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Executive Summary 

Rationale of the project 

Farm policy is dependent on the ability to predict relevant policy variables based on given 

indicators. Crop yields and prices are important for farm income stability in North Dakota. 

Prediction of crop yields and prices are also essential for knowing the impacts of farm programs 

embedded in the U.S. farm bill. The accuracy of prediction of crop yields and prices is often 

hampered by the occurrence of random events, e.g. weather, input supply or natural disasters such 

as Covid19. Inaccurate prediction of yields may lead to under (over) payment of producers in 

insurance programs and ineffective design of farm policies. Making inferences from such data 

require modelling the data-generating mechanism of the data.  

This report builds on Phase I of the CAPTS – NDSC/NDCUC Project. The first phase 

presented the trends in yields, prices, revenue and production of corn and soybean. Based on the 

findings, the proposed future research was to:  

• Examine the sources of yield variability across North Dakota counties 

• Evaluate acreage price elasticities across U.S. and North Dakota counties 

• Examine the sources of price volatilities on international markets 

Objective of the report 

This part of the study is focused on developing accurate models to predict crop yields. We focus 

on the variability of crop yields across North Dakota counties. This report proposes the Dirichlet 

Process Mixture Model (DPMM) as a measure of accounting for randomness in the crop yield data 

in a Hierarchical Linear Model (HLM). 

Mixture models have been widely applied in several areas as a tool for modeling population 

heterogeneity, allowing for posterior unsupervised classification of the observations. They are also 

beneficial for prediction under conditions of complicated probabilities, multimodality, skewness 

and heavy tails. The specific choice of a Dirichlet distribution is a result of its ideal statistical 

properties for Bayesian analysis. For instance, it is one of the few distributions that are conjugate 

distributions (the generated posterior is always equal to the known prior distribution). In mixture 

models, the randomness in the data (generating process) are captured through unsupervised cluster 

assignments of data with similar characteristics.  
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Data and methodology used in the research study 

The states in the northern great plains are the major producers of corn and soybean. Of the top 15 

corn producing states in U.S., 9 are within the great plains while 7 out of the 15 soybean producing 

states are from the great plains. The National Agricultural Statistics Service (NASS) publishes a 

wide range of data on U.S. agricultural production at different levels of aggregation (county, state, 

regional and national) over different periods (monthly, quarterly and annually). Corn and soybean 

yield at county levels were obtained by year from the NASS database. A longitudinal data set of 

county‐average yield data was analyzed using 104 counties for corn and 66 counties for soybean 

from 1972 through 2018.  

  The proposed model (DPMM) employs a Gibbs sampler as a clustering algorithm for 

inference on the random density functions.  The impact of the clusters is examined on the 

prediction accuracy of corn and soybean yields among northern great plain states. 

Key findings 

• The Bayes classification of the random density functions signify that the yields for both 

corn and soybean are drawn from two mixture components. 

• Of the 6 states used for the corn analysis, the distribution of yields for North Dakota is 

statistically identical to the distribution of yields in Kansas and South Dakota. 

• For the 5 soybean states, the distribution of yields in North Dakota is statistically similar 

to the distribution of soybean yields in Kansas. 

• The best prediction model for corn yield is the HLM structure that incorporates the Bayes 

classifier, state, county and year.  

•  The best prediction model for soybean yield is the HLM specification that incorporates 

the Bayes classifier, state, crop reporting district, county and year. 

• Despite the crop reporting district being the difference between the optimal corn and 

soybean yield prediction model, the Bayes classifier from the proposed DPMM accurately 

classifies random events.  

• The DPMM (Bayes) classifier is therefore integral for the prediction of both crops. 

• It is also noteworthy that, neighbouring states with underlying similarities of characteristics 

are important in the prediction of North Dakota corn and soybean yields. 
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Future Research 

The findings from this study reveal that it is important to consider the impact of random events on 

the prediction of crop yields using a Bayesian classification of the data as a layer in the HLM. The 

report also reveals that drawing observations from neighboring states can help improve the 

prediction of states yields due to similarity of characteristics among different states. Given this 

finding, the next phase of this research will evaluate the sources of variability of crop yields based 

on the proposed model. The specific objectives to be pursued as part of this goal will:  

• Evaluate the impact of farm and conservation program payments on ND corn and 

soybean production. 

• Examine the impact of farm fertilizer utilization on greenhouse gas emissions and 

productivity.  
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1. Introduction 

The evaluation of the impact of policies and risk management strategies is dependent on the 

knowledge of the probability distributions of the expected output and magnitude of risks 

encountered. Meanwhile, these risks vary across different sectors, geographical space and over 

time. Given the agricultural sector, the distribution of soybean yields in the Midwest region are 

expected to be different from that of Northern great plains region of the U.S. For a specific state 

such as North Dakota, the distribution of corn or soybean yields from 2000 to 2009 is not likely to 

be the same as its distribution from 2010 and 2019 (Shaik and Addey, 2020a, b). Hence, there is 

the need for a constant review of the modelling strategies for the evaluation of agricultural risks 

and prediction of crop yields across geographical locations over time. 

The primary focus of this report is to examine the accuracy of crop yield prediction for 

longitudinal data in the presence of random events and latent characteristics. There are primarily 

three schools of thought for predicting crop yields. The first group emphasize on the need to 

account for temporal shocks through the use of trend models (Harri et al, 2011; Brester et al., 

2019). A peculiar challenge with the trend models is that, failure to identify the accurate trend may 

cause misleading results in crop insurance analysis (Atwood et al., 2003 and Finger, 2013).  

The second group believe in the use of spatial models (Liu and Ker, 2020 and Ramsey, 

2020). Given that the quality of agricultural land and weather conditions vary across space, spatial 

prediction models present the best way of accounting for spatial heterogeneity. However, Brady 

and Irwin (2011) emphasized that data generated from proximal spatial points are spatially 

dependent and as such econometric models that do not include all the relevant spatial variables 

will suffer from omitted spatially correlated variables that can bias results. Of course, the high 

probability of encountering missing yield data (Liu and Ker, 2020) implies that there is an 

increased likelihood of omitting relevant spatial variables. On the other hand, since spatial 

dependence will lead to multiple interactions, this may result in multiple predictors which could 

also lead to overfitting.  

