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ABSTRACT

A Simulated annealing (SA) algorithm is applied to theequilibrium network traffic

signal setting problem seeking globally optimal, in some sense,signal settings and an

equilibrium traffic flow patternsimultaneously. The SA method aims at overcoming the

nonconvexity of the problem, which can undermine the quality of local search solutions.

A local search algorithm basedon Sheffi and Powell (1984) is used to find local

solutions. The iterative approach performs assignmentand signal optimization sequentially

until it converges to mutually consistentpoints where the flow is at user equilibrium and the

signal setting is optimal.

Link performance is described, in two ways, by the BPR formula and Webster's

delay functions. The origin-destination matrix is assumedfixed and optimal green time per

cycle ratios are decision variables. The above threeapproachesare testedon a simple

network and applied to a real network with 27 signalized intersections in a real

southwesternUSA city. The solution quality and convergence patternare discussed.
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Introduction

Signal setting parametersconsist of several decision variables—green time per cycle

ratios (green split), cycle length, phase sequenceand offset. Most models and codes

optimizes a subset of thesedecision variables assuming the others fixed. Changing signal

settingsmay stimulate drivers to adjust their route choices. However changing flow may

suggest re-setting signals. It is normally assumeddrivers follow Wardrop's first principle

(Wardrop, 1958), i.e., user equilibrium (UE) flow pattern. The problem of combining

signal controls and an equilibrium assignmentis called the equilibrium network traffic

signal setting problem.

Allsop (1974) first noted the necessityof combing signal calculations and traffic

assignment by pointing out that network traffic routing according to Wardrop's first

principle is dependenton signal timings and should ideally be regardedsimultaneously with

signal timing. Allsop suggestedan iterative procedure to solve such a problem and

decomposed the problem into two well-researched subproblems as in Figure 1. The

assignment uses link performance functions derived by the signal optimization subproblem.

Signal optimization is performed with flow patternsprovided through the assignment

subproblem. In the literature, this is called the Iterative Assignment Control Procedure, or

simply Iterative Approach. The procedure continues until it converges to a solution, which

is called mutually consistent becausethe flow is at UE and the signal setting is optimal.

Allsop's conceptual algorithm was extendedby Allsop and Charlesworth (1977), in

which the signal optimization subproblem is solved by TRANSYT, the old version of

TRANSYT-7F. Allsop and Charlesworth carried out the procedure on a small six-

intersection network. Quite distinct mutually consistent solutions, i.e., different flow and

green time patterns,were found but indicated virtually equal total travel times in the test

network.

Dickson (1981) and Smith (1979a) noted that the above iterativemethod is not

guaranteedto converge even to a local optimum. Sheffi and Powell (1983) suggesteda
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local searchbut becauseof problem complexity, the iterativeapproach has beenmainly

studied. Smith (1979b) proposed a new signal control policy Po(1979b), which is

different from conventional delay minimization or Webster's equisaturationpolicy

(Webster, 1958) and Smith and Van Vuren (1993) analyzed the convergence and

uniqueness of solutions in the iterative approach. They showed that the link performance

functions and the signal optimization policies affect the convergence and uniqueness. Van

Vuren and Van Vliet (1992) performed numerical examples.

The equilibrium network traffic signal settingproblem is know to be not necessarily

convex, given a user equilibrium constraint. Therefore it may have lots of different local

solutions. Thus, there is a possibility that local and mutually consistent points are severely

different from global solutions. This paper attemptsto find global, local and mutually

consistent points using a global, a local and an iterative approach, respectively. Simulated

annealing is adopted for theglobal searchand other solutions arecompared to determine

whether local and iterative approachesseverely impair solution quality.

In the next section, assumptions and the formulation of the problem are given. The

explanation of threealgorithms and application to a small network and a larger real network

follow.

Assumptions and Formulation

To keep the problem manageable,the following assumptions aremade:

1.The flow partem follows user equilibrium (UE) and the origin-destination matrix (OD) is

fixed and known. Thus, assignments are steady state.

2. The measureof network performance is total network travel time. Therefore minimizing

total systemtime is the signal optimization policy.

3. Green split is the only explicitly considered signal decision variable. The main reason

for this is that it enablesanalytical setup of the theoretical relationship between flows
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and signals. Cycle length could be included in this way and other parameterscan be

included if simulation is used for the link performance function.

