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On the economic value of the agronomic effects of crop diversification for farmers: estimation 

based on farm cost accounting data 

 

Abstract 

Despite many benefits provided by diversified cropping systems, there is a dearth of empirical 

evidence on the economic relevance of their effects, mainly due to lack of information on the 

dynamics of farmers’ crop acreages. Our article contributes to fill this gap and, thereby, to shed 

light on a pair of apparently contradictory facts. European farmers tend to stick to specialized 

crop acreages despite agronomic experiments tending to show that crop diversification could 

reduce chemical input uses while maintaining or even enhancing arable crop yield levels 

We provide estimates of the effects of previous crops and crop acreage diversity on yield and 

chemical input use levels based on a sample of 769 arable crop producers covering the Marne 

département in France from 2008 to 2014. Our farm level dataset combines cost accounting data, 

information on crop sequences as well as detailed soil and weather data. Our estimation 

approach relies on yield functions and input use models defined as systems of simultaneous 

equations. These models feature farm specific random parameters for accounting for unobserved 

heterogeneity across farms and farmers as well as for accommodating input use endogeneity in 

the considered empirical crop yield functions.  

We estimate pre crop and crop acreage diversity effects for four major crops in the area. Pre 

crops effects on yields are estimated relatively accurately and are generally consistent with the 

rankings provided by crop production experts. Estimated pre crop effects on input uses are small 

and insignificant from a statistical viewpoint despite our large sample, suggesting that pre crops 

don’t impact much chemical input requirements or/and that farmers tend to downplay these 

effects when deciding their chemical input use levels. Our results also show that crop acreage 

diversity positively impacts yield levels and tend to induce reductions in pesticide uses, herbicide 

uses in particular. Overall, our results demonstrate statistically significant though economically 

limited effects of pre crops and crop acreage diversity on crop gross margins. They also suggest 

that policy measures aimed to foster crop diversification are unlikely to significantly reduce 

chemical input uses on major crops if they are not supplemented by measures specifically aimed 

to reduce the uses of these inputs. 

Keywords: crop rotation effects, crop diversification, endogeneity, random parameter, SAEM 

algorithm  

JEL classification: Q12, C33, C63 
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Valeur économique des effets agronomiques de la diversification des cultures pour les 

agriculteurs : estimation à partir de données de comptabilité analytique des exploitations 

agricoles 

Résumé 

Malgré les nombreux bénéfices qu’apportent les systèmes de culture diversifiés, on manque 

aujourd’hui de preuves empiriques sur la valeur économique de leurs effets agronomiques. Ceci 

est principalement dû à un manque d’informations sur la dynamique des assolements des 

agriculteurs. Notre article contribue à combler cette lacune :  nous estimons les effets de 

précédents culturaux et de la diversification des cultures assolées sur les rendements et les 

utilisations d'intrants chimiques à partir d'un échantillon de 769 producteurs de grandes cultures 

dans la Marne observés entre 2008 et 2014. Notre ensemble de données combine des données de 

comptabilité analytique des exploitations, des informations sur les séquences de cultures 

obtenues à partir de données administratives ainsi que des données détaillées sur la qualité des 

sols et sur la météo. Notre approche d'estimation repose sur des fonctions de rendement et 

d’utilisations d’intrants sur les cultures définis comme des systèmes d'équations simultanées. 

Ces modèles comportent des paramètres aléatoires spécifiques à chaque exploitation pour tenir 

compte de l'hétérogénéité non observée des exploitations et des agriculteurs ainsi que de 

l'endogénéité des intrants dans les fonctions empiriques de rendement considérées.  

Nous estimons les effets précédents culturaux et diversification des assolements pour les quatre 

cultures principales de la région. Les effets des précédents culturaux sur les rendements sont 

estimés assez précisément et correspondent généralement aux classements fournis par les 

experts agronomes. Les effets estimés des précédents culturaux sur les utilisations d’intrants sont 

faibles et non significatifs d'un point de vue statistique malgré notre large échantillon, ce qui 

suggère que les agriculteurs ont tendance à peu en tenir compte lorsqu'ils décident de leurs 

niveaux d'utilisation d'intrants chimiques. Nos résultats montrent également que la diversité des 

cultures assolées, lorsqu'elle est décrite par un ensemble d'indicateurs approprié, a un impact 

positif sur les niveaux de rendement et tend à induire une réduction des utilisations de pesticides, 

des herbicides en particulier. Dans l'ensemble, nos résultats démontrent des effets 

statistiquement significatifs mais économiquement limités des précédents culturaux et de la 

diversification des assolements sur les marges brutes des cultures. Ils suggèrent également que 

les mesures politiques visant à encourager la diversification des cultures sont peu susceptibles 

de réduire de manière significative les utilisations d'intrants chimiques sur les principales 

cultures si elles ne sont pas complétées par des mesures visant spécifiquement à réduire ces 

utilisations d’intrants. 

Mots clés : effets des rotations culturales, diversification des cultures, endogénéité, paramètres 

aléatoires, algorithme SAEM.  
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1. Introduction 

The Common Agricultural Policy (CAP) recently put forward crop diversification at the farm 

level as a primary objective. The 2013 reform introduced a set of “crop diversification” 

obligations1 as eligibility criterion for farmers to receive the green direct payments, although 

these obligations were not constraining for most European farms (Louhichi et al 2018).2 The 

future CAP will include similar standards on farm crop acreages as part of its cross-compliance 

greening scheme. Current agri-environmental and climate schemes and future eco-schemes also 

aim to foster crop diversification in EU farms (e.g., Guyomard et al 2020). According to the 

European Commission (EC), the greening obligations and the congruent direct payments aim at 

“remunerating farmers for their efforts to protect the environment and biodiversity, since market 

prices do not reflect the work involved” (EC 2017).3 “Crop diversification” obligations are thus 

expected by the EC to incentivize farmers to produce positive externalities -and/or to reduce 

pollution emissions 

Yet, crop diversity can also yield on-farm benefits (e.g., Ikerd 1993, Lin 2011, Kremen et al 2012, 

Duru et al 2015, Thérond et al 2017). As far as agronomic effects are concerned, these benefits 

can arise from three main channels: pre crop effects, crop rotation effects and spatial crop 

diversity effects, which are defined below. 

(a) Previous crops are expected to deliver pre crop effects to the crops that immediately follow 

them on the considered plot. For instance, legumes deliver nitrogen surpluses to be used by the 

following crops. Previous crops of a given botanic family are expected to deliver break crop 

effects to the following crops if these crops belong to other botanic families, by perturbing the 

dynamics of crop specific pest and weed populations (e.g., Duru et al 2015, Mortensen and Smith 

2020). Nitrogen surpluses and break crop effects are examples of short run effects that are 

delivered by previous crops to the following ones. 

(b) Crop rotation diversification is expected, in the medium run, to modify the (periodical) 

equilibrium of agro-ecosystems and, thereby, to increase the delivery of ecosystem services 

supporting agricultural production, at the plot and farm scales (e.g., Davis et al 2012, Duru et al 

                                                 
1 Along with two others, the “maintenance of permanence grassland” and “ecological focus areas” obligations. 

2 Farms with more than 10 ha of arable land have to grow at least two crops, while at least three crops are required 
on farms with more than 30 ha of arable land. Furthermore, the main crop may not cover more than 75% of the 
arable land (EC 2017). Several exemptions to these rules take account of the individual situation of farmers, notably 
farmers with a large proportion of grassland.  

3 The environmental effects of crop diversity, especially those on natural biodiversity, are supported by the 
ecological and agronomic literatures (e.g., Kremen and Miles 2012, Kremen et al 2012, Bellouin et al 2019 and 2021, 
Tamburini et al 2020). 
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2015). These effects are designated as cropping system effects thereafter.4 These ecosystem 

services include both vegetation and natural enemy effects on pest and weed population 

regulations, pollination effects as well as improved soil structure, fertility and health (e.g., 

Mortensen and Smith 2020). Cropping system effects, which are fully established after a few 

rotation cycles, are often cited as a reason for advocating crop rotation diversification (e.g., Davis 

et al 2012, Duru et al 2015, Mortensen and Smith 2020). 

(c) Diversified crop rotations concern crop diversity across time on a given plot and generally 

also imply crop acreage diversity across space at the farm level: farmers generally manage 

diversified crop acreages along with diversified crop rotations. Diversified crop acreages yield 

economic benefits that are well-known in the economics literature, including those due to risk 

spreading and to work peak load trimming.5 Yet, crop diversity, as well as the presence of semi-

natural habitats (e.g, forests, hedgerows), can also yield agro-ecological benefits whether it is 

implemented at the plot level, at the farm level are at a wider scale (i.e., at the landscape level).6 

These agro-ecological benefits of crop diversity induce complementarities across crops at the 

plot or farm scales7 and positive production externalities when they occur across farms. 

Disentangling crop rotation effects and spatial crop diversity effects is difficult with farm data. 

Farmers simultaneously optimize crop rotation and crop acreage diversities and farm crop 

acreages display significant correlations across time and space. In what follows, crop acreage 

diversity effects will refer to both crop rotation (or cropping system) and spatial crop diversity 

effects. Indeed, crop acreage diversification is a key principle of agro-ecological crop production 

practices since suitably diversified crop production is expected to achieve relatively high yield 

levels while reducing chemical input requirements (e.g., Kremen and Miles 2012; Kremen et al 

2012, Duru et al 2015, Thérond et al 2017). 

In this article we shed light on a pair of apparently contradictory facts. European farmers tend 

to stick to specialized crop acreages despite agronomic experiments tending to show that crop 

diversification could reduce chemical input uses while maintaining or even enhancing arable 

                                                 
4 See, e.g., Blanco-Canqui and Lal (2008) or Duru et al (2015) for presentations of the cropping system concept.  

5 See, e.g., Carpentier and Letort (2014) for a recent review. 

6 Intercropping, strip cropping or mixed cropping techniques aim to take advantage of within plot crop diversity 
(e.g., Duru et al 2015). Fahrig et al (2015), Sirami et al (2019), Dainese et al (2019) or Martin et al (2019) present the 
agro-ecological benefits of heterogeneous crop landscapes and of crop landscapes also including semi-natural 
habitats such as hedgerows. Landscape diversity benefits to biological pest and disease control and, thereby, can 
lower insecticide and fungicide uses (e.g., Larsen and Noack 2017, 2021; Redlich et al 2018; Delaune et al 2021). 

7 These complementarity effects are essentially static whereas those due to crop rotations or pre crop effects are 
essentially dynamic. 
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crop yield levels (e.g., Duru et al 2015, Thérond et al 2017).  

Most studies considering crop acreage diversity or pre crop effects are based on agronomic 

experiments and focus on specific crop sequences or crop mixes8, but little is actually known on 

how crop diversification actually performs in commercial farms and, more generally, on how 

farmers perceive and make use of pre crop and crop acreage diversity effects. Farmers may in 

fact be reluctant to diversify their crop acreages and rotations for many reasons. They may 

expect diversified cropping mixes to be less profitable than specialized ones because crops that 

can be introduced to diversify the acreage are less profitable than major crops or because they 

tend to understate the value of the agro-ecological benefits – e.g., the pre crop effects and crop 

acreage diversity effects – induced by crop diversification (e.g., Bues et al 2013, Preißel et al 

2015, Zander et al 2016, Magrini et al 2016, Watson et al 2017, Meynard et al 2018). While 

farmers may directly benefit from agro-ecological effects induced by diversified crop rotations, 

for instance those improving soils or lowering pest or weed pressures against which no pesticide 

is available, they may downplay others. Farmers need to monitor their crops and to be willing 

to adjust their input uses for fully benefitting from nitrogen surpluses left by legumes or reduced 

pest or weed pressures against which they usually spray chemical pesticides.9 As a result, implicit 

costs may deter farmers from fully reaping off the benefits of crop diversification. Agri-food 

value chain – industrial and/or spatial – organization can also hinder adoption of diversified 

crop acreages and rotations by farmers. Such so-called socio-technical lock-ins – including lack 

of suitable extension services or insufficient local outlets for diversification crops – are often put 

forward for explaining this state of fact (e.g., Magrini et al 2016, Meynard et al 2018, Mortensen 

and Smith 2020, Morel et al 2020). Yet, policy instruments aimed to address lock-in issues 

substantially differ from instruments aiming to overcome lack of profitability, whether real or 

                                                 
8 Cropping system effects are mostly investigated through long run experiments in corn and soybean based systems 
in the US (e.g., Davis et al 2012, Hunt et al 2017, Bowles et al 2020, Feng et al 2021) and in wheat based systems, 
with a specific focus on canola grain legumes, in Canada (e.g., Zentner et al 2002, 2011; Gan et al 2015; Thiessen 
Martens et al 2015; Smith et al 2017; Liu et al 2019; Khakbazan et al 2017, 2020). Crop yield and return levels and 
are generally primary outcomes of interest. Experiments conducted in Europe mostly concern pre crop effects, with 
a particular focus on the effects of grain legumes on cereal yield and nitrogen fertilization levels (e.g., Meynard et 
al 2013, Bues et al 2013, Preißel et al 2015, Reckling et al 2016, Zander et al 2016, Watson et al 2017, Hufnagel et 
al 2020). Agronomic experiments considering the effects of crop diversification on pesticide use levels are relatively 
rare and generally focus on herbicide use levels (e.g., Liebman and Dyck 1993, Liebman and Staver 2001, Chikowo 
et al 2009, Hunt et al 2017, Colbach and Cordeaux 2018, Adeux et al 2019, Sharma et al 2021). 

9 Due to data availability, the effects of crop rotations on yield levels have been largely investigated, especially in 
the US. For instance, Seifert et al (2017) demonstrate that corn or soybean monocultures induce yield penalties 
when compared to soybean – corn rotations. Investigations of the effects of crop rotations on input use levels are 
rare, and usually rely on small and specific datasets. For instance, Nave et al (2013) showed that the French farmers 
they interviewed tend to downplay nitrogen surpluses left by legumes in their plots while cereal yields were 
significantly higher after legumes than after cereals or, even, oilseeds. Andert et al (2016) showed that crop sequence 
diversity tends to lower herbicide and fungicide uses in the German farms they observed. 



Working Paper SMART N°22-02 

 

7 

perceived. Disentangling the main drivers of current crop choices of farmers (e.g., distinguishing 

profitability and lock-in issues) is thus crucial from an agri-environmental policy perspective 

and assessing the pre crop and crop acreage diversity effects on farm crop production and on 

farmer choices is an important step toward this overall objective. 

The main purpose of this study is therefore to assess pre crop and crop acreage diversity effects 

based on commercial farm data, which in turn enables us to investigate to what extent farmers 

make use of these effects. Our approach enables us to disentangle pre crop and crop acreage 

diversity effects on both yield and chemical input use levels. In particular, we investigate 

whether farmers relying on diversified crop acreages (and, likely, diversified crop rotations) tend 

to use less chemical inputs and whether farmers adjust their chemical inputs uses to the pre crop 

of the considered crops. 

Agricultural economists who explicitly considered pre crops effects (generally on yield levels) in 

mathematical programming models aimed to optimize dynamic crop acreage choices (e.g., El-

Nazer and McCarl 1986, Hennessy 2006, Cai et al 2012, Akplogan et al 2013, Dury et al 2013, 

Livingston et al 2015, Liu et al 2016, Ridier et al 2016, Boyatbatli et al 2019) or investiged the 

drivers of farmers’ acreage choice dynamic features based on econometric models (e.g., Ozarem 

and Miranowski 1994, Thomas 2003, Hendricks et al 2014).  

Others considered the effects of crop acreage diversity at the farm level on several types of 

outcomes. Most studies considered productivity effects of crop diversity. They measured the 

effects of crop acreage diversity indicators on crop production (value) aggregates (e.g., Omer et 

al 2007, Di Falco and Chavas 2008, Di Falco et al 2010, Groom and Pereira Fontes 2021), on 

expected return measures or/and return risk measures (e.g., Di Falco and Perrings 2005, Bozzola 

and Smale 2020). Our objective here is to assess pre crop and crop acreage diversity effects on a 

crop per crop basis in order to consider precisely defined agronomic effects and to circumvent 

the composition effects uncovered by Groom and Pereira Fontes (2021) when considering crop 

(value) aggregates. 

Chavas and Kim (2007, 2010), Chavas (2009) and, Chavas and Di Falco (2012b) proposed to 

analyze the interest of crop diversification by relying on producer theory in various multi-output 

settings.10 The analytical frameworks proposed by these authors provide theoretically grounded 

                                                 
10 Chavas and Kim (2010) proposed the concept of economies of diversification as an extension of the concept of 
economies of scope of Panzar and Willig (1981) and Baumol et al (1982). Whereas economies of scope compare 
production diversification to complete production specialization based on production costs economies of 
diversification consider situations of partial specialization. Chavas and Kim (2007) and Chavas (2009) proposed 
measures of the effects of crop diversification in a primal framework. Kim et al (2012) and Chavas and Di Falco 
(2012a) provide applications of this theoretical framework. Chavas and Di Falco (2012b) proposed an analytical 
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measures of the benefits of crop diversification as well as useful decompositions of these 

measures. These decompositions highlight the effects of production complementarities across 

crops, which are closely related to the agronomic effects considered in this article, from other 

beneficial effects of crop diversification, which are linked to general production management.11 

These theoretical frameworks are however essentially static, while, by considering pre crop 

effects we aim at accounting for dynamic features of crop production underlying crop rotation 

effects. 

The recent study of Bareille and Letort (2018) is the closest to ours. It measures the effects of 

crop acreage diversity, which is related to the crop acreage diversity effects considered in this 

article, on crop yield and chemical input use levels based on farm cost accounting data. They 

generally demonstrate positive effects of crop diversity on crop yield levels, and negative effects 

on chemical input uses and on yield variability. Yet, this study ignores pre crop effects. Indeed, 

most empirical analyses of crop diversity ignore pre crop effects, probably due to data lacking 

on crop sequence acreages.  

To achieve our main objective, we organized a rich dataset by matching crop sequence acreage, 

weather and soil data to a cost accounting panel dataset covering 769 farms located in the Marne 

département and its neighborhood , which is a small district located 150 km east from Paris, 

from 2008 to 2014. This particular area counts among the most productive and the most 

diversified arable crop production areas in Europe. The Marne département provides local 

outlets to major grain crops (including grain legumes) but also to sugar beet, (starch and 

consumption) potatoes and alfalfa. The accountancy dataset reports the yearly crop acreages of 

the sampled farms but do not include information on acreages for pairs of current and previous 

crops. These acreages of crop sequences for the sampled farms were obtained by processing 

Integrated Administration and Control System (IACS), which enables to uncover the allocation 

of current crop acreages to the crops grown the previous year on the considered piece of land, 

hereafter crop sequence acreages.. 

We also developed purposely designed yield response and input use microeconometric models. 

These models feature pre crop and crop acreage diversity effects, thereby enabling us to 

investigate important (mostly dynamic) features of crop production. Considering crop yield 

                                                 
framework including risk management considerations, thereby adding risk spreading to the economic benefits of 
crop diversity. 

11 For instance, Chavas and Kim (2010) provide a decomposition of economies of diversification into four additive 
parts: a part measuring complementarity among outputs, a part reflecting economies of scale, a part reflecting 
convexity and a part reflecting the role of fixed costs. 
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response models together with chemical input demand models enable us to estimate the effects 

of pre crops and crop acreage diversity on both crop yield and chemical input use levels. Our 

models also incorporate random parameters for accounting for farm and farmer heterogeneity 

in crop yield and input use levels, and in input productivity levels (e.g., Suri 2011, Koutchadé et 

al 2018). Importantly, the rich information content of our dataset and our considering random 

parameter systems enable us to control the well-known input use endogeneity issues that arise 

when considering the estimation of production functions (e.g., Grilliches and Mairesse 1995, 

Ackerberg et al 2015). 

The contributions of this article are thus threefold. 

First, we provide a modelling framework that enables us to identify pre crop and crop acreage 

diversity effects on both yield and chemical input use levels. This modelling framework also (i) 

accounts for the effects of farms’ and farmers’ unobserved heterogeneity on yield, input use and 

productivity levels and (ii) controls for potential input use endogeneity in the considered 

econometric yield functions. We also consider extensions of standard crop acreage diversity 

measures that prove to be empirically useful when the number of grown crops vary significantly 

across observation units. 

