </u>	ont					Γ.	•]	ø	0	Ţ.	•	0		•	•	Γ,	Ϊ,
	(CF) CPJ0IJde	ont'd	es (C	2.4	2.6	0. M	2.4	2.2	2.8	Selm	5.6	с. С.	3.6	5.0	0.0	7.2	3.1	- - - -	6.1
	ajatlu2 (⊅O2)	in (C	t Jon					4.0	2.0	er at	8.4	0.0	5.6	6.0	0.9	7.0	5.2	6.2	0.0
	Bicarbonate (_E OOH)	ubbas	eek a	13	10	10	00	00	13	a Riv	45	39	35	38 38	36	42	41	44	42
	(K) Potassium	Ver	ry Cr					0°°	l . l	labam	1.5	с) • Т	6 .0	1.2	1.2	1.0	1.4	1.3	1.5
	muibo2 (6N)	ina Ri	Aulber					1.5	1.6	230 A	6.0	3.2	2.0	4.C	4.9	5°0	4.2	6.7	6.4
	muisənçeM (eM)	Alaba	225 A					1.1	1.2	024	3.2	1.9	2.8	2.2	3.1	о • С	2.7	ю. 4	0
	muicle) (Ga)		024					2.5	2.6		10.0	11.0	0.6	10.0	6. 8	9.4	6 .3	9.5	00
	noitulos ni noil (94)										.11	.10	.12	• 15	.12	•06	.07	.06	.16
	Silica (SiO ₂							10	13		4.6	5.7	6.4	5.4	5.4	4.2	5 ° 3	4.2	6.5
	Discharge (sic)			80	307	198	443	193	06		27,000	79,700	54,700	23,000	19,800	24,400	1,710	16,300	9.000
tic	211281102 10 8280			11-18-69	0/8 -T	2-11-70	3-27-70	5- 8-70	6-19-70		1-20-71	2-23-71	4- 7-7]	5-11-71	6-16-71	7-19-71	9-17-71	10- 4-71	11- 3-71

(Chemical constituents are in parts per million. Analyses are by U. S. Geological Survey.)

4-32888 3-73

Appendix Table 3--(Cont'd)

55 60 76 86 86								46	48	68			46	43	46	64		70	68	69	22	45	70		69	61	52	64
7.0 6.9 8.0 8.0		00 4	00	00 4	00°	00 00	G•7	0°-0	с 0 0	0°-2		7.0	7.6	7.8	2.5	7.7		G•7		7.7	G•7	9	7.2		0.0	7.7	7.1	7.7
96 66 84 91 94		317	304	307	273	290	121	347	234	325		144	121	112	69	112		112	118	179	96	122	135		162	134	74	137
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		0	12			m	4	29	9	0		7	10	11	10	6		10		0		co	0		0	0	m	-
31 27 36 36 40		140	145	142	91	142	52	155	114	116		99	48	44	40	48		40		47	32	34	44		8 9 9	43	32	48
54 47 50 57 57																												
6 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6																												
1.00.00.8 0.02 0.02 0.1 0.1																								le				
											owns						ngh)						evil				
040040 000000	inter	5.2	2.0	0.0	3.4	о•е	0°0	8.4	5.2	5.0	ar Br	6.6	2.0	4.4	4.6	4.4	imbro	7.0		16.0	0° 0	6.6	0.6	Monrc	13.0	8. 2	Э ° О З	9.6
55600 56000 60000	at M										ek ne						at K							near				
26 30 4 1 30 30 30 30 30 30 30 30 30 30 30 30 30	Creek	160	162	166	148	154	62	154	124	172	o Cre	60	46	40	36	40	Creek	36		68	36	32	54	Creek	99	9	36	5
2.0	edar										chitt						rkey							one (
4 4 6 4 4 6 7 7 9 6 7 9 6 7 8 9 7 9 7 9 6 7 9 7 9 7 9 7 9 7 9 7 9 7 9 7 9 7 9 7 9	1255 C										Bogue)					77 Tu:							imest				
00000 00000	027										24260						0242							4290 I				
8.5 7.7 8.5 9.6 10.0																								02				
-10 -15 -16 -09																												
00000000000000000000000000000000000000																												
31,600 68,700 46,900 5,500 6,500 9,300		132	188	72	39.3	24.0	5,690	274	535	108		26.9	179	108	43	40		34.6	56.1	•69	14.6	40.7	3.0		21.2	60		
12- 7-71 1-17-72 2-11-72 3-27-72 4-24-72 6- 5-72 7-17-72		1-19-67	3- 2-67	4- 4-67	4-14-67	5-18-67	9-12-67	1- 8-68	2-29-68	4- 1-68		9-14-67	12- 4-67	1- 9-68	2-20-68	3- 3-68		4- 6-67	5- 2-67	10-30-68	12- 1-70	1-19-71	10-21-71		10-10-68	12- 4-70	3-88-71	6-17-71

4-32888 3-73

Appendix Table 3--(Cont'd)

(Chemical constituents are in parts per million. Analyses are by U. S. Geological Survey.)

	Temperature (⁰ F)			54	55	70	81	(M) (Q)	81	8]	72	54	52	48	09	70	79	85
	Hq			7.2	7.0	6.9	6 . 8	6.9	7.2	7.0	7.2	7.4	6.6	7.0	6.9	7.3	7.0	7.2
oC) guce	Joubnoo oifio9d2 GS Ja eonmoroim)			109	89	85	102	104	105	118	107	122	73	86	82	98	118	66
ess CO3	Noncarbonete			0	ഗ	ന	7		0	\sim	Ţ	ന	\sim	9	ന	4	4	
Hardn(as Ca(, muisle) muisengem			49	35	32	40	35	36	4]	34	47	31	35	36	40	48	
q	sum of determine constituents			70	51	20	66	22	66	63	66	70	44	53	99	99	67	
P.I	tion (180°C) Kestade on evapo			70	61	09	61	61	76	69	71	84	20	28	99	25	70	
	Nitrate (NO ₃)			0.4	0.0	0.2	0.4	G•0	1.0	0.2	0.2	0°0	0.2	0.2	с. О	6.0	0.6	0.7
	(E) FIONLIGE	_	Le De	•	-	0						2	-			0		
	CPIOLIGE CPIOLIGE	С + с	aibor	7.0	3.6	3.7	5°3	5.1	5.2	2.7	6.4	4.4	2.9	2.6	3.6	4.0	5.1	
	status) (۵۵۵) در ۲۵۵	u (Co	at Cl	7.8	5.0	5. 8	6 • 0	7.4	6.2	7.0	5.6	9.9	0°0	7.6	7.0	0.0	7.4	
	etenodresi8 (_E OOH)	i > c d d i	liver	49	37	36	40	41	44	48	4]	54	29	39	40	44	54	4]
	muisseton (X)	Net S	Jama F	1.4	1.0	1.2	1.3	1.0	J•5	1.5	1.4	2.2	1.1	1.4] .]	1.2	1.4	
	muibo2 (sN)	Lia em	5 Alak	3.6	0°0	00	4.9	л. 0	4.9	0.9	6.4	00	2.6	2.5	00 m	4.2	5.4	
	muisangeM (QM)	Alaba	02429	0.0	2.6	2.2	2.9	5 00 00	2.7		2.6	2.3	1.9	1•00	2.6	2.9	3.6	
	muiole) (₆ 0)		ſ	18.0	6.6	9.2	11.0	9.3	10.0	11.0	9.2	15.0	9.1	12.0	10.0	11.0	13.0	
	(94) Tron in solution			.10	• 15	• 22	•19	•04	.10	•00	.17	.10	.13	.14	• 20	.110	0	
	silica (SiO2			6.4	7.4	5.4	6.7	4.9	6.1	4.7	7.2	С. О	0.0	4.7	6.4	4.0	0	
	Discharge (sic)			89,100	77,500	30,300	15,800	27,100	13,900	13,100	11,300	84,700	160,000	93,650	39,300	17,800	24,300	18,900
uc	DitselloJ fo eta			2-24-71	4- 8-71	5-12-71	6-17-71	7-21-71	9- 9-71	10- 6-71	11- 4-71	12- 9-71	1-17-72	2- 9-72	3-30-72	4-27-72	6- 8-72	7-20-72

	12 5	0	18 7	10 3	10 5	10 5	14 0	15 7	12 4	0	10 5	Ω 0	2	с С	0	с С	2	4 0	0	12 5		28 0	75 6	60 6	22 1	32 1	62 0	62 0	61 9	68 1	000000000000000000000000000000000000000	79 12
<u>Coosa River Subbasin</u> 292 Little River Near Blue Pond	10 1.4	10 1.2 1.4 .1	14 2.2	8 2.4	6 2.8	6 1.2	17 1.6	10 0.8	10 1.0	2 1.8	6 1.8	4 2.6	4 0.8	6 1.8	18 1.8	6 1.4	14 1.6	7 1.4	8 1.4	8 2.2	001 Terrapin Creek at Ellisville	38 1.0	84 1.2	66 1.6	26 0.6	38 2.6	92 1.4	76 2.0	64 1.0	82 0.6	107 0.4	82 1.0
023	20.9	A13.0 .08	3 • 00	28.1	274	74.0	90.2	24.2	4 . 4	1,760	202	385	4,290	1,250	135	109	283	336	74.1	122	024(2,760	224	298	1,660	925	316	286	309	212	181	236
	10- 5-65	10-14-65	11- 5-65	12-21-65	1-19-66	4-21-66	6- 2-66	7-19-66	8-29-66	10-20-66	11-23-66	1- 6-67	2-20-67	2-23-67	3-27-67	3-30-67	5-17-67	7- 6-67	8- 9-67	9-14-67		10-19-66	11-22-66	1- 6-67	2-21-67	2-22-67	3-27-67	3-30-67	5-12-67	7-13-67	8-10-67	9-14-67

-- Daily Mean Discharge

 \triangleleft

7.3 6.7 7.2 6.7 7.8 7.8 7.7 7.7 7.3 7.3

74 117 57 57 73 133 133 133 133 133 133 150

4-32888 3-73

, 98	200	59	23	43	44	С С	73	82	59 59	46	10	19		o) o	F) Tature		
6.7	0.7	6° L	7.0	7.3	9.9	7.1	7.6	7.3	8.1 7.3	7.1	7.4	2.5		Hq			
138	0110	60	87	84	127	161	154	140	137	87	161	011		inicr Toim)	tic condi te zodmo	t 25 ⁰	C) boce
0	-	2	m	2	r-1	0	0	0	m 4	9) 00	C		sonoN	etenodr	2	ess CO3
51	43	43	35	35	23 23	20	52	52	09 56	42	62	55		magne Calci	wnțs 'wn		Hardn as Ca
73	61	22	48	49	78	88	82	82						o wns	i determ	ρәиτи	the IU
76	80	53	54	09	77	96	80	94						tion Kesta	(180 ₀ C)	rodev	- P
0.1	0.8	0.1	0.7	0.3	0.1	0.2	0.1	0.2				(•p.)		(NO ³)	91		
•]	0	0	•]	-	•]	-	. Ţ	<.				(Cont	_	I) INOTH) ;) ; jąę		
4.0	2.7	2.4	2.3	2.0	0 0	0.0	6.6	sden 5.4	1.2	1.0	1.0	111e 2.0	t'd.	ICI ICI ICI ICI	()))))		
7.2	6.2	5.4	5.6	7.4	0.0	00	00 00	Gads 8.4				llisv	Cor Cor	POS)			
67	52	50	39	34	64	72	70	/er at 70	64	44	86	at E. 64	obasir	CH)	,03) Sonate		
1.6	l.]	1.0	1.2	1.2	г. П	2.0	1.9	a Riv 2.0				Creek	er Sul	Locas			
6.5	4.2	3.4	0.0	3.2	0	2.6	6°	6 Coos) niqe	a Rive	(BN)			
4.4	3.2	3.0	2.5	2.2	20 	. 4 	4.2	024005 4.2				Terra	Coos	ōW) ougew	(f wnīsa		
0	0.	0	0.00	7.6	0.	0	0,0	0.				024001		(P))			
1 13	7 12	7 12	0				1	5 12				0			()		
0	Õ	Ò	• 1(0	•	<u> </u>	00	Õ						Iron	Julos ni (94)	noit	
2.9	4.5	4.9	00 07	0.0	4•/		0 0 m 0	4.7						Dilis) Ois)	(E:		
26,400	24,800	21,800	20,100	22,000	20,100	19,100	17,900	5,780	390	1,300	198	324		losid to)	s) sarge		
0-29-71	5-25-71	4-20-67	3-1/-/I-S			1 - 20-11	0/-GT-NT	9-18-70	3-28-68	7-20-51 12-18-07	11-17-67	10-11-67		alpa	91100 IO	01000	(1)
1 1 1	5-2	4-20			 ⊣ ()))		6-18	3-2	00-0 T-2T		10-1		əjsd	ə íí o⊃ to	oitoe	u

(Chemical constituents are in parts per million. Analyses are by U. S. Geological Survey.)