4. Link travel time consists of link cruise time and intersection delay. Link cruise time is

assumed constant, and delay is modeled by the BPR function, extended to allow signal

control as in Sheffi and Powell (1983) and Smith and Van Vuren (1993), and Webster's

two term formula. For link a, travel time is

where ta is travel time for link a, t0 is free flow travel time (or cruise time), xa is flow,

s, is saturation flow, ga is green split, a and P areparameters (typically, 0.15 and 4.0

respectively), and C is cycle length. The BPR formula was not designed for a signal-

setting context but it is used for its simplicity. Webster's formula has more theoretical

and experimental background supporting use in an intersection delay context.

5. An intersection is confined with exactly two approaches (links) and two phases. Either

approach has the right of way over only one phase. This assumption makes all formulae

in this paper simple but does not apply in the Austin sub-network of Network Examples

section, where multiphases and multimovements are used. The following relation and

chain rule between green splits of phases and links are used to resolve this. For a link

green split, gi , and phase splits, Xi 's, of an intersection,

(1)

1 C(l-ga)2 1
(2)

(3)
linki belongstophasej

Then,
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9gl fl, if link i belongs to phase j

dXj [0, otherwise

Then for a function, f (g
i

,g2,g3,- - •
)•

_3f_ =^f_ 3gL +_3f_ 3gI +_3f_ 3g3+
dXj dgi dXj dg2 dXj 3g3 dXj

By (4)

■ 2 £linki belongstophasei 01

Let {J,L} denote a graph representationof a transportation network where J is a set

of J signalized junctions and L is a setof L directed links. Lj is a subsetof L, consisting

of all links of which green splits are controlled by junction j. Lj's are mutually exclusive

and collectively exhaustive subsets. The policy to minimize total travel time endues the

flowing equilibrium network traffic signal setting problem, PI.

PI: minF(i,g) =^xata(xa,ga) (6)
«■■

subject to i-UE (7)

gmin^&Sgmax for each link a (8)

Xg, =1 5>i for each jej (9)
all phasesof j all phasesof j

where g
; is the sameas X
i (green split of phase i) by the assumption S
.

Refer to Sheffi

(1985) for the explicit representationof UE and the Frank-Wolfe algorithm to solve UE.

(8) and (9) describe signal control relationships, however, if (8) and (9) are relaxed,

g
* = oowould be an optimal solution which reduces ta but is unrealistic. PI is generally

nonconvex because (7) may not necessarily be convex. Thus, PI may have different local

solutions, and there is no known equivalentmathematicaloptimization program that finds

the equilibrium flow patternand optimal splits of PI simultaneously.
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Simulated Annealing

Kirkpatrick, Gelett and Vecchi (1983) proposed an algorithm, based on a strong

analogy of the annealing process, to some NP-complete combinatorial optimization

problems, all of which arewidely considered unsolvable by polynomial algorithms—for

example, the traveling salesmanproblem (TSP). This analogy is called simulated annealing

(SA). Independently Cerny (1985) applied the similar concept to TSP and Vanderbilt and

Louie (1984) extendedSA to continuous optimization problems.

Energy level, E, in a thermal process is a surrogatefor an objective function value

in optimization. Possible configurations or statesin annealing are comparable to feasible

solutions in optimization. If an annealing process properly continues with temperature

lowering, a low energy configuration is realized, which is comparable to a desirable

optimum in optimization. If annealing is fast such as quenching, the solid configuration

cannot reach the low energy configuration. Instead, it may form a locally defectedmeta-

stable configuration, which is comparable to a local optimum. Temperature is regarded as a

control parameterin SA.

SA consists of two major folds-the Metropolis algorithm (Metropolis et. al., 1953)

and cooling. First, for a given control parameter(temperature),SA repeatsthe searchby

generating new candidate solutions and updating the best solution until acceptedsolutions

properly realize theGibbs distribution. Second, the control parameteris decreasedand the

search continues with updating the bestconfiguration. Reducing the parameteris called

cooling because it corresponds to temperaturelowering in annealing. How to reduce the

parameter is a key factor of SA and is called the cooling schedule.