Second, our data and models enable us to obtain original empirical results on the effects of crop 

diversification on important agronomic features of crop production in commercial farms. Our 

estimation results demonstrate statistically significant pre crop and crop acreage diversity effects 

on crop yield levels and statistically significant crop acreage diversity effects on pesticide use 

levels, especially on herbicide use levels. The implied effects on crop returns are significant from 

a statistical viewpoint but rather limited from an economic viewpoint. 

Third, our data and models enable us to obtain original empirical results on farmer choices 

regarding the effects of crop diversification. Our crop sequence acreage data demonstrate that 

farmers’ crop sequence choices are rational from both agronomic and economic viewpoints. The 

considered farmers basically choose the best available pre crops for the major crops of their crop 

mix. This reduces the scope of the crop diversification effects that can be assessed based on farm 

data. 

Taken together our results show that pre crop effects can be uncovered from farm data, but only 

for the most frequent crop sequences. They also suggest that pre crop and crop acreage diversity 

effects provide insufficient economic benefits to farmers, especially insufficient savings of 
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chemical inputs, for leading them to adopt diversified crop acreages.12 

The rest of the article is organized as follows. In section 2, we present the models we use for 

uncovering pre crop and crop diversity effects from cost accounting data. In section 3, we 

describe our estimation strategy, with special emphasis on the issues raised by input use 

endogeneity and random parameters. Section 4 presents the different datasets we use and how 

we combine them. Section 5 presents and discusses the estimation results while section 6 

provides concluding remarks.  

 

2. Modelling framework 

Our primary interest lies in the magnitude of two types of effects on crop yield and input use 

levels: pre crop effects, i.e. the effects of previous crops of the crop grown on the same plot, on 

the one hand and the effect of crop acreage diversity at the farm level on the other hand. We c 

estimate these effects based on  a panel data set describing the production choices and 

performances of a large sample of farmers, 1,...,i N= , over a short time period, 1,...,t T= . Term 

K  denotes the set of crops that are potentially grown by the sampled farmers, with {1,..., }K=K . 

The yield level of crop k obtained by farmer i in year t is denoted by ,k ity . The corresponding use 

level of input j is denoted by , ,j k it
x  for j∈ J . In our application, input set {1,..., }J=J  includes 

nitrogen fertilizers, herbicides and other pesticides, which mostly include fungicides and 

insecticides.  

Pre crop effects imply that the observed yield level of crop k, ,k ity , is a weighted average of the 

yield levels obtained for each previous crop after which crop k was grown by farmer i in year t. 

Let ,mk it
y  denote the yield level of crop k when this crop is grown after crop m and let ,mk it

z  denote 

the share of acreage of crop k grown after crop m (i.e., ,mk it
z  is the share of the acreage of crop 

k, which is grown in year t, that is grown on land on which crop m was grown in year −1t )The 

observed yield level of crop k is given by 

, , ,k it mk it mk itm
y z y

∈
=∑ K

 for k∈K       (1a) 

                                                 
12 Moreover, these results are consistent with results obtained by Koutchadé et al (2021) in the considered area. 
These results tend to show that the considered farmers don’t produce protein pea, which is a typical diversification 
crop for agronomists (e.g., Bues et al 2013, Meynard et al 2018), mostly due to profitability issues. For instance, 
simulation results suggest that standard area based payments would significantly increase pea acreages in the 
Marne area, by leading producing farmers to increase their pea acreages but mostly by leading others to include 
pea in their crop rotations. 
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Similarly, accounting for potential pre crop effects on input use levels supposes to define input 

uses at the crop sequence levels. Let , ,j mk it
x  denote the quantity of input j used by farmer i in year 

t for crop k when this crop is grown after crop m. The observed use level of input j for crop k is 

given by 

, , , , ,j k it mk it j mk itm
x z x

∈
=∑ K

 for k∈K  and j∈ J       (1b) 

Crop yields and input uses being unobserved at the crop sequence level, we replace them by 

relatively simple models. 

 

2.1. Yield and input use models at the crop sequence level 

We define yield functions at the crop sequence level, with  

( ) ( ) ( ) ( ) ( ) ( )

, ,0 , , ,0 , , ,0 ,0 ,

y y y y y y

mk it mk k i k t mk it k i it k it k k it
y a µ α ε′ ′ ′= + + + + + +x β c λ d δ  for m∈K  and k∈K      (2a) 

for the yield of crop k when it is grown after crop m. Vector , , ,( , )
mk it j mk it

x j= ∈x J  collects the input 

uses of farmer i for crop k after crop m in year t. We consider crop yield functions instead of 

crop supply functions for disentangling the effects of pre crops or of crop acreage diversity that 

directly impact yield levels from those that may impact yield levels through adjustments in input 

use levels , )x
mk it . Indeed, yield functions (2a) allow controlling  the effects of the intensity in 

chemical inputs on yield levels when estimating the effects of crop diversity. Parameters ( )

,0

y

mk
a

and ( )

,0
δ

y

k  are our main interest parameters. Parameter ( )

,0

y

mk
a  defines the pre crop effects of crop m 

on the yield of crop k. These are defined with respect to a reference pre crop (the mean of random 

parameter µ( )

,

y

k i
 is left unconstrained). Indeed, we impose the normalization constraint stating 

that =( )

,0 0y

rk
a  if crop r is the reference pre crop of crop k. Accordingly, parameter ( )

,0

y

mk
a  defines 

the yield effect of using crop m instead of crop r as the pre crop of crop k. 

Although these effects may vary across farms and years we specify these effects as fixed 

parameters due to data constraints. Uncovering the distribution of pre crop effects across farms 

and/or time requires crop sequence acreages to sufficiently vary across farms and time. As 

discussed below, crop sequence acreages reported in (or reconstructed from) farm datasets are 

likely to lack the variability needed to uncover year specific or the distribution of farm specific 

pre crop effects. 

Vector 
it
d  contains a set of crop acreage diversity indicators aimed to capture crop acreage 

diversity  effects. These indicators combine grown crop numbers and Shannon indices. More 



Working Paper SMART N°22-02 

 

12 

precisely, vector 
it
d  includes two subsets of variables. It includes a set of dummy variables, one 

for each number of crops grown observed in our data, for capturing the effect of the size of the 

crop set considered by farmers. Vector 
it
d  also includes the cross products of these dummy 

variables with the corresponding crop acreage Shannon indices, for capturing the effects of the 

land allocation chosen by farmers.13 Using this set of crop acreage diversity indicators has two 

main advantages. This allows estimating the effects of the number of grown crops without any 

parametric restriction on the one hand, and this allows circumventinga shortcoming of the 

Shannon index, explained in what follows, when the number of crops is variable on the other 

hand. 

Let ,k it
s  denote the share of the acreage of crop k in the arable land area of farmer i in year t. 

Provided that , [0,1]
k it
s ∈  for k∈K  and 

,
1

k itk
s

∈
=∑ K

, the Shannon index of crop acreage 

,( , )
it k it

s k= ∈s K  is defined by ( ) ln
it it it

h ′=−s s s .14 Function ( )
it

h s  is upper bounded by ln ( )
it

n s  where 

( )
it

n ∈s K  is the number of crops actually grown in 
it
s .15 This implies that the Shannon index is 

a questionable measure of crop diversity when numbers of grown crops vary widely across 

farms, since the upper bound of this index, ln ( )
it

n s , grows at a rate that decreases in the number 

of crops that are actually grown, ( )s
it

n . The set of indicators contained in 
it
d  allows disentangling 

the effects of grown crop numbers and those of the crop acreage diversity given grown crop 

numbers. 

Vector 
it
c  contains control variables aimed to capture the effects of production conditions that 

impact farmers’ crop production choices. We use a rich set of variables describing soil properties 

at the farm level and weather conditions at the municipality level.  

Parameters ,k i
β  give the marginal productivity levels of the considered inputs. Like farm specific 

effects ( )

,

y

k i
µ , these parameters are assumed to be farm specific. Models featuring such random 

parameters allow to account for unobserved heterogeneity (e.g., Wooldridge 2010, Arellano and 

Bonhomme 2011). In the case of agricultural production choices, this heterogeneity is due to 

unobserved characteristics of the sampled farmers (e.g., skills, motivations) or farms (e.g., spatial 

                                                 
13 Shannon indices are centered at their sample means by crop number for facilitating the interpretation of the 
direct effects of the crop number indicators. 

14 Given that 
, ,lnk it k its s  can be set at 0 if 

, 0k its =  by continuity extension, following the continuity of function 

( ) lng x x x=  in *
x +∈ℝ  and 

0
lim ( ) 0

x
g x+→

= . 

15 Entropy function ( )h s  achieves its (unique) maximum in 
1( ,..., )Ks s=s   at ( ) lnh K=s  and ( ) lnh K=s  if and only if 

1 /ks K=  for k∈K . 
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distribution of the plot, available machinery, unobserved soil or climate features) that do not 

vary or vary little over the considered time period (e.g., Koutchadé et al 2018, 2021). For instance, 

they may capture the effects of farm specific factors (that are not controlled by 
it
d ) impacting 

pressures of pests, diseases or weeds. These parameters are expected to significantly vary across 

farmers and farms. 

Year specific effects ( )

, ,0

y

k t
α  capture the effects of large scale factors impacting all farms, such as 

weather driven pest and disease outbreaks or widely adopted (technological or agronomic) 

innovations. 

The models of input use at the crop sequence level are defined similarly, with 

( ) ( ) ( ) ( ) ( ) ( )

, , , ,0 , , , , ,0 , ,0 , ,0 , ,

x x x x x x

j mk it j mk j k i j k t it j k it j k j k it
x a µ α ε′ ′= + + + + +d δ c λ  for m∈K , k∈K  and j∈ J     (2b) 

 

Parameter ( )

, ,0

x

j mk
a  is the pre crop effects of crop m on the use of input j for crop k and random 

term ( )

, ,

x

j k i
µ  is a standard additively separable farm specific effect.16 Year specific effects ( )

, , ,0

x

j k t
α  

capture the effects of large scale factors, such as weather driven pest and disease outbreaks, 

widely adopted innovations or economic factors, including prices or changes in the value chains. 

Due to the limited time span of our dataset, the effects of prices are difficult to disentangle from 

those of unobserved (to the analyst) temporal shocks or trends that impact all farmers. The 

effects on chemical uses of crop and input prices, which mostly vary across years,17 are expected 

to be captured by year specific terms ( )

, , ,0

x

j k t
α . These price patterns also significantly impact our 

strategy for identifying the parameters of crop yield models (2a) since they basically prevent us 

from using prices as instrumental variables for input uses in the yield function equations we 

consider. 

 

 

 

                                                 
16 Pre crop effect parameters ( )

,0

y

mka  and ( )

, ,0

x

j mka  need to be normalized. They are set at 0 for the most frequent previous 

crop of crop k (i.e., the reference pre crop of crop k), which is rapeseed for wheat and wheat for the other considered 
crops in our application. 
17 The intra-farm variance of output prices is does not exceed 20% of the total variance of crop prices in our sample. 
In our application, input prices are measured by price indices, which are supplied by the French ministry of 
agriculture, only vary in the time dimension.  
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2.2. Yield and input use models at the crop level 

Combining equations (1) and (2) yields crop k yield model 

( ) ( ) ( ) ( ) ( ) ( )

, , , ,0 , , , ,0 ,0 ,0 ,

y y y y y y

k it k i k t k it k i k it k it k it k k it
y µ α ε′ ′ ′ ′= + + + + + +x β z a d δ c λ        (3a) 

and the corresponding input use models 

( ) ( ) ( ) ( ) ( ) ( )

, , , , , , ,0 , , ,0 , ,0 , ,0 , ,

x x x x x x

j k it j k i j k t k it j k it j k it j k j k it
x µ α ε′ ′ ′= + + + + +z a d δ c λ  for j∈ J       (3b) 

for k∈K . We use here the fact that the elements of vector ,k it
z , that is to say the shares of crop 

k on its potential pre crops, sum to 1.  

The yield function models given in equation system (3) are linear in input use vector ,k itx , which 

is unusual and, thereby, deserves a few comments. Admittedly, the linearity in input uses of crop 

sequence yield models (2a) in crop sequence input use levels ,mk it
x  greatly facilitates the 

aggregation process of these models at the crop level as shown by equation (3a).18 Yet, linear 

crop sequence yield models can be interpreted as first order Taylor expansion in ,mk it
x  of any 

(sufficiently smooth) model of ,mk it
y . Importantly, the intercept and the coefficients of ,mk it

x  in the 

model of ,mk it
y , which are collected in vector ,k i

β , are farm specific. Yield functions considered in 

equations (2a) and (3a) can thus be interpreted as farm specific approximates of the underlying 

“true” yield functions. Also, coefficient , ,j k i
β  delivers a direct measure of the marginal 

productivity of input j for crop k in farm i. 

 

3. Identification and estimation 

Equations (3) define the production choice equations that we consider for estimation purpose. 

These are collected in the following equation system: 

( ) ( ) ( ) ( ) ( ) ( )

, , , ,0 , ,0 , , ,0 , ,0 ,

( ) ( ) ( ) ( ) ( ) ( )

, , , ,0 ,0 ,0 , ,0 ,

y y y y y y

k it k i k t k it k k it k i it k k it k k it

x x x x x x

k it k i k t it k it k k it k k it

y µ α ε ′ ′ ′ ′ = + + + + + + = + + + + +

z a x β d δ c λ

x μ α Z a D δ C λ ε
       (4) 

Vectors ( )

,

x

k i
μ , ( )

, ,0

x

k t
α  and ( )

,

x

k it
ε  are given by ( ) ( )

, , ,( : )x x

k i j k i
jµ= ∈μ J , ( ) ( )

, ,0 , , ,0( : )x x

k t j k t
jα= ∈α J  and ( ) ( )

, , ,( : )x x

k it j k it
jε= ∈ε J  

while matrices 
it
Z , 

it
D  and ,k it

C  are defined by it J it
′= ⊗Z ι z , it J it

′= ⊗D ι d  and 
, ,k it J k it

′= ⊗C ι c . 

Estimating equation system (4) requires identification assumptions. Let vector ,k i
γ  collect the 

                                                 
18 The same remark holds for the additive separability of the pre crop effects in the crop sequence level yield and 
input use models. 
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random parameters of model (4), with , , ,( , )
k i k i k i
=γ μ β  and ( ) ( )

, , ,( , )y x

k i k i k i
µ=μ μ  and let vector 

( ) ( )

, , ,( , )y x

k it k it k it
ε=ε ε  collect its error terms. We assume that vectors ,k i

γ , ,k itε  and , ,( , , )
k it k it it it
=w z d c  are 

mutually independent and that the regressors collected in ,k it
w  are strictly exogenous in the 

considered equation system. Finally, we assume that error terms ,k itε  are serially uncorrelated. 

This last assumption makes use of the fact that farm specific random parameters are expected 

to capture the most persistent (unobserved) features of the dynamics of the considered crop 

production processes. Assuming that error terms ,k itε  and random parameters ,k i
γ  are 

independent is standard, and required for identifying the probability distribution of ,k i
γ . 

3.1. Identification 

The exogeneity assumption related to crop sequence acreage share vector ,itzℓ  deserves some 

comments. These variables describe choices of farmers. Exogeneity of ,itzℓ  is partly supported by 

the fact that crop sequence acreage decisions are taken prior to the occurrence of most random 

events impacting crop yield and input use levels. Yet, omitted variable biases may still arise. For 

instance, soils of farms with relatively large acreage shares of potatoes and/or sugar beet are 

generally deep and well structured. These soil properties have positive impacts on the production 

of most arable crops (e.g., Carpentier and Letort 2014). In our models soil property effects are 

controlled for by a rich set of variables describing the soils of the sampled farms.19 

Similar observations hold regarding crop acreage diversity indicator vector, 
it
d . In our empirical 

application this vector is evaluated by considering previous year crop acreage shares, that is to 

say based on 
1it−s . This eliminates potential endogeneity issues related to error terms ,k itε .20 Our 

results on the effects of crop acreage diversity are robust to alternative construction approaches 

for the diversity indicator set 
it
d , that is to say based on current acreages, on whole crop acreage 

(observed) history of farmers or on one year lagged crop acreages (as in our application). This 

reflects the fact that farmers’ crop acreages are relatively stable over time. This also provides 

support to our interpreting our empirical results on the effects of 
it
d  as cropping system effects, 

at least to some extent. These are long run effects that are induced by the crop acreage history 

of the considered farm, which in turn determines the state of the farm agroecosystem. 

Importantly, the variables describing soil properties prevent our crop diversity indicators to 

                                                 
19 The control variables describing farm soils include measures of soil depth, cationic exchange capacity, pH, water 
holding capacity as well as organic matter, clay, silt and sand contents. 

20 Even if the magnitude of these effects are likely to be limited. 
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capture the effects of soil quality. As discussed above, good soils enlarge the set of profitable 

arable crops for farmers. Failing to control for soil quality is likely to bias our empirical measure 

of crop acreage diversity effects through crop acreage diversity indicators 
it
d . 

We impose parametric distributional assumptions on random vectors ,k i
γ  and ,k itε , mostly for 

facilitating the estimation of the fixed parameters of the models and of the probability 

distribution of ,k i
γ  by Maximum Likelihood (ML). We assume that ,k i

γ  is multivariate normal, 

with , ,0 ,0( , )
k i k k
γ η Ω∼N  and that error terms ( )

,

y

k it
ε  and ( )

,

x

k it
ε  are normal, with ( )

, ,0(0, )y y

k it kk
ε ψ∼N  and 

( ) ( )

, ,0( , )x x

k it k
ε 0 ψ∼N . Of course, the correlation structure of ( )

,

y

k i
µ , ( )

,

x

k i
µ and ,k i

β  is defined by variance-

covariance matrix ,0k
Ω . 

Our last assumption concerns the status of the input use vector, ,k itx , in the yield function model. 

This point is crucial as the endogeneity of input use in production function is a longstanding 

issue that has originated a considerable, and still lively, econometric literature (e.g., Mundlak 

1996 and 2001, Just and Pope 2001, Ackerberg et al 2015).21 We assume that error terms ( )

,

x

k it
ε  and 

,

y

k it
ε  are uncorrelated, implying input choices are assumed exogenous in the yield models 

conditionally on farm specific parameter ,k i
γ . This exogeneity assumption is admittedly 

restrictive, though common for panel data production function models (e.g., Blundell and Bond 

2000, Suri 2011). 

Assuming that input uses ,k itx  are exogenous with respect to 
,

y

k it
ε  appears reasonable in our 

application, due to our using a rich set of control variables and our specifying farm specific 

random parameters. We basically assume that control variables ,k it
w , year specific effects ( )

, ,0

y

k t
α  

and farm specific random parameters ( )

,

y

k i
µ  and ,k i

β  capture most of the effects of the factors that 

simultaneously impact yield and input use levels. Importantly, the variance-covariance matrix, 

,0k
Ω , of random parameter vectors ,k i

γ  is left unrestricted.22 Accordingly, input use levels ,k itx  can 

be correlated with the random parts of the corresponding yield model, albeit only through 

correlations of the farm specific parameters of the yield model, ( )

,

y

k i
µ  and ,k i

β , and those of the 

input use equations, ( )

,

x

k i
μ . As a matter of fact, the considered yield models accommodate a fairly 

rich set of input use endogeneity sources, albeit these only involve farm specific random 

                                                 
21 See, e.g., Ackerberg et al (2015). Mundlak (1996, 2001) and Just and Pope (2001) specifically consider agricultural 
production. Ackerberg et al (2015) state that the long history of production function estimation in applied economics 
cannot be deemed an unqualified success, as many issues hampering early estimations are still an issue today. 

22 Implying that the considered yield models are so-called correlated random coefficient (linear) models (e.g., 
Wooldridge 2005a, Wooldridge 2005b, Suri 2011) 
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parameters. 