Appendix Table 3--(Cont'd)

4-32888 3-73

82 1	1 89	20	52	49	46	20	70	<u>4</u>																								
7.2	9° /	7.7	6 . 8	9	7.3	7.0	7.0	7.3			7.5	0 0	8.1	8.2	8.2	7.5	7.3	7.9	8.2	7.7	7.7	7.6	7.1	8.4 4	7.2	7.0		9.9	6.9	7.3	7.0	
112	142	144	102	89	67	66	116	111			270	251	248	259	171	163	118	243	250	251	234	209	188	237	233	222		134	162	129	153	
00		0	9	ന	ß	0	0	Ţ			ഹ	0	4	10	11	m	\sim	2	\odot	ഹ	ഹ	14	m	0	2	0		00	9	2	6	
42	202	49	43	35	43	41	48	47			130	110	130	135	06	80	58	128	128	125	118	112	92	115	115	102		92	78	64	73	
62 73	08	81	64	52	09	09	64	62																				LL	60	72	87	
78	70	91	55	55	59	65	63	64																				96	80	80	103	
0.2	- C - O	0.1	1.2	2.0	1•3		0.4	0.2			0.1																	0.2	0.1	0.2	0.1	
0, -		Γ.		Γ.	Ч,	0	0	- Ţ		dnp																	(I)	- •		-	•	
3.6 8.8	6.4	9•9	4.0	2.8	2.0	2.9	э. б	3.6	(r Cru	7.0	5,0	6.2	5.4	4.4	2.4	1.2	з. б	5.4	3.6	0°0	2.2	3.2	3.2	4.4	0°8	llivd	0•0 %	4.2	2.4	2.4	
6.6 7.2		9 . 6	7.8	6.4	7.6	6 • 8	5.0	6.4		k Nea	4.2																at As	8. 4	6.2	5.6	11.0	
51	+ 00 0	65	45	39	47	20	60	26	(Cree	52	44	54	52	96	94	68	54	.46	46	38	20	08	32	38	126	noe	69	80	70	78	
1.6	-00 -	1.8	1.5	1.4	1.4	1.0	1.2	l .]	-	NILLS			_								-	-	, 1			, 1	Bia C	1.6	0°0	0.0	1.7	
5.0	7.6	6°0	4.9	3 .]	3.2	3.9	5.1	5.2	(B19																	3.90]	2.1	2.2	2.1	2.2	
ი ი 4 თ	4.3	4.0	3.2	2.7	00 • •		3.6	3•5		074010																	02401	3.7	4.4	З. 4	4.4	
11.0	13.0	13.0	12.0	9.4	11.0	11.0	13.0	13.0																				20	24	20	22	
03	•01	•03	•00	.10	.00	.07	· 02	0			.02																	0.33	1 • 3	0.27	0.15	rge
0.4 0.0	2.6	5.4	7.2	9	5.9	2.7	1.0	1.3																				4.2	4 . 8	3.4	4.2	ischai
9,510	5,670	15,500	15,100	16,100	32,700	12,600	7,590	7,460			955	46.3	43.4	65.2	265	860	79.0	59.9	95.2	168	232	410	562	173	143	290		639	166	815	359	/ Mean D
8-11-71 9-21-71	10-29-71	12- 1-71	12-22-71	1-28-72	2-25-72	4- 5-72	5-11-72	6-26-72			10-14-65	11- 9-65	12-22-65	1- 1-66	3- 8-66	5- 2-66	7-14-66	8-28-66	10-13-66	11-11-66	1- 4-67	2-20-67	2-24-67	3-27-67	4- 3-67	5-12-67		1- 6-71	2- 3-71	3-17-71	4-21-71	A Daily

4-32888 3-73

A-11

	Temperature (⁹ F)		68	77	77	45		68	25	47	45	48						
	Hq		7.4	7.3	7.3	7.1	7.0	7.8	7.4	7.7	7.1	7.3		7.8	7.2	C	. 0.	
oC) suce	toubroo oitioaq8 82 ta eodmoroim)		182	195	192	190	198	243	258	250	130	159		297	196	C222	193) 1
ess CO3	Moncarbondte		ß	0	ß	ß	12	0	9		10	0		00	10	۲ ر ۲		5
Jardn Is Ca	Calcium, Magnesium		67	60	92	92	92	100	129	120	67	83		66	72	άα	2 40)
<u>, 1</u>	sum oi determine constituents		112		103	76	111		142		80	93						
- PJ	tion (180°C) Residue on evapo		104		109	76	131		172		78	112	ncoln					
	(NO ³)	-	0.5		0.2	0.2	1.0		а. С	0.2	1.2	0.2	r Lir					
	(F)		20		-	Ţ.	.1		[•	•]	.2	0	Nea					
	(CL)	t'd.	2.0	3.6	2.2	2.4	2.8	2.0	2.6	0°0	2.8	2.0	hoals	4.0		νς		1 , ,
	(*OS)	(Con			5.6	4.0	5.4		4.6	5.6	7.2	7.4	son S	2	20	V	_	4
<u></u>	(² COH)	basin at As	12 13	12	70	70	98	00	00	44	70	06	Jack	90	20 0	000	10	-
	(K)	r Sub	0.8 1	1	1.6 1(.11(۔ ۵	Ţ	-5 19	.3]	.4	6.0	ek at	1(~ 1	, -	
	(sN) muisset09	Rive Sig Ca			8	<u>م</u>	с.		.1	с.	00	00	Cre(
	(6w)	00 F	8		0	8	0		(N) (N)	4	5 1	9	loccc					
	wnīsəubew	C 1013			9	٠ Ω	٠ ۵		ċ	ŵ	с,	4.	10000					
	muisle) (s)	0	29		27	27	28		38	35	21	25	44 C					
	(Fe)		•02		•00	.01	.50		•02	•31	.07	•07	0240					
	silica (SiO ₂ (Si		3.0		5.1	1.7	9.9		6.5	4.9	6.4	6.2						
	Discharge (sfs)		92.4]	40.1	59.9	71.6	118	27.6	33	44	343	181		489	893 660	1.410	660	>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
			-25-71	-23-71	-29-71	-10-71	-21-71	-20-71	-29-71	. 1-71	.22-71	-28-72		3-66	-14-00	-0-07 	79-00	
uo	ijoelloJ jo ejed		2	9	9	0	-6	10-	10-	12-	12-			11	- 7 T	-) (")

(Chemical constituents are in parts per million. Analyses are by U. S. Geological Survey.)

Appendix Table 3--(Cont'd)

4-32888 3-73

61 57 52 63 72	000 000 000 000 000 000 000 000 000 00	35 54 61 57 70 73
8.0 6.0 7.6 8.0 8.0 7.6 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0	<u>Г 8 Г Г Г 7 Г Г Г Г Г Г </u> 9 9 6 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	7.0 7.1 7.1 7.1 7.1 7.1 7.1 7.1 7.1 7.1 7.1
354 236 226 343 339 339 276 109 455	103 76 45 64 65 69 134 134 1159 1159 128	44 80 80 80 80 80 80 80 80 80 80 80 80 80
54 10 10 13 13 49 24 24 24 24 24 24 24 24 24 24 24 24 24	4 5 0 1 1 1 0 0 0 0 0 1 0	4 4 N 4 O M 4 O O
115 91 125 125 99 129 129	45 90 10 10 10 10 10 10 10 10 10 10 10 10 10	10 11 12 10 11 12 10
00000000000	ncent • 4 • 6 • 6 • 6 • 6 • 6 • 6 • 6 • 6 • 6 • 6	alladega 2 2 2 2 8 8
0040404000 004040000000000000000000000	ar Vi 22 00 12 00 00 12 22 1	000100000
74 93 98 88 79 38 128	y Creek N 50 36 16 18 14 77 72 100 100 122	a Creek Ak 18 16 16 16 14 12 8 114 20 20
	024055 Kelle	024058 Talladeg
84 1- 4 8 0 10 0 8		7 7 0 0 7 0 0 7 7
440 522 96(2,96(2,06(24)	1, 300 3, 1, 200 3, 1, 200 3, 1, 200 3, 1, 200 1, 2	1,098,000 1,000 1,0000 1,00000000
4-19-67 5-30-67 7-12-67 10- 4-67 11-14-67 1-25-68 3- 5-68 3- 5-68 4-17-68 9-12-68	10- 3-67 11-14-67 12-12-67 1-26-68 3- 5-68 4-16-68 5-28-68 7-10-68 8-20-68 9-12-68 9-12-68 10- 8-68 11-15-68 11-15-68	10- 3-67 11-14-67 12-20-67 1-23-68 3-19-68 4- 5-68 4- 17-68 7-10-68 8-20-68

4-32888 3-73

Ont defermined Ont determined 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.01110 0.06 0.06 0.01110 0.02 0.06 0.02 0.0333 1.0 0.02 0.0333 1.10 0.1 0.0337 1.10 0.1 0.0337 1.10 0.1 0.0337 1.10 0.1 0.0337 1.10 0.1 0.0337 1.10 0.1 0.0337 1.10 0.1 0.0337 1.10 0.1 0.0337 1.10 0.1 0.0337 1.10 0.1 0.0337 1.10 0.0 0.0 1.11 0.0 0.0 1.11 0.0 </th <th>72 83 82 80 72</th>	72 83 82 80 72
4.8 0.0 0	7.0 7.6 7.3
1.0 0	138 170 159 159
4.8 0.1 0	004-1-
1.0 0	57 61 59 60
1.0 0.1 0.1 0.1 0.1 1.0 1.0 0.0 0.0 0.0 0.0 1.10 1.0 1.0 0.1 0.0 0.0 1.10 1.0 1.0 0.1 0.0 0.0 1.10 1.0 1.0 0.1 0.1 0.0 1.10 1.0 1.0 0.1 0.1 0.1 1.10 1.1 1.0 0.1 0.1 0.1 1.10 1.1 0.1 0.1 0.1 0.1 1.10 1.1 0.1 0.1 0.1 0.1 0.1 1.10 1.0 0.1	75 86 77 83 83
1.0 0.1 0.1 0.1 0.1 1.0 1.0 0.0 0.0 0.1 0.0 1.1 1.0 1.0 0.1 0.1 0.1 1.1 1.0 1.0 0.0 0.0 0.0 1.1 1.0 1.0 0.1 0.1 0.1 1.1 0.1 0.1 0.1 0.1 0.1 1.1 0.1 0.1 0.1 0.1 0.2	80 97 94 73 73
4.8 0.0 0	1.1 0.0 1.2 1.2
4 5 5 6 6 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	
	3.5 9.4 7.2 7.2
13664 13664 13664 13664	8.6 8.6 7.4 7.2
446 446 446 446 446 446 446 446 446 446	64 68 71 72
L L L L L L L L L L L L L L L L L L L	1.1 1.8 1.9 1.9
(BN) (Na) (Aa) (Aa) (Na) (Na) (Na) (Na) (Na)	4 0 0 0 0 0 0 0 0 4
024070 02400 (6Mg)	5.0 5.1 5.1
240 Calcium (Calcium	15 15 15
noijulos ni noil (97)	.05 .05 .16
4 4 0 0 1 1 1 1 2 1 1 2 1 1 2 1 1 2 1 2 1 2	8.1 5.2 3.1 3.1
222, 400 222, 400 202, 400 200, 400 2000, 400 200, 400 200, 400 200, 400 200, 400 20	11,100 500 23,300 20,000 11,000
Date of Collection 9- 9- 68 10- 8-68 11-21-68 11-21-68 5- 7-69 6-18-69 6-18-69 6-18-69 1-71 2-17-71 2-1	5-25-71 6-29-71 8-10-71 9-24-71 10-29-71

(Chemical constituents are in parts per million. Analyses are by U. S. Geological Survey.)

4-32888 3-73

Appendix Table 3--(Cont'd)

