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Abstract: This paper addresses the two main problems that Regional Fish-
ery Management Organizations face. First, how to induce independent na-
tions to reduce their �shing e¤orts from the competitive equilibrium to pre-
vent the �sh stock from extinction or to increase pro�ts. We argue that
adjustment from the Nash equilibrium to a state of sustainable yield can be
achieved by means of the proportional rule without harming any of the coun-
tries involved. Next we propose the population monotonic allocation scheme
as management rule for the second problem: the division of pro�ts within an
expanding coalition of countries to ensure stability and e¢ cient harvesting.

Key words: �shery management, proportional rule, population monotonic
allocation scheme, Shapley value.

JEL classi�cation: C71, C72, D62, D74, Q22

1 Introduction

The United Nations Convention on the Law of the Seas of 10 December 1982
granted coastal states the right to extend their jurisdiction over �shery re-
sources out to 200 nautical miles by establishing exclusive economic zones
(EEZ). The rationale for the EEZ regime was to mitigate the �sheries com-
mon property problem by transforming the status of the bulk of the world�s

1Corresponding author: K.H.Phamdo@massey.ac.nz
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marine �shery resources from open access to coastal state property �sheries.
Straddling and highly migratory �sh stocks, however, cross the borders of
EEZs and are found in the adjacent high seas areas, where, in principal,
there is free entry for nations to harvesting2. This has led to �shing disputes
and even �shing wars (e.g. the Spain-Canada dispute in 1995).
The escalation of high seas �sheries and resulting �shing disputes were

addressed by the U.N. intergovernmental conference from 1993 to 1995. The
conference resulted in the 1995 U.N. Fish Stocks Agreement, which sets out
principles for the conservation and management of those �sh stocks (OECD,
1997). The Agreement declares that states should cooperate to ensure conser-
vation and optimal utilization of �sheries resources both within and beyond
the EEZs. It grants the rights of all states to utilize the �shery resource in the
high seas and speci�es that harvesting should be coordinated by a coalition
of the traditional harvesting states, acting through a regional or sub-regional
organization, i.e. a Regional Fisheries Management Organization (RFMO).
The Agreement calls for those nations who wish to participate in the har-
vesting of the �sh resource in the high seas, but are not currently members
of the RFMO, to declare a willingness to join and to enter into negotiations
over mutually acceptable terms of entry. The Agreement entered into force
on 11 December 2001 (UN, 2002).
The Agreement, however, provides to the RFMO �no coercive enforce-

ment powers to exclude non-member harvest or set the terms of entry into
membership�(McKelvey et al., 2002). There are, among others, two prob-
lems casting doubt on the e¤ectiveness of RFMOs (Kaitala andMunro, 1993).
First is the �interloper problem�, which concerns the di¢ culty of controlling
harvesting by non-member vessels, including individually operated vessels,
but also coordinated multi-vessel �distant water �eets�. Both seek targets-
of-opportunity, and skim o¤bountiful harvests wherever they occur, but with
little interest in the long-term conservation of the stocks. Second is the �new
member problem�, which concerns the inherent di¢ culties of negotiating in a
timely manner, mutually acceptable terms of entry that specify the petition-
ing nation�s membership rights and obligations (Kaitala and Munro, 1995)3.
Indeed, the interests of current members and of applicants are often strongly

2See, amongst others, Bjørndal and Munro (2003) for analyses of straddling and highly
migratory �sh stocks. For a survey of the economics of �shery management, see Bjørndal
and Munro (1998).

3We refer to Pintassilgo and Duarte (2000) who discuss the problem of new entrants
in a dynamic setting for the Northern Atlantic Blue�n Tuna.
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opposed: the current members face the likelihood of having to give up a
portion of their present quotas to the newcomer, and the applicant believes
that it may be better o¤ by staying outside of the coalition and continuing
to harvest while facing fewer constraints4.
According to Kaitala and Munro (1995), the resolution of the new mem-

ber problem may call for the creation of de facto property rights for the
charter members of a RFMO. The quotas allocated to the charter member
would take the form of individual transferable quota (Munro, 2000). Thus,
the charter members would become the sole bene�ciaries of the �shery re-
source. Moreover, a potential new entrant could only access the �sh stock in
question by buying the �shing rights and quotas of an incumbent �eet. How-
ever, it is not evident that such a system based on assumptions of economic
e¢ ciency and resource sustainability is viable. It would vest substantial in-
terests with the incumbent �eets, which is likely to be strongly opposed by
potential entrants. As an alternative to the transferable quota system, in this
paper we suggest enlargement of the RFMO by admitting new members. A
basic problem in this regard is the allocation of the payo¤s in the enlarged
organization such that non-members have an incentive to join and incumbent
members to adjust to the enlargement rather than leaving the coalition and
starting to exploit the resource in an unsustainable manner.
For this purpose we propose the population monotonic allocation scheme