 

3.2. Estimation 

Equation (4) describes a recursive simultaneous equation system since input uses ,k itx  are used 

as explanatory variables of yield levels ,k ity  while ,k ity  is not part of the models of ,k itx . The input 

use and yield models featured in equation (4) rely on identical sets of exogenous variables, year 

specific dummy variables included. As argued above, we do not identify the parameters of our 

production choice models by relying on instrumental variables.23 Our identification strategy 

relies on a full information approach. It combines the use of a rich set of control variables and 

the parametric specification of the multivariate probability distribution function of the random 

parameters of the considered models. Basically, we assume that the control variables and the 

random parameters of the model enable us to assume that error terms ( )

,

x

k it
ε  and 

,

y

k it
ε  are 

uncorrelated conditionally on ,k it
w  and ,k i

γ . Then, we manage the issues raised by the 

endogeneity of ,k itx  in the model of ,k ity  (which are due to random parameter vector ,k i
γ  in our 

modelling framework) by explicitly modelling (i) endogenous variable vector ,k itx  and (ii) the 

correlation structure linking the farm specific random terms of the model of ,k itx , ( )

,

x

k i
μ , on the one 

hand and those of the model of ,k ity , ( )

,

y

k i
µ and ,k i

β , on the other hand. 

Although it is unusual, this approach is suitable given our data and objectives. As input use 

models (3b) are standard random parameter models, the estimation issues we face are mostly 

due to correlated random coefficient crop yield models (3a). Breitung and Salish (2021) and 

Woodridge (2019) recently proposed alternative approaches for estimating correlated random 

coefficient models. These approaches do not require any distribution assumption on the random 

terms of the considered equation. They make use of extensions of Mundlak’s device (Mundlak 

1978). This device relies on linear dependency assumptions across the elements of ,k i
γ  that are 

closely linked to those implicitly imposed by the joint normality of ,k i
γ  in equation systems (4). 

Also, the approaches proposed by Breitung and Salish (2021) and Woodridge (2019) primarily 

                                                 
23 As a matter of fact, it is difficult to find suitable instrumental variables for input uses in crop production functions 
when crop and input prices do not display sufficient variations for suitably instrumenting input uses. Most 
exogenous factors, other than prices, that impact input uses do so because they also impact the crop production 
process, input uses being used for taking advantage or compensating the effects of the considered exogenous factors. 
As a result, it is difficult to find non-price exogenous factors (e.g., weather effects, soil characteristics) that impact 
input uses without directly impacting yield levels. 
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focus on the estimation of random parameter means whereas we are also interested in there 

variance and covariance.  

Since our models are fully parametric, we consider ML estimators of the parameters of equation 

systems (4). Apart from their being relatively large equation systems, two issues have to be dealt 

with when estimating these systems.  

First, our models feature standard fixed parameters but also random coefficients, the parametric 

probability distribution of which is to be estimated. We circumvent this issue by using an 

Expectation-Maximization (EM) type algorithm (Dempster et al 1977, Wu 1983) for computing 

the ML estimators of the parameters of our models. EM type algorithms are particularly well 

suited for estimating models featuring unobserved variables, of which random parameters are 

prominent examples (e.g., Lavielle 2014).24 Importantly, the interaction terms 
, ,k it k i
′x β  featured in 

the yield functions and the random parameters appearing in the input use models imply that the 

equation system we consider involve products of random parameters, which raises non trivial 

estimation issues in our models. Relying on stochastic extensions to standard (deterministic) EM 

algorithms is necessary in such nonlinear settings. The conditional expectation that constitutes 

the E step of EM algorithm cannot be integrated either analytically or numerically and, thereby, 

requires simulation methods. We devised a Stochastic Approximation Expectation 

Maximization (SAEM) algorithm for estimating our models. SAEM algorithms were proposed 

by Delyon et al (1999). They make a more efficient use of simulations than competing stochastic 

EM type algorithms. The SAEM algorithm we used is presented in Appendix A. 

Second, attrition is the rule rather than the exception in microeconomic panel data. Attrition is 

not an issue when units are missing at random, that is to say when the decision to drop out is 

not related to factors that are correlated with the response variables (e.g., Wooldridge 2010). Our 

panel dataset is not balanced, for two reasons. First, farmers enter in and leave the customer 

base of the accountancy firm that made these data available to us. Also, data can be lost or 

observations can be incompletely recorded. The resulting attrition processes can be considered 

as random regarding the modelled processes. Second, farmers can decide not to produce some 

crops. In our application most sampled farmers produce the considered crops every year (wheat, 

barley or rapeseed) or do not produce them at all (sugar beet). Ignoring that observations are 

available depending on farmers’ choice potentially raises endogenous sample selection issues 

                                                 
24 These algorithms are easy to code for our models and have interesting robustness and global convergence 
properties, their main drawback being their linear convergence rate (even of computing time remains reasonable 
in our application). 
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when this choice depends on important unobserved factors that impact input use and yield 

levels.25 Yet, accounting for sample selection is relevant when the objective of the study is to 

infer the features of a process for an entire population while the process is only observed for a 

specific sub-population. The objective of our study is much simpler. We aim to estimate pre crop 

and crop acreage diversity effects and to investigate how farmers use them in the sample that is 

available to us. We do not seek for results that can be extrapolated to situations in which the 

considered crops could be produced whereas they are not produced in our data.  

 

4. Data 

Our dataset is primarily based on a large sample of farm cost accounting data and combines 

information from different sources for supplementing these basic data. We used data recorded 

by the Integrated Administration and Control System (IACS) in France for uncovering the crop 

sequence acreages of the sampled farms. We also used data from the GlobalSoilMap initiative 

(e.g., Arrouays et al 2020) for obtaining measures of the main characteristics of the soils of the 

sampled farms. Finally, we used data from Meteo France for obtaining detailed information on 

the weather conditions that prevailed in the considered area over the considered time span.  

 

4.1. Farm cost accounting data 

Our main dataset consists of an unbalanced panel accountancy dataset of 769 farms mostly 

located in the Marne départment, which provides a detailed description of farmers’ choices in 

terms of acreages, crop yields as well as fertilizers and pesticides expenditures per crop. 

Aggregate fertilizers and pesticides volumes are computed from the corresponding expenditures 

by using price indices provided by the French ministry of agriculture at the regional level and 

expressed in constant 2010 euros per ha. Importantly, uses of the major nutrient elements – 

namely N, P and K – are also reported in kg for each crop. 

We consider farms observed from 2008 to 2014 and displaying at least three consecutive years 

of observations. These farms mostly grow eight crops: (winter) wheat, (mostly spring) barley, 

(winter) rapeseed, corn, protein pea, alfalfa, sugar beet and (starch and consumption) potatoes. 

We aim at estimating the pre crop effects of these eight crops on the yield and input uses of the 

                                                 
25 Following the pioneering work of Heckman (1976), agricultural production economists developed specific 
modelling frameworks for dealing with such issues when analyzing farmer production choices. See, e.g., Lacroix 
and Thomas (2011) or Koutchadé et al (2021), for recent examples. 
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four major crops of the sample: wheat, barley, rapeseed and sugar beet. Tables 1 reports some 

descriptive statistics on farmers’ production choices for these four crops and on farms’ acreage 

diversification. Wheat appears to be the dominant crop in our sample, as it is grown every year 

by all farms and represents on average one-third of farms’ acreage. As shown in table 1b, farms’ 

acreages are quite diversified, with an average of more than five crops grown each year and 

most farmers (92% of them) growing at least four crops. 

 

 

Table 1a: Descriptive statistics: yield and chemical input use levels 

 Crops 

 Wheat Barley Rapeseed Sugar beet 

Average yield (ton/ha) 8.65 (1.06) 7.00 (1.19) 3.88 (0.65) 93.0
2 

(13.15) 

Average output price (€/ton) 160 (33) 164 (35) 357 (71) 26 (4) 
Average use of nitrogen (kg/ha) 217 (34) 147 (25) 214 (38) 137 (36) 
Average use of herbicides (€/ha) 63 (19) 30 (12) 99 (31) 160 (53) 
Average use of other pesticides (€/ha) 125 (36) 76 (25) 109 (38) 96 (31) 
Average acreage share  0.34 (0.10) 0.21 (0.10) 0.14 (0.08) 0.12 (0.08) 
Note: Sample standard deviation are in parentheses. 

 

 

Table 1b: Descriptive statistics: crop acreage diversity 

 Sample 
share 

Average number of grown 
crops 

Average Shannon index 

Farms growing 3 or less crops 0.08 2.85 (0.18) 1.09 (0.18) 
Farms growing 4 crops 0.17 4.00 (-) 1.31 (0.10) 
Farms growing 5 crops 0.37 5.00 (-) 1.48 (0.09) 
Farms growing 6 crops 0.30 6.00 (-) 1.63 (0.08) 
Farms growing 7 or more crops 0.08 7.04 (0.04) 1.76 (0.08) 
Total sample  5.33 (1.02) 1.49 (0.21) 
Note: Sample standard deviation are in parentheses. 
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4.2. IACS data 

The IACS ensures the management of agricultural payments across EU countries26. It consists 

of several interconnected databases, which are updated on a yearly basis. We focus here on one 

particular database, the Land Parcel Identification System (LPIS). This database provides detailed 

information on crop acreages implemented on block of plots. Each block of plots is 

georeferenced, has a unique identifier and is associated to a unique farm identifier. We used the 

LPIS dataset for uncovering the crop sequence acreages of the farms of our sample. This dataset 

is very rich but, because farm and plot blocks identifiers vary from one year to the other, and 

because each block may contain more than one plot each year, specific data processing is 

required to extract information on farm crop sequences. For this purpose, we used the RPG 

explorer software developed by Martin et al (2017). By relying on established rules on how the 

crops match up from one year to the next, this software offers the possibility to recover crop 

sequence acreages shares at the farm level.27  This was performed for all farms of the area from 

which the farms of our sample are drawn. These data were then matched to our cost accounting 

dataset using the farm level crop acreage seriesbserved in both datasets as matching criteria. 

This allowed us to perfectly match28 two-thirds of the farms of sample of cost accounting data 

with a farm in the IACS data. More flexible matching criteria, combined with manual checks, 

then resulted in a matching rate of 78% of our initial sample.29 

 

 

 

                                                 
26 More details can be found in European Commission (2019). 

27 These rules are based on the knowledge of the crop acreages declared in each block from one year to the next. A 
succession of 10 rules implemented one after the other can be used to determine the sequences of crops. Rule 1 
(only one crop in the block in one year and the next) is considered as giving certain results, rules 2 (two crops per 
year, distributed over equal areas from one year to the next but different from each other) and 3 (one crop in one 
year is "broken down" into two crops in the next year  with equal total acreage) are supported by solid hypotheses, 
from rule 4 onwards the probability of error in identifying the sequence increases. In our case, it hasn’t been 
necessary for the software to frequently make use of rules beyond rule 3. More details on each rule can be found in 
Martin et al (2017). 

28 We consider a match as perfect when, for each the eight selected crops, the discrepancy of the acreages between 
the two datasets is less than 0.1 hectare 

29 It should be noted here that, although very unlikely, a farm in our sample may have been matched with the wrong 
farm in the IACS sample. This could happen if the two farms are the same size and have very similar acreages each 
year. However, this would not have a significant impact on our estimation results, since two farms with similar 
cropping patterns are expected to show similar effects of crop sequences and crop diversification on yields and 
input uses. 
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4.3. Soil and climate data 

A significant part of the heterogeneity in yields and input uses among farms may be due to the 

heterogeneity in the soil and climatic conditions they face. To control for these heterogeneous 

factors in our econometric estimations, we also introduce soil and climate data in our dataset. 

We use weather indicators provided at the municipality level by Meteo France, the French 

National Weather Service, and soil quality indicators provided at the farm level30 by the team of 

the “SoilServ” project funded by the French National Research Agency (ANR-16-CE32-0005).  

Statistics summing up these climate, respectively soil, indicators are reported in tables C1, 

respectively C2, of Appendix C. 

 

4.4. Expert knowledge information 

Expert knowledge information was gathered through interviews with three agricultural 

scientists and an extension agent of the considered area. These experts provided a list of 

unwarranted crop sequences, which are less likely to be chosen or never chosen by farmers and 

rankings of the effects of crop sequences on yield and input use levels. We use the information 

on the expected rankings of the effects on crop yield and input use levels to assess the 

consistency of our estimation results. The expected rankings of the effects of crop sequences on 

yields and input uses are reported in Table 2. Empty cells correspond to the crop sequences 

strongly unwarranted by the experts we have consulted. 

Wheat yields are expected to be the highest when wheat is grown after pea, alfalfa or rapeseed, 

while growing wheat after wheat or barley is expected to lead to the lowest yields according to 

the experts. Growing barley after rapeseed or corn is expected to boost yield level for barley, 

while growing barley after barley is expected to penalize barley’s yield level. In fact, growing a 

crop after the same crop is generally either unwarranted, or should lead to the lowest yield levels 

for that crop because this type of crop sequence favors the development of weed and/or pest 

pressures (corn being a notable exception in this respect). 

Legumes fix significant amounts of atmospheric nitrogen that are made available for the 

following crops. Accordingly, the interviewed experts’ rankings displayed in Table 2 show that 

growing cereals (wheat, barley or corn) after legumes (pea or alfalfa) is expected to lower 

fertilizer uses compared to growing cereals after cereals. Stated another way, a targeted output 

                                                 
30 Soil quality indicators were actually first provided at the plot level and aggregated at the farm level by using the 
correspondence between farms and plots provided by the IACS data. 
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of cereals could be achieved with a lower level of fertilizers when using a legume-cereal sequence 

rather than a cereal-cereal sequence. The rankings displayed in table 2 also depend on the ability 

of crops to uptake fertilizers and, as a result, on the fertilizer surplus left by pre crops in soils. 

For instance, fertilizer uses are expected to be the highest after corn due to the efficiency of the 

use of soil nitrogen by these crops. 

Experts’ rankings regarding pesticide uses displayed in Table 2 mostly depend on the fact that 

monoculture tends to increase pressures of weeds, pests and diseases. Accordingly, crop 

sequences involving a single crop or crops belonging to similar botanic families are expected to 

induce higher pesticide use levels. Conversely, crop sequences involving different crops tend to 

reduce crop protection needs, according to so-called break crop effects. 
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Table 2: Rankings of the expected effects of pre crops on crop yield, fertilizer 

use and pesticide use levels per crop 
 

 Current crop 

 

 Yield level rankings per crop 

 

 Wheat Barley Rapeseed Sugar beet 

P
re

vi
ou

s 
cr

op
 

Wheat 5 2 2 1 
Barley 6 3 2 1 
Rapeseed 2 1  2 
Corn 4 1  2 
Protein pea 1 3 1  
Alfalfa 1 3  3 
Sugar beet 3 2  3 
Potatoes 3 2  2 

  Fertilizer use level rankings per crop 

  Wheat Barley Rapeseed Sugar beet 

P
re

vi
ou

s 
cr

op
 

Wheat 1 1 1 1 
Barley 1 1 1 1 
Rapeseed 2 2  1 
Corn 1 1  1 
Protein pea 3 3 2  
Alfalfa 3 3  2 
Sugar beet 2 2  1 
Potatoes 2 2  1 

 

 Pesticide use level rankings per crop 

 

 Wheat Barley Rapeseed Sugar beet 

P
re

vi
ou

s 
cr

op
 

Wheat 1 1 1 1 
Barley 1 1 2 1 
Rapeseed 2 2  1 
Corn 2 1  1 
Protein pea 2 2 2  
Alfalfa 2 2  1 
Sugar beet 2 2  1 
Potatoes 2 2  1 

Note: 1 = highest expected level, 2 = second highest expected level, etc. 

 

5. Results 

Our application considers four crops: (winter) wheat, (spring) barley, (winter) rapeseed and 

sugar beet. These crops are the major crops in the considered area since they account for 82% of 

the arable crop acreage. We present here three sets of results. First, we briefly discuss the crop 

sequence acreages based on IACS data for our farm sample. Second, we present the estimation 
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results of our equation systems composed of a yield equation and three inputs equations for 

nitrogen fertilizers, herbicides and other pesticides for each of the considered crops. We focus 

our discussion on the pre crop and crop acreage diversity effects. Third, we provide a set of 

results aimed to assess the economic value of the pre crop and crop acreage diversity effects that 

we uncover. 

 

5.1. Crop sequence acreages 

The average crop sequence acreage shares recovered from IACS data and matched to our data 

sample are reported in Table 3. These shares describe how farmers allocate the acreage of their 

current crops to plots with specific previous crops on average (i.e., they correspond to the means 

of terms ,mk it
z  over our sample). A striking feature of the results displayed in Table 3 is that 

farmers tend to rely on the most favorable crop sequences from an agronomic viewpoint. For 

instance, they avoid growing wheat after wheat (i.e., the acreage share of wheat grown after 

wheat in the wheat acreage equals 0.06) and prefer growing wheat after rapeseed or sugar beet. 

Indeed, pea and rapeseed are considered as favorable pre crops for wheat by agronomists and 

our results show that land previously used to grow rapeseed or pea is mostly devoted to wheat 

production. The rapeseed – wheat sequence accounts for 39% of wheat crop acreage on average, 

the sugar beet – wheat sequence for 16%. 

Conversely, the average acreage shares of many crop sequences are almost null, implying that 

these crop sequences are almost never observed in our data. Many of these unobserved crop 

sequences are strongly unwarranted from an agronomic viewpoint and thus (almost) never used 

by farmers. For instance, growing rapeseed after rapeseed foster pest and disease issues. These 

first results suggest that farmers’ crop sequence acreage choices are particularly rational from 

an agronomic viewpoint and, as a result, from an economic viewpoint. 

Crop sequence acreage share choices are also subject to constraints, such as the limited 

availability of favorable pre crops for the major crops of farmers’ acreages. Of course, available 

previous crop acreages depend on famers’ previous acreage choices. For instance, wheat and 

barley account for about half of the arable crop acreage in the considered area. The average 

acreage share of wheat amounts to 0.34 and that of barley to 0.21. This implies that wheat and 

barley are major pre crops in the area, according to purely “mechanical” effects. For instance, 

wheat and barley are the pre crops of 97% of rapeseed acreages and of 91% of sugar beet acreages, 

and wheat is the pre crop of 56% of barley acreages. Conversely, despite pea being among the 
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most favorable previous crops for wheat and pea production being almost always followed by 

wheat production, the pea–wheat sequence only accounts for 6% of wheat crop acreage on 

average, because the average acreage share of pea only amounts to 0.02 in the area. 

Farmers favoring the most profitable crop sequences and tending to avoid the least favorable 

ones significantly affects the econometric analysis of pre crop effects. First, the effects of pre 

crops involved in never or rarely used crop sequences are poorly identified, when they can be 

identified, because the corresponding crop sequence acreages display insufficient variability. 

Second, minor crops are generally grown on a few previous crops (which are often major 

crops31), if not on only one previous crop. Third, major crops are the only ones displaying 

allocations to pre crop acreages that significantly vary across farms. These observations sum up 

the main shortcoming of farm data (i.e., of observed data as opposed to experimental data) for 

investigating the effects of crop sequences on crop yield and input use levels. Our estimation 

results on pre crop effects largely support the points made here. 