$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	54 55 59 59 58 75	00 00 00 00 00 00 00 00 00 00 00 00 00	74	63 61 61 64 63 36
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	7.7 7.0 7.0 7.0 6.9	7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.	6.2 6.6	7.3
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	178 141 132 132 127 157	72 46 41 64 68 70 95 35	52	23 29 29 20 29 20 20 20 20 20 20 20 20 20 20 20 20 20
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Ч Ч Г О О О А Р	0000000000000000	00	0000000000
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	66 37 50 54 60 62	30 30 30 30 30 30 30 30 30 30 30 30 30 3	15	10011100110011001100110011001100110011
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	100 76 54 68 79 70 87			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	120 70 87 86 86 92			
$ \begin{bmatrix} 12 & 2-71 & 25,000 & 4.8 & .08 & 17.0 & 5.7 & 10.0 & 1.9 & 8 & 10.0 & 9.6 & .1 \\ 1-26-72 & 20,000 & 6.4 & .10 & 12.0 & 3.6 & 7.6 & 1.8 & 54 & 9.0 & 7.4 & .1 \\ 2-25-72 & 20,700 & 6.0 & .00 & 10 & 13.0 & 4.2 & 4.1 & 1.1 & 68 & 7.2 & 4.7 & 0 & 0.2 \\ 4-4.7 & 10 & 10.0 & 10.0 & 4.5 & 4.4 & 10.0 & 64 & 8.2 & 3.6 & 0 & 0.2 \\ 5-22-72 & 20,700 & 6.0 & .00 & 14.0 & 4.5 & 4.4 & 10.0 & 64 & 8.2 & 3.6 & 0 & 0.2 \\ 10-3-67 & 5.4 & .03 & 15.0 & 5.9 & 8.1 & 1.4 & 71 & 8.2 & 8.0 & .2 & 0 & 0.4 & 0.8 & 0.4 & 0.8 & 0.4 & 0.4 & 0.8 $	001100	e	с• О	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		li'uc coto	1001	brd
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Wilso 3.0 3.0 4.0 1.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2	5.4 0.5 7.4	Rock fg 0.88 0.28 1.22 2.4 2.4
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	10.0 9.0 9.0 7.0 8.2 8.2	Near No	0.0	Near
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	reek 36 11 12 32 32 34 12 12 32 34 12 32 34 34 34 34 34 34 34 34 34 34 34 34 34	20 18	reek 10 26 20 20 20 20
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1 1 1 1 1 1 1 0 0 0 4 1 0 4	eaf C	TATA	he t C
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	10.0 7.6 7.6 7.1 8.1 8.1	lwolle		5 Hatc
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	.075 Y(4000	024085
12- $2-71$ $25,000$ 4.8 $.08$ 12-21-71 $20,000$ 6.4 $.10$ $1-26-72$ $31,000$ 6.1 $.39$ $2-25-72$ $31,000$ 6.1 $.39$ $2-25-72$ $20,700$ 6.0 $.10$ $5-11-72$ $21,000$ 0.6 $.02$ $5-11-72$ $21,000$ 0.6 $.02$ $5-11-72$ $21,000$ 0.6 $.02$ $5-11-72$ $21,000$ 0.6 $.02$ $5-11-72$ $21,000$ 0.6 $.02$ $5-11-72$ $21,000$ 0.6 $.02$ $5-11-72$ $21,000$ 0.6 $.02$ $5-11-72$ $21,000$ 0.6 $.02$ $5-11-72$ 5.4 $.1146$ $.03$ $1-26-68$ 660 $.066$ $.02$ $7-10-68$ 1466 $.00$ $9-11-68$ $.106$ $.02$ $1-7-69$ $8,610$ $.03.9$ $2-18-65$ 3.00 1.650 $1-7-68$ 1.650 $.1650$ $7-10-68$ 1.650 $.1650$ $7-10-68$ 1.650 $.142$ $1-7-69$ $8,610$ $.142$ $1-7-68$ 1.650 $.142$ $1-7-68$ 2.14 $1-7-68$ 2.14 $1-7-68$ 2.14 $1-7-68$ 1.42 $1-7-68$ 2.14 $1-7-68$ 2.14 $1-7-68$ 2.14 $1-7-68$ 2.14 $1-7-68$ 2.14 $1-7-68$ 2.14 $1-7-68$	17.0 12.0 9 .8 113.0 115.0 115.0	00		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$.08 .03 .03 .03 .03		.32	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	4 0 0 0 0 4 8 4 1 0 0 0 4			
$\begin{array}{c} 12 - 2 - 71 \\ 1 - 26 - 72 \\ 2 - 25 - 72 \\ 2 - 25 - 72 \\ 5 - 11 - 72 \\ 6 - 22 - 72 \\ 6 - 22 - 72 \\ 11 - 1 - 68 \\ 3 - 5 - 68 \\ 3 - 5 - 68 \\ 3 - 5 - 68 \\ 3 - 5 - 68 \\ 3 - 5 - 68 \\ 3 - 5 - 68 \\ 3 - 5 - 68 \\ 3 - 5 - 68 \\ 3 - 5 - 68 \\ 1 - 7 - 69 \\ 1 - 7 - 69 \\ 8 - 19 - 68 \\ 8 - 19 - 68 \\ 8 - 19 - 68 \\ 8 - 19 - 68 \\ 8 - 19 - 68 \\ 8 - 19 - 68 \\ 8 - 19 - 68 \\ 8 - 19 - 68 \\ 1 - 7 - 69 \\ 1 - 7 - 7 \\ 1 - 7 - 69 \\ 1 - 7 - 7 \\ 1 - 7 - 7 \\ 1 - 7 - 7 \\ 1 - 7 - 7 \\ 1 - 7 - 7 \\ 1 - 7 - 7 \\ 1 - 7 - 7 \\ 1 - 7 - 7 \\ 1 - 7 - 7 \\ 1 - 7 - 7 \\ 1 - 7 - 7 \\ 1 - 7 - 7 \\ 1 - 7 - 7 \\ 1 - 7 - 7 \\ 1 - 7 - 7 \\ 1 - 7 - 7 \\$	25,000 20,000 31,000 20,700 18,600 21,000 21,000	5.4 31 662 662 166 10 10 200 200 200	33.9 8	8,610 1,650 163 71 42 214 142 214
	12- 2-71 12-21-71 1-26-72 2-25-72 4- 4-72 5-11-72 6-22-72	10- 3-67 11-14-67 12-12-67 1-26-68 3- 5-68 4-16-68 5-27-68 8-19-68 8-19-68 9-11-68 9-11-68 10- 8-68 11-15-68 11-15-68	5-18-65 9- 9-68	4- 5-68 4-15-68 7- 9-68 8-19-68 9-10-68 10- 7-68 11-12-68 1- 7-69

4-32888 3-73

Ť

1

	Temperature (⁰ F)		52	63	73			72				54	45	45	59	99	73
	Hq		7.1	7.1	6.9		7.7	2.5		8.1	0 .]	ۍ ۵	8.2	7.3	7.7	8.4	G•7
C) auce	Joubnoo oilioeq2 22 fe eodmoroim)		32	00 00	37		213	202		279	267	222	176	229	224	217	262
ess CO3	Noncarbonate		0	0	0		m	ß		ന	2	15	13	11	11	10	11
Hardn as Ca	Calcium, Calcium,		10	11	11		87	105		138	135	109	85	116	114	112	139
p	enimieteb fo mu2 stneutitenoc																
-ei	Residue on evapo C ^O OS) (180 ⁰ C)																
	Nitrate (NO ₃)		• D						Ţ,								
	Flouride . (F)					lena			fiel								
	(CL) Chloride	ont'd	2.0	с. Т	1.4	sin ar He	4.0	2.4	Brier	0. M	2.6	2.0	1.2	2.2	2.0	2.2	1.8
	etefiu≳ (SO4)	n (C	004			ubba: r Nea			ear								
	Bicarbonate (HCO ₃)	ibbasi	10	20	17	ver S Rive	102	122	aba l	104	102	109	88	128	126	120	156
	Potassium (K)	er Su	2 2 2 1 2			ba Ri ahaba			e Cah								
	muibo2 (6V)	a Riv				Caha .55 C			Littl								
	muisənçeM (çM)	COOS DA+ Ha+				024235			24238								
	muisle) (63)	0700	0440			0			0								
	sjiica (SiO ₂ Iron i nolution (_{Fe})																
	epredaeiO (efs)		3,650	233	TD3		138	46		80°	65.2	152	392	144	128	177	127
uo	itos[[o] to stad		3-24-69	5-5-69	60=0T=0		3-28-67	9-11-68		10-28-68	12- 5-66	12- 7-69	1- 8-68	2-23-68	4- 2-68	4-1/-08	0-24-68

(Chemical constituents are in parts per million. Analyses are by U. S. Geological Survey.)

Appendix Table 3--(Cont'd)

4-32888 3-73

	45		69	64	67		79			55	49	61							43	37	20	63	64	99	74	74	73	64	45	54	48
7.0	6.5	6.7	0 . 0	7.0	7.2	7.8	7.3	5. 7	7.9	7.7	7.2	L. L		7.7	7.4	6.7			7.2	7.1	0.0	0	6.6	6.4	0	6.6	7.0	6.4	6.9	6.9	6.8
122	150	166	120	190	175	159	215	210	228	149	127	146		81	149				32	32	29	31	32	30	34	е С	42	40	40	80 00	35
ω	11	11	σ	10	00	co	10	0	14	00	10	11		9	1]	13			0	0	[0	0	0	0	0	0	0	0	0	~-1
54	64	74	54	84	82	68	100	100	120	67	55	68		32	74	58			10	0	11	10	12	0	11	11	12	12	12	11	11
76	87	67	73	98	100	98	117	118	141	86	74				86				26	24	22	25		23	26	21	29	26	29	27	26
55	92	87	67	86	92	103	141	126	144	92				69					36	34	24	21		30	29	25	38 38	26	31	36	24
1,7	0.7	0.1	0.4	0	0.1	2.3	0.3	0.2	0.1	0.1	0.3		u	0.9	1.4				0.5	0.2	0.4	0.2		0.7	0.3	0.4	1.0	0.5	0.2	0.5	0,1
0	0	-	-	0	~,	<.	۲.	•]	۲.	, 1	2		ctio	0	0			lin	۲,	0	0	0		0	-	•]	•]	-	0	-	•]
4.4	2.6	4.4	2.6	3.4	1.6	0•0 8	2.4	2.6	5.2	3• 0	2.4	2•6	n Jur	3.0	3•5	5.6	nisin	ar Hef	1.8	1.6	2.0	1.4	3.2	1.2	1.4	1.4	1.9	2.0	2.0	1.6	1.6
с П	16	16	[]	4	[4	4	16	4	6	1	4		Maric	9.5	8.1		Subba	er Nea	3.2	2.2	1.4	0°0		1.0	2.0	1.8	0.4	1.4	0.4	0.8	2.2
50	54	77	55	91	06	73	10	10	30	72	55	70	Near	32	76	55	liver	Aive	13	12	12	13	14	30	14	14	16	17	17	14	12
1.9	1.4	1.1	1.3	1.1	1.0	2.3	1.2]	1.1	1.6]	1.6	1.2		liver	0.6	0.5		osa F	poose	0.8	0.7	0.6	0.6		0.6	1.3	0.9	0.0	1.3	1.0	0.7	0.7
4.1	4.8	4.6	4.2	4.3	က က	4 8	3•6	ю. Э	ი ო ო	00°00°	0		haba F	о. 6	2.6		allapo	Talla	2.2	2.3	2.1	2.2		2.1	2•0	1.9	2.5	2.4	2.5	2.3	2.1
4.6	5.9	6.4	о . б	6.9	7.1	5.5	0.0	9.3	10.0	5.4	4.8		1250 Ca	0•0 9	7.0		Ē	024120	1.1	1.0	1.0	1.0		1.0	1.2	1.1	1.2	1.4	1.2	1.1	l.l
14	16	19	15	22	21	18	25	25	33	18	14		027	7.8	18.0				2.2	2.0	2.6	2.3		2.0	2.4	2.4	2.9	2.5	2.9	2.5	2.4
.98	• 33	•40	.51	.17	.11			• 25	.01	•02	•02			.18	.01				• 28	.10	.23	33		.41	.25	• 33	•27	.21	• 36	•43	• 28
6.9	6.7	7.3	7.6	1.7	8.2	2.0	5.4	7.2	5.0	က က	7.6			8.2	6.9				8 . 5	8.2	5.8	8.7		8.7	8.7	4.2	0.0	6.4	0.11	0.0	0.01
4,540	1,170	970	4,080	1,050	1,110	4,280]	753	394	332	1,990		1,810		A6,850	Al,090	649			1,220	768	1,120	846	538	583	748	583	326]	239	252]	674]	653]
1- 5-71	1-20-71	2- 4-71	3-16-71	4-16-71	5-21-71	7- 8-71	8-19-71	10- 4-71	11-22-71	12-20-71	2- 9-72	3-20-72		2- 1-49	9-21-49	8- 4-65			1- 6-71	2- 3-71	3-18-71	4-20-71	5-21-71	5-26-71	6-30-71	8-11-71	9-23-71	10-28-71	12- 1-71	12-21-71	1-27-72

A -- Daily Mean Discharge

024240 Cahaba River at Centerville

	Temperature (^O F)			47	53	64	68		42	39	54		72	99	77	80	73	68	45
	Hq			9.9	6 . 8	6.4	6.4		7.3	G•9	0°0	G• L	6.9	7.4	6.7	6.9	6.9	7.0	6.7
() auce	do de soutros de soutros de soutros de soutros de servicio de la servición de la servición de la servición de s Servición de la servición de la s			31	28	30	30		32	32	28	30	27	28	31	32	34	39	40
less CO3	9 j enodiejnoN			Г	0	0	0		0	0	0	0	0	0	0	0	0	0	0
Hardn as Ca	muisənçem , muisien			11	6	0	10		0	0	00	∞	∞	\odot	7	6	0	12	10
p	stneutitenos stneutitenos			25	23	24	25		26	24	19	21	23		22	20	26	26	90
- 61	Residue on evapo: tion (180 ⁰ C)			25	22	31	20		36	93 93	25	22	30		30	23	29	26	32
	Nitrate (NO ₃)		t.d.)	9.0		0.7	0.7		0•3	0.2	6.0	0.1	0.7		0.4	0.4	1.6	0.5	0.6
	Flouride (F)	(, p ,)	(Con	-	0	0	-	lley	, _ ,	0	0	0	0		.]	-			
	(CF) Chloride	(Cont	flin	1.6	1.4	1.6	1.4	t Wac	2.0	2.2	1.7	1.6	1.4	2.0	1.4	1 . 8	2.2	2.4	2.00
	Sulfate (SO4)	asin	ar He	0.8	1.0	2.2	2.4	ver a	2.4	2.0	1.4	0.4	1.2		2.6	2.0	2.0	2.4	2.00
	Bicarbonate (_E OOH)	Subb	er Ne	12	12	12	12	sa Ri	15	12	10	12	12	14	11	12	12	15	14
	(K) Potasium	River	a Riv	0°8	0.5	0.0	0.9	lapoo	0	0.7	0°0	0.7	0.6		1.5	6.0	1.]	1.3	1.3
	muibo2 (sN)	00058	apoos	2.0	2.2	2.0	1.9	5 Tal	2.6	2.9	2.0	2.1	2.1		2.1	2.0	2.2	3.0	0.0
	(6M) muisənçeM	Tallap	0 Tall	0.9	1.0	1.0	1.0	02414	1.0	6.0	0°0	0.9	0.9		1.0	1.1	1.0	1.3	1.2
	muisle) (ca)		02412	2.0	1.8	2.1	2.4		2.1	2.0	1.7	1.6	1.6		1.3	1.8	2.0	2.5	2.1
	(Fe) (Fe)				.17	.30	.17		.10	.16	.19	.15	.32		• 06	.37	.27	.34	.36
	silica (SiO ₂			0.6	00 00	8.1	8.2		7.7	7.7	4.4	8.1			6.5	4.4	0.2	5 . 8	6.3
	Discharge (sîc)			762	725	742	835		3,080	2,640	4,080	2.580	2,160	4,830	2,340	1,850	1,140	789	1.180
				2-24-72	4- 5-72	5-11-72	6-22-72		1- 7-71	2- 2-71	3-18-71	4-21-71	5-26-71	4- 8-71	6-30-71	8-11-71	9-23-71	0-28-71	2- 2-71
uc	Date of Collectio																	Γ	ſ

(Chemical constituents are in parts per million. Analyses are by U. S. Geological Survey.)