Finally, the third group emphasize on accounting for randomness through distributional 

assumptions (Duarte et al., 2018) or natural clusters in the model (Shaik and Bhattacharjee, 2016). 

In general, researchers consider cluster models based on the natural clusters when using 

longitudinal data. This empirical strategy is useful because it accounts for the shared variances 

among the natural clusters. Despite this advantage, following the natural clusters may lead to an 
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incorrect partitioning of variances and dependencies in the data which may lead to a type I error. 

In crop yield predictions, it is essential to consider models that rightly classify these variables due 

to the presence of random unobservable factors.  

The present study proposes a hierarchical linear model (HLM) that incorporates a Bayesian 

classified stratum generated from the Dirichlet process mixture model (DPMM). The DPMM is a 

Bayesian clustering method that links a response vector to a set of fixed or random covariates 

through nonparametric regression methods (Malsiner-Walli et al., 2017). The application of 

Bayesian nonparametric methods has been extensively employed to account for randomness in 

different fields. For instance, Kleinman and Ibrahim (1998) modelled the random effects in a 

health data using a Dirichlet process prior. The DPMM not only accounts for randomness and 

latency associated with temporal, spatial and natural clusters but also allows for posterior 

unsupervised classification of the observations despite the heterogeneity across counties. Another 

advantage of employing the DPMM is its robustness for prediction under conditions of 

complicated probabilities, multimodality, skewness and heavy tails. The model proposed in this 

report is a simple tractable model which accounts for random events using three processes 

sequentially. These are; 

1. Temporal smoothing using the penalized B-spline. 

2. Bayesian clustering of crop yields using the DPMM.  

3. Prediction of crop yields using the HLM with the Bayes classification from the DPMM 

considered as a stratum.  

The concept of mixture models is not new in crop yield prediction. The model being employed in 

this article is similar to that employed by Tolhurst and Ker (2015). The basic concept of their 

model was to employ a two-component mixture model to account for technological changes and 

randomness in subpopulations. However, the present study introduces a class variable (level) in 

the HLM structure using a DPMM. In statistical literature, the proposed model was employed by 

Bush and MacEachern (1996) in a hierarchical model of randomized block design which allows 

for the Dirichlet process to be inserted in the middle stage for the distribution of the block effects. 

The contribution of this article is three-fold. First, to the best of our knowledge, this is the 

first study to introduce a DPMM as a hierarchical level to evaluate systematic risk of U.S. crop 

yield distributions. The results indicate that this model has a potential to improve the prediction of 

crop yields and the impact of farm policies in the presence of random shocks.  
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Secondly, rare events such as early blizzards, late planting or hail in certain locations or 

years may lead to partial/total loss of yields when they occur. However, the frequency of 

occurrence of these events are often too low to develop a trend or spatial pattern for analysis. On 

the other hand, certain areas and periods may experience very good cropping conditions leading 

to high yields. Due to the possibility of extremely low or high yields, policymakers and researchers, 

particularly in crop insurance studies are often concerned about the effects of outliers and 

overdispersion of the data. The presence of overdispersion, if unaccounted for may lead to biased 

estimates of the variance-covariance matrix. Implementation of a DPMM allows clustering of the 

response variable based on latent functions.  

The final contribution of this study emanates from its focus on the northern great plains. 

Several studies on crop yield predictions have focused on midwestern states such as Ohio, 

Oklahoma, Illinois, Iowa, Kansas, Minnesota and Nebraska. One state which has not been given 

much attention in the crop yield prediction and crop insurance literature is North Dakota. 

Meanwhile, the state is a major contributor to U.S. agricultural production. In addition, the climate 

within the state implies that crop production is often faced with a lot of risks.  

The rest of the paper is organized as follows. Section 2 discusses the empirical application 

strategy using real U.S. crop yield data. The structure of the HLM with the DPMM Bayes strata is 

presented in this section. In addition, the sources of data used are also presented in section 2.  The 

results of the estimation are presented in Section 3. The results comprise of the descriptive 

statistics, Kruskal-Wallis test, Wilcoxon rank sum test for differences in state yield distributions 

and prediction of corn and soybean yields using alternative HLM structures. This section also 

discusses the empirical results for the prediction of corn and soybean yields. Section 4 presents the 

conclusions while section 5 presents the proposed future research. 
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2. Empirical Application 

2.1 Type and sources of data for empirical analysis  

The states in the northern great plains are major producers of corn and soybean. Of the top 15 corn 

producing states in U.S., 9 are within the great plains (Shaik and Addey, 2020c) while 7 out of the 

top 15 soybean producing states are from the great plains (Shaik and Addey, 2020d). The National 

Agricultural Statistics Service (NASS) publishes a wide range of data on U.S. agricultural 

production at different levels of aggregation (county, state, regional and national) over different 

periods (monthly, quarterly and annually).  

The empirical application of this study employs annual corn county yields from Colorado, 

Kansas, Nebraska, North Dakota, South Dakota and Texas while soybean county yields are drawn 

from Kansas, Nebraska, North Dakota, Oklahoma and South Dakota. The analysis comprises of 

purposively selected counties with complete yield series from 1972 to 2018. For corn, the number 

of counties with complete series were 2, 9, 57, 4, 14 and 18 for Colorado, Kansas, Nebraska, North 

Dakota, South Dakota and Texas respectively. The number of complete counties series for soybean 

were 19, 32, 4, 5 and 6 for Kansas, Nebraska, North Dakota, Oklahoma and South Dakota 

respectively. This gives 104 counties for corn and 66 counties for soybean across all the 47 years. 

County yields are measured as the total production divided by the planted acreage to capture the 

tails of the yield distribution. 

2.2 Penalized B-spline for temporal smoothing 

The idea of smoothing the dataset creates an approximating function that captures important 

patterns over time in the data while leaving out noise or other fine-scale structures. The penalized 

B-spline (Eilers and Marx, 1996) is a detrending procedure that fits a smooth curve through a 

scatter plot with an automatic selection of the smoothing parameter. To account for temporal 

variations in the yields, we employ the penalized B-spline. 