The best current solution may not be updatedat every stepbecausethe Metropolis

algorithm acceptsworse candidatesby theMetropolis criterion. Accepting uphill stepsas

well as downhill stepsprovides a chance to escapefrom a local energy configuration, i.e.,

a local optimum. This escapeallows the algorithm to search for different domain
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neighborhoods. Eventually the best solution becomes close to the lowest energy state, i.e.,

a global optimum. For certain optimization problems, particularly for global optimization,

SA has proven to be a powerful numerical tool and is considered an elegantexample of a

physical concept imported to other fields of science.

Hajek (1988) derived necessaryand sufficient conditions for the asymptotic global

convergence of SA defined on discrete spaceusing the Markovian property of SA.

Vanderbilt and Louie (1984) was the first SA study to examine continuous optimization

problems. The method was adoptedby Frietz et al. (1992) to solve a transportation

network design problem, which is known to be nonconvex. Belisle (1992) derived a

condition under which SA, defined on a continuous domain, converges in arbitrarily small

neighborhoods of global optima regardlessof the cooling rate. Vanderbilt and Louie's

algorithm restricts the searchdomain during theprocedure basedon the previous search

and Belisle' s theorem is not necessarily satisfied. Hence it will find solutions close to the

global optimum but not necessarily find the optimum. However, relaxing the restriction

may require much more computational effort. Vanderbilt and Louie's test, on the average,

detectedglobal optima in 80% of their trials and always found at least local optima. The

detailedmechanism of Vanderbilt and Louie's SA to solve PI is described next.

The current split g" and the random step Agn decide the next split gn+1 as

follows:

where, each uniform distribution u i is independently and identically distributed (iid) on

the interval [-V3,V3] (i.e., with zero mean and unit variance), L is the number of

independentdecision variables (Here, the total number of phases - total number of

junctions), and the matrix Q scales u. The resulting u holds a probability density h(u)

gn+1=g"+Ag°

Ag" =Q.n

» = ("!, "2 »l)

(10)

(11)

(12)
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which is constant inside a hypercube of volume (2V3)L
and zero outside. Q and the

covariance matrix s = (sij) of Ag" are relatedas follows:

Sy= |dLu h(u) Axi Axj (by definition)

=77^JiduJ^^--fiduLflQ*uk]feQjmUm
^2V3J Vk J Km J
=XQikQjk (by Ui's are iid) (13)
k

Thus,

s =QQT. (14)

Using Q, s can be calculated in (14). On the other hand, Q can be obtained from s

via inverting procedure such as the Choleski decomposition for (14). Q and u decide Ag"

with (11). Finally this Ag° decides g° with (10). The method continues a set of searches

at a control parameterc with s and then reduces temperaturefor the next setof searches.

Therefore, the decision of s should be completed before starting the next setof searches,

which means s cannot be directly calculated from (13). Vanderbilt and Louie proposed a

methodology for deciding the next s.

First assume thatSA carries outM steps(inner iterations, and eachof these steps

requires one UE assignment) at each c until a certain stopping rule is met. This is similar to

the random walk in stochastic processes. After the n-th setof M steps,the outer iteration

proceeds. The first and second moments of the walk segment, v = (v!,V2 vL) and

w = (wij J arecalculated:

M1 M

v;-=^-Sg(ira;n> (is)„<■>>-"
M

wy° =h I Mm;,,) " vi ]¥"'' _ vjn> <16)
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where g!m'" ' is the value of g; on the m-th stepof the n-th set. At sufficiently high c, no

stepswill be rejected (i.e., free random walk) and, on average, the following would be

expected:

(w£>)
= |iW> (17)

where the brackets indicate an averageover the LM random variables g■m'" ' for the walks.

Vanderbilt and Louie gave p.=— for the arithmetic average. They suggestedthe following
6

next iteration prescription for s:

s(n*l)=JLw(n> (18)
uM

so that

(w&'Vx-00 (19)

The growth factor x is chosen >1so that a free random walk on the (n+l)-th set

would cover, on average, -J
x times asmuch space in each direction as on the n-th set

iterations. Now s'"*1' is invertible by (11) and Q(n*" is ready to use for the (n+l)-th set

of searches. Vanderbilt and Louie used a p
.

basedon a geometric averagesince thewalk

size after many free sets is really a product ratherthan a sum of the growth factors.

