%‘““‘“\N Ag Econ sxes
/‘ RESEARCH IN AGRICUITURAL & APPLIED ECONOMICS

The World’s Largest Open Access Agricultural & Applied Economics Digital Library

This document is discoverable and free to researchers across the
globe due to the work of AgEcon Search.

Help ensure our sustainability.

Give to AgEcon Search

AgEcon Search
http://ageconsearch.umn.edu

aesearch@umn.edu

Papers downloaded from AgEcon Search may be used for non-commercial purposes and personal study only.
No other use, including posting to another Internet site, is permitted without permission from the copyright
owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C.

No endorsement of AgEcon Search or its fundraising activities by the author(s) of the following work or their
employer(s) is intended or implied.

https://shorturl.at/nIvhR
mailto:aesearch@umn.edu
http://ageconsearch.umn.edu/

A

Proceedings of the 36th Annual Meeting
Transportation Research Forum

Volumes
1 and 2

November 3-5, 1994

Daytona Beach, Florida

Published and Distributed by:
Transportation Research Forum

1730 North Lynn Street, Suite 502
Arlington, VA 22209

Google

389
An Expert System for Node-Link-Node Application

William H. VanMarter, Jr.*
ABSTRACT

Railroad management requires node-link-node applications such as mileage masters and
train routing systems for car hire accounting, operations analysis, and internal costing. Existing
computer programs and files often include thousands of complex, individually maintained
records. It has proved difficult to update, verify, or modify these systems given today’s flexible
operations and "real time" information needs. We present an easily-updated expert system
which automatically generates train routing between any two stations on the railroad. The
general logic can also be applied to a mileage master or any other node-link-node system.
Processing and file layout is simple enough to be done on a PC spreadsheet.

INTRODUCTION

Node-link-node applications such as train routing systems and mileage masters are
essential accounting and decision support tools for railroad management. A railroad with 1000
stations, small for a Class 1, requires 1 million computer records to cover all possible station
to station moves in either direction. Even if the file is set up on a segment to segment basis,
there are usually thousands of combinations which must be separately maintained. At a time
when operations and even physical layouts are changing rapidly ,it has become difficult if not
impossible to update, verify, or adapt the old individually maintained file structures.

We have developed an expert system (called Automated Route File or ARF) that on
request generates the train routing sequence between any two stations on the railroad. When
operations and/or physical layout changes, or when doing comparative routing analyses, the
knowledge-based maintenance file can easily be updated. Any further processing (online or
batch) of from/to station pair points will automatically reflect the new assumptions. If the
expert system logic were applied to a mileage master, the entire mileage master could be
"remiled" to reflect the changes. This avoids laborious and error-prone updating of individual
records, and ensures consistent routings between similar moves.

ARF currently generates train routing using expert logic, but looks up miles for each
train run from a conventionally maintained mileage master. An unexpected benefit has been
to compare the total of the intermediate miles generated as a by-product of the expert system
processing, with the endpoint to endpoint miles read off the conventional mileage master (which
itself necessarily has inherent routing assumptions). Any significant difference indicates a
probable error either in the expert system knowledge base or in the conventional mileage
master. A warning message on the screen prompts the user to investigate. This reciprocal

Google

390

verification allowed for a high degree of confidence at startup of ARFF, and although most
discrepancies have been found, continues to serve as an audit check.

ARF was programmed in COBOL on a mainframe because of its system-wide
application. The logic is simple enough to be included in a PC spreadsheet using macros,
IF/THEN logic and lookup tables.

The expert system is illustrated by presenting key files and concepts, and then walking
through the logical process. Reference is made to a schematic of an "Illustrative Railroad" in
Exhibit 1, and to key file layouts in Exhibit 2. Stations 023, 320, and 710 are highlighted for
purposes of discussion.

KEY FILES AND CONCEPTS

*

1)
2
3

Processing is in three basic steps; each accessing a key file

Origin Station to Near Node (Station to Node file)
Near Node to Far Node (Node to Node file)
Far Node to Destin Station (Station to Node file)

The smallest building block is the Local Sub, which is a numerically sequential
set of stations all handled by the same train(s). Local Subs are represented by the
rectangular "links" in Exhibit 1. The Local Sub low-high stations constitute the
key fields in the Station to Node file. This allows a number of stations to be
handled in one computer record, which is a marked improvement over having a
record for every station.

Captive stations (023,710) have no choice in their Near Node. Decision stations
(320) require special logic to determine which Near Node applies to a particular
move. Including this special logic (less than/greater, AND/OR connectors) in
the file structure rather than in the working program simplifies application and
permits a great deal of flexibility and creativity.

The Node to Node file allows reading the specific train routing from the Near
Node directly to the Far Node, and avoids the difficult logic of piecing together
trains across the many interim nodes. Exhibit 2 shows a Node to Node file
record for Node 2 to Node 5. Again, the expert knowledge is found in the
easily-maintained file structure rather than in the program itself.

The Node to Node file size increases geometrically. Thirty nodes require 900
records if reverse direction is assumed, and adding the 31st node creates 62 more
records to be maintained. Should the number of nodes exceed 25 to 30 or so, it
may be more practical to maintain two or more separate Node to Node files
connecting end-to-end, rather than have one oversized file.