2.3 Hierarchical linear model with Dirichlet process mixture model Bayes strata 

The HLM is the primary tool of multilevel analysis. This method allows for examining data with 

nested sources of variability. As a first step, we derive the cluster of discrete random densities 

using the DPMM. Following this step, the generated Bayes classification of random densities are 

incorporated into the HLM as a level. The proposed HLM model uses data comprising of two 

levels, i.e. state and county. This implies that the addition of an extra level using the Bayes 
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classifier to account for randomness leads to a three-level HLM. Data structured in such format 

are often estimated based on the general linear model (Addey, 2021).  

For the northern great plains crop yield data, consider a set of 𝑡𝑡 ×  1  vector of observed 

responses 𝒚𝒚𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = (𝑦𝑦𝑖𝑖𝑖𝑖𝑖𝑖1, … ,𝑦𝑦𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖)′ for the 𝑖𝑖𝑖𝑖ℎ county for 𝑖𝑖 = 1, … ,𝑎𝑎𝑖𝑖 within the 𝑗𝑗𝑗𝑗ℎ state for 𝑗𝑗 =

1, … , 𝑏𝑏𝑗𝑗 in the 𝑘𝑘𝑘𝑘ℎ Bayes class for k = 1, … , c in time 𝑡𝑡 for 𝑡𝑡 = 𝑡𝑡𝑖𝑖𝑖𝑖𝑖𝑖1, … , 𝑡𝑡𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖, with 𝑡𝑡𝑖𝑖𝑖𝑖𝑖𝑖1 <  … <

𝑡𝑡𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 < ⋯ < 𝑇𝑇. This yields a standard linear mixed model given as; 

𝒚𝒚𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 𝝁𝝁 + 𝜷𝜷ijk𝑿𝑿′𝑖𝑖𝑖𝑖𝑖𝑖 +  𝜸𝜸𝑖𝑖𝑖𝑖𝑖𝑖𝒁𝒁′𝑖𝑖𝑖𝑖𝑖𝑖 + 𝜺𝜺𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖      �

i = 1, … , a   County
j = 1, . . , b   State

k = 1, … , c  Bayes Class 
tijk1 = 1, . . tijkt  Year

     (3.1) 

where 𝝁𝝁 = (𝜇𝜇1 … 𝜇𝜇𝑡𝑡)′ is a vector of intercept parameters, 𝜷𝜷ijk are the p-dimensional vectors of 

time-varying functional coefficients which are heterogeneous over 𝑖𝑖, 𝑗𝑗 and 𝑘𝑘.  𝒁𝒁′𝑖𝑖𝑖𝑖𝑖𝑖 represents the 

latent individual specific random effects for county 𝑖𝑖 in state 𝑗𝑗 within Bayes class 𝑘𝑘 characterized 

by random coefficients  𝜸𝜸 = (𝜸𝜸1, … ,𝜸𝜸𝑡𝑡)′ and 𝜺𝜺𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = (𝜺𝜺𝑖𝑖𝑖𝑖𝑖𝑖1, … , 𝜺𝜺𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖)′ is a vector of 

independently distributed measurement errors measuring idiosyncratic term with mean zero. The 

primary goal of this model is to examine the implication of latent response distribution of the 

groups on prediction of the dependent variable (yield). It is typically common to see that most 

studies address this issue through a mean regression model (Dunson, 2006), in which 𝐸𝐸�𝒁𝒁𝑖𝑖𝑖𝑖𝑖𝑖� =

𝜷𝜷ijkt𝑿𝑿′𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 and 𝑉𝑉�𝒁𝒁𝑖𝑖𝑖𝑖𝑖𝑖� = 1. The variance of the latent variable density is fixed at 1 for 

identifiability. In this report, the variance of the outcome variable conditional on the random 

coefficients is given as 𝑉𝑉�𝒚𝒚𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖�𝜸𝜸𝑖𝑖𝑖𝑖𝑖𝑖� = 𝑔𝑔(𝝁𝝁) ∗ 𝝓𝝓, where 𝑔𝑔 is a monotonic differentiable link 

function which describes how the expected value of 𝒚𝒚𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 is related to 𝝁𝝁;  and 𝝓𝝓 is the dispersion 

parameter (either known or estimated). Hence, equation (3.1), is re-written to exclude the fixed 

covariates to give; 

 𝒚𝒚𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 𝝁𝝁 +  𝜸𝜸𝑖𝑖𝑖𝑖𝑖𝑖𝒁𝒁′𝑖𝑖𝑖𝑖𝑖𝑖 + 𝜺𝜺𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖                   (3.2) 

Considering the three different levels in this HLM, the empirical model specification is; 

𝒚𝒚𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 =  𝜸𝜸1𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖𝑖𝑖𝑖𝑖 + 𝜸𝜸2𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖𝑖𝑖 + 𝜸𝜸3𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝑘𝑘 + 𝜸𝜸4𝑌𝑌𝑌𝑌𝑌𝑌𝑌𝑌𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 +  𝜺𝜺𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖     (3.3) 
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3. Results and Discussions 

3.1 Descriptive statistics 

The results of the empirical application are presented in this section. To validate the robustness of 

the proposed model, a range of models are estimated and compared based on their goodness of fit 

diagnostics. The descriptive statistics of corn and soybean yields for the states are presented in 

Table 1. From the table, Colorado has the highest average corn yield of 152.67bu/acre followed 

by Nebraska with 132.08bu/acre. Following these are Kansas and North Dakota with 

103.21bu/acre and 100.84bu/acre respectively. The next is South Dakota with average corn yield 

of 97.21bu/acre and the highest standard deviation of 44.17bu/acre. The state with the least average 

corn yield was Texas with 88.90bu/acre. The least standard deviation was observed for Colorado 

with 29.16bu/acre.  