 

Table 3a: Average allocation of the acreages of the major crops to previous crop acreages 

  Current (major) crops  

Previous crop 
acreage shares 

  Wheat Barley Rapeseed Sugar 
beet 

P
re

vi
ou

s 
cr

op
s 

Wheat 0.06 0.56 0.38 0.59 0.35 
Barley 0.02 0.13 0.59 0.32 0.22 
Rapeseed 0.39 0.03 0.00 0.01 0.14 
Corn 0.06 0.03 0.00 0.00 0.03 
Protein pea 0.06 0.00 0.00 0.00 0.02 
Alfalfa 0.08 0.01 0.00 0.00 0.08 
Sugar beet 0.16 0.18 0.01 0.02 0.12 
Potatoes 0.05 0.02 0.00 0.02 0.02 
Other pre crops 0.10 0.03 0.01 0.03 0.02 

Current crop acreage 
shares 

0.34 0.21 0.14 0.12  

 

 

 

                                                 
31 Straw cereals in our application. 
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Table 3b: Frequency of crop production and crop sequences 

  Current (major) crops Previous crop 
frequency 

  Wheat Barley Rapeseed Sugar 
beet 

P
re

vi
ou

s 
cr

op
s 

Wheat 0.30 0.81 0.60 0.62 1 
Barley 0.13 0.41 0.77 0.44 0.87 
Rapeseed 0.81 0.12 0.02 0.03 0.91 
Corn 0.21 0.10 0.00 0.01 0.36 
Protein pea 0.28 0.02 0.01 0.01 0.28 
Alfalfa 0.33 0.04 0.01 0.02 0.65 
Sugar beet 0.50 0.40 0.02 0.06 0.79 
Potatoes 0.16 0.05 0.01 0.03 0.19 
Other pre crops 0.50 0.23 0.09 0.10 - 

Current crop frequency 1 0.87 0.91 0.79  

      

 

5.2. Crop input use and yield models: general results 

Tables 4 display selected parameter estimates of the yield, nitrogen, herbicides and other 

pesticides equations for the four considered crops. Due to space limitation we focus here on the 

estimation results for our parameters of interest, that is to say the parameters capturing the 

effects of crop sequences (i.e., fixed parameters ( )

,0

y

k
a  and ( )

,0

x

k
a ) and crop acreage diversity (i.e., 

fixed parameters ( )

,0

y

k
δ  and ( )

,0

x

k
δ ) on yield and input use levels. Those characterizing the intensity 

of farmers’ production practices (i.e., the distribution of random parameters ,k i
γ ) are also of 

special interest, as they allow investigating, to some extent, the rationality underlying farmers’ 

chemical input choices. The other estimation results, the effects of the control variables in 

particular, are reported in Appendix C.32 

Tables 4 display the estimates of the parameters characterizing the distribution of the model 

random parameters, that is to say the means and standard deviations of the elements of vectors 

, , ,( , )
k i k i k i
=γ μ β , as well as general statistics. The reported simulated R2 measures correspond to 

standard R2 measures applied to models in which farm specific parameters are replaced by their 

estimates based on the estimated models and farm specific observations (e.g., Koutchadé et al 

                                                 
32 Tables C3-C6 mostly report estimation results of the effects of weather and soil property variables. Including 
these variables in our models appears to be significantly improve their estimation from a statistical viewpoint. 
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2018, 2021). These simulated R2 demonstrate that our models provide a better fit to the yield 

data than to the chemical input use data. The estimated crop yield models explain from 63% to 

70% of the observed yield variance. The pesticide use models explain from 50% to 65% of the 

observed herbicide and other pesticide use variances. The corresponding percentages drop down 

to 38% and 44% for the nitrogen fertilizer use models. 

The estimates of the parameters characterizing the (multivariate normal) distribution of the farm 

specific parameters in the considered models are accurately estimated. The estimates of the 

standard deviations of these parameters demonstrate that farmers’ choices and crop production 

processes are strongly impacted by farm specific unobserved factors (despite our controlling for 

the effects of soil characteristics at the farm level). 

 

 

 

 

Table 4a: Selected parameter estimates of the crop yield models: random farm specific parameters and 

general statistics 

 Yield models (t/ha) 

 Wheat Barley Rapeseed Sugar beet 

Intercept, mean 8.60** (0.07) 6.10** (0.08) 0.50** (0.04) 83.8** (0.83) 

Intercept, standard deviation 0.70** (0.07) 0.50** (0.09) 0.50** (0.04) 8.40** (1.04) 

Nitrogen, mean (x100) 0.03 (0.03) -0.06 (0.05) 0.08** (0.01) -0.40 (0.39) 

Nitrogen, std deviation (x100) 0.21** (0.03) 0.30** (0.06) 0.15** (0.01) 1.95** (0.45) 

Herbicides, mean (x100) 0.14** (0.05) 0.02 (0.11) 0.04** (0.02) 0.55 (0.32) 

Herbicides, std deviation (x100) 0.38** (0.07) 0.63** (0.15) 0.22** (0.02) 2.42** (0.40) 

Other pesticides, mean (x100) 0.34** (0.03) 0.27** (0.06) 0.13** (0.02) 0.80 (0.61) 

Other pesticides, Standard deviation  
(x100) 

0.17** (0.03) 0.37** (0.07) 0.20** (0.02) 5.39** (0.80) 

Average yield level 8.65 7.00 3.88 93.07 

Simulated R2 0.68 0.63 0.64 0.70 

Observation number 3,982 3,327 3,530 3,085 

Farm number 769 654 692 607 

Note: Symbol **, respectively *, indicates that the parameter is significantly estimated at the 5%, respectively 10%, level. 
Estimated standard deviations of the parameter estimates are in parentheses. 
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Our estimates also show that random coefficients of the crop yield models – i.e., elements of 

vector ,k i
β  – are statistically correlated with random parameters of the corresponding crop input 

use models – i.e., elements of vector ( )

,

x

k i
μ  – for all considered crops. This indicates that the 

considered crop yield equations really contain correlated random coefficients (see Appendix C8). 

Moreover, when the estimated correlations are negative when they are statistically non-null. 

This suggests that the crop yield functions that are approximated by our crop yield models 

display decreasing returns to input uses. 

 

 

 

 

Table 4b: Selected parameter estimates of the input use models: random farm specific parameters 

and general statistics 

 Fertilizer use models (kg/ha) 

 Wheat Barley Rapeseed Sugar beet 

Intercept, mean 249.2** (0.63) 151.1** (0.56) 115.8* (0.77) 356.2** (0.87) 
Intercept, Std deviation 13.46** (0.54) 11.29** (0.43) 15.92* (0.62) 17.20** (0.55) 
Average use of N 217.95  147.19  215.19  138.55  
Simulated R2 0.38  0.42  0.42  0.44  
 Herbicide use models (€/ha, 2010 prices) 

 Wheat Barley Rapeseed Sugar beet 

Intercept, mean 171.6** (0.42) 85.7** (0.28) 285.6* (0.75) 319.9** (1.38) 
Intercept, std deviation 10.0** (0.29) 5.7** (0.18) 16.8* (0.54) 30.5** (0.99) 
Average herbicide use 63.08 30.47 99.27 160.55 
Simulated R2 0.55 0.50 0.55 0.67 
 Other pesticide use models (€/ha, 2010 prices) 

 Wheat Barley Rapeseed Sugar beet 

Intercept, mean 144.7** (1.00) 143.7** (0.66) 127.7** (1.03) 109.8** (0.79) 
Intercept, std deviation 25.43** (0.71) 14.72** (0.46) 24.32** (0.69) 16.86** (0.55) 
Average pesticide use 125.1 76.0 109.0 96.2 
Simulated R2 0.65 0.55 0.60 0.55 
 Observation and farm numbers 

 Wheat Barley Rapeseed Sugar beet 

Observation number 3,982 3,327 3,530 3,085 
Farm number 769 654 692 607 
Note: Symbol **, respectively *, indicates that the parameter is significantly estimated at the 5%, respectively 10%, level. 
Estimated standard deviations of the parameter estimates are in parentheses. 
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The farm specific coefficients of the input use variables in the crop yield models (i.e., random 

parameters ,k i
β ) give the marginal productivity of the considered chemical inputs at the farm 

level. Their means, which are reported in Table 4a, yield the average marginal productivity of 

these inputs. The estimated average marginal productivities of nitrogen fertilizers are of either 

sign and small in absolute value. Such results are common in the agricultural production 

economics literature, at least for conventional production practices. Responses of crop 

production to nitrogen uses are known to generally exhibit a plateau at high nitrogen use 

levels.33 The estimated average marginal productivity levels are positive for pesticides, and small 

for herbicides. Farmers usually use herbicides for controlling weeds following a long run strategy 

(e.g., Colbach and Cordeau 2018). Herbicides aim to control current weed populations as well as 

weed seed banks. Parameters , ,j k i
β  capture the short run effects of input j on the yield level of 

crop k. They fail to capture their long run effects, which are expected to be positive for 

herbicides. 

Let assume that input j is purchased at price ( )

,

x

j k
p  and crop k is sold at price ( )y

k
p . According to 

our crop yield models, the marginal net return of crop k to input j is given by ( ) ( )

, , ,

y x

k j k i j k
p pβ −  for 

farm i. Since input prices or price indices are close to one in our application this expression 

basically provides the net return to the last Euro of input j used for crop k. Table 5 reports the 

sample means and standard deviations of the estimated marginal net returns of crops to chemical 

inputs at the sample mean prices. According to these results, chemical inputs, nitrogen fertilizers 

and herbicides in particular, are used above their respective expected profit maximizing levels 

by most farmers. These results suggest that the farmers of our sample seek for relatively high 

yield levels, which supposes to rely on relatively high crop protection and fertilization levels. 

Yet, assessing the extent of the revealed overuses of chemical inputs would require assessing the 

concavity properties of the considered crop yield functions, which is out of the scope of this 

study.34 

 

 

 

                                                 
33 See, e.g., Tembo et al (2008) for a recent empirical analysis of this feature of the productivity of nitrogen fertilizers. 

34 If these overuse levels are significant they are unlikely to be “massive”. As reminded above, crop yields are known 
to exhibit a plateau at high nitrogen use levels. Similarly, the marginal productivity of pesticides is known to sharply 
decrease in pesticide use levels (e.g., Frisvold 2019). 
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Table 5: Estimated means and standard deviations of crop marginal net returns to 

chemical inputs (at average price levels, 2008–2014) 

 Chemical input use models 

 Means of the estimated crop marginal net returns to inputs 

 Nitrogen fertilizers Herbicides Other pesticides 

Wheat -0.95 (0.05) -0.78 (0.08) -0.46 (0.05) 
Barley -1.10 (0.08) -0.97 (0.18) -0.56 (0.10) 
Rapeseed -0.71 (0.04) -0.86 (0.07) -0.54 (0.07) 
Sugar beet -1.10 (0.10) -0.86 (0.08) -0.79 (0.16) 
 Standard deviations of the estimated of crop marginal net returns to inputs 

 Nitrogen fertilizers Herbicides Other pesticides 

Wheat 0.34 (0.05) 0.61 (0.11) 0.27 (0.05) 
Barley 0.49 (0.10) 1.03 (0.25) 0.61 (0.11) 
Rapeseed 0.54 (0.04) 0.79 (0.07) 0.71 (0.10) 
Sugar beet 0.51 (0.12) 0.63 (0.10) 1.40 (0.21) 
Note: Estimated standard deviations of the parameter estimates are in parentheses 

 

5.3. Pre crop effects on yield and input use levels 

Tables 6 report the effect of pre crops on the outcome (yield, nitrogen, herbicide and other 

pesticide use levels) of the considered crops compared to that of a reference pre crop. The 

reference pre crop of a given crop is its most frequent one in our data, which is rapeseed for 

wheat and wheat for the other crops. As evidenced by the relatively large estimates of the 

standard deviation of the estimated effects reported in Table 6, previous crop effects are poorly 

identified in our models.35 Previous crop effects on input uses are particularly poorly estimated. 

As discussed above, such results can partly be due to crop sequence acreage choices patterns. 

Farmers tend to select the most favorable pre crop for their major crops as well as to choose 

similar crop acreages across years. This implies that their crop sequence acreages display similar 

patterns.36 The implied limited variability in crop sequence acreages prevents obtaining accurate 

estimates of the corresponding pre crop effects. 

                                                 
35 Even if their signs are generally consistent with experts’ views. 

36 Small pre crop effects in absolute value could also be due to the well-known attenuation biases induced by 
measurement errors (e.g., Wooldridge 2010) since crop sequence acreage shares are reconstructed in our data, with 
a reconstruction process that may be prone to errors. Yet, attenuation biases are associated to downward biased 
estimates of the standard deviation of the estimated effects (e.g., Wooldridge 2010). Taken together these 
observations suggest that our pre crop effect estimates are unlikely to be impacted by significant attenuation biases 
in our application. 
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Table 6a: Selected parameter estimates of the crop yield models: selected pre crop effects 

 Yield models (t/ha) 

 Wheat Barley Rapeseed Sugar beet 

Pre crop effects         
Wheat -0.32** (0.10) 0.00 (-) 0.00 (-) 0.00 (-) 
Barley -0.19 (0.16) -0.16** (0.07) 0.04 (0.03) -0.25 (0.55) 
Rapeseed 0.00 (-) 0.16 (0.20)   1.25 (3.03) 
Protein pea 0.20** (0.10) 0.17 (0.41) 0.05 (0.25)   
Alfalfa -0.09 (0.08) 0.02 (0.35)   -8.51 (5.22) 
Sugar beet 0.01 (0.06) 0.21** (0.07)   -0.51 (1.69) 
Note: Symbol **, respectively *, indicates that the parameter is significantly estimated at the 5%, respectively 10%, 
level. Estimated standard deviations of the parameter estimates are in parentheses. 

 

As an illustration, the acreage share of the pea–barley sequence is almost null on average while 

the barley–barley one equals 0.13 (Table 3a). The estimated standard errors of the pre crop 

effects of pea are at least fivefold those of barley when going through the equations related to 

the yield or input use levels of barley (Tables 6). This comes to illustrate our concerns regarding 

the identification of crop rotation effects for rarely used crop sequences. 

Unsurprisingly, the most accurate estimated pre crop effects are those of the wheat yield 

equation. They tend to show that growing wheat after rapeseed instead of after wheat increases 

expected yield levels by 0.32 t/ha while growing wheat after pea instead of after wheat increases 

expected yield levels by 0.52 t/ha (which amounts to 6% of the sample average wheat yield level). 

These results are in line with experimental results (e.g., Meynard et al 2013, Jeuffroy et al 2015, 

Preißel et al 2015). The estimated pre crop effects on barley yield levels are also in the expected 

ranges (e.g., Meynard et al 2013, Jeuffroy et al 2015, Reckling et al 2016). 

 

 

 

 

 

 

 

Table 6b: Selected parameter estimates of the input use models: selected pre crop effects 
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 Fertilizer use models (kg/ha) 

 Wheat Barley Rapeseed Sugar beet 

Pre crop effects         
Wheat 0.32 (3.79) 0.00 (-) 0.00 (-) 0.00 (-) 
Barley 2.01 (6.32) 0.85 (1.91) -1.66 (1.77) -2.39 (1.91) 
Rapeseed 0.00 (-) -0.74 (4.53)   6.36 (7.93) 
Protein pea 1.83 (3.37) -5.19 (9.81) -4.79 (18.50)   
Alfalfa 4.04 (3.27) 5.06 (8.08)   2.51 (13.00) 
Sugar beet 2.01 (2.54) -0.12 (1.58)   -5.73 (5.75) 
 Herbicide use models (€/ha, 2010 prices) 

 Wheat Barley Rapeseed Sugar beet 

Pre crop effects         
Wheat -0.11 (2.29) 0.00 (-) 0.00 (-) 0.00 (-) 
Barley 1.37 (4.13) 1.94** (0.95) -0.57 (1.44) -2.57 (2.52) 
Rapeseed 0.00 (-) 0.62 (2.46)   7.78 (11.21) 
Protein pea 1.55 (2.38) -5.17 (5.78) 5.52 (18.90)   
Alfalfa 0.58 (2.18) 1.62 (3.74)   9.24 (34.09) 
Sugar beet -1.35 (1.58) -1.68* (0.97)   8.41 (8.50) 
 Other pesticide use models (€/ha, 2010 prices) 

 Wheat Barley Rapeseed Sugar beet 

Pre crop effects         
Wheat 4.07 (4.08) 0.00 (-) 0.00 (-) 0.00 (-) 
Barley -15.63** (6.55) -0.50 (1.88) 1.10 (1.73) -1.05 (1.55) 
Rapeseed 0.00 (-) -3.34 (4.93)   -2.23 (6.85) 
Protein pea -5.32 (3.52) -5.64 (17.04) -16.49 (20.27)   
Alfalfa -2.05 (3.27) 8.48 (4.42)   -3.92 (13.05) 
Sugar beet -1.66 (2.50) 0.87 (1.91)   1.86 (5.90) 
Note: Symbol **, respectively *, indicates that the parameter is significantly estimated at the 5%, respectively 10%, 
level. Estimated standard deviations of the parameter estimates are in parentheses. 

 

 

Our results demonstrate very limited adjustments, if any, of farmers’ chemical input uses to the 

pre crops of their crop acreages. In particular, we decided to focus on nitrogen uses instead of 

aggregated fertilizer uses for investigating the effects on nitrogen uses of legumes as pre crops. 

Our results tend to show that farmers do not reduce their nitrogen uses after legumes. These 

estimation results are consistent with the results obtained by Nave et al (2013) based on French 

farmers interviews. They are also consistent with our estimates of the marginal productivity of 

nitrogen fertilizers, at least to some extent. Farmers tend to overuse nitrogen fertilizers when 

they downplay legume nitrogen surpluses while deciding their uses of mineral nitrogen. 

Nitrogen surpluses are not lost, as they can induce higher yields, but total nitrogen applications 

exceed their economically optimal levels. 
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Three phenomena may underlie these results. First, data issues may prevent our obtaining 

accurate estimates of pre crop effects. As discussed above, our data may not contain sufficient 

information for uncovering pre crop effects on input uses. Moreover, recorded crop input use 

levels are likely to be less accurate than recorded yield levels. These data issues cannot be ruled 

out but they are unlikely to fully explain our low estimates of pre crop effects on input uses. As 

will be shown below, these data allow us to uncover relatively precise crop acreage diversity 

effects on pesticide uses, thereby suggesting that the sampled farmers adjust their pesticide uses, 

especially their herbicide uses, to the conditions prevailing in their fields. 

Second, if farmers automatically reap off the benefits of pre crop effects on yield levels they need 

to be willing to adjust their chemical input uses for benefiting from the effects of pre crops on 

soil nutrient contents and/or on pest and weed pressures. Farmers are likely to be aware of 

nitrogen surpluses left by legumes or of the break effects of diversified crop sequences on pest 

and weed pressures but they may be reluctant to adjust their input uses. Nitrogen surpluses and 

break crop effects on pest and weed pressures are random. Assessing them is costly and may 

only yield limited savings in chemical input expenditures. 

Third, pre crop effects on chemical inputs may be limited in our data. Indeed, our data enable us 

to uncover the effects of a few crop sequences only, those involving pre crops with sufficiently 

variable acreages for a given crop. These pre crops, those of wheat excepted, may not induce 

contrasted effects either on yield levels or on chemical input uses. For instance, wheat and barley 

are by far the most frequent pre crops of sugar beet in our sample. Despite wheat being mostly 

a winter crop and barley being mostly a spring crop in the considered area, these crops are both 

straw cereals sharing many agronomic features. As a matter of fact, barley and wheat are 

expected to have similar effects on sugar beet production by the experts we have consulted 

(Tables 2). Accordingly, wheat being the reference pre crop of sugar beet in our application, the 

absence of statistically significant pre crop effects of barley on sugar beet production is not 

particularly surprising. Finally, farmers’ production practices may also induce limited pre crop 

and crop acreage diversity effects. Experimental results of Coulter et al (2011) regarding corn 

based cropping systems in the US suggest that high yielding cropping management practices 

attenuate the effects of crop diversity. Indeed, high yielding crop management practices are 

known to call for both high fertilization and high crop protection levels. High yields require high 

nutrient loads and high yielding crop cultural techniques (e.g., high seeding densities, early 

sowing, high nitrogen fertilization) tend to enhance pest, weed and disease pressures.37 These 

                                                 
37 The most productive seeds are also often more susceptible to pests and diseases. High nitrogen fertilization levels 
also increase competition with weeds and increase the susceptibility of crops to diseases (and straw cereals to 
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effects of high yielding cropping management practices may swamp those of crop diversity.  

 

5.4. Crop acreage diversity effects on yield and input use levels 

Tables 7 report the effects of the number of grown crops, our main crop acreage diversity effects, 

on the outcomes of the considered crops. These effects are measured as differences with respect 

to effect of the reference number of grown crops, which is five (the most frequent number of 

grown crops in our data) in our empirical application. The “Crop diversity effects: Shannon 

index per crop number” sub-panels report the effects of the crop acreage Shannon index 

interacted with the grown crop number dummy variables. These effects measure the effects of 

crop acreage diversity holding fixed the number of crops actually grown. 

Crop diversity is expected by agronomists (e.g., Meynard et al 2013, Duru et al 2015) to increase 

crop yield levels (e.g., by decreasing pest and weed pressures that cannot be controlled by 

pesticides, by impacting soil structure at various depth levels), to decrease pesticide use levels 

(by decreasing pest and weed pressures that can be chemically controlled) and, to a lesser extent, 

to decrease fertilizer use levels (e.g., by improving soil properties that in turn enhance nutrient 

efficiency of crops). Our estimation results tend to support these hypotheses. Yield levels 

increase and pesticide use levels decrease as the grown crop number and the related Shannon 

index increase. Yet, the estimated effects are non-null from a statistical viewpoint only for yield 

and herbicide use levels. 