(PMAS). This management rule makes both charter members and potential
entrants better of compared with a situation of unregulated exploitation (i.e.
the competitive or Nash-Cournot equilibrium). As such, the competitive
equilibrium is a threat that induces charter members to admit new entrants
and potential entrants to join the agreement in order to avoid a situation
characterized by competitive behaviour5. Next we introduce the proportional
rule to reduce e¤ort to achieve sustainable and e¢ cient harvesting6.
The organization of this paper is as follows. In section 2 the �shery re-

source management problem is set up. This section also presents results that

4Observe that the interloper problem and the new member problem are closely related:
potential members who do not join the RFMO or frustrated charter members who leave
the RFMO may become interlopers.

5Note that under the U.N Agreement the members of a RFMO do not have the right
to prevent any potential member to access the resource. It is a threat to the long run
viability of a cooperative agreement.

6Observe that this management rule can be applied in general and is not necessarily
related to the admission of new entrants.
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are needed in section 3, which presents the population monotonic allocations
scheme and the proportional rule as management rules for an expansion of
a coalition and the reduction of e¤orts, respectively. Conclusions follow in
section 4.

2 The �shery game

We adopt the Gordon-Schaefer model of �shery (Clark, 1990, McKelvey et
al., 2002). In this model, the biological response of the �sh stock to harvesting
is characterized by the following steady state yield-to-e¤ort relationship:

�
x = F (x)�H(e; x) (1)

where x is a non-negative state variable representing the �shery resource or
biomass; F (x) is a growth function of biomass satisfying F (0) = F (b) = 0;
and F

00
(x) 6 0 for x 2 (0; b); where b is the carrying capacity of the resource;

e is the total �shing e¤ort and H(e; x) is the harvesting or production func-
tion. For further details, we refer to Clark (1990 and 1999) Observe that
the harvesting function is often assumed to be bilinear in the stock, x, and
the �shing e¤ort, e; such that H(x; e) = qex , where q is the catchability
coe¢ cient (Clark, 1990).
Although equation (1) is dynamic, we will proceed in a static setting7.

This can be justi�ed on the basis of common practice in transboundary �sh-
ery management, where production conditions are set periodically based on
the status of the �sh stock. Particularly, the static model seems consistent
with the management of many open access regimes throughout history and
across cultures (Conrad, 1999, p.39). For example, the Individual Transfer-
able Quota systems (ITQs) represent harvesting rights designed for a one-
year period (Bjørndal and Munro, 1998). Hence, the presumed environment
is one in which only the current �shing e¤ort and stock variable determine the
management decision. The approach we adopt here comes down to choosing
across di¤erent steady states, ignoring transitional dynamics.
The above assumptions imply that for a given e, the stock evolves towards

the sustainable equilibrium x = xb(e) de�ned by

F (xb(e))�H(e; xb(e)) = 0; i.e.
�
x = 0:

7Observe that the static model comes down to periodic adjustment of current exploita-
tion of the �sh stock (Bjørndal and Munro, 1998).
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It is convenient to assume that F (x) and H(e; x) are of the forms:

F (x) = x(b� x) and H(e; x) = ex:
In that case, the steady-state relation between e¤ort and stock is given by
xb(e) = b � e; if e 6 b: If e > b the stock decays rapidly (Clark, 1990).
Therefore, to avoid depletion of a �sh resource, e should be less than b. The
corresponding level of harvesting at the equilibrium xb(e) is determined by

H(e; xb(e)) = e(b� e); for 0 6 e 6 b: (2)

To simplify the analysis, we normalize the unit price of harvest landed so
that the payo¤ (or economic rent) is

�(e) = e(b� e)� ce (3)

where c is the unit cost of e¤ort. Note that in the case of a large high seas
�shery, costs may not be constant, as assumed here. However, for convex
cost functions (rather than linear cost functions) the results obtained below
would not basically change (for details, see Norde et al., 2002). The harvest
is thus pro�table only if 0 < e < b� c:

