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Introduction 

Short term traffic flow prediction is a cornerstone for intelligent traffic operations, management, policy 
making, and strategy formulation. It is an essential instrument to support ATMS (advanced traffic 
management system) implementation and ATIS (advanced traveller information system) service such as 
congestion mitigation, ramp metering, road pricing, and route guidance, etc. among others. Traffic flow 
prediction is to forecast macroscopic traffic quantities including traffic volume, speed, and occupancy (i.e. 
analogy to density) three major indicators of traffic state for a short time future horizon. This research 
focuses on hourly traffic flow prediction based on advanced time series techniques.  

There is a great body of literature in the domain of traffic flow prediction. In our view, the methodologies 
can be classified into two streams including traffic state estimation and prediction. Traffic state estimation 
refers to methods that are mainly based on traffic flow theory to approximate the traffic situation at the 
middle section of a road stretch from boundary conditions. Cell transmission model (CTM) (Daganzo 
1994, 1995a) is a major approach to traffic state estimation using discrete second order macroscopic 
traffic flow models with a supply-demand method. The application of CTM is not only restricted by the 
first and second Courant–Friedrichs–Lévy conditions where its time interval is limited up to a few 
minutes, but also suffers from discretization errors, convergence issues, and numerical instabilities 
(Daganzo 1995b, Treiber and Kesting 2013). On the other hand, traffic state prediction refers to methods 
that forecast the traffic situation at a fixed location of a freeway stretch based on historical time series 
data from the loop detector at the location of prediction and its adjacent upstream and downstream 
locations. The methodologies in this stream include, but not limited to, Neural Networks (Abdi et al., 
2010, Zheng et al., 2006, Abdulhai et al., 2002, Qiao et al., 2001), Support Vector Regression (Wu et al., 
2004), Kalman Filter (Antoniou et al., 2005, Wang and Papageorgiou 2005), ARIMA (Williams et al., 
2003), and nonparametric regression (Chang et al., 2012, Smith et al., 2002), etc. Those methods are 
developed on the basis of statistical error theory using gradient descent optimization, kernel regression, 
state-space structure, or time series technique, etc. Their advantages and limitations can be referenced to 
(Ma 2016) for interested readers.  

Forecasting macroscopic traffic quantities is a nonlinear multivariate problem. The challenges lie in 
complex statistical characteristics of stochastic traffic processes as well as autonomous and interactive 
dynamics within and between traffic variables. Traffic time series usually exhibit large variation over 
time and space. According to the analysis to the hundreds of traffic time series, statistical characteristics 
that often exhibit in traffic time series include seasonality, non-stationarity, serial and cross-sectional 
dependence over time and space, cointegration, and unknown structural break; from a perspective of 
traffic flow theory, the dynamics include the fundamental relation between traffic variables, and multiple 
traffic states. In order to model and forecast traffic state more accurately, all those factors have to be taken 
into account. However, many of them have not been thoroughly and systematically addressed in the 
existing approaches to traffic forecast. While many modelling and forecasting methods aforementioned 
have been developed during the last two decades in this domain, there is no single time series model 
available in the literature that can incorporate these factors all at once. It is therefore natural and intuitive 
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to seek and devise a model structure that is able to concurrently take care of all those factors for network-
wide application. Following this train of thought, the time-space threshold vector error correction (TS-
TVEC) model is proposed and developed for short term (hourly) traffic state prediction (Ma et al., 2015).  

Methodology  

The new statistical model TS-TVEC is designed to concurrently use the information of multivariate traffic 
time series and their interactive dynamics to improve the accuracy of traffic prediction. This model is 
established on cointegration and error correction techniques. As well, it incorporates spatial information 
from upstream and downstream locations. The concept of cointegration is introduced by Granger (1981), 
and Granger and Weiss (1983), and is precisely defined in Engle and Granger (1987) as follows:   

Definition: The components of the vector tx  are said to be cointegrated of order d, b, 

denoted ( )~ ,tx CI d b , if (i) all components of tx  are ( );I d  (ii) there exists a vector 

( )0α ≠  so that ~ ( ),   0t tz x I d b bαʹ= − > . The vector α  is called the cointegrating 
vector.    

