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Abstract:  

Accurate prediction of rates of road deterioration is important in road management systems, to 
ensure efficient prioritization and for setting budget levels. Libyan roads (research target) facing 
increasing damage resulting from the absence of regular maintenance reinforces the need to 
develop a system to predict the deterioration of roads in order to determine the optimal pavement 
intervention strategies (OIS) to support the decision makers. In fact, in a PMS, pavement 
deterioration could be modeled deterministically or probabilistically. This paper proposes a 
Bayesian linear regression method to develop a performance model with the absence of the 
historical data depending on experts’ knowledge as a prior distribution. As such, Libyan road 
experts who have worked for long time with Libyan Road and Transportation Agency will be 
interviewed to assist and support the input data to feed the Bayesian Model. Then, posterior 
distribution will be computed using a likelihood function depending on few inspections. The 
expected results will be the pavement future conditions based on experts’ knowledge and few 
onsite inspections. 
 
Keywords: Pavement management systems, pavement performance, International roughness 
index (IRI), Bayesian linear regression. 
 
1. Introduction: 

	
A road pavement deteriorates under the combined actions of traffic loading and environment, thus 
reducing quality of ride. Useful models should be able to quantify the contribution of relevant 
variables such as strength of pavement materials, traffic, and environmental conditions to 
pavement deterioration. Pavement Management Systems (PMS) are commonly used to select 
maintenance strategies that result in lower project life cycle cost (Haas 1994). 
Modeling the performance of pavements is an absolutely essential activity of pavement 
management, and many highway agencies have developed a variety of pavement performance 
models for use in their pavement management activities, sometimes paying attention to one type 
of performance or one type of model to the exclusion of others. However, all types of 
performance are important and all types of models are useful in predicting at least one kind of 
performance. I will give a brief but comprehensive review of the types of performance, the 
concepts underlying pavement performance prediction models, the data required as input to 
them, their uses and their limitations (Shahin 2005). 
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There are two basic kinds of performance model: deterministic and probabilistic. While the 
deterministic models predict a single number for the life of a pavement or its level of distress or 
other measure of its condition, the probabilistic models predict a distribution of such events. 
Deterministic models include Mechanistic, Empirical-Mechanistic, Polynomial Constrained 
Least Squares, and S-Shaped Curve models. Probabilistic models include Bayesian and Markov 
process models (Li 2005). 
 
1.1. Bayesian Model: 

 
The basic principle of Bayesian statistics lies in combining prior probabilities (and likelihoods) 
with experimental outcomes to determine a post-experimental or posterior probability. The 
posterior distribution expresses what is known about a set of parameters based on both the 
sample data and prior knowledge (Han, Kaito, and Kobayashi 2014). In frequentist statistics, it is 
often necessary to rely on large sample approximations by assuming asymptomatic normality. In 
contrast, Bayesian inferences can be computed exactly, even in highly complex situations. We 
first give an account of basic uses of Bayes’ theorem and of the role and construction of prior 
densities. We then turn to inference, dealing with analogues of confidence intervals, tests, 
approaches to model criticism, and model uncertainty (Gongdon 2003).     	
  

Figure1. Bayes General Concept 
 
Using the probability density function, Bayes’ model can be expressed as follows: 
 

𝑷 𝜽 𝑿 = 𝑷 𝑿 𝜽 𝑷(𝜽)
𝑷(𝑿)

= 𝑷 𝑿 𝜽 𝑷(𝜽)
𝑷 𝑿 𝜽 𝑷 𝜽 𝒅𝜽

                                (1) 
                                                             
1.1.1. Prior knowledge  𝑷(𝜽)  

	
A fundamental feature of the Bayesian approach to statistics is the use of prior information in 
addition to the (sample) data. A proper Bayesian analysis will always incorporate genuine prior 
information, which will help to strengthen inferences about the true value of the parameter and 
ensure that any relevant information about it is not wasted (Lunn et al. 2000). 
 
1.1.2. Maximum Likelihood Estimation (MLE)	𝑷 𝑿 𝜽 : 

	
The maximum likelihood estimation (MLE) approach is one of the most important statistical 
methodologies for parameter estimation. It is based on the fundamental assumption that the 
underlying probability distribution of the observations belongs to a family of distributions 

Expert Knowledge 

New data Likelihood	𝑃(𝑋|𝜃)	 

Prior p.d.f		(𝑃(𝜃)) 