Through one dimensional numerical calculation 0.1 1 is suggestedfor p;. The whole

procedure is shown in Figure 2
.

Vanderbilt and Louie suggestedthe stopping criterion:

pCn) p(n)
—
|(SfiL<E

(20)

where F<n

'
is the averageof F for theM stepsof the n-th set, and F^V i
s the best solution

during theM stepsof the n-th set. For typical applications, £ = 10~3 is suggested. M

should be large enough to guaranteereasonablestatistics. At its minimum, M>L is
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required to avoid a singular w matrix and therefore a singular s, which will cause failure of

the inverting procedure in (14). Vanderbilt and Louie suggestedM =15L for L <8 and

larger values of M for large-dimensional systems.

Local Search

The objective ofPI, called F, may possess noncontinuous (piecewise continuous

with finite jumps) derivatives at a finite number of points becausesmall changes in the

green time split may cause a change in thenumber of pathsused between some OD pair.

Therefore the gradient required for the local searchmust be interpretedas a finite difference

over the point of derivative discontinuity (Sheffi and Powell, 1983). Typical termsof the

gradient of F with respect to ga can be given by

3F _ 3t.(x.,g.) YgxJ. i. „ Ux 9tb(xb,gb)l
Oga Oga T a& L °gb .

dx
The term —— is the partial derivative of the equilibrium flow on a link with respect to the

9ga

green split on another. It is impossible to derive the term analytically. Thus, (21) is very

difficult to use directly. This paper introduced an approximation for the gradient as

follows,

3F F(...,gi+Agi,...)-F(...,gi,...)
(22)

3gi Agi

(22) is combined with the gradientprojection methodby Sheffi and Powell (1983) to keep

feasibility constraints (8) and (9), which can be accomplished by computing the averageof

thegradient terms associatedwith Lj and subtracting this averageform all thesegradient

terms. Figure 3 describes the local searchprocedure. For each iteration, the number of UE

assignmentsrequired equals the number of links (L) and the additional iterations in the step

size decision of STEP 5 .
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Iterative Approach

As explained in the Introduction, the iterativeapproach is a heuristic approach

finding mutually consistentpoint insteadof a local or global optimal. Sheffi and Powell

(1983) called this a naive approach. The domain space of PI, (x,g), constitutes vectors of

flow and splits. By fixing either one, the iterative approach decomposes the problem into

two subspaces,(x,gflx) and (ifti.g), and solves them alternatively. The first domain

relatesto the traffic assignmentand the second signal optimization.

Smith and co-workers have studied this approach (Smith, 1979a; Smith, 1979b;

Smith, 1981a; Smith, 1981b; Smith, 1981c; Smith, 1982; Smith et. al., 1987; Smith and

Van Vuren, 1993). In order to find the mutually consistent points, a new concept,

pressure, is introduced, which is perceived by the signal setter. For total system

minimization policy, the pressurewill be -xa
^t»(Xa'g»)

(Smith and Van Vuren, 1993).

In a UE context, users are assumed to seek a less costly route, which results in no flow on

more costly routes for every OD pair . Similarly, if the policy is satisfied, a less

pressurized phase receives no green time for every intersection.

For the total systemtime minimization policy, the link pressureof the BPR and

Webster's are derived as (Smith and Van Vuren, 1993),

The phase pressure is obtained by summing the pressureof the links which belong

to the phase (i.e., receive the right of way). By swapping green from less pressured

phases to more pressured phases,green splits are adjusted. Since (x,,g,) = (0,0) has no

(23)

^ta(xa.ga)_xaC(1-ga) , 1 *aS. 1 x.
(24)
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useful meaning, it is excluded. According to the discussion by Smith and Van Vuren

(1993), for the BPR function, the solution may be unique, but for Webster's formula the

solution may not be unique.

For the next experiment, a streamlined form of the iterative approach proposed by

Smith and Van Vuren (1993) is applied. It performs a single Frank-Wolfe iteration

between assignmentswith new green splits so that the assignment is expedited. The proof

of convergence is given in Smith and Van Vuren (1993).

