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An Expert System fo
r

Node -Link -Node Application

William H. VanMarter , Jr. *

ABSTRACT

Railroad management requires node -link -node applications such a
s mileage masters and

train routing systems for car hire accounting , operations analysis , and internal costing . Existing
computer programs and files often include thousands o

f

complex , individually maintained
records . Ithas proved difficult to update , verify , ormodify these systems given today's flexible
operations and " real time " information needs . We present an easily -updated expert system
which automatically generates train routing between any two stations o

n the railroad . The
general logic can also b

e applied to a mileage master o
r any other node - link -node system .

Processing and file layout is simple enough to b
e done o
n
a P
C spreadsheet .

INTRODUCTION

Node -link -node applications such a
s train routing systems and mileage masters a
re

essential accounting and decision support tools for railroad management . A railroad with 1000
stations , small fo

r
a Class 1 , requires 1 million computer records to cover al
l

possible station

to station moves in either direction . Even if the file is set u
p

o
n
a segment to segment basis ,

there are usually thousands o
f

combinations which must be separately maintained . At a time
when operations and even physical layouts a

re changing rapidly , it has become difficult if not
impossible to update , verify , or adapt th

e

old individually maintained fi
le

structures .

We have developed a
n expert system (called Automated Route File o
r ARF ) that o
n

request generates the train routing sequence between any two stations o
n the railroad . When

operations and / or physical layout changes , or when doing comparative routing analyses , the
knowledge -based maintenance file can easily b

e

updated . Any further processing (online or

batch ) o
f

from / to station pair points will automatically reflect the new assumptions . If the
expert system logic were applied to a mileage master , the entire mileage master could b

e

" remiled " to reflect th
e

changes . This avoids laborious and error -prone updating of individual
records , and ensures consistent routings between similar moves .

ARF currently generates train routing using expert logic , but looks u
p

miles for each
train run from a conventionally maintained mileage master . An unexpected benefit has been

to compare th
e

total o
f

th
e

intermediate miles generated a
s
a b
y
-product of th
e

expert system
processing , with the endpoint to endpoint miles read of

f

the conventional mileage master (which
itself necessarily has inherent routing assumptions ) . Any significant difference indicates a

probable error either in th
e

expert system knowledge base o
r
in th
e

conventional mileage

master . A warning message o
n the screen prompts the user to investigate . This reciprocal
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verification allowed fo
r
a high degree o
f

confidence a
t startup o
f ARFF , and although most

discrepancies have been found , continues to serve as an audit check .

ARF was programmed in COBOL o
n

a mainframe because o
f

it
s system -wide

application . The logic is simple enough to b
e

included in a P
C spreadsheet using macros ,

IF /THEN logic and lookup tables .

The expert system is illustrated b
y presenting key files and concepts , and then walking

through the logical process . Reference is made to a schematic o
f
a
n " Illustrative Railroad " in

Exhibit 1 , and to key file layouts in Exhibit 2
.

Stations 023 , 320 , and 710 are highlighted fo
r

purposes o
f

discussion .

KEY FILES AND CONCEPTS

* Processing is in three basic steps ; each accessing a key file

( 1 )
( 2 )

( 3 )

Origin Station to Near Node (Station to Node file )

Near Node to Far Node (Node to Node file )

Far Node to Destin Station (Station to Node file )

The smallest building block is the Local Sub , which is a numerically sequential

se
t

o
f

stations a
ll

handled b
y

the same train ( s ) . Local Subs are represented b
y

the

rectangular " links " in Exhibit 1
.

The Local Sub low -high stations constitute the
key fields in the Station to Node file . This allows a number o

f

stations to b
e

handled in one computer record , which is a marked improvement over having a

record for every station .

Captive stations (023,710 ) have n
o choice in their Near Node . Decision stations

(320 ) require special logic to determine which Near Node applies to a particular

move . Including this special logic (less than /greater , AND /OR connectors ) in

the file structure rather than in the working program simplifies application and
permits a great deal o

f flexibility and creativity .

The Node to Node file allows reading the specific train routing from th
e

Near
Node directly to th

e

Far Node , and avoids the difficult logic of piecing together
trains across the many interim nodes . Exhibit 2 shows a Node to Node file
record fo

r

Node 2 to Node 5
. Again , the expert knowledge is found in the

easily -maintained file structure rather than in the program itself .

*

The Node to Node fi
le

size increases geometrically . Thirty nodes require 900
records if reverse direction is assumed , and adding the 31st node creates 62more
records to b
e

maintained . Should the number of nodes exceed 2
5

to 3
0 o
r

so , it

may b
e more practical to maintain two o
r more separate Node to Node files
connecting end - to -end , rather than have one oversized fi

le .
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EXHIBIT 1
Illustrative Railroad

F� �� 200

051 080 081 100 2 6

E 050 B Node

523
Local

001
Group

( 3 Local Subs )

RP

MNT

300 ( 3 Thru
Train

Low Station 305

Tul 320
High Station 340

4 ) M de
Local
Train
K400

5 701 710 720

500 L

*
A Decision Station to Decision Station move means both Near Node and Far

Node vary depending on th
e

other . It is necessary to " fix " or default the initial
Far Node to allow the Near Node to choose the proper routing . This is

accomplished b
y

th
e
" D to D " field in the Station to Node file (Exhibit 2 ) .