According to our results, wheat yield levels are 0.20 t/ha higher when wheat is grown in a 7 crop 

farm than in a 5 crop farm, and wheat yield levels are 0.39 t/ha higher when wheat is grown in 

a 7 crop farm than in a 3 crop farm. Moreover, crop acreage diversity as measured by the 

Shannon index also tends to increase wheat yield levels holding constant the number of grown 

crops. Other crops display similar patterns regarding crop acreage diversity effects.38 Such 

results are fully consistent with agronomists’ views and experimental results (e.g., Lin 2011, 

Kremen and Miles 2012, Meynard et al 2013, Hufnagel et al 2020). 

                                                 
lodging). Early sowing increases the exposure of crops to pests and diseases while dense uniform sowing may foster 
the occurrence and the severity of pest and disease outbreaks. Such effects were discussed and documented by Loyce 
and Meynard (1997) and Loyce et al (2008, 2012) in the case of winter wheat. 

38 According to our results, sugar beet yield levels are 7.67 t/ha lower when wheat is grown in a 5 crops farm than 
in a 3 crops farm. Yet, this estimated effect is very inaccurate, the related estimation standard deviation being 
estimated at 4.39 t/ha. Indeed, farmers producing sugar beet rarely grow less than three other crops. Most of them 
also grow wheat, barley and rapeseed. 
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Table 7a: Selected parameter estimates of the crop yield models: crop acreage diversity effects 

 Yield models (t/ha) 

 Wheat Barley Rapeseed Sugar beet 

Crop diversity effects: crop number 

3 crops or less -0.19** (0.07) -0.35** (0.13) 0.01 (0.07) -7.67 (4.39) 
4 crops -0.10* (0.05) -0.19** (0.07) -0.04 (0.04) -1.08 (1.29) 
5 crops 0.00 (-) 0.00 (-) 0.00 (-) 0.00 (-) 
6 crops 0.06 (0.04) 0.02 (0.05) 0.06* (0.03) 1.38** (0.61) 
7 crops or more 0.20* (0.07) 0.15* (0.08) 0.18** (0.04) 1.90* (0.93) 

 Crop diversity effects: Shannon index per crop number 

3 crops x Shannon index -0.13 (0.41) 0.69 (0.62) -0.26 (0.36) -13.27 (29.80) 
4 crops x Shannon index 0.72** (0.27) 1.33** (0.47) 0.21 (0.20) 6.57 (6.89) 
5 crops x Shannon index 0.73** (0.31) 0.88** (0.36) 0.33 (0.20) 9.79** (4.58) 
6 crops x Shannon index 0.28 (0.33) 0.40 (0.41) 0.59** (0.23) 14.38** (4.42) 
7 crops x Shannon index 1.44** (0.58) 0.87 (0.64) 0.93** (0.30) 15.73** (6.48) 
Note. Symbol **, respectively *, indicates that the parameter is significantly estimated at the 5%, respectively 10%, level. 
Estimated standard deviations of the parameter estimates are in parentheses. 

 

Our results also tend to demonstrate that crop acreage diversity significantly impacts herbicide 

uses, although with less accurate estimates than for crop yields. Overall, these results are 

consistent with agronomists’ experimental results (e.g., Liebman and Dyck 1993, Liebman and 

Staver 2001, Smith and Gross 2007, Chikowo et al 2009, Adeux et al 2019, Sharma et al 2021). 

Andert et al (2016) obtained similar results for a (small) sample of (large) German farms. For 

instance, farms growing 5 crops use 4.7 €/ha (at the 2010 price levels) less herbicides on wheat 

than farms growing 3 crops, farms spending 63.1 €/ha on herbicides for wheat on average. 

Similarly, farms growing 5 crops use 11.1 €/ha less herbicides on rapeseed than farms growing 

3 crops, farms spending 99.3 €/ha on herbicides for rapeseed on average. 
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Table 7b: Selected parameter estimates of the input use models: crop acreage diversity effects 

 Fertilizer use models (kg/ha) 

 Wheat Barley Rapeseed Sugar beet 

 Crop diversity effects: crop number 

3 crops or less -0.38 (3.20) -1.41 (4.31) -2.01 (4.82) 6.08 (24.09) 
4 crops 0.40 (1.64) 0.69 (1.63) -1.59 (2.28) 3.27 (4.41) 
5 crops 0.00 (-) 0.00 (-) 0.00 (-) 0.00 (-) 
6 crops 1.55 (1.40) 0.54 (1.12) 3.45* (1.68) -0.44 (1.91) 
7 crops or more 2.65 (2.19) 1.37 (2.04) 3.72 (2.48) -3.03 (2.60) 

 Crop diversity effects: Shannon index per crop number 

3 crops x Shannon 
index 

-3.74 (17.91) -13.71 (26.74) -12.25 (19.33) -83.64 (107.95) 

4 crops x Shannon 
index 

10.54 (9.13) -6.55 (10.83) -3.94 (14.56) 1.24 (24.56) 

5 crops x Shannon 
index 

-12.98 (11.09) -12.00 (8.20) -13.53 (13.49) -36.25** (16.84) 

6 crops x Shannon 
index 

-1.56 (11.34) -4.22 (8.88) 12.62 (12.46) 1.78 (13.29) 

7 crops x Shannon 
index 

-3.28 (20.36) -7.39 (17.68) 0.22 (22.09) -25.68 (21.83) 

 Herbicide use models (€/ha, 2010 prices) 

 Wheat Barley Rapeseed Sugar beet 

 Crop diversity effects: crop number 

3 crops or less 4.66** (1.54) 3.56 (2.02) 11.05** (3.63) 12.11 (59.26) 
4 crops 1.93 (1.03) 1.20 (0.84) 8.14** (1.88) 4.21 (3.53) 
5 crops 0.00 (-) 0.00 (-) 0.00 (-) 0.00 (-) 
6 crops -1.64* (0.88) -1.37** (0.58) -2.42 (1.49) -1.41 (2.39) 
7 crops or more -2.37 (1.74) -1.34 (0.99) -3.29 (2.48) -5.30 (4.27) 
 Crop diversity effects: Shannon index per crop number 

3 crops x Shannon 
index 

1.99 (8.68) -12.01 (11.14) 15.37 (23.84) -38.16 (372.78) 

4 crops x Shannon 
index 

-9.35 (5.15) -10.32** (4.98) -8.71 (11.66) -31.32 (18.48) 

5 crops x Shannon 
index 

-4.12 (6.13) -8.88** (3.68) -12.98 (10.83) -4.11 (19.37) 

6 crops x Shannon 
index 

-7.27 (8.17) -3.05 (5.66) -23.70* (12.69) 3.41 (18.70) 

7 crops x Shannon 
index 

7.57 (15.25) -0.67 (9.88) -18.79 (20.45) -11.79 (30.71) 
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The estimated effects of the crop acreage Shannon index per grown crop number also suggest 

that crop acreage diversity tends to lower weed pressures. Yet, the related estimates are generally 

inaccurate and lack statistical significance. In the same vein, the estimated effects of the crop 

acreage diversity indicators on sugar beet herbicide use levels have expected signs. They are also 

relatively large, but, these effects are estimated too inaccurately for being meaningful from a 

statistical viewpoint. Indeed, herbicide uses on sugar beet are both relatively large (sugar beet is 

a root crop) and heterogeneous across farms. Their sample average amounts to 160.6 €/ha and 

their between-farm standard deviation to 30.5 €/ha. This may be explained by heterogeneous 

tillage practices, which significantly impact weed control, across our sample. 

Also, the effects of crop acreage diversification on herbicide uses may not solely be due to agro-

ecological weed regulation effects. For instance, in our sample most farms growing at most 3 

crops do not produce sugar beet or potatoes, implying that comparing farms growing 3 crops (or 

less) and farms growing at least 4 crops largely consists of comparing farms not growing sugar 

Table 7b: (Continued) 

 

 Other pesticide use models (€/ha, 2010 prices) 

 Wheat Barley Rapeseed Sugar beet 

Crop diversity effects: crop number 

3 crops or less -3.73 (3.28) -2.44 (3.33) -0.82 (4.15) 3.11 (18.21) 
4 crops -3.17 (2.07) 0.14 (1.66) 2.94 (2.37) 0.92 (2.53) 
5 crops 0.00 (-) 0.00 (-) 0.00 (-) 0.00 (-) 
6 crops -0.25 (1.76) -0.72 (1.32) -1.35 (1.89) 1.00 (1.62) 

7 crops or more 1.90 (2.89) -2.16 (2.22) 0.75 (3.10) -1.50 (2.79) 
Crop diversity effects: Shannon index per crop number 

3 crops x Shannon 
index 

5.99 (14.46) 1.52 (25.08) -16.66 (28.23) 55.79 (73.47) 

4 crops x Shannon 
index 

1.83 (10.94) -1.28 (8.37) -1.55 (12.14) -10.12 (13.18) 

5 crops x Shannon 
index 

-13.95 (11.38) -6.53 (8.91) -29.88** (13.92) -26.92** (12.69) 

6 crops x Shannon 
index 

1.58 (13.52) -5.49 (11.55) 23.23 (14.91) 3.80 (12.42) 

7 crops x Shannon 
index 

5.31 (17.92) -1.52 (17.93) 4.22 (19.47) 10.15 (21.19) 

Note: Symbol **, respectively *, indicates that the parameter is significantly estimated at the 5%, respectively 10%, 
level. Estimated standard deviations of the parameter estimates are in parentheses. 



Working Paper SMART N°22-02 

 

39 

beet to farms growing sugar beet or potatoes. As these root crops require high level weed control, 

the effects of crop acreage diversity on herbicide use on grain crops may be due to carry-over 

effects of the chemical weed control implemented for protecting root crops.39 

It is worth noting that our results on crop acreage diversity effects in the yield and herbicide 

equations are not driven by farm size (at least in our sample, which mostly contains relatively 

large farms), as the inclusion of the farm size among the control variables turns out to be 

statistically insignificant regardless the equation in which it is included. Also, our results are not 

driven by soil quality effects. Our including a rich set of soil property measures in our models 

controls for the well-known fact that good soils both widen the scope of profitable crops (e.g., 

root crops require deep and suitably structured soils) and enhance crop profitability.40 Yet, the 

fact that farmers using more diversified crop acreages may be more skilled from a technical 

viewpoint cannot be ruled out. 

Finally, measuring crop acreage diversity by the usual Shannon index yields results pointing to 

the absence of crop diversity effects, whatever the considered crop. These results suggest crop 

mix diversity and crop acreage evenness given crop mix are features of crop acreages (and 

rotations) that need to be distinguished for uncovering the agro-ecolological effects of crop 

diversity. 

 

5.5. Economic assessment of pre crop and crop acreage diversity effects 

In order to assess the economic value of the pre crop and crop acreage diversity effects uncovered 

by our modelling framework, we compute the effects of changes in pre crops or in crop acreage 

diversity on farmers’ crop returns to chemical inputs. We compute these effects for an “average 

farmer” and at the mean prices of our sample. Appendix B provides the related technical details. 

 

 

 

 

                                                 
39 This comes to illustrate the point recently made by Colbach et al (2020) on the analysis of farm versus 
experimental data when considering crop rotations, weed populations and their effects on crop yields, and herbicide 
uses. 

40 Notwithstanding our data covering a limited geographical area. 
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Table 8a: Economic assessment of selected pre crop effects (€/ha), average effects at average price levels (2008–

2014) 

 Economic value of the effect of a pre crop, versus the considered crop reference pre crop (€/ha) 

 Yield value Nitrogen 
fertilizer cost 

Herbicide cost Other pesticide 
cost 

Return to chemical 
inputs 

 (1) (2) (3) (4) (1) - (2) - (3) - (4) 

Wheat (reference pre crop: rapeseed) 

Wheat -48.9** (15.9) 0.1 (1.7) -0.1 (2.3) 4.1 (4.1) -53.1** (16.0) 

Protein pea 30.0* (17.2) 0.8 (1.6) 1.5 (2.4) -5.3 (3.5) 32.9* (16.8) 

Yield value or input 
cost sample mean 

1,377 240 63 125 949 

Barley (reference pre crop: wheat) 

Barley -27.1** (11.5) 0.6 (1.3) 1.9** (0.9) -0.5 (1.9) -29.1** (11.9) 

Corn -46.6** (20.1) -0.1 (2.8) -2.1 (1.5) -7.4** (3.3) -37.0 (20.5) 

Sugar beet 34.6** (11.5) -0.1 (1.1) -1.7 (1.0) 0.9 (1.9) 35.5** (11.8) 

Yield value or input 
cost sample mean 

1,141 181 30 76 854 

Note: Symbol **, respectively *, indicates that the parameter is significantly estimated at the 5%, respectively 10%, level. Estimated 
standard deviations of the parameter estimates are in parentheses. 

 

Table 8a reports the effects of changing the pre crop of wheat and barley from their respective 

reference pre crop to pre crops that have significant effects according to our estimation results. 

Growing wheat after wheat rather than after rapeseed entail an average loss of 53 €/ha, which 

amounts to 4.6% of the average wheat return to chemical inputs. On the contrary, growing wheat 

after protein pea rather than after rapeseed increases wheat crop return by 33 €/ha on average. 

Most of these effects on wheat return are due to pre crop effects on wheat yield levels, as pre 

crop effects on input uses are fairly limited in general. 

Changing the pre crop of barley to corn or barley entails losses while changing to sugar beet 

implies gains of around 35€/ha. As in the case of wheat, these effects on barley return are mostly 

due to pre crop effects on barley yield levels. Their magnitude is limited as they represent around 

4% of the average barley return to chemical inputs. 

Table 8b reports the average effects of crop acreage diversity, as measured here by the number 

of grown crops, on crop returns to chemical inputs. Farmers growing wheat as part of a 7 crops 

acreage improves wheat return by 31.8 €/ha on average compared to growing wheat as part of 

a 5 crop acreage. Similarly, growing wheat as part of a 3 crops acreage instead of a 5 crop one 
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entails an average loss of 32.1 €/ha. 

Comparable results are obtained for the other considered crops. For instance, the return of barley 

is improved by 85.2 €/ha on average when the number of grown crops increases from 3 to 7. 

Increasing the number of grown crops from 5 to 7 leads to average return increases of 67.2 €/ha 

for rapeseed and of 57.7 €/ha for sugar beet. 

 

Table 8b: Economic assessment of crop diversity effects (€/ha), average effects at average price levels (2008–2014) 

 Economic value of the number of grown crops, versus 5 grown crops (€/ha) 
 Yield value Nitrogen 

fertilizer cost 
Herbicide cost Other 

pesticide cost 
Return to chemical 

inputs 
 (1) (2) (3) (4) (1) - (2) - (3) - (4) 

Wheat (reference: 5 crops) 

3 crops or less -31.4** (12.1) -0.2 (1.5) 4.7** (1.5) -3.7 (3.3) -32.1** (12.7) 
4 crops -17.8** (8.5) 0.2 (0.8) 1.9* (1.0) -3.2 (2.1) -16.8** (8.7) 
6 crops 9.2 (6.9) 0.7 (0.6) -1.6* (0.9) -0.3 (1.8) 10.4 (6.7) 
7 crops or more 32.5** (11.3) 1.2 (1.0) -2.4 (1.7) 1.9 (2.9) 31.8** (11.7) 
Sample mean 1,377 240 63 125 948 

Barley (reference: 5 crops) 

3 crops or less -58.1** (21.0) -1.0 (2.9) 3.6 (2.0) -2.4 (3.3) -58.4** (21.2) 
4 crops -31.6** (11.7) 0.5 (1.1) 1.2 (0.8) 0.1 (1.7) -33.3** (11.9) 
6 crops 3.0 (8.4) 0.4 (0.8) -1.4** (0.6) -0.7 (1.3) 4.8 (8.4) 
7 crops or more 24.1* (12.6) 0.9 (1.4) -1.3 (1.0) -2.2 (2.2) 26.8** (12.5) 
Sample mean 1,141 181 30 76 854 

Rapeseed (reference: 5 crops) 

3 crops or less 4.5 (24.8) -0.9 (2.2) 11.1** (3.6) -0.8 (4.2) -4.6 (24.6) 
4 crops -10.4 (13.3) -0.7 (1.1) 8.1** (1.9) 2.9 (2.4) -20.6 (13.4) 
6 crops 21.9** (9.8) 1.6** (0.8) -2.4 (1.5) -1.3 (1.9) 23.6** (9.6) 
7 crops or more 66.9** (15.9) 1.7 (1.2) -3.3 (2.5) 0.8 (3.1) 67.2** (15.6) 
Sample mean 1,381 233 99 109 940 

Sugar beet (reference: 5 crops) 

3 crops or less -198.8 (104.3) 4.4 (17.4) 12.1 (59.3) 3.1 (18.2) -217.9 (153.1) 
4 crops -27.9 (34.1) 2.4 (3.2) 4.2 (3.5) 0.9 (2.5) -35.1 (34.3) 
6 crops 36.1** (15.9) -0.3 (1.4) -1.4 (2.4) 1.0 (1.6) 36.8** (16.6) 
7 crops or more 48.9** (24.3) -2.2 (1.9) -5.3 (4.3) -1.5 (2.8) 57.7** (25.5) 
Sample mean 2,424 294 161 96 1,874 
Note. Symbol **, respectively *, indicates that the parameter is significantly estimated at the 5%, respectively 10%, level. Estimated 
standard deviations of the parameter estimates are in parentheses. 

 

 

As in the case of pre crop effects, crop acreage diversity effects are mostly due to effects on yield 

levels. Crop acreage diversity also significantly impacts herbicide uses from a statistical 

viewpoint although the related economic effects are limited. For instance, increasing the number 
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of grown crops from 3 to 5 leads to savings in herbicide expenses on rapeseed of 11 €/ha on 

average, which equals to 11% of herbicide costs on rapeseed on average. 

 

6. Concluding remarks 

The main objective of this article is to estimate effects of crop diversity on yields and input uses. 

Because usually available datasets lack information regarding crop sequence acreages, we 

combine farm accounting data with IACS data, enriched with soil quality and weather data, and 

devise statistical models of yields and input uses. These models, which are defined as 

simultaneous equation systems, account for both input use endogeneity and unobserved 

heterogeneity of farms and farmers. In our application considering major arable crops in the 

Marne area, pre crops effects on yield levels are estimated relatively accurately and are generally 

consistent with the rankings provided by crop production experts. Estimated pre crop effects on 

input uses are small, suggesting that farmers tend to downplay them when deciding their 

chemical input use levels. Our results also show that crop acreage diversity, at least when 

described by a suitable set of indicators, increases yield levels and reduces pesticide uses, 

herbicide uses in particular. Taken together our results uncover statistically significant albeit 

economically limited effects of pre crops and crop acreage diversity on crop gross margins, at 

least in the economic context prevailing from 2008 to 2014. 

Crop sequence acreages in our dataset are highly concentrated on the most profitable ones. This 

demonstrates that farmers’ crop sequence acreages are economically rational but this also 

underlies an important drawback of farm data for estimating pre crop effects. Farmers’ crop 

sequence choice patterns imply that pre crop effects can only be estimated for a limited number 

of previous crops and only for major crops. We interpret the fact that estimated effects on input 

uses are small as a consequence of farmers’ neglecting these effects. Yet, other explanations can 

be put forward, including measurement errors in crop sequence acreages. 

Although our application reveals statistically significant crop acreage diversity effects on both 

crop yield and herbicide use levels, our approach does not enable us to disentangle (long run) 

cropping system effects from (current) spatial crop diversity effects. Our constructing the crop 

acreage diversity indicators that we use based on lagged acreage and results obtained by using 

the farm crop acreage histories suggest, but do not prove, that our estimated crop acreage 

diversity effects mostly capture cropping system effects. More generally, our approach identifies 

crop diversity effects by comparing the production choices and performances of farms 

characterized by heterogeneous crop acreages. Although we control for confounding factors by 
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relying on detailed soil property measures, we cannot control for farmer skill heterogeneity that 

may impact both crop level production choices and crop acreage choices. 