From Table 1, the highest average soybean yield was observed for Nebraska with 

41.62bu/acre, followed by South Dakota with 34.15bu/acre. The next highest average soybean 

yield was observed for Kansas and North Dakota, with 30.77bu/acre and 29.19bu/acre 

respectively. The least average soybean yield was 23.40bu/acre for Oklahoma. The standard 

deviations about the average yields were fairly distributed with Nebraska having the highest of 

11.35bu/acre while the least was observed for Oklahoma with 7.34bu/acre.  

Table 1: Descriptive statistics of corn and soybean yield by state 
State name N Mean Std Dev Min Max 

Corn 

Colorado 96 152.67 29.16 92.00 218.50 

Kansas 431 103.21 34.43 23.00 196.00 

Nebraska 2736 132.08 37.38 18.40 228.50 

North Dakota 192 100.84 37.70 36.00 207.60 

South Dakota 672 97.21 44.17 1.500 194.50 

Texas 864 88.90 42.02 15.00 233.20 

Soybean 

Kansas 912 30.77 10.36 8.00 62.50 

Nebraska 1536 41.62 11.35 15.40 72.20 

North Dakota 192 29.19 8.14 9.20 48.30 

Oklahoma 240 23.40 7.34 5.60 44.50 

South Dakota 288 34.15 10.13 4.30 60.40 
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3.2 Kruskal-Wallis and Wilcoxon rank-sum test for differences in state yield distributions  

The box plot for the distributional characteristics of the corn and soybean yields are presented in 

Figure 1(a and b). For corn, a similar median is observed for Kansas, North Dakota, South Dakota 

and Texas while it is similar for Kansas and North Dakota for soybean. Despite the similarities, 

we see varying quartile ranges for the various states. The use of the DPMM is beneficial over the 

gaussian counterparts when the natural clusters of the data set are not normally distributed.  

Figure 1: Box plot of corn and soybean yield by state 

Figure 1a: Box plot of corn yield by state  

 
 
Figure 1b: Box plot of soybean yield by state  
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Visual observations using kernel distributions for corn yields show Colorado, Kansas, North 

Dakota, South Dakota and Texas to have non-normal yields. The kernel distributions of corn yield 

for the 6 states are presented in Figure 2 (a to f).  For soybean yield, the kernel distribution for 

Kansas and Oklahoma yield reveal a near normal distribution. However, the distributions of 

soybean yield for Nebraska, North Dakota and South Dakota reveal non-normality. The kernel 

distributions of soybean yield for these states are presented in Figure 3 (a to e). 

A basic requirement for the need for mixture models is the existence of differences among 

the different levels (states) of the dataset. To proof that the distributions are from different sources 

and hence affected by varying random factors, a Kruskal-Wallis nonparametric test was conducted. 

The chi square value is significant at 1% for both crops, implying that the distributions of the crop 

yields from the states are statistically different from each other for both crops. For corn and 

soybean yield, the chi square probability values in Table 2 confirms the differences in yield 

distributions among the states. 

It is typical to observe the use of a t-test for pairwise comparison of subgroups in a 

longitudinal dataset. However, the standard t-test is useful under conditions when the distributions 

of the subpopulations are assumed to be known. Under conditions of latency where the distribution 

of the subgroups is assumed to be unknown, it is useful to employ the Wilcoxon rank sum test.  

For pairwise comparison of the differences in yield distribution among the states, a two-sample 

Wilcoxon rank sum test was performed. Table 3 presents the results for corn and soybean. From 

the table, the test of equality between the distributions of corn yield for Kansas and North Dakota 

reveals a probability value of 0.8151 which implies that there is no statistical difference between 

the yield distributions from these two states. In addition, corn yield distribution for North Dakota 

is revealed to be statistically similar to the yield distribution of corn from South Dakota, having a 

probability value of 0.8441. From the table, the probability value for the equality of distribution 

for Kansas and North Dakota soybean yield is 0.3547, indicating that there is no statistical 

difference between the distribution of the soybean yield from these two states.  
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Figure 2: Distribution of corn yield by state  

Figure 2a: Distribution of Colorado corn yield  

 

Figure 2d: Distribution of North Dakota corn yield  

 

 

 
 
 
 
 
 
 
 
 
 
 

 
 
Figure 2b: Distribution of Kansas corn yield  

 
Figure 2e: Distribution of South Dakota corn yield  

 

 
 
 
 
 
 
 
 
 
 
 

 
 
Figure 2c: Distribution of Nebraska corn yield  

 
Figure 2f: Distribution of Texas corn yield  
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Figure 3: Distribution of soybean yield by state  
 

Figure 3a: Distribution of Kansas soybean yield  

 
Figure 3d: Distribution of Oklahoma soybean yield 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
Figure 3b: Distribution of Nebraska soybean yield  

 
Figure 3e: Distribution of South Dakota soybean yield  

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
Figure 3c: Distribution of North Dakota soybean yield  
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Table 2: Test of equality of corn and soybean yield distributions across states  
State name N Sum of Scores Expected Under H0 Std Dev Under H0 Mean Score 

Corn 
Colorado 96 358534.0 239616.0 13981.65 3734.73 
Kansas 431 884522.0 1075776.0 28593.51 2052.26 
Nebraska 2736 8264941.5 6829056.0 50661.47 3020.81 
North Dakota 192 373969.5 479232.0 19578.18 1947.76 
South Dakota 672 1263325.5 1677312.0 34747.43 1879.95 
Texas 864 1312243.5 2156544.0 38514.17 1518.80 

Kruskal-Wallis Test 
Chi-Square    1022.77 DF 5 Pr > ChiSq    <.0001 
State name N Sum of Scores Expected Under H0 Std Dev Under H0 Mean Score 

Soybean 
Kansas 912 1125736.0 1445064.0 23309.38 1234.36 
Nebraska 1536 3106209.0 2433792.0 25728.79 2022.27 
North Dakota 192 209130.5 304224.0 12283.75 1089.22 
Oklahoma 240 150714.5 380280.0 13622.44 627.98 
South Dakota 288 427906.0 456336.0 14799.81 1485.79 

Kruskal-Wallis Test 
Chi-Square   807.6401 DF 4 Pr > ChiSq <.0001 

 

