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Multi-Criteria Optimization Methods in
Transport Project Evaluation : The Case of
Rural Roads in Developing Countries

by Terry L . Frieszº, Francisco A . Tourreilles * * and Anthony Fu -Wha Han * *

ABSTRACT
THERE IS INCREASING awareness
1 that the evaluation of transport
projects cannot be meaningfully carried
out according to the single criterion of
economic efficiency . Despite this recogni .
tion , important methodological advances
in multi -criteria decision making and
multi -criteria optimization which have
appeared in the literature in recent years
have yet to be applied to the evaluation
of transport projects . This paper dis
cusses the potential of usefulness of
multi -criteria optimization methods in
the evaluation of transport projects , em
phasizing the strengths and weaknesses
of the two primary schools of thought
concerning the solution of multi -criteria
optimization problems : generating meth
ods and preference incorporation meth
ods. A hypothetical transport project in
a developing country where both effici
ency and distribution are important
objectives is analyzed in terms of the so
called weighting method originally sug
gested by Zadeh and Marglin . The
results of applying this standard gener
ating method are compared to those ob
tained from applying one of the more
widely discussed preference incorpora
tion methods , namely the iterative pro
cedure due to Geoff rion , Dyer and Fein
berg . Conclusions are drawn concerning
the relative attractiveness of these two
solution methods for the evaluation of
transport projects .

list of 14 relevant objectives . Manheim
( 1974 ) has discussed the need for multi
ple criteria in the evaluation of more
general transport projects . Although the
importance of multiple criteria has been
recognized , agreement as to an appropri
ate methodological approach for han
dling non - commensurable criteria in
transport project evaluation has not been
reached .
A useful vehicle for examining the
role of multiple criteria in transport
project evaluation is provided by rural
roads in developing countries . The prob
lem of investment in rural roads may be
utilized to illustrate the application of
standard multi -criteria evaluation tools
and to compare the attractiveness of so
lution methods .
Multi -criteria evaluation problems are
frequently most naturally articulated as
vector mathematical programming prob
lems - as the rural roads example of
this paper will illustrate. Methods for
the solution of vector mathematical pro
gramming problems can be divided into
two categories (Cohon , 1978 ) : ( 1) gen
erating methods which identify all effi
cient solutions , and ( 2) preference in
corporation methods which utilize deci
sion maker preferences to examine only
a subset of all efficient solutions . We il
lustrate in subsequent sections the char
acteristics of the so -called weighting
method , perhaps the most widely known
generating technique . generally attribut
ed to Marglin ( 1967 ) and Zadeh (1963 )
and the iterative preference incorpora
tion technique due to Geoffrion et . al.
(1972 ) . The Geoffrion et. al. technique
is representative of the state of the art
in preference incorporation methods . Be
fore discussing the details of these meth
odological approaches , it is first neces
sary to describe the rural road invest
ment problem in developing countries to
which these methods are to be applied .

INTRODUCTION

That the evaluation of transport proj
jects involves the consideration of mul
tiple criteria or objectives which are non
commensurable is increasingly recognized
by planners and engineers . The multiple
criteria necessary to the evaluation of
urban transportation plans have been
discussed by Hill ( 1973 ) who provides a
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The lack of adequate transportation
facilities has been a major determining
factor of rural underdevelopment in de
veloping countries . Thus , even when in
vestment and technological assistance to
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higher ex - farm prices .
( 2) Total cultivable land area is fixed .
( 3) Agricultural producers are price
takers .

( 4) Agricultural producers are profit
maximizers .

( 5) The total amount of the homogene
ous agricultural product of concern
is marketed only after transport
over the road system .
Let us further suppose that we have
two agricultural regions 1 and 2 which
follow assumptions (1) – (5) and which
are connected through roads R , and R ,
respectively to market A where their
production is sold ( see Figure 1) . Both
regions draw on common fixed resources
(irrigation water , government credits,
etc. ) . Improving road R; will decrease
the market transport cost and will thus
increase the product price perceived by
the producer . As a result , agricultural
production in i will expand . On the other
hand a production increase in one region
will, " ceteris paribus ," lead to a produc
tion decrease , of smaller magnitude in
the other region since the common re
source 's share to the latter will diminish
as a consequence of the production ex
pansion in the former . A transport in
vestment program is being considered
which will improve both roads R , and