As a preliminary to the next section, we generalize the above model to a
set of N countries (N = f1; 2; :::; ng) harvesting the �sh stock independently
and simultaneously. We assume that each country�s set of e¤ort levels (or
�shing �eet) is Ei; where Ei = [0; li]; and li 2 [0;1) is the maximum e¤ort
level of country i: Let ei be a given e¤ort level of country i; ei 2 Ei: In
addition, let e = (e1; e2; :::; en) 2 E1 � E2 � ::: � En denote the vector of
�shing e¤orts of n countries. (For the remainder of this paper e denotes a
vector of e¤ort level).
In this setting, the total harvest of N countries isH(e; x) =

P
i2N Hi(e; x);

where Hi(e; x) = eix is the harvest level of country i. The structure of the
yield-to-e¤ort equation (1) does not change (given b), but the total e¤ort now
is the sum

Pn
i=1 ei; and the corresponding equilibrium �sh stock is xb(e) = b�Pn

i=1 ei: Hence, the economic rent of each country k is �k(e) = Hk(e; xb(e))�
ckek = (b�

Pn
i=1 ei)ek� ckek; where ck is the unit cost of e¤ort of country k.

Since the equilibrium xb(e) depends upon both the carrying capacity b
and the total (competitive) e¤ort

Pn
i=1 ei, we can consider it as the linear

inverted supply curve in a Cournot situation with n producers. For a give b,
we use notation p(e) to denote xb(e): Thus, if the individual country payo¤s
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are proportional to the corresponding �shing e¤ort levels, and if each country
has its own cost function (i.e. each country has its own technology), then
country k�s payo¤ can be written as

�k(e) = �k(e1; :::; en) = p(e)ek � ckek (4)

where p(e) = b�
Pn

i=1 ei.

Equation (4) shows that each country�s payo¤ depends on the aggregate
e¤ort and on the country�s own e¤ort or �shing �eet. Particularly, for a
country to maximize its payo¤, it will calculate its optimal e¤ort level taking
into account the e¤ort levels of its opponents:

We now present a formal de�nition of a noncooperative �shery game:

De�nition 2.1 A noncooperative �shery game (NFG) is an n-person game

� =< E1; :::; En; �1; :::; �n >; where

(i) Ek = [0; lk] is the strategy set of player k, and 0 < lk <1 :
(ii) �k(e) = p(e)ek � ckek is the payo¤ function of player k , where
p(e) = maxfb�

Pn
j=1 ej; 0g and ck > 0:

The following basic results for noncooperative �shery games will serve as
a benchmark for the cooperative game theoretic analysis presented next.

Theorem 2.1 Every noncooperative �shery game � has a unique Nash equi-
librium e�. Moreover, the equilibrium vector e� satis�es

Pn
k=1 e

�
k � b:

Proof. (see Appendix)

From the above, it follows that the competitive outcome is a worst case
scenario in the sense that the stock is at risk of extinction and resource
rent will be dissipated. This situation characterized by Theorem 2.1 might
prevail in the case of independent countries that have not restrained their
competitive e¤orts (section 3.2) or when negotiations between new members
and incumbent nations break down and the latter give up conservation to
turn to competitive e¤orts. However, when traditional harvesting countries
have restrained their e¤orts to preserve or build up a stock or when distant
water �eets belonging to countries that have not yet participated in a given
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announce an intention to begin harvesting and at the same time petition to
join a RFMO, the situation may be less gloomy.

Remark The outcome of the noncooperative game is virtually identical to
that of the unregulated open access �shery, particularly when the combined
harvesting e¤ort in the Nash equilibrium is larger than b=2 (for further details,
see Clark, 1980). This is due to the fact that at b/2 the yield of the �sh
resource is maximally sustainable, and p(e) = b�

Pn
i=1 ei can be considered

as the Cournot price8.

We now turn to cooperative �shery games. Recall that a cooperative game
or transferable utility game (TU game) is an ordered pair (N; v) where N is
the set of players, and v : 2N ! R is the characteristic function relating
to each coalition S � N a real number v(S) representing the total payo¤
(pro�t) which S is able to generate through internal cooperation, with the
convention that v(�) = 0:
Consider an n-player noncooperative �shery game, and a coalition S �

N: The aggregate payo¤ function of coalition S equals the sum of payo¤
functions of players belonging to S. That is, with e = (eS; e�S) 2 E;

�S(e) =
X
j2S

�j(e) =
X
j2S
[p(eS; e�S)ej � cjej]: (5)

For each �shery game, we de�ne two related cooperative games by means
of the �- and �- conversions, introduced by Aumann (1959), as follows.