Table 3: Pairwise comparison of corn and soybean yield among states 
State name Wilcoxon Z DSCF Value Pr > DSCF 

Corn 
Colorado vs. Kansas 10.9958 15.5504 <.0001 
Colorado vs. Nebraska 5.4972 7.7742 <.0001 
Colorado vs. North Dakota 9.8145 13.8798 <.0001 
Colorado vs. South Dakota 10.7448 15.1955 <.0001 
Colorado vs. Texas 12.5745 17.7830 <.0001 
Kansas vs. Nebraska -13.9913 19.7866 <.0001 
Kansas vs. North Dakota 1.2440 1.7593 0.8151 
Kansas vs. South Dakota 2.9175 4.1260 0.0412 
Kansas vs. Texas 8.3265 11.7754 <.0001 
Nebraska vs. North Dakota 10.3221 14.5977 <.0001 
Nebraska vs. South Dakota 17.8336 25.2205 <.0001 
Nebraska vs. Texas 26.5773 37.5859 <.0001 
North Dakota vs. South Dakota 1.1852 1.6761 0.8441 
North Dakota vs. Texas 4.4797 6.3353 0.0001 
South Dakota vs. Texas 3.9551 5.5933 0.0011 

Soybean 
Kansas vs. Nebraska -20.7009 29.2755 <.0001 
Kansas vs. North Dakota 1.8324 2.5915 0.3547 
Kansas vs. Oklahoma 10.0801 14.2554 <.0001 
Kansas vs. South Dakota -4.4668 6.3170 <.0001 
Nebraska vs. North Dakota 13.7342 19.4231 <.0001 
Nebraska vs. Oklahoma 20.6888 29.2583 <.0001 
Nebraska vs. South Dakota 9.7564 13.7976 <.0001 
North Dakota vs. Oklahoma 7.2912 10.3113 <.0001 
North Dakota vs. South Dakota -5.1121 7.2296 <.0001 
Oklahoma vs. South Dakota -12.0786 17.0817 <.0001 
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The four counties with full observations of corn yield from North Dakota over the study period are 

Cass, Grand Forks, Richland and Sargent. In Figure 4(a and b), we present visual distributions of 

their actual yield compared to the trend of yield smoothened based on the penalized B-spline. We 

observe an upward trend for all four counties. In addition, most of the yields are near the penalized 

B-spline trend line with few further away for Richland and Sargent counties. For soybean, the 

counties with complete yield data over the study period are Cass, Richland, Sargent and Traill. A 

comparison of the actual yield distribution to the penalized B-spline trend line is presented in 

Figure 5. From the figure, there are upward trends for the four counties. The observed dispersion 

about the penalized B-spline trend is fairly even despite Cass, Sargent and Traill having a few 

observations further away from the trend line. 
Figure 4: Comparison of smoothened corn yield to actual yield by ND counties  
 
Figure 4a: Smoothened versus actual corn yield for ND counties  

 
Figure 4b: Smoothened versus actual corn yield for ND counties  
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Figure 5: Comparison of smoothened soybean yield to actual yield by ND counties 
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considers the adjusted yield as a function of the Bayes class, state, crop reporting district nested in 

state, county nested in the Bayes classifier and individual years. Model twelve is the smoothened 

yield as a function of the Bayes class, state nested in the Bayes class, county nested in the Bayes 

class and individual years. 

Table 4: Structure of comparative models 
Model  Type of Data  Bayes Class State CRD County Year 
Model one Actual yield Yes No No No  Yes 
Model two Actual yield Yes No  No No Yes1 
Model three  Actual yield No  Yes No Yes Yes 
Model four  Actual yield No  Yes Yes Yes Yes 
Model five Actual yield Yes Yes Yes Yes Yes 
Model six Actual yield Yes Yes No Yes Yes 
Model seven  Smoothened yield Yes No No No Yes 
Model eight Smoothened yield Yes  No  No No  Yes2 
Model nine Smoothened yield No Yes No Yes  Yes 
Model ten Smoothened yield No Yes Yes Yes Yes 
Model eleven Smoothened yield Yes Yes Yes Yes Yes 
Model twelve Smoothened yield Yes Yes No Yes Yes 

 

Table 5: Comparison and selection of HLM structures  
Model  -2log Likelihood AIC AICC BIC Pearson Statistic  Unscaled Pearson Chi sq. 

Corn 
Model 1 48678.9 48686.9 48686.9 48713 4990.9 5029622 
Model 2 48089.8 48189.8 48190.9 48515.6 4990.4 4469680 
Model 3 43224 43528 43537.6 44518.3 4992.2 1686047 
Model 4 43224 43528 43537.6 44518.3 4990.9 1686047 
Model 5 42458.5 42894.5 42914.5 44314.9 4996 1446311 
Model 6 42454.2 42896.2 42916.8 44336.1 4986.3 1445072 
Model 7 46855.5 46863.5 46863.5 46889.6 4992 3484515 
Model 8 46767.3 46867.3 46868.4 47193.1 4991.5 3423496 
Model 9 38520.3 38824.3 38833.9 39814.7 4992 656136 
Model 10 38520.3 38824.3 38833.9 39814.7 4992 656136 
Model 11 36032.3 36468.3 36488.3 37888.7 4991.3 398602 
Model 12 35999.4 36441.4 36461.9 37881.3 4993.1 395982 

Soybean 
Model 1 23324.7 23332.7 23332.7 23356.9 3168 292306 
Model 2 22600.3 22700.3 22701.9 23003.3 3167.8 232561 
Model 3 19387.8 19615.8 19624.4 20306.7 3168 84360.7 
Model 4 19387.8 19615.8 19624.4 20306.7 3167.9 84360.7 
Model 5 19069.7 19343.7 19356.2 20174 3168.2 76301.7 
Model 6 19082.9 19354.9 19367.2 20179.2 3167.8 76621.7 
Model 7 21710.8 21718.8 21718.8 21743 3168 175629 
Model 8 21675.4 21775.4 21777 22078.4 3162.2 173678 
Model 9 15538.4 15766.4 15775 16457.4 3168 25028.8 
Model 10 15538.4 15766.4 15775 16457.4 3168.1 25028.8 
Model 11 14476.5 14750.5 14763 15580.9 3167.9 17900.6 
Model 12 14531.6 14803.6 14815.9 15627.9 3168 18214.6 