the rural sector have been made avail .
able , in principle , by the government or
by international agencies , they have
often met with great difficulties in ac
tually finding their way to the individ -
ual producers due to the non -existence
or inadequacy of physical channels of
distribution ; and in the cases where they
have reached their final destination , sub
stantial delays and deterioration have
reduced their effectiveness in boosting
agricultural production . The fact that
rural transportation improvement pro
grams are a necessary condition for ag
ricultural development has been amply
demonstrated by past experience in less
developed countries , and by drastic over
estimations of expected benefits of rural
development programs which failed to
take this factor into account and which
obtained results which were rather mod
est when compared with the " a priori "
benefit analysis .
On the other hand , the dangers of ex
cessive concern with the rural transpor
tation sector and the consequent neg
lect of other complementary investment
areas should be emphasized . Improve
ments in the rural transportation net
work will not " per se " necessarily boost
agricultural production and economic de -
velopment , if they are not comple
mented by additional investment in areas
such as fertilizer and machinery produc
tion , improved seed development pro
grams, irrigation , technical and credit
assistance , training and education .
Lack of adequate rural transportation
facilities has two main effects on the
agricultural sector .

1) Input effect
The physical inaccessibility to farm
and agricultural cooperatives caused
by deficiencies in the rural road net
work generally results in the impos
sibility of providing the rural sec
tor with the necessary inputs for
agricultural production .
Output effect
The more costly accessibility of the
rural sector to agricultural markets
has a marked negative- incentive ef
fect on its production patterns .
Higher transport costs will result
in lower perceived prices for agri
cultural products and , therefore , in
lower levels of output .

In order to analyze alternative rural
transportation project evaluation tech
niques we will work with a simplified
model based on the following assump
tions :

( 1) Transport cost savings caused by a
road investment project are fully
transferred to agricultural produc
ers in the form of correspondingly

Rg.
Figure 2 describes the agricultural
production situation before and after the
road investment project for region 1.
Before the implementation of the R ,
improvement the perceived price is po

and total output is determined by P . =
MC . (price equals marginal cost of pro
duction ) at q, which is the profit maxi
mizing output . After the implementation

THE TWO -REGION RURAL ROAD
INVESTMENT PROBLEM WITH
PRODUCTION EXTERNALITIES

REGION?

RESOURCE

REGION2

FIGURE 1
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AGRICULTURAL PRODUCTION IN

REGION 1 BEFORE AND AFTER

IMPROVEMENTS IN R , AND R ,

By < 1 (10)

b , is the total national (both regions )
budget devoted to rural road im
provements ( 106 )

b, is a maximal allowable excess of
region 2's transport investment
share over region l's ( a non -nega
tive number ) ( 1069 )
bg is the rural road improvement budg

et of region 1 ( 106$)

be is the rural road improvement
budget of region 2 (106$) .

FIGURE 2

of th
e

R , improvement the product d
e

mand curve ( a
s perceived b
y

the farm
ers ) shifts upward to p = P

1 , due to

transportation cost reduction . If the im
provement o

f
R , is in addition imple

mented , production in region 2 will in
crease and , as a result , themarginal cost
curve o

f region 1 will shift upwards from
MC , to MC , . Final equilibrium output in

region 1 will be q , which is larger than

9 , but less than 9 , the level that could
have been achieved had n

o
R , investment

been made .

If we assume that the objective o
f

the investment program is to maximize
the vector of regional agricultural pro
ductions we can set up the problem
mathematically a

s
:

max Z = [ Z
1 , Z , ] ( 1 )

The objective function ( 1 ) , which de
notes the vector o

f regional agricultural
production levels , is to be maximized
subject to constraints ( 2 ) - ( 8 ) . Con
straints ( 2 ) and ( 3 ) are the regional
production functions a

s

discussed above ;

production in one region is positively
proportional to transport investment in

that region and negatively proportional

to production in the other region . Con
straint ( 4 ) is a

n overall budget con
straint . Constraint ( 5 ) is an interregion

a
l

equity constraint . Constraints ( 6 ) and

( 7 ) are regional budget constraints . Con
straint ( 8 ) is a non -negativity con
straint .

In addition we will assume that a bi
criterion welfare function is defined and
given b

y

U = U [ Z ( X ) , Z ( X ) ] ( 11 )

which is a monotonically increasing func
tion o

f

the objectives with convex iso
quants in objective space .