In other words, elements of a vector time series are said to be cointegrated if their linear combination 
achieves stationarity by taking difference less number of times than each individual element of the vector. 

The relationship between cointegration and error correction model is known as the Granger 
Representation Theorem that has been proven in Engle and Granger (1987). The most relevant part, 
statement (4), of the Granger Representation Theorem is cited in this paper for the purpose of this 
research. A full version of the theorem can be found in Engle and Granger (1987, pp 255) for interested 
readers.   

Granger Representation Theorem: If the components of 1N ×  vector tx  are cointegrated 

with 1,  1d b= =  and with cointegrating rank r , then:  Statement (4) There exists an error 
correction representation with t tz xαʹ=  that is a 1r×  vector of stationary random variables:   

1( )(1- )  = -  +   t t tA B B x z ε−Φ     (1)   

with ( )0 NA I=    

where ( )A B  is thp -degree polynomials and B  is a backshift operator. 1zt−  are error correction term. tε  
are zero mean white noise with standard deviation σ . The	Granger representation theorem indicates that 
an error correction model must exist if non-stationary time series are cointegrated, and vice versa. 
According to the Granger Representation Theorem, the TS-TVEC model expands the prototype error 
correction model in Eq.1 to accommodate time-space correlations of traffic time series within a regime-
switching structure to fit the need for traffic multi-state prediction. The mathematical form of the TS-
TVEC model is given by Eq.2.  
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where ( ), 1, ,s t s t sn tY x x ʹ=  and ,sr tx denotes the  ( 0,1, , )thr r n=  traffic variable at the location s  

at time t .  s  denotes the location, s =0 represents the location of prediction, [1, ]s m∈  denotes the 
neighborhood site spatially correlated to the location of prediction. 1tECT −  is the error correction term 

defined by 1 01, 1 1 0 , 12  n
t t r r trECT x xβ− − − −=

= −∑ ; 1rβ −  are the coefficients of linear combination of 

0 ,r tx .  i  and j denote time lag.  kθ  is the threshold parameter, 0
kΦ , kΦ , k

iΓ  and ,
k
j sΠ  are the 

parameters at the ( ) 1,2, , 1thk k n= + regime when the 1tECT −  is between the threshold 1kθ −  and kθ .  

1tECT −  as a transition variable indicates the deviation from the long run equilibrium. The deviation can 

be positive or negative where asymmetry may occur and jog among regimes. The coefficient kΦ  
indicates adjustment speed for error correction. Different regimes have different adjustment speeds for 

error correction. The sign of kΦ  is expected to be opposite to the sign of 1tECT − .  1( , , ) 'nθ θΘ =  is 
the threshold vector that determines the number of regimes and tells when regime switching occurs.   

Large scale application  

Data source  

The TS-TVEC model is investigated with large scale experimentation on the GTA freeway system. 
Traffic time series are collected from loop detectors deployed on the GTA 400 series of freeways 
including Highway 400, 401, and 404. Fig.1 shows the locations of loop detectors, the sites of prediction, 
and related upstream and downstream sites on Highway 401 Exp./Col. east and west bound, and Highway 
400 and 404 north and south bound. The data collection stations on the freeways are managed and 
maintained by the Ministry of Transportation Ontario (MTO), and the traffic data are provided to the ITS 
lab at University of Toronto for purposes of research.   

 
Fig. 1 the GTA 400 series of freeways and data collection stations  
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In total, the large scale applications of TS-TVEC model are performed at 35 freeway locations with 
approximately 315 time series. Each site of prediction is denoted by a big red dot on the data map. The 
locations of prediction selected on Highway 401 focus on core sections between Highway 400 and 404 
that assume heavy traffic volumes in, out, and passing through the City of Toronto on a daily basis. These 
chosen locations cover 12 stretches on the Highway 401expressway and 17 stretches on the collector road. 
Four locations of prediction are selected on Highway 400 north and south bound between Highway 401 
and 407. Two locations are selected on Highway 404 north and south bound between Highway 401 and 
Finch Avenue. 