Google

391

_______ P 300 @ Thru

EXHIBIT 1
Ilustrative Railroad
£ L1 o° |
051 oso| [o81 100]! @ l @
— T a— !)
E pso| B | + Node
1
2 1
Local Dl‘ ~ TA !
Group ,,/ P
(3 Local Subs)’ 7 MM

Train

Low Station |305

v] B2 Tr

High Station |340 <
@ \ Local
Train
KoM \

K
@ 701 720
-

s

¢

A Decision Station to Decision Station move means both Near Node and Far
Node vary depending on the other. It is necessary to "fix" or default the initial
Far Node to allow the Near Node to choose the proper routing. This is
accomplished by the "D to D" field in the Station to Node file (Exhibit 2).

A large city may have more than one node to account for operational or physical
differences, i.e. runthru trains to various i/ch roads.

Stations in a large city or on small spurs may be seldom-used and/or

out-of-numerical sequence. A pesky housekeeping problem is easily solved by
using the station to node file to dummy these stations to their near node.

Google

392

EXHIBIT 2
Station to Node File
KEY FIELDS DECISION STATION LOGIC
f | Decision D [LESS/ LESS/

Low Hi Local Local Rec or to|EQUAL Far AND EQUAL/ Far Near tion to Node Node to Station
Station Station Group Sub # Captive D |GRT'R/Node /OR GRT'R/ Node Node | Train Station | Train Station
001 050 3 1 1 Captive 2 A o081y C 081
B8 200 O XXX
[y U g g g g g | g g S Rk S h bt TRy EORSpR.
051 080 3 2 1 Captive 2 E 081 Cc 081

B 200| F XX

- _/ I __
081 100 3 3 1 Captive 2 8 200 C XXX
R B e it Rt Rttt il b Dl Xt b R L e ata Rt e
701 720 9 1 1 Captive 5] K 500| L XXX
-——— _I / __ SR TR NS g NS U
308 340 S 1 1 Decision 3 LE 3 OR EQ [} T 300, U X
305 340 5 1 2 Decision 3 G 3AND NQ L] v 40| T XXX

Node to Node File

From To
Node Node Train Station
2 S MM 400
NN 500
- -/ / ___________
S 2 00 400
PP 200

PROCESSING ILLUSTRATION

Overview of processing sequence to create Output File (Exhibit 3)

- Look up origin and destin station numbers in Station to Node file (Exhibit 2) to
see if the stations have the same Local Sub or Local Group numbers. Stations
023 and 710 are in different Local Groups 3 and 9. If stations were in the same
Local Group, the Near Node would not be involved in the move. Processing
would then pass to either Local Group files (keyed on Local Sub 1to 2, 1 to
3,etc.), or Local Sub files (keyed on low to high or high to low station). These

auxiliary files are necessary, but are not discussed further.

- Reading Station to Node File, find that Station 023 is captive to Near Node 2,
and takes Local Train "A" to Station 081, then Local Train "B" to Station 200
(Node 2). Write this data to Output file.

Google

393

- Reading Station to Node File, find that Station 710 is captive to Far Node 5.
Therefore Node to Node move is 2 to 5.

- Looking up 2 to 5 in Node to Node file, find that Thru Train "MM" operates
Node 2 (Station 200) to station 400, then Thru Train "NN" operates Station 400
to Node 5. Write this data to Output File.

- Reading Station to Node file for Station 710, for Node to Station direction, find
Local Train "L" from Station 500 (Node 5) to Station 710 ("xxx" in the file).
Write this data to Output File.

In actual practice, the program automatically finds and writes routing in both forward and
reverse directions to the Output File.

EXHIBIT 3
Output File
023 Origin Station From Station Train To Station
710 Destin Station
Station to Node 023 A 081
Processing 081 B 200
Node to Node 200 MM 400
Processing 400 NN 500
Node to Station 500 L 710
Processing

The example above considered a Captive Station to Captive Station move. Captive
Stations are those that must pass through a specified Near Node before going onto the rest of
the system.

Station 320 is a Decision Station, because its Near Node will be either 3 or 4 depending
on final destination. Processing of a decision station requires the further step of choosing the
Station to Node record which satisfies the less-than,equal, or greater-than criteria with respect
to the Far Node. For example, to go from Station 320 to Station 710, the program will
determine that Far Node (Station 710) is 5. Browsing the Station to Node records relating to
Station 320 (Exhibit 2), the program finds that Far Node § is "Greater than 3 and not equal to
6", and writes to Output File "Local Train "U" to Station 400". The Node to Node file would
then be read to generate the train routing for Node 4 to Node 5. Finally, the Station to Node
file is read for Node 5 to Destin Station 710.

Google

394
POTENTIAL RAILROAD USES

- Generate expected train-station-train routings between any two stations in PC or
mainframe,online or batch form. Allows backtrack, alternative routings due to
hazmats or interchange connections, and other unusual situations. This is
particularly useful for prospective routing needs such as internal costing and
what-if analyses.

- By adding train schedule lookups and/or train size/capacity data in conjunction
with fuzzy logic, would provide ability to figure probability of making
connections, alternative connections, and transit times.

- Suitable for railroad (or highway) mileage masters. Can accomodate different

types of miles (operating vs tariff/short line vs rate basis miles) by adding fields
to the basic records and "toggle switch” option to the input request.

ENDNOTE

* The author is Manager Contract Analysis, Development Department, CP Rail System.

Google