Appendix Table 3--(Cont'd)

55 50 70 70	64 64 68 68 68 68 68 68 68 68 68 68 68 68 68	4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
6.9 6.9 6.9 6.9 6.9	6.7 7.1 7.5 8 7.5 8 7.5	× × × × × × × × × × × × × × × × × × ×
37 32 33 30 30 30	35 35 35 35 35 35 35 35 35 35 35 35 35 3	4 4 4 4 4 8 8 9 9 9 9 9 4 4 1 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9
000000	000-0000	000000000000000000000000000000000000000
100 98889	$\begin{smallmatrix} 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\$	$\begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 $
20 23 20 23 20 20 20 20 20 20 20 20 20 20 20 20 20		20 20 20 20 20 20 20 20 20 20 20 20 20 2
37 22 23 23 23 21		321 223 333 333 333 333 333 333 333 333
0.0 1.0 1.0 1.0 4.1	l	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
	yvil.	
1.50 1.60 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.2	ackne 0.8 0.2 1.1 1.1 0.9 0.9 0.9	^M Tal 1.0002000000000000000000000000000000000
0.6 1.2 1.6 8 1.6	lear H	,
13 11 10 13	eek N 14 11 12 11 21 13 21 21 21 21	River 17 13 14 13 18 18 18 18 18 16 10 10
1.0 0.7 0.6 0.6 1.1	ee Cr	0000 000 000 000 000 000 000 00
	dillab	alla 0.000400000000000000000000000000000000
1.1 1.0 1.0 0.9	24150	4185 1.10000 1.10000 1.10000 1.10000 1.10000 1.100000000
2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0	0	00000000000000000000000000000000000000
.27 .23 .17 .23 .23		.035 .035 .033 .033 .033 .033 .033 .033
00000000000000000000000000000000000000		11.00000000000000000000000000000000000
2,970 2,960 3,770 3,270 2,600 3,560	634 99 187 747 235 161 100 53	7,700 10,700 6,000 7,770 7,770 7,770 7,930 7,930 7,930 7,930 7,930 7,930 7,930 7,930 3,510 3,510
12-21-71 1-27-72 2-24-72 4- 5-72 5-11-72 6-22-72	10-10-68 11-13-68 1- 8-69 3-25-69 5- 6-69 6-17-69 8- 7-69 9-11-69	1-11-71 2- 2-71 3-16-71 5-24-71 6-28-71 6-28-71 8- 9-71 10-28-71 10-28-71 12-20-72 20-272 20-272

1

1

	Temperature (⁰ F)						77	06	85	82	73	53	47	4 0
	Hq			6.7	6.7	6 .0	6.9	6. 0	7.1	6.4	G• 9	6.7	9.9	6.3
C) Suce	doubnoo piliogag 25 Je eodmorpim)			61	49	54	56	83	95	73	103	78	52	60
ess CO3	Noncarbonate			ß	ß	-	0	0	П	0	\sim	0	\sim	0
Hardn as Ca	(muisle), muisenpem			20	20	20	21	30	24	26	38 3	23	17	22
benimiətəb îo muS sineutitenos				42	31	35	38	51	4]	49	64	40	36	42
-eı	Residue on evapo: (J ⁰ 081) noit			4]	36	40	44		52	45	70	42	47	36
	stertiN (_E ON)			3.2	0.4	0.4	0.6	0	0.0	0.1	0.2	0.1	2.1	0.2
	Flouride Flouride	nt'd	gee	-	[,		0	-	-	-	-	•	2.	0
	(CF) CÞJoride	n (Co	Tuske	5.4	3.2	0°0	1.8	4.0	с. Д	4.4	6.4	5.4	4.0	6.4
	Suliate (sO₄)	obasi	Near	4	4 .6	0°°	2.6	ы. 4	4.4	4.0	4.0	2.8	00 00 00	6.8
	Bicarbonate (_E OOH)	er Su	reek	18	18	23	26	30 00 00	28	34	44	30	18	16
	muiasejon (K)	a Riv	pee C	1.1	0.0	1.1	1.1	2.1	1.4	2.0	2.9	2.7	2.2	1.2
	muibo2 (6N)	apoos	upha (ෆ ෆ ෆ	2.2	2.0	2.7	00	2.6	3.6	6.0	3.7	0°0	2.9
	(6W) wnisauceW	Tal]	024190	1.7	1.1	1.8	2.0	Э ° О	2.1	2.8	з . 9	2.5	1.7	1.8
	muisle) (ca)			5.2	6.3	4.9	5.0	7.0	6.3	5.9	8.6	4 00	о . б	5.9
	(94) (94)			•66	•68	.54	.20	• 35	.42	• 30	•40	.27	.23	•40
	silica (SiO ₂			 8	3.7	6.8	00 • 00	0°.3	0.0	9.3	80°0	2.8	6.1	00 • 00
	Discharge (s1s)			672	1,160	242	202	34.6		93	92	156	462	399
				2- 2-71	3-16-71	4-19-71	5-24-71	6-28-71	8- 9-71	9-22-71	0-26-71	1-30-71	2-20-71	1-25-72

(Chemical constituents are in parts per million. Analyses are by U. S. Geological Survey.) Appendix Table 3--(Cont'd)

Appendix Table 4--Water quality parameters measured in Alabama.

	U.S.G.SGSA Partial	U.S.G.SGSA Standard	U.S.G.SEPA Field Analysis	T.V.A.	Ala. Water Improvement Commission	Ala. Department of Public Health	
~	(1)	(2)	(3)	(4)	(5)	(6)	
lime	Х	Х	Х	X	X		
Discharge	Х	X	Х	Pt.	• L X		
Discolved Iren		X		X V		v	
Dissolved Hongapore		A V		Λ		A V	
				17		Λ	
Calcium Magaagaa		X		X		V	
Sodium		X		X V		X V	
Dotacsium		A V		A V		A	
7 inc		Λ		Λ			
Bicarbonate	X	X	Y	X			
Carbonate	X	X	X	Λ			
Sulfate	<i>.</i>	X	24	Х			
Chloride	Х	Х		X		Х	
Flouride		X				Х	
Nitrate		Х		Х		Х	
Dissolved Solids (@180 ⁰ C)		Х		Х		Х	
Dissolved Solids (sum of							
constituents)		Х					
Dissolved Solids (tons/acre-ft	:.)	Х		Х			
Total Solids							
Hardness	Х	Х		Х		Х	
Non-Carbonate Hardness	Х	Х		Х			
Specific Conductance	Х	Х	Х	Х			
рН	Х	Х	Х	Х	Х	Х	
Dissolved Oxygen			Χ	Х	Χ	ХХ	
Temperature	Х	Х	Х	Х	Х		
Organic Nitrogen				Х			
Ammonia Nitrogen				Х			
Nitrate				Х			
Phosphate				Χ			
Unemical Uxygen Demand					V		
Brochemical Oxygen Demand Turbidity					X		
Color					A V		
Alkalinity (Total)					A V	V	
Alkalinity (nbenalabalain)					Λ		
Acidity						N Y	
						4 h.	

4-32888 3-73

Í
Appendix Table 5Municipal v	waste disposal	facilities in the Alabama Rive	r Basin, by subbasins, 197	70.
Municipality	Population 1970 Census	Waste Disposal Facility	Receiving Stream	Remarks
	A	labama River Subbasin		
Camden West Plant South Plant North Plant	1,742	Single-Cell Lagoon Single-Cell Lagoon Single-Cell Lagoon	Red Branch, Rockwest Cr. Town Branch, Pursley Cr. Rockwest Creek	
Frisco City	1,286	Imhoff Tank	Randons Creek	Ţ
Marion	4,289	Standard Rate Filter	Boguechitto Creek	
Monroeville Broughton St. Plant Hudson Branch Plant	4,846	High-Rate Filter w/Cl2 Aerated Lagoon	Limestone Creek Hudson Branch	
Montgomery Catoma Plant Econchate Plant Towassa Plant	133,386	Bioactivation Process w/Cl2 High-Rate Filters w/Cl2 High-Rate-Filters w/Cl2	Catoma Creek Alabama River Alabama River	
Pine Hill	697	One-Cell Lagoon	Cub Creek	
Prattville	13,116	High-Rate Filter w/Cl2	Autauga Creek	
Selma	27,379	High-Rate Filter w/Cl2	Alabama River	
Thorsby	944	Primary Imhoff Tank	Charlotte Creek	Ţ
Alabaster	2,642	<u>Cahaba River Subbasin</u> Imhoff Tank	Buck Creek	Ţ
Birmingham	300,910	(See Jefferson County)		
Brent	2,093	Single-Cell Lagoon	Cahaba River	

Municipality	Population 1970 Census	Waste Disposal Facility	Receiving Stream R	Remarks
	Cahaba	River Subbasin (Cont'd.)		
Centreville	2,233	Single-Cell Lagoon (Only nartially semered)	Cahaba River	
Homewood	21,245	Shades Valley)		
Hoover	1,393	(See Jefferson County Patton Creek)		
Irondale	3,166	(See Jefferson County Shades Valley)		
Tefferson County Sanitary Dist.				
Cahaba River Cahaba River Shades Valley Leeds Plant Trussville Plant Patton Creek		Activated Sludge w/Cl2 Activated Sludge w/Cl2 Standard Rate Filter w/Cl2 Standard Rate Filter w/Cl2 High-Rate Filter w/Cl2	Cahaba River Shades Creek Little Cahaba River Cahaba River	
Leeds	6,991	(See Jefferson CountyLeeds)		
Marion	4,289	One-Cell Lagoon	Rice Creek	
Montevallo	3,719	Extended Aeration w/Cl2	Shoal Creek	
Mountain Brook	19,474	(See Jefferson County Shades Valley)		
Trussville	2,985	(See Jefferson County Trussville)		
Vestavia Hills	8,311	(See Jefferson County Patton Creek)		

.

22888	Population			
⊎ Municipality	1970 Census	Waste Disposal Facility	Receiving Stream	Remarks
-73		allapoosa River Subbasin		
Alexander City	12,358		(
Christian Creek Plant		Modified Act. Sludge w/Chlorination	Christian Creek	
Coley Creek Plant		Modified Act. Sludge	Branch of Coley Creek	
Dobbs Plant		Wodified Act. Sludge	Dobbs Creek	
Spring Hill Plant		W/UNIOTINATION Standard Rate Filter (Shloniontion	Elkahatchee Creek	
Sugar Creek Plant		w/uniorination Aerated Lagoon/Wech. Clarifier w/Cl2	Sugar Creek	
Ashland	1,921			
Eastside Westside		High-Rate Filter Imhoff Tank	Horsetrough Creek Enitachope Creek	
Auburn	22,767			
Northside Southside		li h-Rate liltur n/Cl2 Staje Filters w/Cl2	Wright's Mill Creek Parkerson's Mill Creek	(V)
Camp Hill	1,554	Single-Cell Layoon	Sandy Creek	
Dadeville Outfall Plant No. 1	2,847	No Treatment Single-Tell Lagoon	Chattashofka Creek Sandy Creek	-
Heflin	2,872	Single-Cell Lagoon	Cahulga Creek	
Lafayette	3,530	Five Raw Discharges 0.018 MGD Imhoff Tank	Kellem, Allen, Míll Cre Míll Creek	$eks \frac{1}{2}$
Lineville	1,984	Septic Tanks		

Appendix Table 5--(Cont'd)

Appendix Table 5(Cont'd)			
Municipality	Population 1970 Census	Waste Disposal Facility	Receiving Stream Remarks
	Tallapo	Josa River Subbasin (Cont'd)	
Notasulga	833	Septic Tank	1
Opelika Plant No. 1 Plant No. 2 Plant No. 3 Plant No. 4	19,027	High-Rate Filters One-Cell Lagoon Two-Cell Lagoon One-Cell Lagoon	3/ Chewacla Creek Saugahatchee Creek Rocky Branch
Roanoke Plant No. 1 Plant No. 2	5,251	One-Cell Lagoon One-Cell Lagoon	Graves Creek Trib. to High Pine Creek
Tallassee	4,809	Two-Cell Lagoon in Parallel	Tállapoosa River
Tuskegee Plant No. 1 Plant No. 2 Plant No. 3 Plant No. 4 Plant No. 5	11,028	One-Cell Lagoon One-Cell Lagoon One-Cell Lagoon One-Cell Lagoon One-Cell Lagoon	Uphapee Creek Uphapee Creek Calabee Creek Calabee Creek Calabee Creek
Wadley	626	One-Cell Lagoon	Hutton Creek
Wedowee	842	One-Cell Lagoon	Wedowee Creek
Anniston	31,533	Coosa River Subbasin Activated Sludge w/Clo	Choccolocco Creek
Ashville	986	Septic Tank	Canoe Creek
Attalla	7,510	Single-Cell Lagoon	Big Wills Creek

4 - 3	Appendix Table 5(Cont'd)			
2888 3	Municipality	Population 1970 Census	Waste Disposal Facility	Receiving Stream Remarks
-73		Coos	a River Subbasin (Cont'd)	
	Blue Mountain	466	Standard Rate Filter	Cane Creek
	Bon Air	214	Septic Tank	Griffin Branch (Tallaseehatchee Creek) <u>1</u> /
	Calera	1,655	Extended Aeration (Air)	Buxahatchee Creek
	Cedar Bluff	956	Three-Cell Lagoon	Chatooga River (Coosa River)
	Centre	2,418	Single-Cell Lagoon	Terrapin Creek
А	Childersburg West Plant Northeast Plant	4,831	Two-Cell Lagoon (Parallel) One-Cell Lagoon	Coosa River Coosa River
-26	Clanton	5,868	Standard Rate Filter	Walnut Creek
	Collinsville	1,300	Single-Cell Lagoon	Big Wills Creek
	Columbiana	2,248	One-Cell Lagoon	Waxahatchee Creek
	Fort Payne	8,435	Standard Rate Filter	Little Wills Creek
	Gadsden West Side Plant East Side Plant	53,928	High Rate Filter w/Cl2 High Rate Filter w/Cl2	Coosa River Coosa River
	Glencoe	2,901	Single-Cell Lagoon	Coosa River
	Goodwa ter	2,172	Single-Cell Lagoon	Hatchett Creek
	Jacksonville	7,715	High-Rate Filter w/Cl2	Tallahatchee Creek