Statistical test 

TS-TVEC model is designed for dealing with complex multivariate time series environment where 
threshold cointegration effect exists among the time series. Typical hourly traffic time series including 
volume, speed, and occupancy are chosen from data sets for statistical test. They represent most of traffic 
time series in the data sets with some variations. Four statistical tests are performed to verify the existence 
of cointegration and threshold effect among traffic variables. Table 1 shows the results of the Phillips-
Ouliaris cointegration test (Phillips and Ouliaris, 1990). The null hypothesis of no cointegration is 
rejected at 5% significance. The existence of cointegration between traffic variables is further verified by 
results of Johansen cointegration test (eigen) (Johansen, 1995) shown in Table 2.  

Table 1 Phillips-Ouliaris cointegration test 

 
Table 2 Johansen cointegration test (eigenvalue) 

 
Hansen and Seo test (Hansen and Seo, 2002) results in Table 3 reject the null hypothesis of linear 
cointegration at 5% significance and favor the threshold cointegration effect. Bootstrap method is used for 
estimating asymptotic distribution of the density of test statistics and its critical value p  (Hansen, 1999). 
The Zivot-Andrew unit root test (Zivot and Andrews, 1992) is also performed to verify the structural 
break in the speed and occupancy time series. Fig.2 shows that the null hypothesis of a unit root process 
with drift that excludes exogenous structural change is rejected at 5% significance.  

Table	3	Hansen	and	Seo	threshold	cointegration	test	

 

The results of those statistical tests indicate that the threshold cointegration effect exists among traffic 
volume, speed and occupancy. The necessity of the TS-TVEC model is justified. In addition, the spatial 

10% 5% 1%
Pu 486.69 p	<	1% 27.85 33.71 48.00
Pz 515.47 p	<	1% 47.59 55.22 71.93
Pu 660.25 p	<	1% 27.85 33.71 48.00
Pz 873.49 p	<	1% 47.59 55.22 71.93
Pu 729.52 p	<	1% 27.85 33.71 48.00
Pz 568.67 p	<	1% 47.59 55.22 71.93

Critical	Values

Volume	vs.	Speed	
(q-v)

TypePair	of	Traffic	Variables Test	Statistic p-value

Volume	vs.	Occupancy	
(q-o)

Speed	vs.	Occupancy	
(v-o)

10% 5% 1%
r<=1 157.53 p	<	1% 6.5 8.18 11.65
r=0 211.21 p	<	1% 12.91 14.9 19.19
r<=1 201.43 p	<	1% 6.5 8.18 11.65
r=0 235.00 p	<	1% 12.91 14.9 19.19
r<=1 155.51 p	<	1% 6.5 8.18 11.65
r=0 169.20 p	<	1% 12.91 14.9 19.19

Pair	of	Traffic	Variables Rank Test	Statistic p-value
Critical	Values

Volume	vs.	Speed	
(q-v)

Volume	vs.	Occupancy	
(q-o)

Speed	vs.	Occupancy	
(v-o)

0.90 0.95 0.99
Volume	vs.	Speed 151.93 0.00 13.88 15.32 17.57

Volume	vs.	Occupancy 126.19 0.00 10.39 12.00 15.11

Speed	vs.	Occupancy 92.19 0.00 18.78 21.03 24.00

Test	Statistic P-Value
Bootstrap	Critical	Values

	Multivariate
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time series that is used as the exogenous term of the model are chosen from the upstream and downstream 
site where the traffic flow converges or diverges from the traffic flow at the site of prediction.  

 
Fig. 2 Structural break test with 200 points of speed series 

Model determination and forecast  

There are 105 models that are estimated at 35 freeway locations. Model selection concurrently takes into 
account the MSE, number of regimes, and lags. The cross validation method in conjunction with 
parsimonious principle is used for model selection. As the TS-TVEC model is a data driven model, its lag 
order p  is varying for different data sets at different locations. The value of p  reflects the best model 
selection given the data set at each location of prediction. The conditional least squares and grid search 
techniques (Narzo et al., 2014) are employed in this research to identify the model parameters. Statistical 
diagnostic tests are performed to examine the significance of the model coefficients, normality, and 
whiteness of noise in the process of model estimation.  