The �-characteristic function of a �shery game � is the function v� de-
�ned by

v�(S) =MaxeS2ESMine�S2E�S�S(eS; e�S); (6)

whereas the �-characteristic function of the �shery game � is the function
v� de�ned by

v�(S) =Mine�S2E�SMaxeS2ES�S(eS; e�S): (7)

The ��characteristic function represents a prudent perception by the
members of the coalition S about their capability to guarantee themselves

8For ease of exposition we take as reference point the maximum sustainable yield rather
than the maximum economic yield which requires information on the interest rate, the
cost of harvesting as a function of inter alia stock size and the in situ value of the stock
(Tahvonen and Kuuluvainen, 2000).
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the payo¤ v�(S) if they choose the joint strategy eS when the opposition
NnS acts to minimize its payo¤ (i.e: coalition S can ensure to its mem-
bers the maximum (total) payo¤while choosing the strategy combination eS
regardless of what the opposition NnS does).
The ��characteristic function represents an optimistic perception by the

members of the coalition S in the sense that the opposition NnS can prevent
the players in S from getting more than v�(S). It is the payo¤ to which the
opposition can hold the coalition. Therefore, in the �- framework, a coalition
S obtains the payo¤ it can guarantee itself, irrespective of the strategy choice
of the players in NnS, whereas in the �- framework, the coalition S obtains
the maximum payo¤ from which it can not be prevented by the players in
NnS.
It is easy to see that

v�(S) 6 v�(S) for all S � N and v�(N) = v�(N):

The �� and ��characteristic functions coincide for �shery games, as the
following proposition states.

Proposition 2.1 The payo¤s de�ned by (6) and (7) coincide for each �shery
game, i.e. v�(S) = v�(S) for all S � N:

Proof. (see Appendix)
Proposition 2.1 states that for every coalition S the amount v�(S) which

this coalition can guarantee itself, and the maximum amount v�(S) from
which it can not be prevented by the opposition are the same.

The game (N; v) with v = v� = v� will be called a cooperative �shery
game (CFG).

We now present some important characteristics of cooperative �shery
games. First of all, the convexity9 of a cooperative �shery game follows di-
rectly from Theorem 1 in Norde et al. (2002). Observe that a cooperative

9A cooperative game (N; v) is called convex if for every S; T � N and every i 2 N such
that S � T � Nnfig, it follows that v(T [ fig)� v(T ) � v(S [ fig)� v(S):
The term v(S [ fig) � v(S) is the marginal contribution of player i to the coalition S:

So a game is convex if the marginal contribution of a player to some coalition increases if
the coalition which he joins grows larger.
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�shery game (CFG) can be an oligopoly game with or without transferable
technology. Since the transfer of technology under substantial costs of re-
placing �shing, hence, a CFG is more likely to be an oligopoly game without
then with transferable technology in the short run.

Proposition 2.2 Every cooperative �shery game is a convex game.

The following corollary follows from Proposition 2.2.

Corollary 2.1 A cooperative �shery game has a non empty core10. More-
over, for every S; T such that S � T , v(S)�

P
k2S v(fkg) 6 v(T )�

P
k2T v(fkg):

Corollary 2.1 implies that for a cooperative �shery game expansion of the
coalition can be rewarding to its players.

Theorem 2.2 The Shapley value11 of a cooperative �shery game is a solution
that is both individually rational and e¢ cient. Moreover, the Shapley value
is in the midpoint of the core of the CFG.

Proof. (see Appendix)

The concepts, propositions and theorem presented above will be applied
to develop RFMO management rules.
10For a cooperative game (N,v), a payo¤ vector (wi)i2N ; where wi is the payo¤ of player

i 2 N; is called a core element of the game (N,v) ifX
i2N

wi = v(N) and
X
i2S

wi � v(S) for all S � N:

The �rst part of this de�nition ensures that the payo¤ vector is feasible (the so-called
e¢ ciency condition) for the grand coalition N . The second part introduces a stability
requirement which states that no subcoalition S; by acting on its own, can achieve an
aggregate payo¤ which is higher than the sum of the elements of payo¤ vector w. If we
take for S the singleton sets we get the individual rationality requirement, stating that
every player should receive at least his stand-alone value.

11For a cooperative game (N; v); the Shapley value (Shapley, 1953), �(v) = (�k(v))k2N ,
is de�ned as

�k(v) =
X

S�Nnfkg

jSj!(n� 1� jSj)!
n!