 
1 In this model, the impact of the individual years is considered rather than all years together, as in model one. 
2 In this model, the impact of the individual years is considered rather than all years together, as in model one. 
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3.4 Empirical results for the prediction of corn yield  

Based on the unsupervised Bayesian clustering using the DPMM, a two-component mixture was 

found as the optimal mixture component for county corn yields. We specified 1000 burn-in 

samples and 10000 samples after burn-in for all models used. A separate trace panel is produced 

for each sampled parameter. The panels for North Dakota specific slopes and intercepts are 

presented in Figure 6. There is a good mixing in the chains. The modest autocorrelation diminishes 

after about 10 successive samples for component 1 of the intercept. For North Dakota, the 

autocorrelation diminishes after 5 successive samples for both component 1 and 2. The trace and 

density plots signify successful convergence in the models. The density plots reveal a smooth and 

unimodal density function which implies that the samples provide a good representation of the 

posterior distribution. The specific slopes for other states can be found in the supplementary files. 

The model diagnostics for the 12 corn models are presented in Table 5. The diagnostics 

used are the AIC and BIC (results revealed are consistent for both diagnostics). The least AIC 

found was for model 12 (36,441.4) while its BIC was also 37,881.3. This implies that corn yield 

is most accurately predicted using model 12. This model consists of the smoothened yield as a 

function of the Bayes classifier to account for random events, state nested in the Bayes classifier, 

county yields nested in the Bayes classifier and the individual years. The structure of this model 

suggests the importance of considering random events at each hierarchical structure level. 

Based on the prediction of corn yields from model 12, the predicted average yield for 

Colorado was 152.67bu/acre. The predicted average for Kansas and Nebraska were 103.12bu/acre 

and 132.07bu/acre. Using the same model, the predicted corn yields for North Dakota and South 

Dakota were 100.84bu/acre and 97.27bu/acre while that of Texas was 88.89bu/acre. Even though 

the predicted average yields for the optimal HLM structure were equivalent to predicted mean 

yields for models 3, 4, 5, 6, the smoothened and actual yields, the dispersion about the means were 

found to be different. The standard deviation (minimum, maximum) of model 12 for Colorado, 

Kansas and Nebraska were 22.54 (103.67, 195.91), 29.31 (35.35, 163.68) and 31.30 (51.95, 

212.43) respectively. For North Dakota, South Dakota and Texas, their respective values were 

31.15 (46.27, 168.15), 36.54 (19.01, 173.43) and 40.44 (18.95, 211.75). Table 6 presents the 

descriptive statistics of the predicted models. 
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Figure 6: Markov chain Monte Carlo diagnostics for ND corn yield 
 
 

Figure 6a: Trace panels for intercept of component one for North Dakota corn yield 

 
Figure 6c: Trace panels for intercept of component two for North Dakota corn yield 

 

 
 
 
Figure 6b: Trace panels for slope of component one for North Dakota corn yield  

 
Figure 6d: Trace panels for slope of component two for North Dakota corn yield 
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Table 6: State-wise prediction for all corn yield models  
PREDICTED MODEL 

 
COLORADO 

 
KANSAS 

 
NEBRASKA  

N Mean Std Dev Min. Max. N Mean Std Dev Min. Max. N Mean Std Dev Min. Max. 
Model 1 96 109.36 18.14 78.75 139.97 432 114.50 24.42 78.75 182.69 2736 116.68 30.35 78.75 182.69 
Model 2  96 108.83 20.58 59.36 139.33 432 114.35 27.08 59.36 185.16 2736 116.69 31.94 59.36 185.16 
Model 3 96 152.67 28.71 88.77 206.49 432 103.04 33.73 19.67 178.59 2736 132.08 31.76 37.05 213.08 
Model 4 96 152.67 28.71 88.76 206.49 432 103.04 33.73 19.67 178.59 2736 132.07 31.76 37.04 213.06 
Model 5 96 152.67 24.82 92.44 194.51 432 103.05 31.77 23.43 168.52 2736 132.07 32.90 40.72 210.85 
Model 6 96 152.67 24.80 92.48 194.53 432 103.05 31.31 23.47 165.82 2736 132.08 32.86 40.76 210.78 
Model 7 96 109.30 18.08 78.79 139.81 432 114.48 24.45 78.79 182.88 2736 116.68 30.41 78.79 182.88 
Model 8 96 108.77 17.89 70.51 135.82 432 114.33 25.35 70.51 181.98 2736 116.69 30.40 70.51 181.98 
Model 9 96 152.67 26.88 99.91 208.81 432 103.12 32.13 31.59 180.91 2736 132.07 30.14 48.18 215.40 
Model 10 96 152.67 26.88 99.91 208.81 432 103.12 32.13 31.59 180.91 2736 132.07 30.13 48.18 215.39 
Model 11 96 152.67 22.57 103.62 195.93 432 103.12 30.01 35.30 170.21 2736 132.07 31.34 51.90 212.44 
Model 12 96 152.67 22.54 103.67 195.91 432 103.12 29.31 35.35 163.68 2736 132.07 31.30 51.95 212.43 
Smoothened Yield 96 152.67 26.24 93.43 190.80 432 103.12 25.81 51.67 160.79 2736 132.07 33.78 51.16 224.41 
Actual Yield 96 152.67 29.16 92.00 218.50 431 103.21 34.43 23.00 196.00 2736 132.07 37.38 18.40 228.50 
PREDICTED MODEL 