SOLUTION OF AN EXAMPLE
PROBLEM

s . t .

( 2 )2
1
= a
X , – 822

Z
2
= - y
2

+ 8
X ,

X , + X , < b
i

- X , + X , < b
2

X , < b
z

X , < bt

X1 , X , > 0

where :

Z ; is the agricultural production level

o
f region i

X ; is the amount o
f

investment in road

R ; ( 106 $ )

aby , d > 0 ( 9 )

In this section , we show that the orig
inal problem associated with the hypo
thetical transport project can b
e refor
mulated a
s
a (linear ) multiobjective pro
gramming problem . We then assign some
numerical values to the coefficients and
solve the example problem by a stand
ard generating method , the weighting
method [Zadeh (1963 ) , Marglin ( 1967 ) ] ,

and one o
f

the more widely discussed
preference incorporation methods , name

ly the iteractive procedure due to Geoff
rion , Dyer and Feinberg . [Geoffrion e

t .

a
l
( 1972 ) . ]

As stated before , each o
f

the two con
flicting objectives o

f

the hypothetical
transport project , represents the gains

(agricultural benefits ) o
f
a zone and are

given by expressions ( 2 ) and ( 3 ) . We
reformulate the above equations in such

a way that Z
1

and 2
2

are expressed a
s

linear functions o
f the decision variables ,
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X ,X ,. Some algebraic manipulations
leads to :

1

2 = - (aX , – B8X2)
1-By

the first technique developed for gener
ating or approximating the set of effi
cient or noninferior solutions without in
corporating preference into the solu
tion process . It follows directly from the
necessary conditions for noninferiority
developed by Kuhn and Tucker ( 1951 ) .
Application of the weighting method as
a generating technique has been dis
cussed by Gaas and Saaty (1955 ) , Zadeh
( 1963 ) , Marglin (1967 ) and Major
( 1969 ) .
Given a vector mathematical optimiza
tion problem , of the form

Max Z (x) = [Z , (X ), Z , (X ) . . .
Z ( X ) ] ( 16)

(Min )
s.t. constraints

1

22 = - (-ayX , + 8X ,). ( 12)
1-By

Since all the coefficients shown in the
above equations are positive and the pa
rameters B and y are less than one, ex
pressions (12 ) may be rewritter as :

Z = aX , – bX ,

Z2 = -cX , + dx., (13 )

where the coefficients are all positive .
To illustrate the solution process , we as
sign some arbitrary positive integers as
the coefficients in expressions ( 13) and
the constraint set stated before in equa
tions ( 4), (5 ) , (6 ) , and ( 7) . The exam
ple problem with two objectives and two
decision variables is thus as follows :

Maximize Z ( X ,,X2) = (2 , ( X , X ,) ,
22 (X ,X .,) ]

where

2, (X4,X ,) = 5X - 2X ,

22(X2, X ,) = - X , + 4X ,

s.t.

- X , + X , < 3 X , + X , < 8
X, < 6 X , <

( 15)

we can define an associated scalar opti
mization problem by means of a vector of
non -negative weights (W1, W2, . . . , Wk ) ;
that scalar optimization problem is:

Max Z (X ) = w ,2, (X ) + w,22(X )
+ . . . + WKZ ( X ) . (17 )

(Min )

This optimization problem forms an al
ternative scalar problem which can be
solved , the solution of which , for each
vector ( w , W2, . . . , Wk ) , will generate
à point of the noninferior set for the
original vector optimization problem .
This will be shown in detail later .By using weights to scalarize the vec
tor objective function (Z1,22 ), the exam

p
le

problem may be put into the follow
ing scalar form :

Max Z ( X , ,X2 ,W1 ,W2 ) = wi ( 5X , –

2X2 ) + w2 ( - X , + 4X , ) ( 1

s . t . ( X , X , ) e Fa

where Fa is the feasible region in de
cision space which satisfies the constraint
set given by ( 15 ) . Note Fa is also drawn

in Figure 3 .

The values o
f wį , w , are non -negative .

The non -negativity o
f the w ; ' s is required

b
y

the optimality conditions for nonin
feriority . The w ' s are also not allowed

to b
e

a
ll

zero to assure the objective is

non -trivial . 1 For simplicity , the weight

o
n objective Z , is set to be one , i . e .

w = 1 . This amounts to selecting ob
jective Z , as the numeraire and does not

in any way affect the generality o
f

the
procedure .