. Appendix Table 5(Cont'd)				
Municipality	Population 1970 Census	Waste Disposal Facility	Receiving Stream	Remarks
	Coosa	River Subbasin (Cont'd)		
Oxford	4,361	City of Anniston Plant		
Pell City Plant No. 1 Plant No. 2	5,381	Primary w/Digestion w/Cl2 Extended Aeration	Dye Creek Kelly	1
Piedmont	5,063	One-Cell Lagoon	Nances Creek	
Rainbow City	3,107	One-Cell Lagoon	Big Wills Creek	
Springville	1,153	PrimarySeptic Tank	Spring Branch	Ţ
Sylacauga Plant No. 1 Plant No. 2 Plant No. 3	12,255	High-Rate Filter w/Cl2 Extended Aeration Extended Aeration	Shirtee Creek Trib. to Tallaseehatchee Trib. to Tallaseehatchee	
Talladega Plant No. 1 Brecon System Bemiston Plant	17,662	High-Rate Filters w/Cl2 Standard-Rate Filter Standard-Rate Filter	Talladega Creek Cheaha Creek Talladega Creek	
We tump ka	3,786	Two-Cell Lagoon in Parallel	Coosa River	
Wilsonville	659	Extended Aeration	Bullets Creek	
1/ Inadequate. 2/ Overloaded. 3/ Inoperable -waste to lage	. noc			

Source: Alabama Water Improvement Commission

4-32888 3-7

İ

4-328	Appendix Table óIndustria	l waste disposal facil:	ities in the Alabama River Basin, b	y subbasins,	1970.
00 3-7	Name of Industry and Location	Sewage Disposal Facilities	Industrial Treatment Facilities	Receiving Stream	Bomarto
13	Gurney Manufacturing Co. Prattville, Autauga Co.	Prattville sewerage system	a River Subbasin None		SA LEUIST
	Monroe Mills, Subsidiary of Vanity Fair Mill, Inc. Monroeville, Monroe Co.	Monroeville sewerage system	Monroeville sewerage system: aerated lagoon and a mechanical clarifier		Intrastate waters. Adequate
	Ring Around Products, Inc. Prattville, Autauga Co.	Septic tank and absorption field	Acid neutralization and evapo- ration. Incineration of insecti- cide wastes with burial of residue.	No discharge	Intrastate waters. Adequate
A-28	Independent Lock Co.,Selma, Dallas Co.		Discharge to municipal sewerage system.	Alabama via Selma Treat- ment Plant	Interstate • waters. Inadequate.
	Poultry Products Co., Inc. Montgomery, Montgomery Co.	Montgomery sewerage system	Pretreatment consisting of screen- ing and partial recirculation of process waters. Municipal plant consists of trickling filter activated sludge plant with chlorination.	· Catoma Creek via Catoma Creek Treat- ment Plant	c Intrastaté waters. Adequate
	Frosty Morn Meats, Montgomery, Montgomery Co.	Montgomery sewer- age system	Pretreatment consisting of screening and grease removal. Municipal plant consists of trickling filteractivated sludge plant with chlorination.	Catoma Creek via Catoma Creek Treatment Plant	: Intrastate waters Adequate.

Name of Industry and Location	Sewage Disposal Facilities	Industrial Treatment Facilities	Receiving Stream	Remarks
R. L. Ziegler, Inc. Selma, Dallas Co.	Selma sewerage system	Selma sewerage system: high rate trickling filter and chlorination	Alabama Riv via Selma Treatment Plant	/er Interstat waters. Adequate
Whitfield Pickle Co. Montgomery, Montgomery Co.	Montgomery munici- pal sewerage system	Municipal system consists of a high rate trickling filter plant with chlorination.	Alabama River via Econchate Treatment Plant	Interstate waters. Adequate
Alabama Renderers, Inc. Montgomery, Montgomery Co.	Montgomery sewerage system: Econchate Plant	Pretreatment consisting of a clarifier for grease and solids removal. Municipal plant consisting of a high rate type trickling filter and chlorination.	Alabama River via Econchate Treatment Plant	Interstate waters. Adequate
Hammermill Paper Co., Selma, Dallas Co.	Treated with industrial wastes	Mechanical clarifier, 5-day retention basin and 60-day oxidation storage lagoon, diffusion in River.	Alabama River	Interstate waters. Adequate
Koppers Co.,Montgomery, Montgomery Co.	Montgomery sewerage system: Econchate Plant	Pretreatment for removal of oil, phenol, and solids. Municipal facilities consists of a high rate trickling filter plant and chlorination	Alabama Fiver via Econchate Treatment Plant	Interstaté waters. Adequaté
MacMillan Bloedel United. Inc., Pine Hills, Wilcox Co.	l.∵ated with indus- trial wastes	Mechanical clarifier, 90-day oxidationstorage lagoon, dif- fusion in river.	Alabama River	Interstate waters. Adequate

Appendix Table 6--(Cont'd)

Name of Industry	Sewage Disposal Facilities	Industrial Treatment Facilities	Receiving Stream	Remarks
Union-Camp Corp. Prattville, Autauga Co.	Treated with indus- trial wastes	Settling basin, 1,500 acres (2,260 MG capacity) of oxidationstorage lagoons, diffusion in river.	Alabama River	Interstate waters. Adequate
	Coosa	. River Subbasin		
A Model Threaded Rod Co. Columbiana, Shelby Co.	Columbiana munici- pal system	Chemical treatment facilities for metal plating wastes.	Tributary of Waxa- hatchee Creek	Intrastate wakels. Adequate. Storage basin in design stage.
Alabama Plating Co. Vincent, Shelby Co.	Septic tank and absorption field	Chemical treatment facilities for metal plating wastes and a blending basin. (Under construction)	Tributary of Spring Creek	Intrastate waters. Adequate.
Anniston Army Ordnance Bynum, Calhoun Co.	Secondary treatment trickling filter.	None	Coldwater Creek	Intrastate waters. Federal Installa- tion.
Avondale Mills Sylacauga, Talladeya Co.	Sylacauga municipal system	Two aerated lagoons each having a water surface area of 2.4 acres, a 50-foot mechanical clarifier and two sludge lagoons each having a surface area of 1.0 acre.	Shirtee Creek	Intrastate waters. Adequate

Appendix Table u--(Sont'd)

Name of Industry and Location	Sewage Disposal Facilities	Industrial Treatment Facilities	Receiving Stream	kemarks
<i>M</i> ehadkee Yarn Mills Talladega, Talladega Co.	Talladega municipal system	Municipal facilities consist of a high rate trickling filter type plant with chlorination.	Talladega Creek via Talladega Treatment Plant	Intrastate waters. Adequate.
Big Wills Poultry, Inc. Division of Cagle's, Inc. Collinsville, DeKalb Co.	Treated with indus- trial wastes	Screening, grease and solids re- moval, an anaerobic lagoon having a water surface area of 7.0 acres	Big Wills Creek	Intrastate waters. Adequate.
Alpine Mills, Inc. Attalla, Etowah Co.	Municipal system	Discharge to municipal system	Big Wills Creek	Intrastate waters. Pre- treatment needed.
Alabama Power Co. Gadsden, Etowah Co.	Septic tank and absorption field	Ash settling ponds.	Coosa River	Interstate waters. Adequate.
Beaunit Mills, Childersburg, Talladega Co.	Primary treatment Imhoff tank	Sedimentation, blending basin and 25-acre storage basin with controlled discharge and dif- fusion in river.	Coosa River	Interstaté waters. Adequate.
Soodyear Tire and kubber Co., Gadsden, Etowah Co.	Gadsden municipal system	Oil and solids removal equip- ment for the waste stream which is composed principally of cooling water and surface drainage. Facilities include an oil separation equipped with mechanical equipment for removal of oil and solids and a polishing basin.	Coosa River	Interstat waters. Adequate.

Appendix Table 6--(Cont'd)

4-328	Appendix Table 6(Cont'd)				
888 3-	Name of Industry and Location	Sewage Disposal Facilities	Industrial Treatment Facilities	Receiving Stream	Remarks
73	Monsanto Chemical Co. Anniston, Calhoun Co.	Anniston municipal system	Pretreatment including neutraliza- tion. Municipal plant is the activated sludge type including chlorination.	Choccolocco Creek via Anniston treatment plant.	Intrastate waters. Adequate
	Republic Steel Corp. Gadsden, Etowah Co.	Gadsden municipal system	In-plant control, 2.5 acre sedimentation, blending, and oil removal basin.	Black Creek	Intrastate waters. Implementa- tion program proceeding on schedule.
A-33	Shugart Hosiery Mill Ft. Payne, Dekalb Co.	Ft. Payne munici- pal system	Municipal facilities consist of a slow rate trickling filter treatment plant.	Little Wills Ck. via Ft. Payne treatment plant.	Intrastate waters. Adequate. Construction drawings approved by WIC.
	National Gypsum Co. Anniston, Calhoun Co.	Septic tank and absorption field	Mechanical clarifier and two earthen basins.	Coldwater Creek	Intrastate waters. Inadequat
	National Standard Co. Columbiana, Shelby Co.	Columbiana munici- pal system	Chemical treatment facilities for metal finishing wastes including sedimentation and storage basin.	Tributary of Waxa- hatchee Ck.	Intrastate waters. Adequate.

Name of Industry and Location	Sewag- Disposal Facılities	Industrial Treatment Facilities	Receiving Stream	Remarks
Crown Textile Manufacturing Co., Talladega, Talladega Co.	Talladega munici- pal system	Pretreatment facilities consisting of plending and aeration basins. Municipal facilities consisting of a high rate trickling filter plant and chlorination.	Talladega Creek via Talladega Creek Sewag Treatment Plant	In tras tate wa tors. Adequate.
W.B. Davis Hosiery Mills, Inc., Ft. Payne, DeKalb Co.	Ft. Payne munici- pal system	Municipal facilities consist of a slow rate trickling filter treatment plant.	Little Wills Creek via Ft. Payne treatment plant.	Intrastate waters. Adequate. Constructior drawings approved by WIC. Dis- charge will be to Big Wills Ck.
National Metal Manufac- turing Co., Inc. Sylacauga, Talladega Co.	Sylacauga munici- pal system	In plant control and oil handling facilities.	Tributary of Shirtee Creek	Intrastate waters. Inadequate.
Ft. Payne Hosiery Mills, Inc., Ft. Payne, Dekalb Co.	Ft. Payne munici- pal system	Municipal facilities consist of a slow rate trickling filter treatment plant.	Little Wills Creek via Ft. Payne treatment plant.	Intrastate waters. Adequate. Constructior drawings approved by WIC. Dis- charge will be to Big Wills Ck.

4-32886 3-73

Appendix lable to (.....t'd)

Appendix Table 6(Cont'd)				
Name of Industry and Location	Sewage Disposal Facilities	Industrial Treatment Facilities	Receiving Stream	Remarks
Hackney Corporation Columbiana, Shelby Co.	Columbiana munici- pal system	Chemical treatment facilities for metal plating wastes including sedimentation and storage basins.	Tributary of Waxa- hatchee Creek	Intrastate waters. Adequate.
Spring Valley Foods, Inc. Gadsden, Etowah Co.	Treated with indus- trial wastes	Screening, a primary mechanical clarifier, 2 anaerobic lagoons each having a water surface area of 5.0 acres, an aerated lagoon having a detention period of 18 hours, a secondary mechanical clarifier, and a polishing lagoon having a water surface area of 12.4 acres, and chlorination.	Coosa River	Interstate waters. Adequate.
Ellis Brothers Seed Co. Ellisville, Cherokke Co.	Septic tank and absorption field	Temporary facilities; basin for containment of wastes.	Terrapin Creek	Interstate waters. Adequate. Temporary facilities. Engineering studies underway for perma- nent facil- ities.
Bemis Co., Inc., Talladega Talladega Co.	Municipal system	Discharge to secondary municipal plant.	Talladega Creek via Municipal Plant	Intrastate waters. Adequate.

Name of Industry and Location	Sewage Disposal Facilities	Industrial Treatment Facilities	Receiving Stream	Remarks
	Caha	uba River Subbasin		
Woodward Company, Pyne Mine, Bessemer, Jefferson Co.	Septic tank and absorption field	A closed system for recirculation of ore washing waters. The facil- ities include: a series of three settling basins; pumping and pipin equipment for the collection and reuse of process waters as well as surface drainage in the production area.	No discharge 19	Intrastate waters. Adequate.
W. 2. Belcher Lumber Co. Centreville, Bibb Co.	Septic tank and absorption field	Oil recovery facilities and a polishing basin.	Tributary of the Cahaba River	Intrastate waters. Adequate.
Olin Belcher Lumber Co. Brent, Bibb Co.	Brent municipal seweran	Temporary facilities consist of hauling off all wastes.	No dis- charge from temporary facilities	Intrastate waters. Adequate (temporary facilities). Permanent facilities being designed.
Mann Brothers Plating Co. Trussville, Jefferson Co.	Jetferson Co. sewerage system	Pretreatment consisting of chemical treatment of metal plating wastes. Municipal facilities consist of a slow rate trickling filter and chlorination.	Cahaba River via Trussville Treatment Plant	Intrastate waters. Adequate; however, operational difficulties have arisen and are unden study by Com-

Appendix Table 6(Cont'd)				
Name of Industry and Location	Sewage Disposal Facilities	Industrial Treatment Facilities	Receiving Stream	Remarks
Siluria Mills, Siluria Shelby Co.	Community septic tank	Present facilities consist of a series of stabilization lagoons. Active plans underway for municipal treatment system which will also provide treatment for the mill wastes.	Buck Creek	Intrastate waters. Inadequate. Implementa- tion schedul proceeding on schedule.
	Tallapo	osa River Subbasin		
Ampex Corporation, Opelika, Lee Co.	Undetermined	Neutralization and pH control equipment	Pepperell Branch	Intrastate waters. Adequate.
Avondale Mills, Alexander City, Tallapoosa Co.	Alexander City sewerage system	Municipal facilities consist of an activated sludge type treatment plant with chlorination.	Coley Ck. via munici- pal sewage system	Intrasta+_ waters. Adequat
Beaver Creek By-Products, Inc., Wadley, Randolph Co.	Treated with industrial wastes	A 1.2 acre anaerobic lagoon, and two aerobic lagoons having water surface areas of 4.97 and 3.36 acres, respecitively.	Beaver Creek	Tntrastate waters. Adequat∈.
Walley Clegg Poultry Processing Co., Ashland Clay Co.	Ashland munici- pal sewerage system	Existing high rate trickling filter plant overloaded and is to be replaced by an aerated lagoon system.	Horse- trough Creek via Ashland Treatment Plant	Intrastate waters. Inadequate. Application for federal grant pend- ing. Under review by Commission