Bayes Theorem Posterior	p.d.f   𝑃(𝜃|𝑋) 
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indexed by unknown parameters (Ralph Haas 1977). The MLE estimator of the unknown 
parameters is the maximizer of the likelihood function, corresponding to the probability 
distribution in the family that gives the observations the highest chance of occurrence. The MLE 
method starts from the joint probability distribution of the n measured values	𝒙𝟏, 𝒙𝟐, … , 𝒙𝒏. For 
independent measurements this is given by the product of the individual densities	𝒑(𝒙|𝜽), which 
is: 
 
𝑷 𝑿 𝜽 = 𝒑 𝒙𝟏 𝜽 𝒑 𝒙𝟐 𝜽 … . 𝒑 𝒙𝒏 𝜽 = 𝒑(𝒙𝒊|𝜽)𝒊6𝟏

𝒏                                              (2) 
                          
1.1.3. Posterior distribution	𝑷(𝜽|𝑿): 

	
It expresses what is known about a set of parameters based on both the sample data and prior 
information. Bayes theorem works as a mechanism for generating a posterior of any parameter 
mixing the prior knowledge with the likelihood. The 1st iteration production of the prior 
knowledge and the MLE will then be divided by 𝑃(𝑋) (normalizing factor) to normalize the 
distribution. 
 
When the posterior distribution  𝑃 𝜃 𝑋  is in the same family as the prior probability 
distribution	𝑃(𝜃), the prior and posterior are then called conjugate distributions. Nonconjugate 
prior distributions can make interpretations of posterior inferences more difficult.  

 
Figure 2. Prior, likelihood, and posterior using arbitrary data. 
 

 
1.2. The International Roughness Index (IRI)   
        
The International Roughness Index (IRI) is an international standard for measuring road 
roughness longitudinally. The index measures pavement roughness in wheel path in terms of the 
number of metres per kilometre that a laser, mounted in a specialised van, jumps as it is driven 
along a road. The lower the IRI number at given speed, the smoother the ride felt by road user. 
Moreover, roughness statistic is suitable for any road surface type and covers all levels of 
roughness (Ralph Haas 1977).  IRI can be treated as a random variable so; it can be described as 
a probability distribution (Shahin 2005). 
 
The main advantages of the IRI are that it is stable over time and transferable throughout the world. 
IRI can also be used as a measure of pavement serviceability and it can be directly related to 
vehicle operating costs (Shahin 2005). 

Likelihood	
Posterior	

Prior	
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2. Methodology: 

 
The technique that will be used to estimate the road network deterioration is by developing a 
Bayesian Expert-Based probability matrices of deterioration of road classes in Libya. This 
method depends on combining observed data and expert experience using Bayesian linear 
regression techniques. Bayesian prediction approach is the process of analyzing statistical 
models by using prior knowledge and observations (Equation 1) (L. A. Jiménez 2012).  
 
Bayesian linear regression is adding more accuracy to the parameters estimation of the 
International Roughness Index (IRI) because it recovers the whole range of inferential solutions, 
rather than a point estimate and a confidence interval as in classical regression (Davison 2008). 
 
The research methodology consists of three major steps which are: experts interviewing in order 
to set up the prior distribution, road network inspection to estimate MLE and then computing the 
posterior and predictive distributions for the IRI: 

 
Figure 3. Research methodology steps. 
 
2.1. Experts interviewing (Prior distribution): 
 
Since loadings and soil conditions are the most important factors that affect damages of most 
pavement sections, they are often used as independent variables in developed condition 
prediction equations. In many cases, they combined with age as an independent variable. Since 
in most circumstances, agencies want to know when in years, the pavement will need 
intervention, in some models loads and types of soil are used as a factor that affects the rate of 
condition change as a function of time which is considered the independent variable. 
In this research, 3 loading levels, 3 soil conditions and 2 climate zones interacting with each 
other and producing 18 pavement families.  Then, these pavement families are used to develop a 
Bayesian linear regression prediction models for each family (Tables 1 and 2). Road sections are 
selected using precise sampling technique to avoid any biased estimations. Initial data will be 
collected by interviewing Libyan experts some of them are Dr. Mohamed Emmbark, Dr. 
Mohamed Eshtewi, and Dr. Mohamed Khalifa who have worked for many years  
on Libyan road network development. Experts interviewing has been conducted using a 
standardized open-ended interviews technique which is the most structured  
and include a set protocol of questions and probes. Table 1 shows the distribution of the 18 road 
conditions families (Pandis 2015). 
 
2.2. Pavement condition inspections (MLE data) 

Prior 
distribution

(Experts 
interview)

MLE
(Road sections 

inspections)

IRI Posterior 
distribution

IRI Predictive 
distribution
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As a part of this research, inspecting selected road sections are conducted. Sectors those are 
inspected are the same sectors which have been investigated during the experts interviewing. The 
road deterioration is measured by the IRI which is considered a standard for pavement roughness 
measurements and analysis for a number of agencies (Ralph Haas 1977). 