 
Fig. 3 Model fit and one-step ahead rolling prediction for 7 days  

(401EB.Exp.1, Hwy400 ¬ Basket Wave) 

Zivot and Andrews Unit Root Test
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Fig. 4 Model fit and one-step ahead rolling prediction for 7 days  

(401WB.Col.5, Bathurst St. ¬ Avenue Rd) 

The hourly interval one-step-ahead rolling prediction is performed with the selected TS-TVEC model for 
seven days in a row for each traffic variable. The prediction includes 168 points of time. Prediction 
accuracy is assessed by the MSE (mean squared error), Coefficient of Variation, and MAPE (mean 
absolute percentage error). Exhibitions of model fitness and 168 hourly predictions for each traffic 
variable from 2 representative sites are shown in Fig.3 and Fig.4 respectively. The complete list of 
exhibitions of model fitness and 168 hourly predictions from 35 sites can be referenced to (Ma 2016).  	

Performance of TS-TVEC  

According to 35 locations of prediction with 315 time series, Table 4 summarizes prediction accuracy of 
TS-TVEC model.  

Table 4 Summary of model prediction accuracy at 35 locations 

 
The MAPE in traffic volume prediction is between 4.66% and 23.03% with median 7.45%, the coefficient 
of variation is between 5.87% and 41.29% with median 9.29%, and the standard deviation is between 
137.35 and 544.91 with median 331.11. Similarly, the MAPE in traffic speed prediction is between 3.1% 
and 16.87% with median 9.84%, the coefficient of variation is between 4.16% and 20.43% with median 
12.93%, and the standard deviation is between 4.02 and 16.87 with median 11.94. The MAPE in traffic 
occupancy prediction is between 9.24% and 62.63% with median 20.72%, the coefficient of variation is 
between 11.65% and 97.40% with median 37.87%, and the standard deviation is between 0.63 and 6.47 
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MAPE
Std	

Deviation
min 18864.7 5.87% 4.66% 137.35 16.14 4.16% 3.10% 4.02 0.4 11.65% 9.24% 0.63
max 296926.8 41.29% 23.03% 544.91 284.64 20.43% 16.87% 16.87 41.89 97.40% 62.63% 6.47
median 109632.3 9.29% 7.45% 331.11 142.46 12.93% 9.84% 11.94 8.71 37.87% 20.72% 2.95
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with median 2.95. In other words, prediction accuracy of TS-TVEC model is approximately 92.55% for 
traffic volume, 90.16% for speed, and 79.28% for occupancy at 35 locations of prediction.  

The TS-TVEC model shows its advantage in need of a modest data size for model estimation. For 
instance, one-month hourly data is adequate for a TS-TVEC model to be estimated. One-month hourly 
data prior to the prediction time is able to provide sufficient information on the most recent dynamics of 
traffic flow including daily and weekly cyclic patterns. A characteristic of a stochastic process is known 
as ergodicity that refers to asymptotic independence. Loosely speaking, it means that the further apart two 
realizations of a time series are with respect to time, the closer to independence they become [Pfaff 2008]. 
Hence, long time series is not necessarily helpful for improving model estimation and prediction. Traffic 
time series are short memory time series where observations separated by a long time span exhibit 
asymptotic independence. Therefore, one-month data is sufficient for the TS-TVEC model to identify the 
model structure. In practice, TS-TVEC model estimation should be a periodically rolling update process. 
The most recent one-month data prior to the prediction time should be always used for model estimation.   

Conclusion  

This research contributes to literature in a few aspects. (1) It discovered the existence of cointegration 
effect among macroscopic traffic variables. This is beneficial to better understanding the mechanism of 
the traffic data generating process, thus improving the prediction accuracy; (2) established a vector error 
correction model for traffic state prediction according to the Granger Representation Theorem; (3) 
introduced the regime switching structure to capture structural break in traffic time series and reflect 
multi-states of traffic situation; (4) incorporated spatially correlated information from upstream or/and 
downstream of the location of prediction into the model to enhance the accuracy of prediction;   

Large scale experiments show consistent effectiveness and robustness of the TS-TVEC model. It is our 
belief that TS-TVEC is a theoretically sound, powerful and competitive method suitable for modelling 
and forecasting complex multivariate traffic time series where threshold cointegration effect is non-trivial. 
The model is able to provide accurate predictions, and potentially applicable to a wide variety of traffic 
circumstances and real time traffic state forecasting.   
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