Network Examples

The three algorithms were testedfirst on a small network. This network is shown

in Figure 4 and included four zones each of which is an origin and a destination. OD pairs,

1 to 2 and 4 to 3 have two alternative routeswhile OD pairs, 2 to 1and 3 to 4 have only

one route. There are nine intersections, each operatedwith two signal phases. Another

experiment using a larger real network from Austin, Texas can be seen in Figure 5. It

includes 27 signalized intersections featuring multiphase operation. For each network, the

two link cost functions, BPR andWebster's, were applied with threedifferent initial signal

settings.

Table 1contains theparameterinformation for SA. Initial temperatureis setvery

high and lowered continually basedon iterations at the previous temperature. If the best

solution at a temperatureis significantly improved, then the next temperatureshould be

lowered but close to the current one in order to intensively searchthe current

neighborhood. On the other hand, if the best solution is not much improved, then the next

temperatureshould be lowered enough not to waste time in the current neighborhood. This

concept is reflected in an exponential type cooling schedule.

The following assumptions are further made:

•Cycle time=100sec;

•No lost time;
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•Minimum green time=l sec;

•Maximum green time=99sec.

Table 2 and 3 contain the experimental results. Case 1 startswith equal green

signal time over all intersections (e.g., if an intersection is under threephase operation,

then green fraction for each phasewould be one third.). This starting solution might be a

local optimum of the simple network becauseof the network symmetry. Case 2 begins

with random splits for each intersection generatedby a random number generator, so that

intersectionsmay initially have very different green splits. Case 3 initially has unequal

splits within intersections but the samesplits across intersections. In the caseof the small

network example, the threealgorithms found very similar solutions for the BPR link cost

as in Table 2 and Figure 6 and theSA did not always produce the best solutions but the

differences areminimal. However Webster's formula and the iterative approach with Case

2 initial settings produced a relatively worse solution. In termsof iterations, the local and

iterative algorithms aremuch faster than SA, which is natural becauseSA tries to

intensively searchthewhole domain by probabilistically accepting worse points (climbing-

up).

Table 3 and Figure 7 show the results of the larger Austin sub-network. For the

BPR function, all results range from 800 to 1000 system time hours. For Webster's

function and the Case 2 startingcondition, both the local search and the iterative approach

show poor solutions.

In general, the local and iterative approachesfind good solutions much faster than

SA, however, they tend to get stalled producing worse solutions than SA in some cases.

The convergence patternsdepicted in Figure 8 and Figure 9 are interesting. Local and

iterative algorithms show significant objective function reductions in the initial few

iterations regardless of the number of iterations required to converge. SA, which is

intensive in computational effort, fluctuatesat initial high temperatureiterations and

becomes stableas temperaturedecreases.
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More comprehensive experimentswith different networks and OD levels are

required to obtain general results. Particularly, OD levels can affect solutions because if

traffic demand is very low or high, green signal proportions may not easily change the

minimum path to a specific OD pair. On the other hand if traffic demand is medium, then

the minimum path can be sensitive to green signal proportions. In this experiments, traffic

demands are moderate,producing volume to capacity ratios, weighted by link flow,

between 0.35 to 0.55.

Conclusions

Simulated annealing, local search,and iterativealgorithms have been investigated

and applied to solve theequilibrium network signal settingproblem. With limited

experiments, SA is found to minimize the risk of stalling the solution process at poor

solution domain at the cost of extensive computation. The convergence patternsof the local

and iterative approaches indicate limited iterationsmay be enough to obtain a good solution,

however both exhibit tendenciesto produce poor solutions under certain cases. More

comprehensive experiments, however, are required.
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Table 1 Simulated Annealing Parameters

Parameter Value

•Growth factor •2.0

•Initial temperature •9999900000

•Cooling schedule •Exponential adaptivecooling basedon the objective

value reduction at theprevious temperature.

* Iterations ateach temperature •300 (the simple network)

(i.e., inner iterations) •3000 (Austin sub-network)

Table 2 Comparisons of theThree Algorithms, Giving Total System Travel Time

and Iteration Numbers for the Simple Network.

Link Cost Function Initial Split3 SA*1 Localc Iteratived

Case 1 113.6/31 113.6/2 113.6/1

BPR Case 2 114.0/32 113.6/14 113.6/9

Case 3 114.5/34 113.6/5 113.6/2

Case 1 225.2/33 229.5/2 229.5/1

Webster Case 2 226.5/35 222.3/21 290.4/8

Case 3 225.1/33 229.5/5 229.5/2

^asel-equal green splits, Case2-random green splits and different across intersections,
Case3-unequal green splits but sameones across intersections.