Table 1: Road network will be divided into Zones (North and south) interacting 
with traffic loads and soil conditions during a sequence of years. 
 
Table 2.  Each dataset consists of road sections condition under same factors. 

 
 

 

  
 
Table 3. A 
sample of a 
family 
pavement 
condition (IRI 
data). 
 
 

 

 

 
 

 
2.3. RI estimations 
Roads deteriorate and drop their ride quality gradually over time. This relationship can be 
represented using linear regression but practically, road network sections under the same zone, 
age, load, and soil strength conditions could have a different quality of ride. Therefore, Bayesian 
linear regression is the appropriate technique where basic Bayesian philosophy is applied. 

	 North	Zone	 South	Zone	

Load	Level	 Load	Level	

Low	 Medium	 High	 Low	 Medium	 High	

So
il	

St
re
ng
th
	 Low	 Dataset1 Dataset2 Dataset3 Dataset10 Dataset11 Dataset12 

Medium	 Dataset4 Dataset5 Dataset6 Dataset13 Dataset14 Dataset15 

High	 Dataset7 Dataset8 Dataset9 Dataset16 Dataset17 Dataset18 

Dataset i 
Section 1 
Section  2 

 

Section n 
Zone: North                                 Soil strength: Low                                Load level: Low 
Section	 Year	1	 Year	2	 Year	3	 Year	4	 Year	5	
1	 1.5	 1.9	 2.5	 3.3	 3.9	
2	 2	 2.3	 2.6	 3.2	 3.7	
3	 1.8	 3.0	 3.2	 4.0	 4.5	
4	 1.7	 2.3	 2.9	 3.5	 3.9	
5	 2.3	 2.5	 3.0	 3.7	 4.1	
6	 2.0	 2.3	 3.1	 3.9	 4.2	
7	 1.9	 2.4	 3.3	 4.1	 4.3	
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Moreover, in Bayesian inference, MLE is considered point estimations. However, in Bayesian 
linear regression, productive probability around each inference of the IRI is probabilistically 
investigated (L. A. Jiménez 2012). 

 

 	

Figure 4.  The differences between linear regression and Bayesian linear regression 
 

The research data which is required to estimate the IRI has been divided into two main 
categories, the first category was extracted from the interviewing process of the experts and the 
second type (MLE data) has been collected from the road sections inspections process to 
measure the road deterioration using the IRI. 

The MLE data is extracted and summarized as pairs of  𝑡8, 𝐼𝑅𝐼;  where IRI represents the road 
section condition and t indicates the time. 
 
𝐷𝑎𝑡𝑎 = 𝑡>, 𝐼𝑅𝐼> , …… . , 𝑡?, 𝐼𝑅𝐼? 	, 0 ≤ 𝑡8 ≤ 20	, 0 ≤ 𝐼𝑅𝐼; ≤ 14																																															(3) 
 
Then, we model 	𝐼𝑅𝐼;	to be conditionally independent given the w vector which will be the prior 
distribution.                            
                                                𝐼𝑅𝐼;~𝑁 𝑤I𝑡8	, 𝑎J> , 𝑎 >
0																																																																																																																							(4) 
 
𝑤~𝑁 0, 𝑏J>𝐼 , 𝑏 > 0	, 𝑤 = 𝑤>,… . . , 𝑤M 																																																																																													(5)  
 
Where 

• 𝑎 = >
OP

 is the precision factor,  
• b is the covariance matrix,  
• a and b are known and,  
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• w is a parameter vector with a Gaussian multivariate density. 
 

2.3.1. The Posterior distribution: 
 
The next step is to compute the posterior distribution on w given data. 𝑡8	will be written as 
𝜑 𝑡8 = (𝜑> 𝑡> , … . , 𝜑? 𝑡> ) in order to be able to model the nonlinearities of 𝑡8	. To compute 
the posterior we need to calculate the MLE and then the predictive distribution. 
 
Maximum Likelihood Estimation (MLE).  

 
Given data 
 
 𝐷 = 𝐼𝑅𝐼>, … . , 𝐼𝑅𝐼? , 𝐼𝑅𝐼8 ∈ 0,14 										                                         (6) 
                                            
D represents a sample from the IRI statistical population which has been collected from road 
sections inspections. Then, the MLE is computed using the following formula:  
 
𝑃(𝐷|𝑤) ∝ exp	(− X

Y
𝐼𝑅𝐼 − 𝐴𝑤 I(𝐼𝑅𝐼 − 𝐴𝑤))                           (7) 

                                                      
Where A is the design matrix and IRI is a value that we are going to predict which is in a column 
vector form. 
 