Our modelling framework accounts for significant unobserved heterogeneity effects in crop 

input demand and yield function models. However, it also relies on simplifying assumptions that 

can impact our empirical results to some extent. For instance, our crop yield models allow for 

heterogeneous productivity effects of chemical inputs but they assume homogenous pre crop 

and crop acreage diversity effects. Our crop sequence yield models are linear in input uses and 

entail additively separable pre crop effects. Control variable effects are assumed not to depend 

on the considered pre crop. These features of the crop sequence yield models we consider are 

convenient for aggregating them at the crop level but investigating their impacts on our 

estimation results is worthy albeit challenging. 

Our empirical results tend to show that crop diversification positively impacts the yield levels of 

major crops, that is to say of the crops that contribute the most to farmers’ revenue– i.e., straw 

cereals, rapeseed and sugar beet in our application. They also suggest that crop diversification 

has limited effects on chemical input uses on these major crops. Despite their being significant 

from a statistical viewpoint, the agronomic effects revealed by our study have relatively small 

impacts on the returns of major crops. This may explain why EU farmers keep on using relatively 

specialized crop rotations and crop acreages. Typical diversification crops such as grain legumes 

are minor crops in the UE, mostly due to their insufficient profitability in comparison to that of 

major crops (e.g., Bues et al 2013, Magrini et al 2016, Zander et al 2016, Watson et al 2017). The 

positive effects of crop diversity on the economic returns of major arable crops are unlikely to 

suffice for covering the opportunity cost of inserting typical diversification crops in otherwise 

specialized crop mixes (e.g., Carpentier et al 2021). 

Given our results, policy measures aimed to foster crop diversification are unlikely to 

significantly reduce chemical input uses on major crops if they are not supplemented by 

measures specifically aimed to reduce the uses of these inputs. Significant increases in the prices 

of pesticides and chemical fertilizers may partly solve this issue. First, this would increase the 

value of the chemical input use reductions on the major crops permitted by crop diversification 

and, as a result, could lead farmers to pay more attention to these reductions. Second, this would 

reduce the impact of the opportunity cost of inserting legumes in farmers’ crop mixes since these 

typical diversification crops don’t require nitrogen fertilization. Setting incentive taxes on 

chemical inputs would, however, significantly impacts arable crop producers’ income. This calls 

for specific measures aimed to neutralize, at least partly, the income effects of the considered 
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taxing scheme, even if only for acceptability purpose. 

Despite the limitations of our modelling framework and of the information content of our dataset 

we are confident in the internal validity of our empirical measures of the pre crop and crop 

acreage diversity effects on yield and chemical input use levels in the arable crop sector of the 

Marne area. The external validity of our results is, however, more debatable since our case study 

displays salient specific features. The Marne area counts among the most productive arable crop 

production basin in the EU and farmers in this area rely on both relatively high yielding – and, 

thus, intensive in chemical inputs – cropping practices and relatively diversified cropping 

systems. In particular, results obtained by Coulter et al (2011) related to corn based cropping 

systems in the US tend to demonstrates that high yielding cropping practices attenuate the 

effects of crop rotation diversification. This may explain why farmers downplay pre crop effects 

such as legume nitrogen surpluses or break crop effects on biotic pressures. These effects may 

induce too limited chemical input use savings for farmers to put much effort for valuing them. 

Also, pre crop effects, break crop ones in particular, may be less pronounced in diversified crop 

rotations than they are in specialized ones. Of course, further investigations, by economists and 

agronomists, are required for supporting or refuting these hypotheses.  
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Appendix A. Sketch of the SAEM algorithm 

 

The crop yield and input use models considered in our study is a simultaneous equations model 

featuring both fixed and random parameters: 

(A.1) 
( ) ( ) ( )

0

( ) ( ) ( ) ( )

0
           

y y y

it it i i it it

x x x x

it i it it

y µ ε ′ ′ − = + + = + +

x β w a

x μ W a ε
 

where ( )x

it J it
′= ⊗W ι w . Equation system (A.1) is a typical recursive (linear) simultaneous equation 

system. Dependent variable 
it
x  appears in the structural equation of 

it
y  while dependent variable 

it
y  does not appear in the structural equation of 

it
x . 

We assume that ( ) ( )

0 0( , , ) ( , )y x

i i i i
µ=γ μ β η Ω∼N , ( ) ( )

0(0, )y y

it
ε ψ∼N  and ( ) ( )

0( , )x x

it
ε 0 ψ∼N . Random terms 

i
γ , 

( ) ( )( : 1,..., )y y

i it
t Tε= =ε  and ( ) ( )( : 1,..., )x x

i it
t T= =ε ε  are assumed mutually independent and independent 

of ( : 1,..., )
i it

t T= =w w . Terms ( )y

it
ε  and ( : 1,..., )

i it
t T= =x x  are assumed independent. These 

assumptions imply that equation system (A.1) only contains regression equations conditionally 

on 
it

w  and 
i
γ , which is the main statistical feature of the so-called seemingly unrelated 

regression (SUR) systems of Zellner (1962). Finally, terms ( )y

it
ε  and ( )x

it
ε  are assumed serially 

uncorrelated. 

We consider the following compact form: 

(A.2) 
0i it i it it

= + +B q μ W a ε , 

where ( ) ( )( , )y x

i i i
µ=μ μ , ( , )

it it it
y=q x , 

1it J it+ ′= ⊗W ι w , ( ) ( )

0 0 0( , )y x=a a a , 
0

( , )
it
ε 0 ψ∼N , and 

(A.3) 
1

i

i

J

 −
 =   

β
B

0 I
 and 

( )

0

0 ( )

0

y

x

ψ 
 =  
 

0
ψ

0 ψ
.  

The considered model being fully parametric, estimation of its parameters is considered in the 

ML estimation framework. EM type algorithms are convenient for computing ML estimators for 

models featuring random parameters (e.g., Dempster et al 1977, Lavielle 2014). We proceed in 

two steps for presenting the computation procedure we employ for estimating our models. First, 

we present how a classical (i.e., deterministic) EM algorithm could be designed for estimating 

our models in theory. This enables us to present the main concepts underlying the design of EM 

type algorithm. Second, we explain why a stochastic version EM algorithm is needed in our case 

and present the stochastic approximate EM (SAEM) we use. SAEM algorithms were proposed 

by Delyon et al (1999) and further developed afterwards (e.g., Kuhn and Lavielle 2005, Lavielle 

2014). 

Let ( )( ) ( )

0 0 0 0 0 0, , ( ), , ( )
y x
vech vechψ=θ a ψ γ Ω  be the vector of parameters to be estimated. Let define 

vectors ( : )
i it i

t= ∈q q H  and ( : )
i it i

t= ∈w w H  where set {1,..., }
i

T⊆H  denotes the time span on which 
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farm i is observed. The observed data are given by ( , )
i i
q w  for 1,...,i N= . The complete data are 

given by ( , , )
i i i
q w γ  and 1,...,i N= . Let function ( ; )ϕ u Ξ   denote the probability distribution function 

of ( , )0 ΞN  at u. The contribution of observation i to the sample likelihood function at θ  

(conditional on exogenous variables 
i
w ) is given by 

(A.4) ( )( ) ( ; ) ( ; )
i

i it itt
dϕ ϕ

∈
= − − −∏∫θ Bq μ W a ψ γ η Ω γℓ

H
, 

which is difficult to integrate due to the dimension of γ . Note, however, that 

(A.5)  ( ) ( ) ( ) ( ) ( ) ( ) ( )

0 0ln ( ; ) ln ( ; ) ln ( ; )y y y x x x x

it it it it it it it
yϕ ϕ µ ψ ϕ′ ′− + = − − − + − −Bq μ W a ψ x β w a x μ W a ψ  

since 
it
x  is exogenous in the model of 

it
y  conditionally on 

i
γ . The contribution of observation i 

to the complete sample log-likelihood function at θ  (conditional on exogenous variables 
i
w ) is 

given by  

(A.6) ln ( ; ) ln ( ; ) ln ( ; )
i

c

i i i it i it it
ϕ ϕ

∈
= − − + −∑θ γ B q μ W a ψ γ η Ωℓ

H
, 

Implying that the complete data log-likelihood function is given by 

(A.7) 
1 1 1

ln ( ) ln ( ; ) ln ( ; ) ln ( ; )
i

N N Nc c

i i i it i it ii i t i
L ϕ ϕ

= = ∈ =
= = − − + −∑ ∑ ∑ ∑θ θ γ B q μ W a ψ γ η Ωℓ

H
 

or, equivalently, by 

(A.8) 
{ }

{ }

1 1

2 1

1 1

2 1

ln ( ) lndet( ) ( ) ( )

                       lndet( ) ( ) ( )

i

Nc

i it i it i it i iti t

N

i ii

L cst
−

= ∈

−

=

′= − + − − − −

′− + − −

∑ ∑
∑

θ ψ B q μ W a ψ B q μ W a

Ω γ η Ω γ η

H
 

or 

(A.9) 
( ){ }

( ){ }

1 1

2 1

1 1

2 1

ln ( ) lndet( ) ( )( )

                       lndet( ) ( )( )

i

Nc

i it i it i it i iti t

N

i ii

L cst tr

tr

−

= ∈

−

=

′= − + − − − −

′− + − −

∑ ∑
∑

θ ψ ψ B q μ W a B q μ W a

Ω Ω γ η γ η

H
. 

Let function ( | , ; )π γ q w θ  denote the probability distribution function of 
i
γ  at γ  conditionally on 

i
=q q  and 

i
=w w  when 

0
=θ θ . In our setting, the EM algorithm consists of iterating a sequence 

composed of two steps until numerical convergence. Let term ( )n
θ  denote the estimate of 

0
θ  

obtained at the end of iteration n. At iteration 1n+  the expectation (E) consists of computing 

the expectation of the complete data log-likelihood function at θ , ln ( )
c
L θ , conditionally on the 

observed data (i.e., on ( , )
i i
q w  for 1,...,i N= ) assuming that ( )

0

n=θ θ . The resulting conditional 

expectation is given by ( ) ( )

1
( | ) ln ( ; ) ( | , ; )

Nn c n

i i ii
dπ

=
=∑ ∫θ θ θ γ γ q w θ γℓL . The corresponding 

maximization (M) step consists of computing ( 1) ( )argmax ( | )n n+ =
θ

θ θ θL   for updating the ML 

estimate of 
0
θ . Due to the interaction term it i

′x β  in the yield function, density function ( | , ; )π γ q w θ  

is not standard in our case. 

Monte Carlo or stochastic versions of the EM algorithm can be used for managing the 
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expectation integration issue raised above (e.g., McLachlan and Peel 2007, Lavielle 2014). As 

their competing counterparts, SAEM algorithms involve integration with simulation methods. 

They, however, make a more efficient use of simulation draws by recycling past draws for 

constructing a stochastic approximate of the sample log-likelihood function (Lavielle et al 2014). 

SAEM algorithms proceed by iterating a sequence composed of three steps until numerical 

convergence: a simulation (S) step, a stochastic approximation (SA) step and a maximization 

(M) step. 

At iteration 1n+  the S step consists of drawing ( )nR  simulations of 
i
γ  from the density 

( )( | , ; )n

i i i
π γ q w θ , for 1,...,i N= . Let term ( )

,

n

i r
γɶ  denote these draws for ( )1,...,

n
r R=  and 1,...,i N= . 

Simulation numbers vary in the course of the algorithm. They need to be small (10 in our case) 

at the beginning, for exploring the parameter space, and large (100 in our case) near the end of 

the iterative procedure, for speeding up the convergence process. To perform the S step, we rely 

on a MCMC sampler that has ( )( | , ; )n

i i
π γ q w θ  as its stationary distribution density at iteration n 

for farm i. Specifically, we use a Metropolis-Hasting sampler with a normal random walk kernel. 

We draw ( )nR  simulations ( )

,

n

i r
γɶ  ( ( )1,...,

n
r R= ) after “burning” the first fifty draws for each sampled 

farm. The transition kernel distribution used for drawing ( )

,

n

i r
γɶ  is given by ( ) ( )

, 1
( , )n n

i r−γ ΦɶN  where ( )n
Φ  

is a diagonal matrix that is adaptively adjusted for reaching acceptance rates between 0.24 and 

0.4. The acceptance probability is given by ( ) ( ) 1

, , 1
min{1, ( ; ) ( ; ) }n c c n

i r i i i r
τ −

−= θ γ θ γɶ ɶℓ ℓ  when is γɶ  a candidate 

for ( )

,

n

i r
γɶ , that is to say γɶ  is accepted (and, thus, ( )

,

n

i r
=γ γɶ ɶ ) with probability ( )

,

n

i r
τ , and a new value of 

γɶ  is drawn otherwise. 

The SA step consists of updating the stochastic approximate of the sample log-likelihood 

function based on the following recursive formula: 

(A.10) ( )1

( )

( )

( ) ( ) ( 11) ( ) ,1
( ) (1 ) ( ) log ( ; )

nN c n

n n n n i i

R

n r ri
Rλ λ −

=− =
= − + ∑ ∑θ θ θ γɶℓQ Q  

where weight parameter ( ) 0
n
λ >  needs to decrease in n provided that (1) 1λ = , ( )1 nn

λ
+∞

=
=+∞∑  and 

2

( )1 nn
λ

+∞

=
<+∞∑ . We follow Kuhn and Lavielle (2005) and define ( )nλ  as 

(A.11) 1

( ) 3/4

1 1

1 for 1

( 1)  for 
n

n n

n n n n
λ

 ≥ ≥=  − + >
. 

for implementing the SAEM algorithm in our application.  

Finally, the M step consists of updating the estimate of 
0
θ  from ( )n

θ  to according to 

( 1)

( )
argmax ( )n

n

+ =
θ

θ θQ . Parameter 
1
n  needs to be chosen such that ( )n

θ  for 
1

n n≥  lies in the 

neighborhood of the solution to the considered optimization process, that is say as soon as 
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( 1) ( )n n+
θ θ≃  while the elements of ( )n

θ  don’t demonstrate any specific trend as n grows. 

SAEM algorithms are particularly well suited when the complete data likelihood function 

belongs to the exponential family. In this case, the SA step consists of updating sufficient 

statistics while the M step only involve simple analytical computations. In our setting, the SA 

step at iteration n just consists of applying the following recursive formulas: 

(A.12)

 

( )

( )

( ) ( 1) 1 ( )

, ( ) , ( ) ( ) ,1

( ) ( 1) 1 ( ) ( )

, ( ) , ( ) ( ) , ,1

( ) ( 1) 1 ( )

, ( ) , ( ) ( ) ,

(1 ) ,  for 1,...,

(1 ) ( ) ,  for 1,...,

(1 ) (

n

n

Rn n n

i n i n n i rr

Rn n n n

i n i n n i r i rr

n n n

q it n q it n n i r it

R i N

R i N

R

γ γ

γγ γγ

λ λ

λ λ

λ λ

− −

=

− −

=

− −

= − + =

′= − + =

= − + −

∑
∑

s s γ

S S γ γ

s s B q

ɶ

ɶ ɶ

ɶ( )

( )

( )

,1

( ) ( 1) 1 ( ) ( ) ( ) ( ) ( ) ( )

, ( ) , ( ) ( ) , , , ,1

), for  and 1,...,

(1 ) ( )( ) , for  and 1,...,

n

n

R n

i r ir

Rn n n n n n n n

q it n qq it n n i r it i r it i r it i r it ir

t i N

R t i Nλ λ

=

− −

=

 ∈ = ′= − + − − − − ∈ =

∑
∑

μ

S S B q μ W a B q μ W a

ɶ

ɶ ɶɶ ɶ

H

H

 

while the corresponding M step just consists of applying the following recursive formulas: 

(A.13) ( )
( )

( ) 1 ( )

,

( ) 1 ( ) ( ) ( )

,

1
( )

1

( 1) 1 ( 1) 1 ( )

,1 1

( ) 1 ( ) ( ) ( ) ( ) ( ) ( ) ( )

, , ,1

( ) ( )
i i

i

n n

i

n n n n

i

N Nn n n n

it it it it q iti t i t

Nn n n n n n n n

qq it it q it q it it it iti t

N

i
N

N

M

γ

γγ

−

−

−
− − − −

= ∈ = ∈

−

= ∈

=
 =

′= −


′ ′=

′ ′ ′′ ′= − − +

∑ ∑ ∑ ∑

∑

∑

∑

η s

Ω S η η

a W Ψ W W Ψ W s

Ψ S W a s s a W W a a W
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H




 

where 
1

N

ii
M H

=
=∑  is the number of observations in the considered sample, term 

i
H  being the 

cardinality of set 
i

H  (i.e., the number of observations related to farm i in the sample). 



Working Paper SMART N°22-02 

 

60 

Appendix B. Economic value of pre crop and crop diversity effects 

 

Let rewrite the model of the use of input j for crop k as:  

(B.1) ( ) ( ) ( ) ( ) ( ) ( )

, , , , , , ,0 , ,0 , , ,0 , , , ,0 , ,

y x x x x x

j mk it j k i j k t j mk j n k j k it j k j k it
x aµ α δ ε′= + + + + +v ζ  

when crop m is the pre crop and the number of grown crops, , 1i t
κ − , equals n. Vector , ,j k it

v  collects 

the control variables of the model (dummy variables indicating year t and , 1i t
nκ − =  excepted). 

Parameter ( )

, ,0

x

j mk
a  defines the effect of pre crop m on the use of input j for crop k given that crop 

( )r k  is the reference crop of crop k (i.e., ( )

, ( ) ,0
0x

j r k k
a = ). It corresponds to , , , ( ) ,j mk it j ref k k it

x x−  and it is 

value at 

(B.2) ( ) ( ) ( )

, , , , ,0
( )x x x

pre j k j k j mk
m p a∆ =   

when input j is purchased at price ( )

,

x

j k
p . 

Parameter ( )

, , ,0

x

j n k
δ  defines the effect of growing n crops on the use of input j for crop k given that 

growing 5 crops is the reference situation (i.e., ( )

,5, ,0
0x

j k
δ = ). The effect of growing crop k as part of 

n crop set rather than a 5  crop set on the use of input j is valued at 

(B.3) ( ) ( ) ( )

, , , , , ,0
( )x x x

div j k j k j n k
n p δ∆ = . 

Let rewrite the yield function crop k as:  

(B.4) ( ) ( ) ( ) ( ) ( ) ( )

, , , ,0 ,0 , ,0 , , , , , ,0 ,

y y y y y y

mk it k i k t mk n k j k i j mk it k it k k itj
y a xµ α δ β ε

∈
′= + + + + + +∑ v ζ

J
 

when crop m is the pre crop and the number of grown crops, , 1i t
κ − , equals n. Vector ,k itv  collects 

the control variables of the model (dummy variables indicating year t and , 1i t
nκ − =  excepted). 

Parameter ( )

,0

y

mk
a  defines the direct effect of pre crop m on the yield of crop k given that crop ( )r k  

is the reference crop of crop k (i.e., ( )

( ) ,0
0y

r k k
a = ). The effect of pre crop m on the yield of crop k 

that pass through adjustments in input uses is given by ( )

, , , ,0

x

j k i j mkj
aβ

∈∑ J
. Accordingly, the total 

effect of pre crop m on the yield of crop k (given that crop ( )r k  is the reference crop of crop k) 

is given by ( ) ( )

, ( ) , ,0 , , , ,0

y x

mk it ref k k it mk j k i j mkj
y y a aβ

∈
− = +∑ J

. It is valued at 

(B.5) ( ) ( ) ( ) ( ) ( )

, ,0 , ,0 , ,0
( )

y y y y x

pre k k mk k j k j mkj
m p a p aβ

∈
∆ = + ∑ J

 

when crop k is sold at price ( )y

k
p  and parameter , , ,( : )

k i j k i
jβ= ∈β J  is set at its mean value, 

,0 ,[ ]
k k i

E=β β  with ,0 , ,0( : )
k j k

jβ= ∈β J . The corresponding effect on crop k return to chemical inputs 

is given by 

(B.6) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

, , , , ,0 , ,0 , , ,0
( ) ( ) ( ) ( )

y x y y y x x

pre k pre k pre j k k mk k j k j k j mkj j
m m m p a p p a

π β
∈ ∈

∆ =∆ − ∆ = + −∑ ∑J J
. 