(v(S [ fkg)� v(S)):

Roughly speaking, the Shapley value means that each player should be paid according
to how valuable her/his cooperation is for the other players. In general, the Shapley value
needs not generate a core element. However, for convex games it does (Shapley, 1971).
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3 RMFO management rules

As mentioned in section 1, the management problem a RFMO most often
encounters are the new member problem and the reduction of e¤orts. In the
following, the newmember problem is discussed in section 3.1 in a cooperative
setting. The redutions of e¤ort problem is discussed in section 3.2.

3.1 The new member problem

In a cooperative setting a stable coalition S may divide the aggregate rev-
enue according to a vector (wj;S)j2S; where wj;S denotes the share of player
j. When country k enters S, the coalition S [ fkg faces the problem of di-
viding their aggregate revenue according to the vector (wj;S[fkg)j2S[fkg: The
new entrant k can be accepted to join the coalition S if it does not harm
any member of S, that is, if wj;S[fkg � wj;S � 0 for all j 2 S: Moreover, the
new entrant should be better o¤ by joining the coalition rather than staying
out of it. This feature forms the so-called monotonicity property. In other
words, an allocation scheme12 satisfying the monotonicity property is ac-
ceptable for every player. In game theory, there is one solution concept that
re�ect these monotonicity requirements, namely the population monotonic
allocation schemes.
The notion of population monotonic allocation scheme (PMAS), intro-

duced by Sprumont (1990) reads as follows.

De�nition 3.1 A vector (wj;S)S�N;j2S is a population monotonic allocation
scheme (PMAS) for the cooperative game (N,v) if it satis�es the following
conditions:

(i)
P

j2S wj;S = v(S) for all S � N
(ii) wj;S 6 wj;T for all S; T � N with S � T and all j 2 S:

The number wj;S represents the payo¤ to player j if coalition S decides to
cooperate. Condition (i) is an e¢ ciency requirement and condition (ii) states
that if, instead of coalition S, the larger coalition T decides to cooperate (i.e.,
the members of TnS are new comers and included in the cooperation), then
the payo¤ of players in S should not decrease. A PMAS, therefore, guaran-
tees that once a coalition S has decided upon an allocation of v(S), no player

12An allocation scheme is a payo¤ scheme that does not only provide a payo¤ vector for
a speci�c game but also for all its subgames.
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will have an incentive to form a smaller coalition. The reason is that the play-
ers�payo¤s in the smaller coalitions would decrease. Sprumont (1990) also
shows that convex games have a PMAS. In fact, he proves that the Shapley
value for the game that includes all players and for each subgame provides a
PMAS. The following theorem is a direct consequence of Sprumont�s result
and Proposition 2.2 which states that every �shery game is a convex game.

Theorem 3.1 Every cooperative �shery game has a PMAS. Furthermore,
the Shapley values calculated for all subgames give a PMAS.

Example 3.1 We numerically illustrate the calculation of the PMAS for a
simple example. Consider the 3-person �shery game, where N = f1; 2; 3g,
l1 = 14, l2 = 8, l3 = 12, c1 = 2, c2 = 4, c3 = 16, and b = 60. The �rst
step in the computation of the PMAS is the calculation of the characteristic
function of the cooperative �shery game, i.e. the calculation of the value
of v(S)(= v�(S) = v�(S)) for all possible coalitions S. Observe that the
characteristic function is calculated under the budget constraint in the form
of the total quantity of resource rent available. Norde et al. (2002) provides
a formula for calculation of the value v(S): For the sake of completeness, it
has been included in the Appendix. Applying this formula we obtain

v(123) = 776; v(12) = 512; v(13) = 520; v(23) = 321;

v(1) = 336; v(2) = 176; v(3) = 121:

Recall that the cooperative game (N; v) represents both the �� and
��conversion of the corresponding noncooperative �shery game. So, v(1) =
336 re�ects on one hand the fact that player (country) 1 can guarantee him-
self the value of 336, regardless of what the other players 2 and 3 do and on
the other hand the fact that players 2 and 3 can prevent that player 1 gets
more than 336. Similarly v(12) = 512 re�ects the fact that players 1 and 2
can guarantee themselves a value of 512 and player 3 can prevent them from
getting more.
The next step in the computation of the PMAS is the calculation of the

Shapley value for all players in a given coalition. For a given player it can
be obtained as the average over the marginal contributions for all possible
orders of the players joining the coalition. Finally, the Shapley value for all
possible subgames gives the PMAS.