Appendix Table 6(Cont'd) Name of Industry	Sewage Disposal	Inductrial Treatment Facilities	Receiving Stream	Remarks
and Location Loy Reynolds Meat Pro- cessing Co., Lafayette, Chambers Co.	Treated	Oxidation lagoon	Tributary of Chatahospee Creek	Intrastate waters. Adequate.
West Point Pepperell, Opelika, Lee Co.	Opelika municipal sewerage system	In plant facilities including a caustic recovery system, an aerated lagoon having a retention of 2.9 days, a trickling filter 39 feet in diameter and 28 feet deep, an aerated lagoon having a retention 2.6 days and a 15 acre polishing lagoon.	Pepperell d Branch n of	Intrastate waters. Adequate.
Russell Mfg. Co.,Alexander City, Tallapoosa Co.	Alexander City muni- cipal sewerage system	Aerated lagoon system including atrobic digester, mechanical clarifiers, and chlorination.	Sugar Ck. via munic- ipal sew- erage sys-	Intrastate waters. Adequate.
Uniroyal, Inc. Opelika, Lee Co.	Opelika municipal sewerage system	Two separate systems: system No. 1 consists of a 0.5 acre settling basin and system No. 2 consists of a 0.7 acre basin.	Chewacla Ck	. Intrastate waters. Adequate
C. F. Clegg, Inc.,Heflin Cleburne Co.	Septic tank	Existing facilities consist of two oxidation lagoons.	Tallapoosa River	Interstate waters. Inadequate. New facil- ities under review by Commission.

Source: Alabama Water Improvement Commission

	INTERSTATE WATERS G1 THE THE WATER IMPROVEMEN	ALABAMA RIVER SUBBASIN ADOPTED IT COMMISSION ON MAY 5, 1967	ВΥ				
Stream	From	H Public Water Ylqqu2	gnimmiw2	bns deif 9111116	,[suttusirgA [fitsubn] γ[qqu2 τэτεW	noijegiveN	ejseW bejseit noijsjioqensit
ALABAMA RIVER ALABAMA RIVER ALABAMA RIVER ALABAMA RIVER ALABAMA RIVER ALABAMA RIVER ALABAMA RIVER ALABAMA RIVER	MOBILE RIVER Claiborne Lock and Dam Frisco Railroad crossing Miller's Ferry Lock & Dam Blackwell Bend(Six Mi. Ck.) Jones Bluff Lock & Dam Pintlalla Creek	Claiborne Lock & Dam Frisco Railroad crossing Miller's Ferry Lock & Dam Blackwell Bend (Six Mile Ck.) Jones Bluff Lock and Dam Pintlalla Creek its source	\times \times \times	$\times \times \times \times \times \times \times$			
	INTRASTATE WATERS OF THE THE WATER IMPROVEMENT	ALABAMA RIVER SUBBASIN ADOPTED COMMISSION ON JUNE 19,1967	ΒY				
Little River Randons Creek Limestone Creek	ALABAMA RIVER Alabama river Alabama river	its source its source its source	\times	$\times \times \times$			
Big Flat Creek Pursley Creek Turkey Creek	ALABAMA RIVER Alabama river Alabama river	its source its source its source	\times	\times \times \times			
Pine Barren Creek Chilatchee Creek Boguechitto Creek Sand Creek	ALABAMA RIVER ALABAMA RIVER ALABAMA RIVER Boguechitto Creek	its source its source its source its source	$\times \times$	\times \times \times \times			
Unnamed Branch	Sand Creek	Marion Sewerage Treatment Plar	nt				\times

Appendix Jable 7--Use classification of streams in the Alabama River Basin

ľ

4-- 32888 3-73

A-39

	INTRASTATE WATERS OF 1H THE WATER IMPROVEME	E ALABAMA KIVEK SUBBASIN ADOPIEL NT COMMISSION ON JUNE 19, 1967) BY		
		(Cont'd)			uo e
		Yəlic Watdu	puimmiw bns dai 91ilbli	gricultural Industrial YlqquZ rəts	olesW belser
Stream	From	LO LO	M E S	A W M	I I
Big Cedar Creek	ALABAMA RIVER	its source	××		
Valley Creek	ALABAMA RIVER	Selma-Summerfield Road	×		
Vallev Creek	Selma-Summerfield Road	its source	×		
Mulberry Creek	ALABAMA RIVER	Plantersville	×		
Mulberry Creek	Plantersville	its source	×		
Big Swamp Creek	ALABAMA RIVER	its source	×		
Swift Creek	ALABAMA RIVER	its source	×		
Pintlalla Creek	ALABAMA RIVER	its source	×		
Autauga Creek	ALABAMA RIVER	Western boundary of Prattvill	; ×		
Autauga Creek	Western boundary of	its source	×		
)	Prattville				>
Catoma Creek	ALABAMA RIVER	Catoma Creek Sewage Treatment Plant. Montgomery			~
	Catoma Creek Sewage	its source	\times		
Da LOIIIa Of CON	Treatment Plant,				
	Montgomery		;		
Mortar Creek	ALABAMA RIVER	its source	×		
Valley Creek Lake	Within Valley Cre	tek State Park ob state Dark	<		
Little River Lake	WITHIN VALLEY UTE	EK STALF FAIN			

Appendix Table 7--Cont'd

Stream Stream Cahaba River Cahaba River Cataba River	INTRASTATE WATERS OF THE THE WATER IMPROVEMENN From Alabama River Alabama River Mm. F. Dannelly Reservoir Wm. F. Dannelly Reservoir Dam near U.S. Highway 280 Grant's Mill Road U.S. Highway 11 Cahaba River Cahaba R	To To To To To To To Head of backwater from Millers Ferry Reservoir Dam near U. S. Highway 280 Grant's Mill Road U.S. Highway 11 its source its source	Public Water > Public Water >	Arrian Windry Agricultural and Windry Acter Agricultural Mater ×	noijsgiveN	Treated Waste Transortation
(Sixmile Creek Mahan Creek ShadesCreek	Little Cahaba River Little Cahaba River Little Cahaba River	or Manan and Shoar Greek its source its source its source	< × × ×			

A-41

Cont d) Etem Cont d) Stream Etem Etem Estimation Etem Etem States Catfee Creek Cahaba River Shades Creek Cahaba River Jefferson County Line Shades Creek Cahaba Niver Jefferson County Line Shades Creek Cahaba Niver Swimming Rocky Brock Shades Creek Swimming Rocky Brock Cahaba Walley Creek Swimming Rocky Brock Creek Cahaba Walley Creek X Shades Creek Cahaba Walley Creek Te atmost Plant Its source Its source Its source Dock Creek Cahaba Walley Creek X Shades Creek Cahaba Walley Creek Its source Dock Creek Cahaba Niley Creek Its source Dock Creek Cahaba River Its source Dock Creek Cahaba River Its source Dittle Cahaba River Its source X Ittle Ca		INTRASTATE WATERS OF TH THE WATER IMPROVEMEN	HE CAHABA RIVER SUBBASIN A	ADOPTED BY 6. 1972				
Stream Etom To Stream Etom To Stream Etom To Caffee Creek Cahaba River Jefferson County Line Shades Creek Cahaba River Tesatment Plant Rocky Brook Shades Creek Cahaba River Buck Creek Cahaba River Its source Cahaba River Its source Its source Ittle Cahaba River Its source Its sou			(Cont'd)					u(
StreamFromIoIoCaffee CreekCahaba RiverIt's sourceA HayA HayCaffee CreekCahaba RiverJefferson County LineIt's sourceXShades CreekCahaba RiverJefferson County LineShades Creek SewageXShades CreekCahaba RiverJefferson County LineXXShades CreekCahaba RiverJefferson County LineXXShades CreekShades Creek SewageIt's sourceXXShades CreekShades Creek SewageIt's sourceXXShades CreekCahaba RiverIt's sourceXXBuck CreekCahaba RiverIt's sourceXXBuck CreekCahaba RiverIt's sourceXXCahaba RiverIt's sourceXXXDuck CreekCahaba RiverIt's sourceXXDuck CreekBuck CreekIt's sourceXXCahaba RiverIt's sourceXXXLittle Shades CreekCahaba RiverIt's sourceXXLittle Cahaba RiverIt's sourceXXXLittle Cahaba RiverIt's sourceXXXLittle Cahaba RiverHead of Lake PurdyXXLittle Cahaba RiverHead of Lake PurdyXXLittle Cahaba RiverHead of Lake PurdyXXLittle Cahaba RiverIt's of LeedsCorporate Linits,XLittle Cahaba River<				mming lic Water	əfilb bns d	icultural, dustrial er Supply	noitebi	ətseW bəts Ditstroqeni
Caffee CreekCahaba River Shades CreekIts source Jefferson County LineX Jefferson County LineX Jefferson County LineShades CreekCahaba River Treatment PlantJefferson County LineX XXShades CreekShades Creek Sewage Treatment PlantIts sourceXShades CreekShades Creek SewageIts sourceXShades CreekShades Creek SewageIts sourceXShades CreekShades Creek SewageIts sourceXRocky BrookShades CreekCahaba Valley CreekXBuck CreekCahaba Valley CreekIts sourceXSuck CreekBuck CreekIts sourceXCahaba Valley CreekBuck CreekXXCahaba Valley CreekIts sourceXXCahaba Valley CreekBuck CreekXXCahaba Valley CreekBuck CreekXXCahaba Valley CreekIts sourceXXCahaba Valley CreekBuck CreekXXCahaba Nalley CreekBuck CreekXXCahaba RiverIts sourceXXLittle Shades CreekCahaba RiverIts sourceXLittle Cahaba RiverHead of Lake PurdyXXLittle Cahaba RiverHead of Lake PurdyXXLittle Cahaba RiverHead of Lake PurdyXXLittle Cahaba RiverCathor City of LeedsXLittle Cahaba RiverCathor City of LeedsX <th>Stream</th> <th>From</th> <th>To</th> <th>iī MS IS Ignd</th> <th>NIJ SIJ</th> <th>rgA nI fsW</th> <th>vsN</th> <th>Tre</th>	Stream	From	To	iī MS IS Ignd	NIJ SIJ	rgA nI fsW	vsN	Tre
Shades CreekCahaba RiverJefferson County LineXShades CreekJefferson County LineShades Creek SewageXShades CreekJefferson County LineTreatment PlantXShades CreekShades Creek SewageTts sourceXRocky BrookShades Creek SewageTts sourceXRocky BrookShades Creek SewageTts sourceXRocky BrookShades CreekCahaba NiverTts sourceBuck CreekCahaba Nalley CreekTts sourceXDuck CreekBuck CreekCahaba Valley CreekXCahaba Valley CreekBuck CreekTts sourceXDuck CreekBuck CreekTts sourceXCahaba Valley CreekBuck CreekTts sourceXDuck CreekBuck CreekTts sourceXCahaba Nalley CreekBuck CreekTts sourceXDathon CreekBuck CreekTts sourceXDathon CreekCahaba RiverTts sourceXLittle Cahaba RiverTts sourceTts sourceXLittle Cahaba RiverTts sourceTts sourceXLittle Cahaba RiverHead of Lake PurdyXXLittle Cahaba RiverHead of Lake PurdyCorporate Limits,Little Cahaba RiverHead of Lake PurdyCity of LeedsX*	Caffee Creek	Cahaba River	Its source		\times			
Shades Creek SewageTreatment PlantXShades Creek SewageIts sourceXTreatment PlantTreatment PlantTreatment PlantTreatment PlantRocky BrookShades CreekBuck CreekShades CreekBuck CreekCahaba Valley CreekBuck CreekBuck CreekCahaba Valley CreekIts sourceCahaba Valley CreekIts sourceCahaba RiverIts sourceDatton CreekCahaba RiverLittle Cahaba RiverIts sourceLittle Cahaba RiverRe PurdyLittle Cahaba RiverCorporate Limits,Little Cahaba RiverCorporate Limits,Li	Shades Creek Shades Creek	Cahaba River Jefferson County Line	Jefferson County Line Shades Creek Sewage		\times			
Shades Creek Shades Creek Sewage Its source Treatment Plant Treatment Treatment Treatment Treatment Treatment Plant Treatment Plant Treatment Trea		•	Treatment Plant			\times		
Rocky BrookShades CreekIts sourceXBuck CreekCahaba RiverTas sourceXBuck CreekCahaba Valley CreekIts sourceXBuck CreekCahaba Valley CreekIts sourceXBuck CreekBuck CreekIts sourceXCahaba Valley CreekIts sourceXCahaba Valley CreekIts sourceXCahaba Valley CreekBuck CreekXCahaba Valley CreekIts sourceXPeavine CreekCahaba RiverXNumutain State Park LakesIts sourceXPatton CreekCahaba RiverIts sourceLittle Shades CreekCahaba RiverIts sourceLittle Cahaba RiverHead of Lake PurdyXLittle Cahaba RiverHead of Lake SourceXLittle Cahaba RiverHead of Lake PurdyCorporate Limits,Little Cahaba RiverHead of Lake SourceXLittle Cahaba RiverHead SourceXLittle Cahaba RiverHead SourceXLittle Cahaba RiverHead Source	Shades Creek	Shades Creek Sewage Treatment Plant	Its source		\times			
Buck CreekCahaba RiverCahaba Valley CreekXBuck CreekCahaba Valley CreekIts sourceXBuck CreekBuck CreekIts sourceXBuck CreekBuck CreekIts sourceXCahaba Valley CreekBuck CreekIts sourceXCahaba Valley CreekBuck CreekIts sourceXCahaba Valley CreekBuck CreekIts sourceXCahaba Valley CreekCahaba RiverIts sourceXCak Mountain State Park LakesIts sourceXDatton CreekCahaba RiverIts sourceXLittle Shades CreekCahaba RiverIts sourceXLittle Cahaba RiverIts sourceXXLittle Cahaba RiverHead of Lake PurdyXLittle Cahaba RiverCorporate Limits,X*Little Cahaba RiverCorporate Limits,X*	Bocky Brook	Shades Creek	Its source			\times		
Buck Creek Cahaba Valley Creek Its source X Cahaba Valley Creek Buck Creek Its source X Peavine Creek Buck Creek Its source X Peavine Creek Buck Creek Its source X Oak Mountain State Park Lakes Datton Creek Cahaba River Its source X Little Shades Creek Cahaba River Head of Lake Purdy X (Jefferson-Shelby Counties) Corporate Limits, Caty of Leeds It source Limits, X (Jefferson County) Cotorate Limits, X (Jefferson County)	Buck Creek	Cahaba River	Cahaba Valley Creek		\times			
Cahaba Valley Creek Buck Creek Its Source X Peavine Creek Buck Creek Its Source X Nontain State Park Lakes Oak Mountain State Park Lakes Datton Creek Cahaba River Its source Its source Little Shades Creek Cahaba River Head of Lake Purdy X (Jefferson-Shelby Counties) Little Cahaba River Head of Lake Purdy X (Jefferson County) Corporate Limits, X*	Buck Creek	Cahaba Valley Creek	Its source			\times		
Peavine CreekBuck CreekIts sourceXOak Mountain State Park LakesIts sourceXDak Mountain State Park LakesIts sourceXPatton CreekCahaba RiverIts sourceLittle Shades CreekCahaba RiverIts sourceLittle Cahaba RiverIts sourceXLittle Cahaba RiverHead of Lake PurdyX(Jefferson-Shelby Counties)Corporate Limits,Little Cahaba RiverCorporate Limits,(Jefferson County)Cotporate Limits,	Cahaba Valley Creek	Buck Creek	Its Source		\times :			
Oak Mountain State Park LakesXXDak Mountain State Park LakesCahaba RiverIts sourceXPatton CreekCahaba RiverIts sourceXLittle Shades CreekCahaba RiverIts sourceXLittle Cahaba RiverHead of Lake PurdyX(Jefferson-Shelby Counties)Corporate Limits,X*Little Cahaba RiverHead of Lake PurdyXLittle Cahaba RiverHead of Lake PurdyXLittle Cahaba RiverHead of Lake PurdyCorporate Limits,Little Cahaba RiverHead of Lake PurdyCity of Leeds	Peavine Creek	Buck Creek	Its source	s. P	\times			
Patton CreekCahaba RiverIts sourceXLittle Shades CreekCahaba RiverIts sourceXLittle Cahaba RiverCahaba RiverHead of Lake PurdyX(Jefferson-Shelby Counties)Corporate Limits,XLittle Cahaba RiverHead of Lake PurdyX(Jefferson County)Corporate Limits,X*	Oak Mountain State Pa	ark Lakes		\times		L.F		
Little Shades Creek Cahaba River Little Cahaba River Cahaba River (Jefferson-Shelby Counties) Little Cahaba River Head of Lake Purdy X Little Cahaba River Head of Lake Purdy Corporate Limits, (Jefferson County) (Jefferson County)	Patton Creek	Cahaba River	Its source			× ;		
Little Cahaba River Cahaba River Head of Lake Purdy X (Jefferson-Shelby Counties) Little Cahaba River Head of Lake Purdy Corporate Limits, (Jefferson County) X*	Little Shades Creek	Cahaba River	Its source			\times		
(Jefferson-Shelby Counties) Little Cahaba River Head of Lake Purdy Corporate Limits, (Jefferson County) City of Leeds	Little Cahaba River	Cahaba River	Head of Lake Purdy	\times				
	(Jefferson-Shelby Co Little Cahaba River (Jefferson County)	unties) Head of Lake Purdy	Corporate Limits, City of Leeds		*X			