*

A large city may have more than one node to account fo
r

operational o
r physical

differences , i.e. runthru trains to various i / ch roads .

Stations in a large city o
r

o
n

small spurs may b
e

seldom -used and / o
r

out - o
f
-numerical sequence . A pesky housekeeping problem is easily solved b
y

using the station to node file to dummy these stations to their near node .
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EXHIBIT 2
Station to Node File

Low
Station
001

KEY FIELDS DECISION STATION LOGIC
Decision DLESSI LESS /

Hi Local Local Rec or 10 EQUAL Far AND EQUAL Far Near Station toNode Node to Station
Station Group Sub * Captive D GRT'R /Node (OR GRT'R / Node Node Train Station Train Station
050 3 1 1 Captive 2 2 A 081 с 081

B 200 XXX-
051 080 3 2 1 Captive 2 2 E

B
081
200
с
F

081
XXX

100 3 3 1 Captive 2 2 B 200
---- /
081
-14

701

XXX
1 1 - - -

720 9 1 1 Captive 5 5 к 500

C
ir
in
i XXX

1

LE 3 T XXX305
305

340
340

5 1

5 1

1 Decision 3

2 Decision 3

3 OR
3 AND

EQ
NO

6
6

300
400 T XXX

Node to Node File

From
Node

2

To
Node Train Station

5 MM 400
NN 500

5 2 00
PP

400
200

PROCESSING ILLUSTRATION

Overview o
f processing sequence to create Output File (Exhibit 3 )

Look u
p origin and destin station numbers in Station to Node file ( Exhibit 2 ) to

see if the stations have the same Local Sub or Local Group numbers . Stations
023 and 710 are in different Local Groups 3 and 9. If stations were in the same
Local Group , th

e

Near Node would not be involved in th
e

move . Processing

would then pass to either Local Group files (keyed o
n Local Sub 1 to 2 , 1 to

3 , et
c
. ) , o
r

Local Sub files ( keyed o
n

low to high or high to low station ) . These
auxiliary files are necessary , but are not discussed further .

Reading Station to Node File , find that Station 023 is captive to Near Node 2 ,

and takes Local Train " A " to Station 081 , then Local Train " B " to Station 200

(Node 2 ) . Write this data to Output file .
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Reading Station to Node File , find that Station 710 is captive to Far Node 5.
Therefore Node to Node move is 2 to 5.

Looking up 2 to 5 in Node to Node fi
le , find that Thru Train "MM " operates

Node 2 (Station 200 ) to station 400 , then Thru Train "NN " operates Station 400

to Node 5
.

Write this data to Output File .

Reading Station to Node fi
le fo
r

Station 710 , fo
r

Node to Station direction , find
Local Train " L " from Station 500 (Node 5 ) to Station 710 ( " xxx " in the file ) .

Write this data to Output File .

In actual practice , th
e

program automatically finds and writes routing in both forward and

reverse directions to the Output File .

EXHIBIT 3

Output File

From Station Train To Station023

710

Origin Station

Destin Station

Station to Node

Processing

023

081

A
B

081
200

Node to Node

Processing

200

400

MM

·NN
400

500

500 L 710Node to Station

Processing

The example above considered a Captive Station to Captive Station move . Captive
Stations are those thatmust pass through a specified Near Node before going onto the rest of

the system .

Station 320 is a Decision Station , because it
s Near Node will be either 3 o
r
4 depending

o
n

final destination . Processing of a decision station requires th
e

further step o
f choosing the

Station to Node record which satisfies th
e

less -than ,equal , or greater -than criteria with respect

to the Far Node . For example , to g
o

from Station 320 to Station 710 , the program will
determine that Far Node (Station 710 ) is 5

. Browsing the Station to Node records relating to

Station 320 (Exhibit 2 ) , th
e

program finds that Far Node 5 is "Greater than 3 and not equal to

6 " , and writes to Output File " Local Train " U " to Station 400 " . The Node to Node file would
then b

e

read to generate the train routing for Node 4 to Node 5
. Finally , the Station to Node

file is read for Node 5 to Destin Station 710 .
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POTENTIAL RAILROAD USES

Generate expected train -station -train routings between any two stations in PC or
mainframe ,online or batch form . Allows backtrack , alternative routings due to
hazmats or interchange connections , and other unusual situations . This is

particularly useful for prospective routing needs such as internal costing and
what- if analyses .

By adding train schedule lookups and /or train size /capacity data in conjunction

with fuzzy logic , would provide ability to figure probability of making

connections , alternative connections , and transit times .

Suitable for railroad (or highway ) mileage masters . Can accomodate different

types of miles (operating vs tariff / short line vs rate basis miles) by adding fields
to the basic records and " toggle switch " option to the input request .

ENDNOTE

*
The author is Manager Contract Analysis, Development Department , CP Rail System .