^Function values (in hr)/outer iterations, (inner iterations=300).
cFunction values (in hr)/iterations.
^Function values (in hrj/iterations.

Table 3 Comparisons of theThree Algorithms, Giving Total System Travel Time

and Iteration Numbers for the Austin Sub-Network.

Link Cost Function Initial Split3 SAb Local0 Iterative^

Case 1 908/36 846/16 839/253

BPR Case 2 861/36 881/8 839/242

Case 3 973/36 846/40 842/246

Case 1 2538/30 2929/193 2475/4385

Webster Case 2 2560/26 37396/13 7253/143

Case 3 3735/24 2732/30 2474/4359

aSame as in Table 2.

DFunction values (in hr)/outer iterations, (inner iterations=3000).
cFunction values (in hr)/iterations.
''Function values (in hr)/iterations.
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flows

Assignment
►
Signal Optimization■4

signal setting

Figure 1 Iterative Assignment Control Procedure

STEP 0: Set m=0, n=l, and assume s(n), g(m;n) and the initial temperature

c(n).

Set a constant p., a growth factor f. , and a cooling schedule.

(Outer) STEP 1: Inverting procedure to get Q(n) by (14).

I (Inner) STEP 2: Set m=m+l and generate u(m;n).

i STEP3: Calculate Ag(m;n) =Q(n) •u(m:°).

STEP 4: Calculate the new point g(new)= g(m-';n> +Ag(m;n).

STEP 5: Solve UE with g(new). Calculate
F(x(new>,t(x,g(new))).

And evaluatethenew point by theMetropolis criterion.

If the new point is accepted, g(m;n) = g("ew'.

T Otherwise, g(m;n)=g(m-1;n).

(Inner) STEP 6: Return to STEP 2 until m=M.

t STEP7: Calculate ¥(n), w(n) and s(n+l) unless converged.

(Outer) STEP 8: Set n=n+l,m=0, and reduce temperature c(n) Sc(n_1).

And return to STEP 1.

Figure 2 Vanderbilt and Louie's Continuous Simulated Annealing
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STEP 0: Initialization-obtain some feasible splits, jgf J . Set iteration counter,

n=0.

STEP 1:Update- calculate travel time, [i
f
}
, given {
g
?
}

and perform assignment

obtaining user equilibrium flow pattern, x .

STEP 2: Gradient Calculation-For each phase, perform (1) to (3).

(1) change g
"

by Ag° and update t" .

(2) find a new equilibrium flow, y

(3) calculate £ - ***** bjfeg ).

ogi Ag;

STEP 3
:

Decent Direction Determination.

3F

(1) for eachjunction j, compute Aj_
" J i— , where Lj is the link set

ending junction j and |L
j| is the carnality of the set Lj.

dF
(2) for each phase, d" = -—— +A:

Ogi

STEP 4: Determination ofMaximum Step Size

(1) for each phase, if d? > 0
,

set a? = — and if d? < 0, set

d
!1

(2)8610™*=!™^?}.

STEP 5: Step Size Determination and Split Updating.

(1) find a* thatsolve mining" +a„ d
") subjectto OiaSa™".

(2) setgf+1=g?+a;dP.

STEP 6: Stopping Test-If max j|g
° +1- g°
|J

< e then stop. Otherwise set n=n+ 1

and go to STEP 1.

Figure 3 Local Search
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Figure 4 A Simple Network.
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Figure 5 Austin Sub-Network.
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Figure 6 Solutions of the Three Algorithms for the Simple Network
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Figure 7 Solutions of the Three Algorithms for the Austin Sub-Network
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Figure 8 Convergence Patterns of the Three Algorithms for the Simple Example Network

(SA points are the best solutions within each outer iteration, i.e., a setof inner iterations at

a temperature. Local points are the solutions after eachUE assignment. Iterative points are

the solutions after each streamlinedUE assignment.)
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Figure 9 Convergence Patternsof the Three Algorithms for Austin Sub-Network

(SA points are the best solutions within each outer iteration, i.e., a setof inner iterations at

a temperature. Local points are the solutions after eachUE assignment. Iterative points are

the solutions after each streamlinedUE assignment.)
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