Table 1 illustrates the calculation of the Shapley value for the 3-person
CFG. The �rst column of Table 1 shows the possible orders of joining the
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grand coalition, whereas columns 2, 3, 4 show the marginal contributions
of player 1; 2; 3 joining the grand coalition for a given order, respectively.
Consider, for instance, the order 1-2-3, where player 1 is the �rst to enter
the grand coalition followed by player 2 and player 3. Player 1�s marginal
contribution is his stand alone value v(f1g) = 336:13 Player 2 is given his
marginal contribution to coalition {1, 2}, i.e. v(f1; 2g) � v(f1g) = 176,
and player 3 is given his marginal contribution to coalition {1, 2, 3}, i.e.
v(f1; 2; 3g) � v(f1; 2g) = 264: For each of the six orders of joining, we can
compute the marginal contribution for each player and the average of these
contributions is the Shapley value.

Table 1. Marginal contributions from joining the grand coalition and
the Shapley value for the 3-country CFG

order
marginal contrib-
ution of player 1

marginal contrib-
ution of player 2

marginal contrib-
ution of player 3

1-2-3 336 176 264
1-3-2 336 256 184
2-1-3 336 176 264
2-3-1 455 176 145
3-1-2 399 256 121
3-2-1 455 200 121

Shapley value 3861
6

2064
6

1831
6

Computing the Shapley value14 for every subgame we get the PMAS
(Table 2). From Table 2 we conclude �rst of all that for each player the pay-
o¤s increase with increasing coalition size. This illustrates the monotonicity
property referred to above. Secondly, player 1�s �shing capacity l1 is largest,

13Note that the stand-alone values in the cooperative game indicate the payo¤s of single
coalitions. For example, in this game v(f1g) (= v�(f1g) = v�(f1g)) is the maximum
payo¤ of single coalition {1} when player 1 considers players 2 and 3 as the coalition
{2,3}. Therefore, these values di¤er from the competitive payo¤s in the Nash equilibrium
(336,176,120).
14Observe that the calculation of the Shapley value circumvents the problem of path

dependence. In practical applications the actual situation has to be taken into account and
corrections for the distance between the actual situation and the benchmark, the Shapley
value, need to be made.
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his cost is lowest, and his payo¤ is the largest in every coalition. We ob-
serve that the rewarding of notably capacity and e¢ ciency are important in
the allocation of TACs to nations. Whereas in principle e¢ ciency could be
achieved by a simple tender of the total TAC and the division of the rent be-
tween stakeholders, this mechanism will not work for the allocation of TACs
to nations because of national goals such as the preservation of employment
which is related to the capacity of their �eets. In other words, capacity and
e¢ ciency need to be �rewarded�under PMAS in this example.

Table 2:PMAS for the 3-country CFG.

1 2 3
123 3861

6
2064

6
1831

6

12 336 176 �
13 3671

2
� 1521

2

23 � 188 133
1 336 � �
2 � 176 �
3 � � 121

3.2 Reduction of �shing e¤ort: allocation of harvest
quotas

As described in section 2, resource rents will be dissipated and a stock will
be depleted if total e¤ort exceeds the carrying capacity of the stock b. In a
similar vein, if total e¤ort exceeds b=2, then total pro�t is below the max-
imum sustainable yield (for details, see Clark, 1990). For both cases the
management problem comes down to a reduction of harvest levels (i.e. quota
shares). To develop a reduction policy for the RFMO we make use of bank-
ruptcy analysis. Particularly, the proportional rule which is frequently used
in the context of bankruptcy problems because it is generally considered to
be a fair rule in the sense that each country incurs the same reduction rate
(see, among others, Thomson, 1995)15.
Under the proportional rule (PROP) each country would reduce its e¤ort

in proportion to its original e¤ort. Consider, for instance, the management
15A bankruptcy problem is a triple (N;E; d), where N is the �nite set of players, E

2 (0;1) is the state which has to be divided and d = (d1; :::; dN ) is the vector of player
claims such that d(N) =

PN
i=1 di � E:
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objective to reduce e¤ort from the total competitive e¤ort level e�(N) =Pn
i=1 e

�
i to the e¤ort level corresponding to the maximum sustainable yield

eM = b
2
; where eM < e�(N) and e�i is country i�s e¤ort in the competitive

situation. In other words, consider the bankruptcy problem where the state
to be divided is the maximum sustainable yield e¤ort level, and the claims
are the e¤ort levels in the competitive outcome. Under PROP country i�s
e¤ort level reduces to

ePROPi = e�i
eM

e�(N)
: (8)

Proposition 3.1 If, in the competitive equilibrium e�; total e¤ort exceeds
half the carrying capacity of the stock, i.e.