Parameter ( )

, ,0

y

n k
δ  defines the direct effect of growing n crops on the yield of crop k given that 
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growing 5 crops is the reference situation (i.e., ( )

5, ,0
0y

k
δ = ) while term ( )

, , , ,0

x

j k i j nj
β δ

∈∑ J
 gives the effect 

that pass through adjustments in input uses. The total effect of growing n crops instead of 5 

crops on the yield of crop k is valued at 

(B.7) ( ) ( ) ( ) ( ) ( )

, , ,0 , ,0 , ,0
( )

y y y y x

div k k j n k j k j nj
n p pδ β δ

∈
∆ = + ∑ J

 

when crop k is sold at price ( )y

k
p  and , ,0k i k

=β β  . The congruent effect on crop k return to chemical 

inputs is given by 

(B.8) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

, , , , ,0 , ,0 , , ,0
( ) ( ) ( ) ( )

y x y y y x x

div k div k div j k k n k j k j k j nj j
n n n p p p

π δ β δ
∈ ∈

∆ =∆ − ∆ = + −∑ ∑J J
. 

The economic values of pre crop or acreage diversity effects on input use, yield or crop return 

levels presented above –  i.e., terms ( )

, ,
( )x

pre j k
m∆ , ( )

,
( )y

pre k
m∆ , ( )

,
( )

pre k
m

π∆ , ( )

, ,
( )x

div j k
n∆ , ( )

,
( )y

div k
n∆  and ( )

,
( )

div k
n

π∆  

– are defined as functions of fixed parameters – i.e., parameters ( )

,0

y

mk
a , ( ) ( )

,0 , ,0
( : )x x

mk j mk
a j= ∈a J , ( )

,0

y

n
δ , 

( ) ( )

,0 , ,0
( : )x x

n j n
jδ= ∈δ J  and ,0k

β  – and of chosen price levels – i.e., ( )y

k
p  and ( ) ( )

,
( : )x x

k j k
p j= ∈p J . Let collect 

the involved parameters in vector ( ) ( ) ( ) ( )

0 ,0 ,0 ,0 ,0 ,0
( , , , , )y x y x

mk mk n n k
a δ=ξ a δ β .  

Consistent estimates of economic values of pre crop or acreage diversity effects are obtained by 

replacing 
0
ξ  by its ML estimator ˆ

M
ξ , which is 1/2

M  consistent (i.e., asymptotically normal in M). 

The approximate asymptotic distribution of these value estimates can easily be obtained from 

that of ˆ
M
ξ  by using the so-called delta method (e.g., Wooldridge 2010), which is based on the 

following well-known result. If term ˆ
M
ξ  is a 1/2

M  consistent estimator of 
0
ξ  with 

1/2

0 0
ˆ( ) ( , )

D

M M
M →+∞− →ξ ξ 0N ϒ  and function ( )g ξ  is continuously differentiable in ξ  on the support 

of ˆ
M
ξ  then term ˆ( )

M
g ξ  is a 1/2

M  consistent estimator of 
0

( )g ξ  with 

1/2

0 0 0 0
ˆ{ ( ) ( )} ( , )

D

M M
M g g →+∞

′− →ξ ξ 0 g gN ϒ  where 
0 0( )g

∂
∂=
ξ

g ξ . If ˆ
M
ϒ  is a consistent estimator of 

0
ϒ  

then the variance of ˆ( )
M

g ξ  can be approximated by 1 ˆ ˆ ˆ( ) ( )
M M M

M g g
∂ ∂−
′∂ ∂ξ ξ
ξ ξϒ . 
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Appendix C. Supplementary results 

 

Climate is an important driver of agricultural output. We gathered several weather variables 

provided by Meteo France, the French National Weather Service, at the municipality level and 

used them to build different weather indicators, which were matched to our farm accountancy 

data through the municipality codes lying in the two datasets. Our weather indicators include a 

rainfall indicator, which corresponds to the total rainfall, measured in meters, during the 

growing season of each crop ; an evapotranspiration41 indicator, which is computed as the 

difference between the actually measured average evapotranspiration level during the growing 

season and a potential evapotranspiration level of the season; a growing degree-days (in 

thousands) indicator which is useful to predict when a certain plant stage will occur, for instance 

when a crop will reach maturity; a cumulative visible radiation indicator (which is divided by 

105 for rescaling purpose), and an average temperature indicator.  

 

Table C1: Summary statistics on weather indicators 

 Crops 

 Wheat Barley Rapeseed Sugar beet 

Rainfall (a) 0.61 0.33 0.60 0.74 

 (0.08) (0.12) (0.07) (0.07) 

Evapotranspiration -1.39 -0.66 -1.30 -2.26 

 (0.47) (0.37) (0.35) (0.47) 

Growing degree days (b) 1.55 0.92 1.52 2.27 

 (0.08) (0.13) (0.13) (0.14) 

Visible radiation (c) 3.13 2.08 2.92 3.97 

 (0.29) (0.32) (0.30) (0.32) 

Average temperature 9.25 10.70 8.76 10.53 

 (0.49) (1.41) (0.59) (0.68) 

 a: in meters; b: Growing degree-days (in thousands); c: divided by 10^5 for rescaling purposes. 

 

 

 

 

                                                 
41 Evapotranspiration is the process by which water is transferred from the land to the atmosphere by evaporation 
from the soil and by transpiration from plants. 
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Table C2: Soil quality indicators 

 Mean Std 

dev. 

Min. Max. 

Organic carbon content (a) 15.03 1.60 10.57 23.12 

Clay content (b) 2.61 0.27 1.57 3.72 

Cation exchange capacity (c) 13.13 1.01 10.65 21.00 

pH 7.84 0.28 6.58 8.14 

Soil depth (d) 10.68 2.34 5.21 21.96 

Water holding capacity (e) 13.78 1.32 10.85 18.44 

Sand content (b) 1.92 0.47 0.71 3.74 

Silt content (b) 5.09 0.42 3.28 6.91 

(a): in g/kg; (b): in hg/kg; (c): in 10^(-2)*mol/kg; (d): in meters; (e): in millimeters. 
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Table C3: Other control variable estimates for yield equations 

 Wheat Barley Rapeseed Sugar beet 

Soil quality     

Organic carbon 0.09*** 0.07** 0.04* 1.96*** 

 (0.03) (0.03) (0.02) (0.51) 

Clay -0.24 -0.07 0.02 -7.81** 

 (0.19) (0.23) (0.14) (3.12) 

Cation exch. cap -0.09*** -0.04 -0.08*** -0.80 

 (0.03) (0.03) (0.02) (0.52) 

pH 0.43*** 0.28 0.11 4.14* 

 (0.14) (0.18) (0.10) (2.39) 

Soil depth -0.04** -0.02 -0.02** -2.03*** 

 (0.02) (0.02) (0.01) (0.30) 

Water holding cap 0.13*** 0.11*** 0.09*** 1.57*** 

 (0.03) (0.03) (0.02) (0.49) 

Sand 0.08 0.01 -0.09 3.61** 

 (0.10) (0.11) (0.06) (1.51) 

Silt 0.20** 0.08 0.09 5.66*** 

 (0.09) (0.11) (0.06) (1.38) 

Weather conditions     

Rainfall -3.26*** -3.48*** -0.40 -20.39** 

 (0.69) (0.78) (0.42) (9.53) 

Evapotranspiration 0.19 0.67*** -0.09 9.06*** 

 (0.13) (0.21) (0.10) (1.74) 

Growing degree days -1.95 1.41* -4.69*** 80.96*** 

 (1.37) (0.79) (1.01) (19.72) 

Visible radiation -0.12 -0.19 -0.23** 6.27*** 

 (0.13) (0.26) (0.10) (1.75) 

Average temp. -0.00 -0.26*** 1.07*** -24.03*** 

 (0.29) (0.05) (0.21) (5.28) 

Year dummies     

2008 -1.07*** -0.03 -0.74*** 18.52*** 

 (0.18) (0.14) (0.12) (4.27) 

2009 -0.04 0.51*** 0.20*** 24.96*** 

 (0.11) (0.10) (0.07) (2.93) 

2011 -0.07 -1.35*** 0.42*** 35.81*** 

 (0.05) (0.16) (0.05) (4.70) 

2012 -0.60*** 0.26* -0.23*** 19.19*** 

 (0.16) (0.14) (0.08) (3.16) 

2013 -0.14 -0.06 -0.73*** 15.66*** 

 (0.17) (0.21) (0.15) (2.97) 

2014 0.95*** 0.15 -0.53** 36.42*** 

 (0.30) (0.10) (0.22) (6.35) 

 * p<0.1; ** p<0.05; *** p<0.01: standard errors are in parentheses below the estimated coefficients.  
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Table C4: Other control variable estimates for nitrogen equations 

 Wheat Barley Rapeseed Sugar beet 

Soil quality     

Organic carbon -0.52 -0.04 0.76 -2.26 

 (0.93) (0.89) (1.19) (1.78) 

Clay 18.72*** 16.64*** 17.39** 11.57 

 (6.10) (5.93) (7.37) (10.94) 

Cation exch. cap -3.31*** -2.48*** -2.86*** -2.60* 

 (0.89) (0.89) (1.08) (1.51) 

pH 4.02 -1.10 7.67 -13.18* 

 (5.06) (5.03) (6.09) (7.51) 

Soil depth -1.36** -0.96* -0.97 -1.25 

 (0.57) (0.56) (0.74) (1.08) 

Water holding cap 0.38 -0.94 -0.95 0.10 

 (0.99) (0.94) (1.18) (1.70) 

Sand 1.45 4.52 7.08* -2.88 

 (3.81) (3.53) (4.01) (6.54) 

Silt 4.82 6.70** 9.05** 0.45 

 (3.22) (3.16) (3.61) (5.57) 

Weather conditions     

Rainfall 0.79 10.78 10.21 -48.35 

 (25.21) (25.28) (30.33) (37.22) 

Evapotranspiration 3.24 -5.47 -7.55 15.30** 

 (5.26) (6.71) (6.88) (6.62) 

Growing d-d 71.06 9.94 41.29 54.72 

 (50.27) (20.10) (66.20) (71.20) 

Visible radiation -13.04** -16.05** -8.67 1.13 

 (5.09) (6.96) (6.68) (6.38) 

Average temp. -15.78 -0.59 -8.36 -11.12 

 (11.06) (1.60) (14.24) (18.98) 

Year dummies     

2008 4.51 -6.94* 6.59 -3.54 

 (7.07) (4.22) (8.45) (14.73) 

2009 -3.40 -3.99 7.64 -3.99 

 (4.74) (2.95) (4.93) (10.14) 

2011 0.11 -1.79 4.63 6.23 

 (2.09) (4.28) (3.05) (15.86) 

2012 -0.07 -7.46** -4.66 -4.88 

 (6.19) (3.61) (5.15) (10.92) 

2013 -3.87 -3.86 2.07 4.40 

 (6.01) (6.06) (10.01) (10.65) 

2014 9.93 2.26 5.27 -1.93 

 (11.13) (2.58) (14.33) (22.41) 

 * p<0.1; ** p<0.05; *** p<0.01: standard errors are in parentheses below the estimated coefficients.  
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Table C5: Other control variable estimates for herbicides equations 

 Wheat Barley Rapeseed Sugar beet 

Soil quality     

Organic carbon -4.55*** -2.78*** -4.87*** -7.84*** 

 (0.61) (0.45) (1.05) (2.33) 

Clay 24.72*** 11.28*** 29.35*** 49.51*** 

 (3.96) (2.75) (6.93) (15.25) 

Cation exch. cap 0.94* -0.15 0.28 -1.84 

 (0.56) (0.40) (0.88) (2.16) 

pH -12.84*** -5.72*** -14.54*** -33.42*** 

 (2.75) (1.96) (4.60) (11.32) 

Soil depth 0.33 -0.48* 0.08 -0.22 

 (0.34) (0.26) (0.58) (1.35) 

Water holding cap -0.95 0.13 -1.45 1.39 

 (0.64) (0.42) (1.12) (2.34) 

Sand 1.36 0.98 2.55 18.27** 

 (1.96) (1.50) (3.56) (8.62) 

Silt -1.91 0.38 -3.07 7.48 

 (1.87) (1.41) (3.09) (7.52) 

Weather conditions     

Rainfall -11.86 25.06** -38.91* 15.25 

 (15.20) (10.35) (22.61) (43.47) 

Evapotranspiration 0.44 -6.70** 13.57** -1.70 

 (3.09) (2.88) (5.32) (7.91) 

Growing d-d 12.26 -38.05*** 86.85* 74.81 

 (29.80) (9.21) (50.46) (84.14) 

Visible radiation 9.50*** 6.38** 3.36 -17.71** 

 (2.70) (2.63) (4.64) (7.04) 

Average temp. -4.98 0.85 -17.23 -9.75 

 (6.30) (0.65) (10.96) (22.14) 

Year dummies     

2008 -3.75 0.11 -9.21 9.66 

 (3.99) (1.62) (6.13) (17.37) 

2009 2.14 4.70*** -11.33*** -5.42 

 (2.63) (1.28) (3.87) (12.05) 

2011 4.35*** 5.70*** -5.20** 21.26 

 (1.24) (2.07) (2.59) (18.70) 

2012 14.98*** 8.06*** -5.79 20.41 

 (3.56) (1.48) (4.22) (12.70) 

2013 12.07*** 4.72* 20.60*** 40.14*** 

 (3.47) (2.44) (7.06) (12.76) 

2014 17.34*** 10.96*** 28.15*** 66.51** 

 (6.57) (1.31) (10.87) (26.24) 

 * p<0.1; ** p<0.05; *** p<0.01: standard errors are in parentheses below the estimated coefficients.  
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Table C6: Other control variable estimates for other pesticides equations 

 Wheat Barley Rapeseed Sugar beet 

Soil quality     

Organic carbon -4.37*** -1.48 -5.31*** -0.86 

 (1.20) (1.00) (1.40) (1.27) 

Clay 25.17*** 8.02 24.01*** 14.83* 

 (8.64) (6.53) (8.95) (8.25) 

Cation exch. cap -0.20 0.00 -1.18 0.35 

 (1.18) (0.83) (1.28) (1.30) 

pH -1.63 -4.13 -6.94 -14.79** 

 (6.28) (5.04) (7.19) (6.08) 

Soil depth -0.39 -0.33 -1.46* -1.39* 

 (0.69) (0.51) (0.75) (0.72) 

Water holding cap 0.82 0.51 2.03 -1.81 

 (1.37) (1.04) (1.41) (1.30) 

Sand 3.35 -0.23 1.32 -1.51 

 (4.51) (3.10) (4.50) (4.36) 

Silt 5.69 -2.96 2.57 4.80 

 (4.32) (3.38) (4.49) (4.10) 

Weather conditions     

Rainfall -16.12 -24.00 -5.55 -37.48 

 (25.89) (21.78) (25.61) (27.46) 

Evapotranspiration 2.15 -2.30 6.57 4.09 

 (5.31) (6.47) (5.66) (5.14) 

Growing d-d 113.61* 26.46 112.70* -160.8*** 

 (58.75) (21.95) (63.39) (51.01) 

Visible radiation -14.8*** -11.37* 10.43* 1.37 

 (5.08) (6.23) (5.93) (4.56) 

Average temp. -18.86 -1.90 -17.89 47.64*** 

 (12.29) (1.38) (13.75) (13.35) 

Year dummies     

2008 29.83*** 8.60** -8.73 -23.62** 

 (7.42) (3.91) (7.80) (10.18) 

2009 17.04*** 13.81*** 9.12** -18.45*** 

 (4.39) (3.09) (4.54) (6.98) 

2011 -2.84 -7.77* -1.06 -36.49*** 

 (2.30) (4.37) (3.02) (10.82) 

2012 1.69 1.59 8.52 -4.98 

 (6.94) (3.73) (5.75) (7.79) 

2013 19.69*** 14.37*** 29.36*** 1.14 

 (7.01) (5.52) (9.95) (7.98) 

2014 35.14*** 7.22** 25.39* -26.93* 

 (12.97) (3.00) (14.35) (15.82) 

 * p<0.1; ** p<0.05; *** p<0.01: standard errors are in parentheses below the estimated coefficients.  
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Table C7: Variance-covariance estimates of the distribution error terms 

 Yield Nitrogen Herbi-

cides 

Other 

pesti-

cides 

Yield Nitrogen Herbicides Other 

pesti-

cides 

 Wheat Barley 

Yield 0.43***    0.60***    

 (0.01)    (0.01)    

Nitrogen  643.26*** 5.43 37.47***  378.04*** 5.90* 22.68*** 

  (8.47) (5.35) (9.97)  (5.71) (3.09) (5.97) 

Herbicides  5.43 183.27*** 27.17***  5.90* 80.25*** 14.51*** 

  (5.35) (2.30) (3.58)  (3.09) (0.87) (2.07) 

Other pesticides  37.47*** 27.17*** 542.95***  22.68*** 14.51*** 333.10*** 

  (9.97) (3.58) (8.78)  (5.97) (2.07) (3.51) 

 Rapeseed Sugar beet 

Yield 0.18***    62.84***    

 (0.00)    (1.18)    

Nitrogen  815.82*** -4.23 35.67**  745.03*** 14.98 15.90 

  (13.56) (11.30) (14.37)  (11.74) (16.79) (10.20) 

Herbicides  -4.23 505.50*** 52.06***  14.98 1,072.63*** 59.84*** 

  (11.30) (4.60) (7.72)  (16.79) (12.34) (11.38) 

Other pesticides  35.67** 52.06*** 696.06***  15.90 59.84*** 451.78*** 

  (14.37) (7.72) (9.97)  (10.20) (11.38) (6.81) 

 * p<0.1; ** p<0.05; *** p<0.01: standard errors are in parentheses below the estimated variances.  
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Table C8: Variance-covariance matrix of the random parameters 

 Intercept 

Yield 

Intercept 

Nitrogen 

Intercept 

Herbicide 

Intercept 

Other Pest. 

Nitrogen 

Coeff. 

Herbicide 

Coeff. 

Other Pest. 

Coeff. 