 
NORTH DAKOTA 

 
SOUTH DAKOTA 

 
TEXAS  

N Mean Std Dev Min. Max. N Mean Std Dev Min. Max. N Mean Std Dev Min. Max. 
Model 1 192 117.15 31.54 78.75 182.69 672 120.42 33.80 78.75 182.69 864 115.10 24.65 78.75 182.69 
Model 2  192 117.18 32.64 59.36 185.16 672 120.70 35.62 59.36 185.16 864 114.98 27.37 59.36 185.16 
Model 3 192 100.85 28.48 34.32 155.47 672 97.21 32.31 4.11 167.72 864 88.89 43.75 4.05 217.63 
Model 4 192 100.84 28.48 34.32 155.46 672 97.21 32.31 4.11 167.72 864 88.89 43.75 4.02 217.62 
Model 5 192 100.85 31.77 35.16 163.22 672 97.21 37.11 7.78 171.78 864 88.89 41.73 7.74 211.16 
Model 6 192 100.84 31.42 35.21 163.15 672 97.21 37.47 7.82 171.77 864 88.89 41.82 7.77 211.18 
Model 7 192 117.15 31.61 78.79 182.88 672 120.45 33.89 78.79 182.88 864 115.08 24.69 78.79 182.88 
Model 8 192 117.19 31.36 70.51 181.98 672 120.73 34.13 70.51 181.98 864 114.97 25.48 70.51 181.98 
Model 9 192 100.84 26.65 45.46 157.78 672 97.21 30.71 15.24 170.04 864 88.89 42.58 15.19 219.94 
Model 10 192 100.84 26.65 45.46 157.78 672 97.21 30.71 15.24 170.04 864 88.89 42.58 15.17 219.94 
Model 11 192 100.84 31.33 46.22 168.16 672 97.21 36.05 18.96 173.41 864 88.89 40.35 18.90 211.75 
Model 12 192 100.84 31.15 46.27 168.15 672 97.21 36.54 19.01 173.43 864 88.89 40.44 18.95 211.75 
Smoothened Yield 192 100.84 34.03 47.55 179.87 672 97.21 39.86 21.72 183.11 864 88.89 37.69 14.98 207.10 
Actual Yield 192 100.84 37.69 36.00 207.60 672 97.21 44.17 1.50 194.50 864 88.89 42.02 15.00 233.20 
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3.5 Empirical results for the prediction of soybean yield 

The panels for soybean yield of North Dakota specific slopes and intercepts are presented in Figure 

7. There is a good mixing in the Markov chain Monte Carlo. The modest autocorrelation 

diminishes after about 10 successive samples for component 1 of the intercept. For North Dakota, 

the autocorrelation diminishes after 5 successive samples for both component 1 and 2. The trace 

plot and the density plots signify successful convergence in the models. The density plots reveal a 

smooth and unimodal density function which implies that the samples provide a good 

representation of the posterior distribution. The supplementary files contain the diagnostics for the 

other states for soybean yields. 

The model diagnostics for the 12 soybean models are presented in Table 5. The diagnostics 

used are the AIC and BIC. We find the results to be consistent for both goodness of fit indicators. 

The least AIC is found for model 11 with 14750.5 while its BIC is also the smallest (15580.9). 

This implies that soybean yields are most accurately predicted using model 11. This model consists 

of the smoothened yield as a function of the Bayes classifier to account for random events, state 

nested in the Bayes classifier, crop reporting districts nested in the states, county yields nested in 

the crop reporting district and the individual years. The structure of this model suggests that it is 

important to consider the impact of random events at each hierarchical structure level. 

Using the prediction from model 11, the predicted average soybean yield for Kansas is 

30.76bu/acre. The predicted averages for Nebraska and North Dakota are 41.62bu/acre and 

29.19bu/acre for model 11 while Oklahoma and South Dakota had predicted soybean yields of 

23.40bu/acre and 34.15bu/acre. This predicted average for the optimum model is equal to the 

predicted average yields from models 3,4,5,6, 9,10, 12, the smoothened and actual yields for all 

the states. However, discussions on crop insurance are more concerned about dispersion of risk 

(standard deviation, minima, maxima and tails). Hence, the importance of the optimum model is 

evident in the predicted dispersion parameters. It can be seen that the standard deviation for model 

11 is 7.65bu/acre, 9.08bu/acre, 6.97bu/acre, 6.92bu/acre and 7.23bu/acre for Kansas, Nebraska, 

North Dakota, Oklahoma and South Dakota respectively. Among the predicted standard 

deviations, that of model 12 for Nebraska, North Dakota, Oklahoma and South Dakota are equal 

to that of model 11. However, their minima and maxima are different. The predictions based on 

the comparative models for soybean yields are presented in Table 7.  

 



  

19 
 

Figure 7: Markov chain Monte Carlo diagnostics for ND soybean yield  
 
 

Figure 7a: Trace panels for intercept of component one for North Dakota soybean yield 

 
Figure 7c: Trace panels for intercept of component two North Dakota soybean yield 

 

 

 
 
 
Figure 7b: Trace panels for slope of component one for North Dakota soybean yield 

 
Figure 7d: Trace panels for slope of component two for North Dakota soybean yield 
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Table 7: State-wise prediction of all soybean yield models 
PREDICTED MODEL  KANSAS  NEBRASKA  NORTH DAKOTA  