Pn
i=1 e

�
i � b

2
; then for every

player the payo¤ under the proportional rule which reduces e¤ort from the
competitive equilibrium to the maximum sustainable yield is larger than the
competitive payo¤.16

Proof. (see Appendix)

The following example illustrates Proposition 3.1.

Example 3.2 Consider the 2-person NFG in which b = 30, l1 = 18; l2 =
16; c1 = 4; and c2 = 5:
The competitive equilibrium e� = (9; 8) which is the intersection of the

two solid lines in Figure 1. Since
Pn

i=1 e
�
i = 17 >

b
2
= 15 we have a subop-

timal pro�t �(e�) = (81; 64): Adjustment according to the propotional rule
leads to eA = (9; 8) � 15

17
= (7:94; 7:06); which is the intersection of the two

dotted lines in Figure 1. The payo¤, �(eA) = (87:35; 70:59) is larger than
�(e�):

16This proposition holds as long as the following condition is met: b�mini2N ci
2 < eM :

Observe that the steady state assumptions together with zero interest rates are needed
for harvest to be at the maximum sustainable yield with biomass at b=2 and that positive
discount rates will see lower values. We have chosen this extreme situation for exposi-
tory convenience. However, Proposition 3.1 generalizes to other outcomes with positive
discount rates and lower biomasses.
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Figure 1. Best replies (solid lines) and adjusted
e¤ort levels (dotted lines).

The upshot of this section is that the proportional rule is an appropriate
management handle to reduce e¤ort from the competitive equilibrium to
the maximum sustainable yield. Moreover, it is straightforward to show
that similar results hold for the reduction of e¤ort from other sub-optimal
equilibrium by proportional rule. Finally, the prospect of future reduction
by proportional rule may induce countries to refrain from increasing their
e¤orts.

4 Concluding remarks

In this paper we examined how a Regional Fishery Management Organization
(RFMO) might achieve e¤ective control of a high seas �shery. We showed
that the outcome of the non-cooperative solution is virtually identical to that
of the unregulated open access �shery. The management problem considered
in this paper is the new member problem. We proposed the population
monotonic allocation scheme as management rule for coalitions of various
sizes. Under this management rule, each player�s payo¤ increases when the
coalition is expanded. Moreover, a player�s capacity and e¢ ciency are re-
warded. Next we considered management rules to achieve adjustment from
the Nash equilibrium to a state of cooperation. We proposed the proportional
rule for situations where the �shing nations have accepted some coordination
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but are not fully cooperating in the sense that they have formed a coalition
that operates collectively to achieve sustainable and e¢ cient harvesting.
The above mentioned solutions are individually rational and e¢ cient,

which are prerequisites for an agreement. Particularly, the management rules
induce charter members and new entrants to refrain from competitive behav-
iour. The management rules imply that the charter members may have to
give up some part of their quota or property rights while new entrants may
have to accept constraints on their original harvesting levels. Nevertheless,
under the management rules, every �shing nation will be better o¤ than in
the competitive equilibrium. Hence, competitive behaviour is a threat to
induce the countries to accept the management rules.
An important question for further research is the stability of the �sheries

games proposed here. Previous research, amongst others Hanneson (1997),
has shown that with highly mobile �sh stocks, the number of players compat-
ible with a cooperative self-enforcing solution is small for reasonable values
of the discount rate. In other words, cooperative �sheries games with other
than a small number of �shing nations are inherently stable. Our approach
di¤ers from Hanneson�s amongst others in the sense that he considers the
full cooperative solution without specifying how the bene�ts from coopera-
tion are to be distributed among the players whereas we, in contrast, focus
on the characteristics of the proportional rule and PMAS as management
rules. As is well-known (see amongst others, Folmer and von Mouche, 2000),
the full cooperative approach as such may imply net welfare losses relative to
the competitive outcome for some countries which is an incentive for those
countries to free ride.
As shown above, the management rules proposed in this paper ensure that

no player is made worse o¤ compared to the competitive outcome which is
likely to have a mitigating e¤ect on free riding. Nevertheless, further research
on the stability of the cooperative �sheries games presented here is needed17

as well as on mechanisms to mitigate free riding (in as far as it occurs) such
as interconnecting a �shery game with some other game (see e.g. Folmer and
Zeeuw, 2000) or side payments (Kaitala and Munro, 1997).
Finally, we observe that the benchmark of unregulated exploitation ana-

lyzed here is an extreme situation, although many �sheries are not far from

17Recently games in partition function form have been studied to analyze the fundamen-
tal relationships between externalities and the existence of stable coalition structures. We
refer to Pintassilgo (2003) for application of this approach to the North Atlantic blue�n
tuna and Phamdo and Folmer (2006) for fair allocations in the presence of externalities.
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it (see e.g. Munro et al, 2004). However, even if we start from a sub-optimal
situation between the competitive equilibrium and the situation under the
management rules, similar policy implications hold.
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Appendix