Wheat        

Intercept Yield 0.49* 0.03* 0.01 0.05* -0.08* -0.03 -0.04 

 (0.09) (0.01) (0.01) (0.02) (0.03) (0.06) (0.03) 

Intercept Nitrogen 0.03* 0.02* 0.00 0.01* -0.00 0.00 -0.01 

 (0.01) (0.00) (0.00) (0.00) (0.00) (0.01) (0.00) 

Intercept Herbicide 0.01 0.00 0.01* 0.01* -0.01* -0.01* 0.00 

 (0.01) (0.00) (0.00) (0.00) (0.00) (0.01) (0.00) 

Intercept Other Pest. 0.05* 0.01* 0.01* 0.06* 0.01 -0.02 -0.02* 

 (0.02) (0.00) (0.00) (0.00) (0.01) (0.01) (0.01) 

Nitrogen Coeff. -0.08* -0.00 -0.01* 0.01 0.05* -0.01 -0.01 

 (0.03) (0.00) (0.00) (0.01) (0.01) (0.02) (0.01) 

Herbicide Coeff. -0.03 0.00 -0.01* -0.02 -0.01 0.15* -0.00 

 (0.06) (0.01) (0.01) (0.01) (0.02) (0.05) (0.02) 

Other Pest. Coeff. -0.04 -0.01 0.00 -0.02* -0.01 -0.00 0.03* 

 (0.03) (0.00) (0.00) (0.01) (0.01) (0.02) (0.01) 

Barley        

Intercept Yield 0.20* 0.03* -0.01 0.02 -0.02 0.02 -0.06 

 (0.08) (0.01) (0.00) (0.01) (0.04) (0.09) (0.05) 

Intercept Nitrogen 0.03* 0.01* 0.00 0.01* -0.01 0.00 -0.00 

 (0.01) (0.00) (0.00) (0.00) (0.01) (0.02) (0.01) 

Intercept Herbicide -0.01 0.00 0.00* 0.00* -0.00 0.00 0.00 

 (0.00) (0.00) (0.00) (0.00) (0.00) (0.01) (0.00) 

Intercept Other Pest. 0.02 0.01* 0.00* 0.02* 0.01 0.01 -0.03* 

 (0.01) (0.00) (0.00) (0.00) (0.01) (0.02) (0.01) 

Nitrogen Coeff. -0.02 -0.01 -0.00 0.01 0.09* -0.01 -0.07* 

 (0.04) (0.01) (0.00) (0.01) (0.03) (0.06) (0.03) 

Herbicide Coeff. 0.02 0.00 0.00 0.01 -0.01 0.40* -0.03 

 (0.08) (0.02) (0.01) (0.02) (0.06) (0.19) (0.07) 

Other Pest. Coeff. -0.06 -0.00 0.00 -0.03* -0.07* -0.03 0.14* 

 (0.05) (0.01) (0.00) (0.01) (0.03) (0.07) (0.05) 

Rapeseed        

Intercept Yield 0.22* 0.00 0.00 0.06* -0.03* -0.04* -0.04* 

 (0.03) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) 

Intercept Nitrogen 0.00 0.03* 0.00* 0.01* 0.00 0.00 0.00 

 (0.01) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) 

Intercept Herbicide -0.00 0.00 0.03* 0.01* 0.00 0.00 -0.01* 

 (0.01) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) 

Intercept Other Pest. 0.06* 0.01* 0.01* 0.06* 0.00 -0.02* -0.01* 

 (0.01) (0.00) (0.00) (0.00) (0.00) (0.01) (0.00) 

Nitrogen Coeff. -0.03* 0.00 0.00 0.00 0.02* 0.00 -0.01* 

 (0.01) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) 

Herbicide Coeff. -0.04* 0.00 0.00 -0.02* 0.00 0.05* 0.00 
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 (0.01) (0.00) (0.00) (0.01) (0.00) (0.01) (0.01) 

Other Pest. Coeff. -0.04* 0.00 -0.01* -0.01* -0.01* 0.00 0.04* 

 (0.01) (0.00) (0.00) (0.00) (0.00) (0.01) (0.01) 

Sugar beet        

Intercept Yield 69.87* -1.96 -4.13 1.60 -0.02 3.49 -34.97* 

 (17.45) (1.77) (2.65) (1.55) (4.08) (0.38) (10.61) 

Intercept Nitrogen -1.96 2.96* 0.69* 0.48* 1.16 1.08 -1.50 

 (1.77) (0.19) (0.27) (0.20) (0.72) (0.09) (1.54) 

Intercept Herbicide -4.13 0.69* 9.31* 1.64* -2.19 0.89 0.59 

 (2.65) (0.27) (0.60) (0.26) (1.37) (0.11) (2.33) 

Intercept Other Pest. 1.60 0.48* 1.64* 2.84* -0.60 2.11* -0.94 

 (1.55) (0.20) (0.26) (0.19) (0.79) (0.06) (1.08) 

Nitrogen Coeff. -0.02 1.16 -2.19 -0.60 3.80* 0.07 -2.07 

 (4.08) (0.72) (1.37) (0.79) (1.77) (0.15) (3.05) 

Herbicide Coeff. 3.49 1.08 0.89 2.11* 0.07 5.84* -4.88(*) 

 (3.80) (0.86) (1.09) (0.62) (1.48) (0.19) (2.84) 

Other Pest. Coeff. -34.97* -1.50 0.59 -0.94 -2.07 -4.88(*) 29.02* 

 (10.61) (1.54) (2.33) (1.08) (3.05) (0.28) (8.62) 

 Note: Symbol *, respectively (*), indicates that the parameter is tested non null at the 5%, respectively 10%, level. 
Estimated standard deviations of the parameter estimators are in parentheses below the parameter estimates.  
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Table 4a: Selected parameter estimates of the crop yield models 

 Yield models (t/ha) 

 Wheat Barley Rapeseed Sugar beet 

Farm specific intercepts 

Intercept, mean 8.6* (0.07) 6.1* (0.08) 0.5* (0.04) 83.8* (0.83) 

Intercept, std dev 0.7* (0.07) 0.5* (0.09) 0.5* (0.04) 8.4* (1.04) 

Farm specific input use coefficients (x 102) 

Nitrogen, mean 0.03 (0.03) -0.06 (0.05) 0.08* (0.01) -0.40 (0.39) 

Nitrogen, standard deviation 0.21* (0.03) 0.30* (0.06) 0.15* (0.01) 1.95* (0.45) 

Herbicides, mean 0.14* (0.05) 0.02 (0.11) 0.04* (0.02) 0.55 (0.32) 

Herbicides, standard deviation 0.38* (0.07) 0.63* (0.15) 0.22* (0.02) 2.42* (0.40) 

Other pesticide, mean 0.34* (0.03) 0.27* (0.06) 0.13* (0.02) 0.80 (0.61) 

Other pesticides, standard deviation 0.17* (0.03) 0.37* (0.07) 0.20* (0.02) 5.39* (0.80) 

Pre crop effects         

Wheat -0.32* (0.10) ref (-) ref 2 ref (-) 

Barley -0.19 (0.16) -0.16* (0.07) 0.04 (0.03) -0.25 (0.55) 

Rapeseed ref (-) 0.16 (0.20)   1.25 (3.03) 

Corn -0.06 (0.13) -0.26* (0.12)   -3.81 (4.29) 

Protein pea 0.20(*) (0.10) 0.17 (0.41) 0.05 (0.25)   

Alfalfa -0.09 (0.08) 0.02 (0.35)   -8.51 (5.22) 

Sugar beet 0.01 (0.06) 0.21* (0.07)   -0.51 (1.69) 

Potatoes -0.02 (0.11) 0.23 (0.22)   2.79 (3.62) 

Other pre crops -0.02 (0.10) 0.36* (0.14) -0.03 (0.18) -0.98 (2.17) 

Crop diversity effects: crop number 

3 crops or less -0.19* (0.07) -0.35* (0.13) 0.01  -7.67 (4.39) 

4 crops -0.10(*) (0.05) -0.19* (0.07) -0.04 (0.18) -1.08 (1.29) 

5 crops ref (-) ref (-) ref (-) ref (-) 

6 crops 0.06 (0.04) 0.02 (0.05) 0.06(*) (0.03) 1.38* (0.61) 

7 crops or more 0.20* (0.07) 0.15(*) (0.08) 0.18* (0.04) 1.90(*) (0.93) 

Crop diversity effects: Shannon index per crop number 

3 crops x Shannon index -0.13 (0.41) 0.69 (0.62) -0.26 (0.36) -13.27 (29.80) 

4 crops x Shannon index 0.72* (0.27) 1.33* (0.47) 0.21 (0.20) 6.57 (6.89) 

5 crops x Shannon index 0.73* (0.31) 0.88* (0.36) 0.33 (0.20) 9.79* (4.58) 

6 crops x Shannon index 0.28 (0.33) 0.40 (0.41) 0.59* (0.23) 14.38* (4.42) 

7 crops x Shannon index 1.44* (0.58) 0.87 (0.64) 0.93* (0.30) 15.73* (6.48) 

General statistics         

Average yield level 8.65 7.00 3.88 93.07 

Simulated R2 0.68 0.63 0.64 0.70 

Observation number 3982 3327 3530 3085 

Farm number 769 654 692 607 

Note. Symbol “*”, respectively “(*)”, indicates that the parameter is tested non null at the 5%, respectively 10%, level. 
Estimated standard deviations of the parameter estimators are in parentheses below the parameter estimates. 
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Table 4b: Selected parameter estimates of the nitrogen use models 

 Fertilizer use models (kg/ha) 

 Wheat Barley Rapeseed Sugar beet 

Farm specific intercepts         

Intercept, mean 249.2* (0.63) 151.1* (0.56) 115.8* (0.77) 356.2* (0.87) 

Intercept, standard deviation 13.46* (0.54) 11.29* (0.43) 15.92* (0.62) 17.20* (0.55) 

Pre crop effects         

Wheat 0.32 (3.79) ref (-) ref (-) ref (-) 

Barley 2.01 (6.32) 0.85 (1.91) -1.66 (1.77) -2.39 (1.91) 

Rapeseed ref (-) -0.74 (4.53)   6.36 (7.93) 

Corn -1.96 (4.56) -0.11 (4.19)   8.99 (28.49) 

Protein pea 1.83 (3.37) -5.19 (9.81) -4.79 (18.50)   

Alfalfa 4.04 (3.27) 5.06 (8.08)   2.51 (13.00) 

Sugar beet 2.01 (2.54) -0.12 (1.58)   -5.73 (5.75) 

Potatoes 4.68 (4.10) -2.50 (4.98)   7.58 (7.10) 

Other pre crops -1.36 (3.54) 1.25 (3.97) 11.30 (9.28) 1.03 (5.69) 

Crop diversity effects: crop number 

3 crops or less -0.38 (3.20) -1.41 (4.31) -2.01 (4.82) 6.08 (24.09) 

4 crops 0.40 (1.64) 0.69 (1.63) -1.59 (2.28) 3.27 (4.41) 

5 crops ref (-) ref (-) ref (-) ref (-) 

6 crops 1.55 (1.40) 0.54 (1.12) 3.45* (1.68) -0.44 (1.91) 

7 crops or more 2.65 (2.19) 1.37 (2.04) 3.72 (2.48) -3.03 (2.60) 

Crop diversity effects: Shannon index per crop number 

3 crops x Shannon index -3.74 (17.91) -13.71 (26.74) -12.25 (19.33) -83.64 (107.95

) 

4 crops x Shannon index 10.54 (9.13) -6.55 (10.83) -3.94 (14.56) 1.24 (24.56) 

5 crops x Shannon index -12.98 (11.09) -12.00 (8.20) -13.53 (13.49) -36.25* (16.84) 

6 crops x Shannon index -1.56 (11.34) -4.22 (8.88) 12.62 (12.46) 1.78 (13.29) 

7 crops x Shannon index -3.28 (20.36) -7.39 (17.68) 0.22 (22.09) -25.68 (21.83) 

General statistics         

Average use of N 217.95  147.19  215.19  138.55  

Simulated R2 0.38  0.42  0.42  0.44  

Observation number 3982  3327  3530  3085  

Farm number 769  654  692  607  

Note: Symbol *, respectively (*), indicates that the parameter is tested non null at the 5%, respectively 10%, level. 
Estimated standard deviations of the parameter estimators are in parentheses below the parameter estimates. 
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Table 4c: Selected parameter estimates of the herbicide use models 

 Herbicide use models (€/ha, 2010 prices) 

 Wheat Barley Rapeseed Sugar beet 

Farm specific intercepts         

Intercept, mean 171.6* (0.42) 85.7* (0.28) 285.6* (0.75) 319.9* (1.38) 

Intercept, standard deviation 10.0* (0.29) 5.7* (0.18) 16.8* (0.54) 30.5* (0.99) 

Pre crop effects         

Wheat -0.11 (2.29) ref (-) ref (-) ref (-) 

Barley 1.37 (4.13) 1.94* (0.95) -0.57 (1.44) -2.57 (2.52) 

Rapeseed ref (-) 0.62 (2.46)   7.78 (11.21) 

Corn -1.98 (2.19) -2.08 (1.50)   -5.82 (22.55) 

Protein pea 1.55 (2.38) -5.17 (5.78) 5.52 (18.90)   

Alfalfa 0.58 (2.18) 1.62 (3.74)   9.24 (34.09) 

Sugar beet -1.35 (1.58) -1.68(*) (0.97)   8.41 (8.50) 

Potatoes -2.05 (1.87) -1.39 (2.43)   -4.36 (11.18) 

Other pre crops 2.87 (1.85) 1.55 (1.96) 5.70 (7.32) 6.86 (6.43) 

Crop diversity effects: crop number         

3 crops or less 4.66* (1.54) 3.56 (2.02) 11.05* (3.63) 12.11 (59.26) 

4 crops 1.93 (1.03) 1.20 (0.84) 8.14* (1.88) 4.21 (3.53) 

5 crops ref (-) ref (-) ref (-) ref (-) 

6 crops -1.64(*) (0.88) -1.37* (0.58) -2.42 (1.49) -1.41 (2.39) 

7 crops or more -2.37 (1.74) -1.34 (0.99) -3.29 (2.48) -5.30 (4.27) 

Crop diversity effects: Shannon index per crop number 

3 crops x Shannon index 1.99 (8.68) -12.01 (11.14) 15.37 (23.84) -38.16 (372.78) 

4 crops x Shannon index -9.35 (5.15) -10.32* (4.98) -8.71 (11.66) -31.32 (18.48) 

5 crops x Shannon index -4.12 (6.13) -8.88* (3.68) -12.98 (10.83) -4.11 (19.37) 

6 crops x Shannon index -7.27 (8.17) -3.05 (5.66) -23.7(*) (12.69) 3.41 (18.70) 

7 crops x Shannon index 7.57 (15.25) -0.67 (9.88) -18.79 (20.45) -11.79 (30.71) 

General statistics         

Average herbicide use 63.08 30.47 99.27 160.55 

Simulated R2 0.55 0.50 0.55 0.67 

Observation number 3982 3327 3530 3085 

Farm number 769 654 692 607 

Note: Symbol *, respectively (*), indicates that the parameter is tested non null at the 5%, respectively 10%, level. 
Estimated standard deviations of the parameter estimators are in parentheses below the parameter estimates. 
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Table 4d: Selected parameter estimates of the other pesticides (mostly fungicides and insecticides) 

use models 

 Other pesticide use models (€/ha, 2010 prices) 

 Wheat Barley Rapeseed Sugar beet 

Farm specific intercepts         

Intercept, mean 144.7* (1.00) 143.7* (0.66) 127.7* (1.03) 109.8* (0.79) 

Intercept, standard deviation 25.43* (0.71) 14.72* (0.46) 24.32* (0.69) 16.86* (0.55) 

Pre crop effects         

Wheat 4.07 (4.08) ref (-) ref (-) ref (-) 

Barley -15.63* (6.55) -0.50 (1.88) 1.10 (1.73) -1.05 (1.55) 

Rapeseed ref (-) -3.34 (4.93)   -2.23 (6.85) 

Corn -7.80 (4.16) -7.44* (3.33)   7.74 (14.76) 

Protein pea -5.32 (3.52) -5.64 (17.04) -16.49 (20.27)   

Alfalfa -2.05 (3.27) 8.48 (4.42)   -3.92 (13.05) 

Sugar beet -1.66 (2.50) 0.87 (1.91)   1.86 (5.90) 

Potatoes 1.27 (3.81) -4.99 (5.98)   1.22 (8.93) 

Other pre crops 0.89 (3.53) -2.45 (4.49) -6.33 (15.74) -1.07 (3.91) 

Crop diversity effects: crop number         

3 crops or less -3.73 (3.28) -2.44 (3.33) -0.82 (4.15) 3.11 (18.21) 

4 crops -3.17 (2.07) 0.14 (1.66) 2.94 (2.37) 0.92 (2.53) 

5 crops ref (-) ref (-) ref (-) ref (-) 

6 crops -0.25 (1.76) -0.72 (1.32) -1.35 (1.89) 1.00 (1.62) 

7 crops or more 1.90 (2.89) -2.16 (2.22) 0.75 (3.10) -1.50 (2.79) 

Crop diversity effects: Shannon index per crop number 

3 crops x Shannon index 5.99 (14.46) 1.52 (25.08) -16.66 (28.23) 55.79 (73.47) 

4 crops x Shannon index 1.83 (10.94) -1.28 (8.37) -1.55 (12.14) -10.12 (13.18) 

5 crops x Shannon index -13.95 (11.38) -6.53 (8.91) -29.88* (13.92) -26.92* (12.69) 

6 crops x Shannon index 1.58 (13.52) -5.49 (11.55) 23.23 (14.91) 3.80 (12.42) 

7 crops x Shannon index 5.31 (17.92) -1.52 (17.93) 4.22 (19.47) 10.15 (21.19) 

General statistics         

Average pesticide use 125.1 76.0 109.0 96.2 

Simulated R2 0.65 0.55 0.60 0.55 

Observation number 3982 3327 3530 3085 

Farm number 769 654 692 607 

Note. Symbol *, respectively (*), indicates that the parameter is tested non null at the 5%, respectively 10%, level. 
Estimated standard deviations of the parameter estimators are in parentheses below the parameter estimates. 
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Table 6: Selected parameter estimates of the crop yield and input use models: selected 

pre crop effects 

 Yield models (t/ha) 

 Wheat Barley Rapeseed Sugar beet 

Pre crop effects         

Wheat -0.32* (0.10) 0 (-) 0 (-) 0 (-) 

Barley -0.19 (0.16) -0.16* (0.07) 0.04 (0.03) -0.25 (0.55) 

Rapeseed 0 (-) 0.16 (0.20)   1.25 (3.03) 

Corn -0.06 (0.13) -0.26* (0.12)   -3.81 (4.29) 

Protein pea 0.20(*) (0.10) 0.17 (0.41) 0.05 (0.25)   

Alfalfa -0.09 (0.08) 0.02 (0.35)   -8.51 (5.22) 

Sugar beet 0.01 (0.06) 0.21* (0.07)   -0.51 (1.69) 

Potatoes -0.02 (0.11) 0.23 (0.22)   2.79 (3.62) 

Other pre crops -0.02 (0.10) 0.36* (0.14) -0.03 (0.18) -0.98 (2.17) 

 Fertilizer use models (kg/ha) 

 Wheat Barley Rapeseed Sugar beet 

Pre crop effects         

Wheat 0.32 (3.79) 0 (-) 0 (-) 0 (-) 

Barley 2.01 (6.32) 0.85 (1.91) -1.66 (1.77) -2.39 (1.91) 

Rapeseed 0 (-) -0.74 (4.53)   6.36 (7.93) 

Corn -1.96 (4.56) -0.11 (4.19)   8.99 (28.49) 

Protein pea 1.83 (3.37) -5.19 (9.81) -4.79 (18.50)   

Alfalfa 4.04 (3.27) 5.06 (8.08)   2.51 (13.00) 

Sugar beet 2.01 (2.54) -0.12 (1.58)   -5.73 (5.75) 

Potatoes 4.68 (4.10) -2.50 (4.98)   7.58 (7.10) 

Other pre crops -1.36 (3.54) 1.25 (3.97) 11.30 (9.28) 1.03 (5.69) 

 Herbicide use models (€/ha, 2010 prices) 

 Wheat Barley Rapeseed Sugar beet 

Pre crop effects         

Wheat -0.11 (2.29) 0 (-) 0 (-) 0 (-) 

Barley 1.37 (4.13) 1.94* (0.95) -0.57 (1.44) -2.57 (2.52) 

Rapeseed 0 (-) 0.62 (2.46)   7.78 (11.21) 

Corn -1.98 (2.19) -2.08 (1.50)   -5.82 (22.55) 

Protein pea 1.55 (2.38) -5.17 (5.78) 5.52 (18.90)   

Alfalfa 0.58 (2.18) 1.62 (3.74)   9.24 (34.09) 

Sugar beet -1.35 (1.58) -1.68(*) (0.97)   8.41 (8.50) 

Potatoes -2.05 (1.87) -1.39 (2.43)   -4.36 (11.18) 

Other pre crops 2.87 (1.85) 1.55 (1.96) 5.70 (7.32) 6.86 (6.43) 

 Other pesticide use models (€/ha, 2010 prices) 

 Wheat Barley Rapeseed Sugar beet 

Pre crop effects         

Wheat 4.07 (4.08) 0 (-) 0 (-) 0 (-) 

Barley -15.63* (6.55) -0.50 (1.88) 1.10 (1.73) -1.05 (1.55) 
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Rapeseed 0 (-) -3.34 (4.93)   -2.23 (6.85) 

Corn -7.80 (4.16) -7.44* (3.33)   7.74 (14.76) 

Protein pea -5.32 (3.52) -5.64 (17.04) -16.49 (20.27)   

Alfalfa -2.05 (3.27) 8.48 (4.42)   -3.92 (13.05) 

Sugar beet -1.66 (2.50) 0.87 (1.91)   1.86 (5.90) 

Potatoes 1.27 (3.81) -4.99 (5.98)   1.22 (8.93) 

Other pre crops 0.89 (3.53) -2.45 (4.49) -6.33 (15.74) -1.07 (3.91) 

Note. Symbol *, respectively (*), indicates that the parameter is tested non null at the 5%, respectively 
10%, level. Estimated standard deviations of the parameter estimators are in parentheses below the 
parameter estimates. 
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