
Give to AgEcon Search

The World’s Largest Open Access Agricultural & Applied Economics Digital Library

This document is discoverable and free to researchers across the
globe due to the work of AgEcon Search.

Help ensure our sustainability.

AgEcon Search
http://ageconsearch.umn.edu

aesearch@umn.edu

Papers downloaded from AgEcon Search may be used for non-commercial purposes and personal study only.
No other use, including posting to another Internet site, is permitted without permission from the copyright
owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C.

No endorsement of AgEcon Search or its fundraising activities by the author(s) of the following work or their
employer(s) is intended or implied.

https://shorturl.at/nIvhR
mailto:aesearch@umn.edu
http://ageconsearch.umn.edu/

3 5556 025 410 218

Proceedings of the 36th Annual Meeting
Transportation Research Forum

Volumes
1 and 2

November 3-5 , 1994

Daytona Beach , Florida

1

Published and Distributed by :

Transportation Research Forum
1730 North Lynn Street, Suite 502
Arlington, VA 22209

389

--

An Expert System fo
r

Node -Link -Node Application

William H. VanMarter , Jr. *

ABSTRACT

Railroad management requires node -link -node applications such a
s mileage masters and

train routing systems for car hire accounting , operations analysis , and internal costing . Existing
computer programs and files often include thousands o

f

complex , individually maintained
records . Ithas proved difficult to update , verify , ormodify these systems given today's flexible
operations and " real time " information needs . We present an easily -updated expert system
which automatically generates train routing between any two stations o

n the railroad . The
general logic can also b

e applied to a mileage master o
r any other node - link -node system .

Processing and file layout is simple enough to b
e done o
n
a P
C spreadsheet .

INTRODUCTION

Node -link -node applications such a
s train routing systems and mileage masters a
re

essential accounting and decision support tools for railroad management . A railroad with 1000
stations , small fo

r
a Class 1 , requires 1 million computer records to cover al
l

possible station

to station moves in either direction . Even if the file is set u
p

o
n
a segment to segment basis ,

there are usually thousands o
f

combinations which must be separately maintained . At a time
when operations and even physical layouts a

re changing rapidly , it has become difficult if not
impossible to update , verify , or adapt th

e

old individually maintained fi
le

structures .

We have developed a
n expert system (called Automated Route File o
r ARF) that o
n

request generates the train routing sequence between any two stations o
n the railroad . When

operations and / or physical layout changes , or when doing comparative routing analyses , the
knowledge -based maintenance file can easily b

e

updated . Any further processing (online or

batch) o
f

from / to station pair points will automatically reflect the new assumptions . If the
expert system logic were applied to a mileage master , the entire mileage master could b

e

" remiled " to reflect th
e

changes . This avoids laborious and error -prone updating of individual
records , and ensures consistent routings between similar moves .

ARF currently generates train routing using expert logic , but looks u
p

miles for each
train run from a conventionally maintained mileage master . An unexpected benefit has been

to compare th
e

total o
f

th
e

intermediate miles generated a
s
a b
y
-product of th
e

expert system
processing , with the endpoint to endpoint miles read of

f

the conventional mileage master (which
itself necessarily has inherent routing assumptions) . Any significant difference indicates a

probable error either in th
e

expert system knowledge base o
r
in th
e

conventional mileage

master . A warning message o
n the screen prompts the user to investigate . This reciprocal

390

verification allowed fo
r
a high degree o
f

confidence a
t startup o
f ARFF , and although most

discrepancies have been found , continues to serve as an audit check .

ARF was programmed in COBOL o
n

a mainframe because o
f

it
s system -wide

application . The logic is simple enough to b
e

included in a P
C spreadsheet using macros ,

IF /THEN logic and lookup tables .

The expert system is illustrated b
y presenting key files and concepts , and then walking

through the logical process . Reference is made to a schematic o
f
a
n " Illustrative Railroad " in

Exhibit 1 , and to key file layouts in Exhibit 2
.

Stations 023 , 320 , and 710 are highlighted fo
r

purposes o
f

discussion .

KEY FILES AND CONCEPTS

* Processing is in three basic steps ; each accessing a key file

(1)
(2)

(3)

Origin Station to Near Node (Station to Node file)

Near Node to Far Node (Node to Node file)

Far Node to Destin Station (Station to Node file)

The smallest building block is the Local Sub , which is a numerically sequential

se
t

o
f

stations a
ll

handled b
y

the same train (s) . Local Subs are represented b
y

the

rectangular " links " in Exhibit 1
.

The Local Sub low -high stations constitute the
key fields in the Station to Node file . This allows a number o

f

stations to b
e

handled in one computer record , which is a marked improvement over having a

record for every station .

Captive stations (023,710) have n
o choice in their Near Node . Decision stations

(320) require special logic to determine which Near Node applies to a particular

move . Including this special logic (less than /greater , AND /OR connectors) in

the file structure rather than in the working program simplifies application and
permits a great deal o

f flexibility and creativity .

The Node to Node file allows reading the specific train routing from th
e

Near
Node directly to th

e

Far Node , and avoids the difficult logic of piecing together
trains across the many interim nodes . Exhibit 2 shows a Node to Node file
record fo

r

Node 2 to Node 5
. Again , the expert knowledge is found in the

easily -maintained file structure rather than in the program itself .

*

The Node to Node fi
le

size increases geometrically . Thirty nodes require 900
records if reverse direction is assumed , and adding the 31st node creates 62more
records to b
e

maintained . Should the number of nodes exceed 2
5

to 3
0 o
r

so , it

may b
e more practical to maintain two o
r more separate Node to Node files
connecting end - to -end , rather than have one oversized fi

le .