to *Fish and Wildlife classification is an objective to be attained when the Jefferson County Commissi completes its program under which the Leeds sewage discharge will be abandoned. This discharge will go the Cahaba River Interceptor Sewer upon its completion. The classification of Fish and Wildlife is not currently being met.

Appendix Table 7Co	nt'd						
	INTRASTATE WATERS OF THE THE WATER IMPROVEMENT	CAHABA RIVER SUBBASIN ADO COMMISSION ON OCTOBER 16,)PTED BY 1972				
		Cont'd)	rətsw əttan Yiqqu2 Yiqming	bns dei 91ilb l i	gricultural, Industrial Ylqqu2 rəfe	noitepive	reated Waste noitstroqens
Stream	From	To	S	M E	A	N	T
Little Cahaba River	Corporate Limits,	Its source			1		
(Jefferson County) Pinchgut Creek	Lity of Leeds Cahaba River	Its source			\times \times		
	INTERSTATE WATERS OF THE THE WATER IMPROVEME	COOSA RIVER SUBBASIN ADOP NT COMMISSION ON WAY 5, 19	TED BY 67				
COOSA RIVER	Its junction with the TALLAPOOSA RIVER	Alabama Highway 14 bridge at Wetumpka		\times			
COOSA RIVER	Alabama Highway 14 bridge at Wetumpka	Jordan Dam	\times	\times			
COOSA RIVER Lake Jordan	Jordan Dam	Mitchell	\times	\times			
COOSA RIVER Lake Mitchell	Mitchell Dam	Lay Dam	X	\times			
COOSA RIVER Lay Lake	Lay Dam	Southern RR Bridge (1-1/3 miles above Yellowleaf Cr	X X eek)	\times			
COOSA RIVER Lay Lake	Southern RR Bridge (l-l/3 miles above Yellowleaf Creek)	River Mile 89 (l-1/2 mile above Talladega Creek)	S	\times			
COOSA RIVER Lay Lake	River Mile 89(1-1/2 miles above Talladega Creek)	Logan Martin Dam	\times	\times			
COOSA RIVER Logan Martin Lake Lake Henry	Logan Martin Dam	McCardney's Ferry					

	INTERSTATE WATERS OF THE THE WATER IMPROVEMEN	COOSA RIVER SUBBASIN AD IT COMMISSION ON MAY 5,	OPTED E 1967	X				
P.		Cont'd)						uu ;
Stream	From	O	Public Water Ylqqu2	paimmiw2	bns dai7 9îilbliW	Agricultura l , Industrial Mater Supply	noitepiveV	ətesW bətsərT DitstroqensrT
			Ī			1	I	-
COOSA RIVER Lake Henry	McCardney's Ferry	City of Gadsden's wate supply intake	я		\times			
COOSA RIVER	City of Gadsden's water	Weiss Dam powerhouse	\times		\times			
Lake Henry COOSA RIVER	supply intake Weiss Dam powerhouse	Weiss Dam			×			
COOSA RIVER	Weiss Dam and Weiss Dam	Spring Creek	\times	\times	\times			
Weiss Lake COOSA RIVER Weiss Lake	powerhouse Spring Creek	Alabama-Georgia state line		\times	×			
Terrapin Creek	COOSA RIVER	Alabama Highway 9	\times		\times			
Terrapin Creek	Alabama Highway 9	U. S. Highway 278	r 6		\times			
Terrapin Creek	U. S. Highway 278	Borden Springs	\times		\times			
Terrapin Creek	Borden Springs	Alabama-Georgia state			\times			
· - - -		autr	:					
LITTLE KIVEY	COOSA KIVEK (WEISS Lake)	Alabama-Georgia state line	\times	\times	\times			
West Fork of Tittle River	Little River	Alabama-Georgia state line	\times	\times	\times			
Chattooga River	COOSA RIVER (Weiss Lake)	Gavlesville		\times	\times			
Chattooga River	Gaylesville	Alabama-Georgia state line			\times			
Spring Creek	COOSA RIVER (Weiss Lake)	Alabama-Georgia state line			\times			

Appendix Table 7--Cont'd

Stream	From	To	Public Water Yuplic Yater	paimmiw2	bns daif 9îilbliW	,ίετυτίνοἰτgΑ ίεἰττευbnΙ γίqqu2 τອτεW	noijspiveN	ətesW bəteərT noitstroqenerT
Mooka Crook	CONSA RIVER	T+c controe		>	>			
	(Lake Jordan)			<	<			
Chestnut Creek	COOSA RIVER (Lake Jordan)	Its source			\times			
Hatchet Creek	COOSA RIVER (Lake Mitchell)	Socapatoy Creek			\times			
Hatchet Creek	Socapatoy Creek	Central of Georgia RR		\times	\times			
Hatchet Creek	Central of Georgia RR	Its source	\times	\times	\times			
Socapatoy	Hatchet Creek	Its source			\times			
Weogufka Creek	Hatchet Creek (Lake Mitchell)	Its source		\times	\times			
Walnut Creek	COOSA RIVER (Lake Mitchell)	Interstate Hwy. 65			\times			
Walnut Creek	Interstate Hwy. 65	Its source				\times		
Waxahatchee Creek	COOSA RIVER (Lake Mitchell	Its source			\times			
Buxahatchee Creek	Waxahatchee Creek	Its source			\times			
Yellowleaf Creek	COOSA RIVER (Lav Lake)	Its source		\times	\times			
Tallaseehatchie Creek	ČOOŠA RIVER (LAY LAKE)	City of Sylacauga's wat	cer		\times			
		supply reservoir dam						
Tallaseehatchie Creek	City of Sylacauga's water	Its source	\times		\times			

supply reservoir dam

4-32888 3-73

INTRASTATE WATERS OF THE COOSA RIVER SUBBASIN ADOPTED BY THE WATER IMPROVEMENT COMMISSION ON JUNE 19, 1967

σ
**
+
C.
0
()
1
- 1
-
ω
_
0
1
.0
\sim
2
5
U
0
0
7
-

	INTRASTATE WATERS OF THE THF WATER IMRPOVEMENT	COOSA RIVER SUBBASIN ADOPTEI COMMISSION ON JUNE 19, 1967	0 BY				
		Cont'd) F			۲۷ ۱ ۱		əte noit
		975W_Jİdı	βuimmiv γIqqu2	bns dei 91ilbli	Intlusity Intlusity Intlusity	noitepive	eW bəteər etroqener
Stream	From	To	۸S	M. E	A 5W	N	L ;
Shirtee Creek Talladega Creek Mump Creek	Tallaseehatchie Creek COOSA RIVER (Lay Lake) Talladega Creek	Its source Its source City of Talladega's water supply reservoir dam		\times \times			×
Mump Creek	City of Talladega's water supply reservoir	Its source X		\times			
Kelly Creek Choccolocco Creek	dam COOSA RIVER (Lay Lake) COOSA RIVER	Its source Its source	\times	$\times \times$			
Eastaboga Creek Cheaha Creek Lake Chinnabee	(Logan Martın Lake) Choccolocco Creek Choccolocco Creek Within Talladega Nat	Its source Lake Chinnabee ional Forest	\times \times	\times \times \times \times			
Coldwater Creek Snow Creek Dye Creek	Choccolocco Creek Choccolocco Creek COOSA RIVER (Logan Martin Lake)	Its source Its source County road one mile east of Pell City		; ×	×		×
Dye Creek	County road one mile east of Pell City	Pell City sewage treatment plant conthern BR Bridge		\times			
Cane Creek	COOSA RIVER (Logan Martin Lake)						

Appendix Table 7--Cont'd

.

	INTRASTATE WATERS OF THE THE WATER IMPROVEMENT	E COOSA RIVER SUBBASIN ADOPTED B [COMMISSION ON JUNE 19, 1967	Y			
Stream	From	Cont d Public Water	gnimmiw2 bns daif	Wildlife Agricultural, Industrial Water Supply	Navigation	Treated Waste Tionsoversion
Cane Creek	Southern RR Bridge	Ft. McClellan Reservation	×	×		
Cave Creek Ohatchee Creek	Cane Creek COOSA RIVER	Ft. McClellan Reservation Its source	××			
Tollahatohoo Caool	(Logan Martin Lake)		2			
Lailaila tuire ureen Canoe Creek	COOSA RIVER	Its source Its source	< ×			
	(Lake Henry)					
Big Wills Creek	COOSA RIVER (Lake Henrv)	Mouth of Little Wills Creek near Alabama Highwav 35	×			
Big Wills Creek	Mouth of Little Wills	Its source X	×			
	Creek near Ala. Hwy. 35			:		
Black Ureek	Big Wills Greek (Lake Henry)	U. S. Highway 431		\times		
Black Creek	U. S. Highway 431	Its source	×			
Coleman Lake	Within Talladega Na	ational Forest	X			
Sweetwater Lake	Within Talladega Na	ational Forest X	××			
High Rock Lake	Within Talladega Ne	ational Forest	X			
Hillabee Lake	Within Talladega Na	Ational Forest X	X			
Salt Creek Lake	Within Talladega Na	ational Forest	X			
Shoal Creek	Choccolocco Creek	Sweetwater Lake	X			

reamToTeamEromToLLAPOOSA RIVERALABAMA RIVERLLAPOOSA RIVERALABAMA RIVERLLAPOOSA RIVERALABAMA RIVERLLAPOOSA RIVERU. S. Highway 231LLAPOOSA RIVERMacon-Tallapoosa countyLLAPOOSA RIVERWacon-Tallapoosa countyLLAPOOSA RIVERMacon-Tallapoosa countyLLAPOOSA RIVERMacon-Tallapoosa countyLLAPOOSA RIVERMarcon-Tallapoosa countyLLAPOOSA RIVERMartin DamLLAPOOSA RIVERAlabama-Georgia stateLLAPOOSA RIVERAlabama-Georgia stateITTLE TALLAPOOSA RIVERInineITTLE TALLAPOOSA RIVERInineITTLE TALLAPOOSA RIVERInineITTLE TALLAPOOSA RIVERInineITTLETALLAPOOSA RIVERITTLETALLAPOOSA RIVERITTLETALLAPOOSA RIVERITTLETALLAPOOSA RIVERITTLETALLAPOOSA RIVERITTLETALLAPOOSA RIVERITTLETALLAPOOSA RIVERINFRASTATE WATER NOFINETALLAPOOSA RIVERINETALLAPOOSA RIVERINETALLAPOOSA RIVERINETALLAPOOSA RIVERIN