	𝐴 =
− 𝑡>I −
⋮ ⋮ ⋮
− 𝑡?I −

	,	  	𝐼𝑅𝐼 = 𝐼𝑅𝐼>, … . . , 𝐼𝑅𝐼? I	 

 
Posterior 

 
From the classical Bayesian definition, the posterior is proportional with the prior 

	
𝑃 𝑤 𝐷 ∝ 𝑃 𝐷 𝑤 𝑃(𝑤)                                 (8)                                                                                                          
 
After that we blog the MLE expression into the posterior which will be as; 
 
𝑃(𝑤|𝐷) ∝ exp	(− X

Y
𝐼𝑅𝐼 − 𝐴𝑤 I 𝐼𝑅𝐼 − 𝐴𝑤 − \

Y
𝑤I𝑤)                                                             (9)                             

 
With few calculus steps we can express w to be in a form of Gaussian distribution and called the 
precision matrix:   
 
𝑃 𝑤 𝐷 = 𝑁(𝑤|𝜇, 𝐴J>)	𝑊ℎ𝑒𝑟𝑒	𝜇 = 𝑎ΛJ>𝐴I𝑖𝑟𝑖	; 		Λ = 𝑎𝐴I𝐴 + 𝑏𝐼	                   (10) 
 
That shows us the Maximum a Posterior (MAP) and MLE estimations of w which are: 
 
𝑤fgh = (𝐴I𝐴 + \

X
𝐼)J>𝐴I𝑖𝑟𝑖                                                                                 (11) 
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𝑤fij = (𝐴I𝐴)J>𝐴I𝑖𝑟𝑖                             (12) 
                                                                                                           
Predictive distribution 

 
The predictive distribution is the conditional distribution of unobserved observations (prediction) 
given the observed data.  Our unobserved observation is the experts interviewing data and the 
observed data, is the collected data from road condition inspections which can be expressed in 
the following format. 
 
𝑃 𝑖𝑟𝑖 𝑡, 𝐷 = 𝑃 𝑖𝑟𝑖 𝑡, 𝑤 𝑤 𝑡, 𝐷 𝑑𝑤                                                               (13)                                          
 
                       = 𝑁 𝑖𝑟𝑖 𝑤I𝑡, 𝑎J> 𝑁 𝑤 𝜇, 𝐴J> 𝑑𝑤                                                    (14)                                            
 
																										∝ 𝑒𝑥𝑝	(− X

Y
𝑖𝑟𝑖 − 𝑤I𝑡 Y𝑒𝑥𝑝	(− >

Y
𝑤 − 𝜇 IΛ(𝑤 − 𝜇)𝑑𝑤                                 (15) 

      
This formula is then factored and put in a quadratic form in w in a formula similar to the 
following general expression: 𝑁 𝑤 …… 𝑔(𝑖𝑟𝑖)𝑑𝑤 and then, since 𝑔(𝑖𝑟𝑖) is not depending on 
w, it comes out of the integral and 𝑁 𝑤 …… 𝑑𝑤 integrates to 1. After several algebraic steps, 
finalization of the predictive distribution is: 
 
 

 
Finally, using mathematical expectation and equation (16) in all road sections families, IRI 
parameters will be estimated depending on:  

• iri which is the experts interview data,  
• t is the time corresponding with road condition and,   
• D is the data collected from road inspections.  

 
Conclusion 
 
Estimating road roughness in order to measure the pavement performance using Bayesian linear 
regression technique has many advantages some of them are the ability to include in the 
statistical model the prior knowledge as well as the existing data (evidences). Secondly, it has the 
ability to make inferences and predictions by including the complex probability density 
distributions of prior model results. Moreover, productive probability around each inference of 
the IRI can be probabilistically investigated. Consequently, based on previously mentioned 
features, this technique is highly recommended when developing a model to estimate pavement 
performance with the absence of historical data.  

This method is not exclusive to the Libyan network roads, but is applicable in any road network 
when the circumstances were similar especially in developing countries. After estimating the 
value of the IRI, the agency will be able to develop appropriate intervention strategy for 
maintenance or rehabilitation of the road sections and estimate the costs of the chosen strategy. 

 

	𝑃(𝑖𝑟𝑖|𝑡, 𝐷) = 𝑁 o𝑖𝑟𝑖p𝑢, >
r
s 								𝑤ℎ𝑒𝑟𝑒								𝑢 = 𝜇I𝑡				𝑎𝑛𝑑				 >

r
= >

X
+ 𝑡IΛJ>𝑡									(16)	
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