Proof. (of Theorem 2.2)
A noncooperative �shery game can be considered as an oligopoly game

with linear inverse supply function p(e) = maxfb�
Pn

k=1 ek; 0g: Ek is a closed,
bounded interval [0; lk]; where lk 2 [0;1); for all k; and the inverse supply
function is a di¤erentiable, strictly decreasing function of total e¤orts: The
�rst part of Theorem 2.1 now follows from Theorem 3.3.3 in Okuguchi and
Szidarovszky (1999).
We now turn to the second part. Let e� be the equilibrium. Let e�(N)

denote the sum
Pn

k=1 e
�
k: Suppose that

Pn
k=1 e

�
k = e

�(N) > b: Thus, p(e�) =
maxfb�

Pn
k=1 e

�
k; 0g = 0; and the vector e� has at least one positive element,

which we denote e�m. Hence, �m(e
�
m; e

�
�m) = �cme�m < 0; and the best re-

sponse of player m to e�m is em = 0: This contradicts the assumption that e
�

is an equilibrium point.

Proof. (of Proposition 2.1)
A cooperative �shery game can be considered as an oligopoly game with-

out transferable technologies as introduced by Norde et al. (2002). The
result then follows from Proposition 3 therein.

Proof. (of Theorem 2.2)
Since a CFG is convex by Proposition 2.2, the result then follows directly

from Shapley�s theorem (Shapley, 1971).

Proof. (of Proposition 3.1)
Let e� = (e�i )i2N be the e¤ort vector in the competitive equilibrium for

which b
2
6 e�(N) 6 b. Furthermore, let ePROP = (ePROPi )i2N be the e¤ort

vector under PROP, i.e. ePROPi = e�i [
b=2
e�(N) ] 6 e�i ; and �i(e�) and �i(ePROP )

the corresponding payo¤s for player i, respectively.

De�ne 
i = �i(e�)� �i(ePROP ): It is su¢ cient to prove that 
i 6 0:

If e�i = 0 then e
PROP
i = 0 and clearly 
i = 0:
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Now assume that e�i > 0: We have


i = [(b�
nX
j=1

e�j)e
�
i � cie�i ]� [(b�

nX
j=1

ePROPj )ePROPi � ciePROPi ]

= (b� ci)(e�i � ePROPi )� [(
nX
j=1

e�j)e
�
i � (

nX
j=1

ePROPj )ePROPi ]:

Since e�i � ePROPi > 0,
Pn

j=1 e
PROP
j = b

2
; and

Pn
j=1 e

�
j =

b
2

e�i
ePROPi

; we obtain


i = (e
�
i � ePROPi )(b� ci)�

b

2ePROPi

[(e�i )
2 � (ePROPi )2]

= (e�i � ePROPi )[(b� ci)�
b

2ePROPi

((e�i + e
PROP
i ))]

6 (e�i � ePROPi )[(b� ci)�
b

2ePROPi

(2ePROPi )]

= �ci(e�i � ePROPi ) 6 0:

Calculation of the coalition value v(S):

Let (N; v) be a CFG. Assume that all �shing costs can be ordered in the
following way: c1 6 c2 6 ::: 6 cn: Following Proposition 4 in Norde et al.
(2002) we have v(S) =

P
j2S flj(b � cj � l(NnS) � 2lS;j) for every S � N;

where lS;j =
P

k2S;k<j lk and l(NnS) =
P

j2NnS
lj: Here flj is the C

1�function,

flj : R! R; de�ned by

flj(x) =

8<:
0 x 6 0;
1
4
x2 0 < x 6 2lj;
lj(x� lj) x > 2lj:

For example, the values of coalitions {1,3} and {1,2,3} in Example 3.1 are
calculated by v(13) = f14(50) + f12(8) = 504 + 16 = 520; and v(123) =
f14(58) + f8(28) + f12(0) = 776:
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