391

EXHIBIT 1
Illustrative Railroad

F� �� 200

051 080 081 100 2 6

E 050 B Node

523
Local

001
Group

(3 Local Subs)

RP

MNT

300 (3 Thru
Train

Low Station 305

Tul 320
High Station 340

4) M de
Local
Train
K400

5 701 710 720

500 L

*
A Decision Station to Decision Station move means both Near Node and Far

Node vary depending on th
e

other . It is necessary to " fix " or default the initial
Far Node to allow the Near Node to choose the proper routing . This is

accomplished b
y

th
e
" D to D " field in the Station to Node file (Exhibit 2) .

*

A large city may have more than one node to account fo
r

operational o
r physical

differences , i.e. runthru trains to various i / ch roads .

Stations in a large city o
r

o
n

small spurs may b
e

seldom -used and / o
r

out - o
f
-numerical sequence . A pesky housekeeping problem is easily solved b
y

using the station to node file to dummy these stations to their near node .

392

EXHIBIT 2
Station to Node File

Low
Station
001

KEY FIELDS DECISION STATION LOGIC
Decision DLESSI LESS /

Hi Local Local Rec or 10 EQUAL Far AND EQUAL Far Near Station toNode Node to Station
Station Group Sub * Captive D GRT'R /Node (OR GRT'R / Node Node Train Station Train Station
050 3 1 1 Captive 2 2 A 081 с 081

B 200 XXX-
051 080 3 2 1 Captive 2 2 E

B
081
200
с
F

081
XXX

100 3 3 1 Captive 2 2 B 200
---- /
081
-14

701

XXX
1 1 - - -

720 9 1 1 Captive 5 5 к 500

C
ir
in
i XXX

1

LE 3 T XXX305
305

340
340

5 1

5 1

1 Decision 3

2 Decision 3

3 OR
3 AND

EQ
NO

6
6

300
400 T XXX

Node to Node File

From
Node

2

To
Node Train Station

5 MM 400
NN 500

5 2 00
PP

400
200

PROCESSING ILLUSTRATION

Overview o
f processing sequence to create Output File (Exhibit 3)

Look u
p origin and destin station numbers in Station to Node file (Exhibit 2) to

see if the stations have the same Local Sub or Local Group numbers . Stations
023 and 710 are in different Local Groups 3 and 9. If stations were in the same
Local Group , th

e

Near Node would not be involved in th
e

move . Processing

would then pass to either Local Group files (keyed o
n Local Sub 1 to 2 , 1 to

3 , et
c
.) , o
r

Local Sub files (keyed o
n

low to high or high to low station) . These
auxiliary files are necessary , but are not discussed further .

Reading Station to Node File , find that Station 023 is captive to Near Node 2 ,

and takes Local Train " A " to Station 081 , then Local Train " B " to Station 200

(Node 2) . Write this data to Output file .

393

Reading Station to Node File , find that Station 710 is captive to Far Node 5.
Therefore Node to Node move is 2 to 5.

Looking up 2 to 5 in Node to Node fi
le , find that Thru Train "MM " operates

Node 2 (Station 200) to station 400 , then Thru Train "NN " operates Station 400

to Node 5
.

Write this data to Output File .

Reading Station to Node fi
le fo
r

Station 710 , fo
r

Node to Station direction , find
Local Train " L " from Station 500 (Node 5) to Station 710 (" xxx " in the file) .

Write this data to Output File .

In actual practice , th
e

program automatically finds and writes routing in both forward and

reverse directions to the Output File .

EXHIBIT 3

Output File

From Station Train To Station023

710

Origin Station

Destin Station

Station to Node

Processing

023

081

A
B

081
200

Node to Node

Processing

200

400

MM

·NN
400

500

500 L 710Node to Station

Processing

The example above considered a Captive Station to Captive Station move . Captive
Stations are those thatmust pass through a specified Near Node before going onto the rest of

the system .

Station 320 is a Decision Station , because it
s Near Node will be either 3 o
r
4 depending

o
n

final destination . Processing of a decision station requires th
e

further step o
f choosing the

Station to Node record which satisfies th
e

less -than ,equal , or greater -than criteria with respect

to the Far Node . For example , to g
o

from Station 320 to Station 710 , the program will
determine that Far Node (Station 710) is 5

. Browsing the Station to Node records relating to

Station 320 (Exhibit 2) , th
e

program finds that Far Node 5 is "Greater than 3 and not equal to

6 " , and writes to Output File " Local Train " U " to Station 400 " . The Node to Node file would
then b

e

read to generate the train routing for Node 4 to Node 5
. Finally , the Station to Node

file is read for Node 5 to Destin Station 710 .

394

POTENTIAL RAILROAD USES

Generate expected train -station -train routings between any two stations in PC or
mainframe ,online or batch form . Allows backtrack , alternative routings due to
hazmats or interchange connections , and other unusual situations . This is

particularly useful for prospective routing needs such as internal costing and
what- if analyses .

By adding train schedule lookups and /or train size /capacity data in conjunction

with fuzzy logic , would provide ability to figure probability of making

connections , alternative connections , and transit times .

Suitable for railroad (or highway) mileage masters . Can accomodate different

types of miles (operating vs tariff / short line vs rate basis miles) by adding fields
to the basic records and " toggle switch " option to the input request .

ENDNOTE

*
The author is Manager Contract Analysis, Development Department , CP Rail System .