N Mean Std Dev Min Max N Mean Std Dev Min Max N Mean Std Dev Min Max 
Model 1 912 35.52 7.18 24.08 55.37 1536 36.01 8.10 24.08 55.37 192 35.03 6.47 24.08 45.98 
Model 2 912 35.53 8.33 18.46 61.06 1536 36.00 9.22 18.46 61.06 192 35.05 7.82 18.46 52.03 
Model 3 912 30.76 9.15 8.09 55.90 1536 41.62 9.42 16.68 68.30 192 29.19 8.45 11.52 48.21 
Model 4 912 30.76 9.15 8.09 55.90 1536 41.62 9.42 16.68 68.30 192 29.19 8.45 11.52 48.21 
Model 5 912 30.76 8.78 9.70 55.14 1536 41.62 10.07 16.78 73.40 192 29.18 8.17 11.61 47.45 
Model 6 912 30.76 8.76 9.70 55.14 1536 41.62 10.07 16.78 73.40 192 29.19 8.17 11.61 47.45 
Model 7 912 35.52 7.17 24.07 55.27 1536 36.01 8.09 24.07 55.27 192 35.04 6.48 24.07 46.00 
Model 8 912 35.53 7.17 24.52 57.26 1536 35.99 8.13 24.52 57.26 192 35.06 6.56 24.52 48.37 
Model 9 912 30.76 8.09 14.14 52.89 1536 41.62 8.40 22.73 65.30 192 29.19 7.29 17.57 45.21 
Model 10 912 30.76 8.09 14.14 52.90 1536 41.62 8.40 22.73 65.30 192 29.19 7.29 17.57 45.21 
Model 11 912 30.76 7.65 15.58 51.69 1536 41.62 9.08 22.87 69.46 192 29.19 6.97 17.71 44.01 
Model 12 912 30.76 7.63 15.58 51.67 1536 41.62 9.08 22.88 69.44 192 29.19 6.97 17.71 43.99 
Smoothened Yield  912 30.76 6.88 14.96 55.45 1536 41.62 10.14 23.82 71.77 192 29.19 6.47 16.39 42.39 
Actual Yield 912 30.76 10.36 8.00 62.50 1536 41.62 11.35 15.40 72.20 192 29.19 8.13 9.20 48.30 
PREDICTED MODEL  OKLAHOMA SOUTH DAKOTA 

     
 

N Mean Std Dev Min Max N Mean Std Dev Min Max 
    

Model 1 240 35.50 6.88 24.08 55.37 288 35.03 6.47 24.08 45.98 
     

Model 2 240 35.50 8.19 18.46 61.06 288 35.05 7.82 18.46 52.03 
     

Model 3 240 23.40 8.78 4.01 45.57 288 34.15 8.67 13.03 54.71 
     

Model 4 240 23.40 8.78 4.01 45.57 288 34.15 8.67 13.03 54.71 
     

Model 5 240 23.40 8.05 4.10 43.68 288 34.15 8.40 13.12 53.95 
     

Model 6 240 23.40 8.05 4.10 43.68 288 34.15 8.40 13.12 53.95 
     

Model 7 240 35.50 6.88 24.07 55.27 288 35.04 6.48 24.07 46.00 
     

Model 8 240 35.51 6.99 24.52 57.26 288 35.06 6.55 24.52 48.37 
     

Model 9 240 23.40 7.67 10.06 42.57 288 34.15 7.54 19.08 51.71 
     

Model 10 240 23.40 7.67 10.06 42.57 288 34.15 7.54 19.08 51.71 
     

Model 11 240 23.40 6.92 10.20 40.66 288 34.15 7.23 19.22 50.51 
     

Model 12 240 23.40 6.92 10.20 40.64 288 34.15 7.23 19.22 50.49 
     

Smoothened Yield  240 23.40 4.62 17.07 37.97 288 34.15 8.22 14.74 54.79 
     

Actual Yield 240 23.40 7.34 5.60 44.50 288 34.15 10.13 4.30 60.40 
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4. Conclusions  

We extend the literature on crop yield predictions in the presence of random shocks. Previous 

studies have examined crop yield distributions based on factors that affect yields, e.g. 

technological change, climate change and weather-related factors and soil and topographical 

characteristics. However, agricultural yield data is often affected by random and latent 

characteristics which lead to dissimilarity of data groups. Meanwhile, mixing data from dissimilar 

distributions often lead to farm policy implementation problems when not properly accounted for 

(Liu and Ker, 2020).      

To overcome the challenges in the accurate prediction of crop yields, there is the need to 

properly account for the random data generating processes in crop yield data. Traditional HLM 

models assume a gaussian distribution. This may lead to bias inference if the subgroups within the 

data structure are not normally distributed. In this light, the present article proposes a novel 

statistical method to account for randomness in crop yield data. To accomplish the objective of 

this article, 12 HLM structures were estimated and compared based on the AIC and BIC values 

using U.S. northern great plains corn and soybean yield data. For corn, it was found that the HLM 

structure that accounts for randomness effectively is the smoothened data with a level for the Bayes 

classifier, state, county and year. For soybean, the structure that accurately accounts for 

randomness is the smoothened data with a layer considering the Bayes cluster assignment, state, 

crop reporting district, county and year. Overall, the best model for both commodities imply that 

accounting for randomness with the unsupervised Bayesian cluster assignment improves the 

prediction accuracy of the yields. Our results indicate that, assigning Bayes class as a level in an 

HLM improves prediction of the crop yield data in the presence of random and latent 

characteristics. Finally, the results from this study also indicate that drawing observations from 

neighboring states can help improve the prediction of states yields due to similarity of 

characteristics among different states. 

We employed a balanced data set to test the proposed model due to the incorporation of a 

penalized B-spline for temporal smoothing. Researchers who do not wish to use this method for 

temporal smoothing can choose to use either a balanced or unbalanced data. However, it must be 

noted from our results that, incorporating the temporal smoothing technique improved the 

prediction of the model.  
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5. Future Research  

Primarily, farm policy is dependent on the ability to predict relevant policy variables based on a 

given set of indicators. In the U.S., most of the policies introduced to improve the agricultural 

sector are embedded in the Farm Bill. Some of these policies include the conservation programs, 

farm program payments, trade & taxes, and crop insurance.  

Despite the policies enacted to help boost agricultural production and producer welfare, the 

risks and uncertainties involved in agricultural production often lead to loss of income for 

producers. Hence, to evaluate their impacts, it is necessary to have an appropriate statistical 

method. The improvements in prediction accuracy from the proposed model implies that policy 

variables of interest such as conservation program payments, climate change, change in consumer 

preference for processed agricultural products and other farm bill policies can be evaluated using 

the hierarchical linear model with a Bayesian layer obtained from a Dirichlet process mixture 

model classification. Given this finding, the next phase of this research will evaluate the sources 

of variability of crop yields based on the proposed model. The specific objectives to be pursued as 

part of this goal will;  

• Evaluate the impact of farm and conservation program payments on ND corn and soybean 
production. 

• Examine the impact of farm fertilizer utilization on greenhouse gas emissions and 
productivity.  
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