Appendix Table 7--Cont'd

Appendix lable /uon	IL'A INTRASTATE WATERS OF THE TUE WATER IMPROVEMEN	TALLAPOOSA RIVER SUBBAS	N ADOPTED) BY			
		(Cont'd)	1061				uc
Stream	From	Q	Public Water Supply Swimming	bns deif 91ilbliW	, Isiutuvitural, IsiutsubnI Viqqu2 rətsW	NOLJECTOR	oitetroqenerT
Old Town Creek	Two miles downstream	Tts source				1	×
	from U. S. Highway 29						4
Cubahatchee Creek	TALLAPOOSA RIVER	Its source	X	×			
Cal ebee Creek	TALLAPOOSA RIVER	Its source		\times			
Uphapee Creek	TALLAPOOSA RIVER	City of Tuskeegee water		×			
		supply intake					
Uphapee Creek	City of Tuskegee water	Opintlocco Creek	×	×			
	supply intake						
Uphapee Creek	Opintlocco Creek	Its source		\times			
Chinquapin Creek	Uphapee Creek	Its source	×	×			
Chewacla Creek	Uphapee Creek	Mahone Creek	×	\times			
Chewacla Creek	Mahone Creek	Its source	×	\times			
Chewochleehatchee Creek	Uphapee Creek	Chewacla State Park Lak	e	\times			
Chewochleehatchee Creek	Chewacla State Park Lake	Its source	\times	\times			
Moore's Mill Creek	Chewochleehatchee Creek	Its source	\times	×			
Sougahatchee Creek	TALLAPOOSA RIVER	County road two miles north of Loachopoka		×			
Sougahatchee Creek	County road two miles north of Loachopoka	its junction with Pepperell Branch			×		

Î

-

	VidquS rada Wayigation Ireated Waste Transportation		>							
	91ilbliW Aricultural,		××	\times	× × - 3	× :	× :	× ×	××	×
ΞD BY	pue ysig Guimmiws									
ADOPTE	ublic Water	E	×	\times				×	×	
TALLAPOOSA RIVER SUBBASIN	(Cont'd)	To	Opelika water supply r scrvoir its source	its sourc [.] Alabama Highway 49	i: our i· ourc	it	'n ral of motia :	i - bur Alatama Tighwar 63	Alatama Niriway 22 i*s sour its sourc	1
INTRASTATE WATERS OF THE	THE WATER IMPROVEME	From	its junction with Prpperell Branch Opelika water supply	restrout cougahatche. Creek TALLAPOO A RIVER	(Lak∵ Martin) Alub≤ma Hi∦kwa, J) Sandy Treck	andy in F	South Edri of Till	Zz. K - n rul a: Orric : ALAP Alle	(Lak: War in) Alabam Hiuhway c3 Alibama Hi hway Itaba: hi fe k	Trance
Appendix Table /Cont		Stream	Sougahatchee Creek Sougahatchee Creek	Pepperell Branch Candy Treek	andy Truk North Fork of	candy reek outh Fork of	anjy rek Li tl anjy rek	Li··· and, r k citabatchee ro k	Elkahatch - rok Elkahatche rok	Sujar Lreek

Indix Table 7--Cont'd

Appendix Table 7Con	t'd INTRASTATE WATERS OF THE THE WATER IMPROVEMEI	TALLAPOOSA RIVER SUBBAS NT COMMISSION ON JUNE 19	IN ADOPTED , 1967	BY			
Stream	From	To	Public Water Yuqu2 Buimming	bns dait 91ilbliW	, fsrutluoirgA Induz TotsW Viqqu2 TotsW		noitstroqener
Hillabee Creek	Sandy Creek	County road bridge 3 miles east of Hackneyv	X ille	\times			
Hillabee Creek	County road bridge three miles east of Hackneyville	its source		×			
Hackney Creek	Hillabee Creek	its source	×	×			
Chatahospee Creek	TALLAPOOSA RIVER	its source		\times			
Finley Creek	Chatahospee Creek	its source	\times	\times			
High Pine Creek	TALLAPOOSA RIVER	Alabama Highway 22		\times			
High Pine Creek	Alabama Highway 22	its source	×	\times			
Crooked Creek	TALLAPOOSA RIVER	Alabama Highway 9		\times			
Crooked Creek	Alabama Highway 9	its source	\times	\times			
Horsetrough Creek	Crooked Creek	Alabama Highway 9		\times			
Horsetrough Creek	Alabama Highway 9	its source					\times
Wedowee Creek	LITTLE TALLAPOOSA RIVER	its source		\times			
Cahulga Creek	TALLAPOOSA RIVER	U. S. Highway 78		\times			
Cahulga Creek	U. S. Highway 78	its source	×	\times			

BIBLIOGRAPHY

BIBLIOGRAPHY

Alabama, Agricultural Experiment Station, Auburn. <u>Alabama's Statewide</u> <u>Comprehensive Outdoor Recreation Plan</u>, 9 volumes, prepared by Auburn University Department of Agricultural Economics and Rural Sociology, sponsored by Alabama Department of Conservation, Auburn, Alabama, May 1970.

Alabama, Agricultural Experiment Station, Auburn. <u>100 Years--Alabama Crop</u>, Livestock and Income Data, Auburn, Alabama, March 1968.

Alabama, Agricultural Experiment Station, Auburn. <u>Agricultural Drought for</u> <u>Alabama</u>, Bulletin 316, September 1959.

Alabama, Agricultural Experiment Station, Auburn. <u>Participation in Outdoor</u> <u>Recreation in Alabama</u>, Agricultural Economics Series 20, October 1970.

Alabama Crop and Livestock Reporting Service. <u>Alabama Agricultural</u> <u>Statistics</u>, Annual Reports for Selected Years, Montgomery, Alabama.

Alabama Department of Conservation and Alabama Forest Products Association. First Alabama Beaver Symposium, October 1967.

Alabama Department of Conservation and Natural Resources. <u>Rare and</u> Endangered Vertebrates of Alabama, June 1972.

Alabama Department of Education. <u>Annual Report - 1969</u>, Bulletin No. 2. Montgomery, Alabama.

Alabama Development Office. <u>Industrial Development Reports</u>, Annual Reports for Selected Years, Montgomery, Alabama.

Alabama Department of Industrial Relations. <u>Alabama Employment Review</u> - <u>1947-1964</u>, Research & Statistics Division, Montgomery, Alabama.

Alabama Department of Industrial Relations. <u>Basic Labor Market Information</u> by County: Alabama, Selected Years, Montgomery, Alabama.

Alabama Forest Products Association. <u>Forest Products -- 1970-1971 Directory</u>, Montgomery, Alabama, July 1970.

Alabama Geological Survey. <u>Use of Water in Alabama, 1970, With Projec</u>tions to 2020, Information Series No. 42, 1972.

Alabama Resource Development Committee. <u>Agribusiness in Alabama</u>, Montgomery, Alabama, July 1970.

Alabama State Department of Health. <u>Directory of Licensed Health Facilities</u>, <u>1970</u>, BLC-206, Montgomery, Alabama, 1970.

Auburn University, Extension Service. <u>Forest Products Marketing In Alabama</u>, Circular R-22, Auburn, Alabama, 1970. Auburn University, Extension Service. Livestock Marketing in Alabama, Circular R-24, Auburn, Alabama, 1970.

Auburn University, Extension Service. Vegetable Marketing in Alabama, Circular R-25, Auburn, Alabama, 1970.

Auburn University, School of Business. Industrial Use and Community Supplies of Water in Alabama, Research Series, Auburn, Alabama, January 1970.

Beltz, Roy C. Southern Pulpwood Production - 1970, U. S. Forest Service, Resource Bulletin SO-28, Southern Forest Experiment Station, New Orleans, Louisiana.

Federal Reserve Bank of Atlanta. Statistics on the Developing South, Atlanta, Georgia, May 1971.

Gilbert, Oscar E. Jr. Mineral Resource Map of Alabama, Geological Survey of Alabama Unpublished map and text.

Graham, Joe W. Annual Report, October 1, 1967--September 30, 1968, Alabama Department of Conservation, Division of Forestry, Montgomery, Alabama.

Graham, Joe W. Annual Report, October 1, 1968--September 30, 1969, Alabama Department of Conservation, Division of Forestry, Montgomery, Alabama.

Nixon, Richard. Economic Report of the President, Washington, D.C., 1970.

Stauffer, J. M. Annual Report-Alabama Forestry Commission--October 1. 1969--September 30, 1970, Alabama Forestry Commission, Montgomery, Alabama.

Stauffer, J. M. Forest Land Ownership Lists of 500 Acres or More as of July 1969, by Counties, Alabama Forestry Commission, 513 Madison Avenue, Montgomery, Alabama.

Stenitzke, Herbert S. Alabama Forests, U. S. Southern Forest Experiment Station, New Orleans, Louisiana, 1963.

U. S. Army Corps of Engineers. Review of Reports on Alabama-Coosa River System Georgia and Alabama, Volume 2, Appendixes I-IV, 1965.

U. S. Bureau of the Census. U. S. Census of Agriculture: 1950, Volume 1, Part 21, Washington, D. C., 1952.

U. S. Bureau of the Census. U. S. Census of Agriculture; 1954, Volume 1, Part 21, Washington, D. C., 1956.

U. S. Bureau of the Census. U. S. Census of Agriculture; 1959, Volume 1, Part 32, Washington, D. C., 1961.

U. S. Bureau of the Census. U. S. Census of Agriculture; 1964, Volume 1, Part 32, Washington, D. C., 1967.

U. S. Bureau of the Census <u>U. S. Census of Agriculture; 1969, Alabama</u>, Washington, D. C., 1972.

U. S. Bureau of the Census. <u>United States Census of Population, 1960</u>, Volume 1, Part 2, Alabama, Washington, D. C., 1963.

U. S. Bureau of the Census. <u>United States Census of Population, 1970</u>, Advance Report, Volume 1, Part 2, Alabama, Washington, D. C., 1971.

U. S. Bureau of Mines. Bureau of Mines Minerals Yearbook, 1969.

U. S. Department of Agriculture. <u>Agricultural Statistics</u>, 1970, Washington, D. C.

U. S. Department of Agriculture. <u>Fact Book of U. S. Agriculture</u>, Misc. Publication No. 1063, Washington, D. C., 1970.

U. S. Department of Agriculture. <u>Farm Labor</u>, Monthly Reports for Selected Years, Washington, D. C.

U. S. Department of Agriculture. <u>Soils and Men</u>, Yearbook of Agriculture, 1968.

U. S. Department of Agriculture, Agricultural Research Service. <u>Wastes</u> <u>in Relation to Agriculture and Forestry</u>, Misc. Publication No. 1065, March 1968.

U. S. Department of Agriculture, Economic Research Service. <u>An Economic</u> <u>Base Study of the Alabama River Basin Area</u>, June 1971.

U. S. Department of Agriculture, Economic Research Service. <u>Selected</u> <u>U. S. Crop Budgets</u>, ERS 57, Volume 1, Southeast Region, Washington, D. C., April 1971.

U. S. Department of Agriculture, Graduate School. <u>Forward Balanced Growth</u>, Report on Lecture Series, November and December 1970.

U. S. Department of Agriculture, Statistical Reporting Service. Agricultural Prices, Selected Monthly Reports, Washington, D. C.

U. S. Department of Agriculture, and U. S. Department of Commerce. <u>Economic Activity in the United States by Water Resource Regions and Sub-</u> <u>areas, Historical and Projected 1929-2020</u>, Volumes 1 and 2, Washington, D. C., 1970.

U. S. Department of Commerce. <u>Area Measurement Reports</u>, <u>Alabama</u>, <u>1960</u>, Washington, D. C., <u>1965</u>.

U. S. Department of Commerce. <u>Survey of Current Business</u>, Volume 50, Number 8, Washington, D. C., August 1970.

U. S. Department of Interior, Federal Register. <u>National Register of</u> <u>Historical Places</u>, Volume 36, February 1971.
U. S. Forest Service. <u>Wildlife Habitat Management Handbook</u>, Southern Region FSH 2609.23R, 1971.

U. S. Geological Survey. <u>Water in Alabama</u>, Geological Survey Water Supply Paper-1765, 1964.

U. S. Office of Business Economics. <u>Personal Income by States Since 1929</u>, August 1970.

U. S. Soil Conservation Service. Alabama Watershed Progress Report, 1971.

U. S. Soil Conservation Service. <u>Atlas of River Basins of the United</u> States, Second Edition, June 1970.

U. S. Soil Conservation Service. <u>Conservation Needs Inventory</u>, <u>Alabama</u>, Auburn, Alabama, June 1970.

U. S. Soil Conservation Service. <u>Guide to Making Appraisals of Potentials</u> for Outdoor Recreation Developments, 1966.

U. S. Soil Conservation Service. <u>Proposed Multi-Objective Guidelines for</u> Planning and Evaluation of Water and Land Resource Use. August 1971.

U. S. Soil Conservation Service. <u>Public Law 566</u>, <u>Watershed Work Plans</u>, <u>Alabama</u>, Various Years.

U. S. Southern Forest Experiment Station, New Orleans. <u>A Forest Atlas of</u> the South, U. S. Department of Agriculture. Forest Service, 1909.

-

-

.