The weighted problem in ( 18 ) becomes :

X , X , > 0 .

Two different methods are used in the
solution o

f

the above described example
problem . Throughout the discussion
which follows the general solution o

f
a

multi -criteria o
r

vector optimization
problem is taken to be the set o

f

all
efficient o

r

noninferior alternatives . An
alternative is noninferior if it is impos
sible to increase the value of one objec
tive without decreasing the value o

f

one

o
r more other objectives . The noninfer

ior alternative which maximizes some
aggregate social welfare measure ( in our
two objective case the welfare function

[ 11 ] ) is termed the best compromise so
lution .

APPLICATION OF THE
WEIGHTING METHOD
The weighting method is historically
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THE FEASIBLE REGION IN DECISION
SPACE FOR THE EXAMPLE PROBLEM

proximate noninferior set generated in
Table 1 happens to be the exact nonin
ferior set as is shown in Figure 5 where
we see that every noninferior extreme
point in F . has been found by some
weighted problem . Suppose , however ,
that we generate the non - inferior points
by using the sets of weights ( 1,0) ,
( 1,2) , ( 1,4) and ( 0,1) ; the point C will
be skipped in this approximation . Due
to this property , it is difficult to know
just how good the current approximation
is. There are no efficient rules that can
be applied to assessing the sufficiency of
an approximation . Generally , if there are
no inordinately large gaps and the gen
erated solutions give a reasonable ac
count of the range of choice , the approxi
mation is adequate .
In short , despite the fact that there is
no guarantee of obtaining the exact non
inferior set, the weighting method pro
vides a convenient and effective way for
the analyst to solve the multi-criteria
problem when the analyst cannot acquire
prior statements of the decision maker 's
preferences or value judgements about
the objectives , and the number of objec
tives is small .2

- Feasibisregionindecisionspace

FIGURE 3

APPLICATION OF THE
GEOFFRION ET . AL METHOD

The preference incorporation methods
require the explicit articulation of pref
erences either prior to solution or in an
iterative manner . We will now concen

APPLICATION OF THE WEIGHTING
METHOD TO THE EXAMPLE PROBLEM :

DECISION SPACE

Max Z ( X ,,X .,,w ,) =
5x , - 2x , +w , ( - X, +48 _) (19)

s.t. (X ,,X ,) e Fd
The constraints are unchanged , and so
for a given value of wą, the solution can
be found graphically in the decision
space . For example , for w , = 1 the ob
jective function in (19) becomes

Max Z ( X ,X ,,1) = 4X , +2x ,
May ZX Y LAX 12

(20)
(20 )

The solution is that point for which a
straight line with slope determined by
Z is tangent to Fa in Figure 4. This oc
curs at point where X , = 6 , X2 = 2,
2 , = 26 and Z , = 2. We can confirm this
result by drawing a linear indifference
curve with slope – w , ŚW2 = - 1 in
Figure 5 and observing the point at
which it is tangent to F ., the feasible
region in objective space . By definitions
of Z , and Z2, there is a one-to -one cor
respondence between Fa and F .. A non
inferior point generated in Figure 4,
e.g. point C = (6, 2) , will give rise to a
similarly labeled point in Figure 5, i.e.
point C = (26 ,2) .
One can generate an approximation of
the noninferior solution set by joining
the noninferior points generated by each
weighted problem considered with
straight line segments . A possible re
sult is summarized in Table 1. The ap

2(x,.22.25-16

D 2 ( ,-42.368
2(1.47.11-28

2. (X.X.):10

FIGURE 4



394 TRANSPORTATION RESEARCH FORUM

APPLICATION OF THE WEIGHTING METHOD TO THE
EXAMPLE PROBLEM : OBJECTIVE SPACE

- 3 +16

2, -30

FIGURE 5

trate our attention on the method due to

Geoffrion et . al ( 1972 ) which provides an
interative solution technique leading to

an approximation of the best compro

mise solution by assuming an
underly

ing welfare or utility function which is
approximated locally as the algorithm
proceeds . The mechanism of this meth
od is based on the well -known Frank
Wolfe algorithm [Frank and Wolfe
( 1956 ) ] . To implement the algorithm we
also need to assume , as usual, a com
pact , convex feasible region and a con
cave, differentiable welfare or utility

function .

Max (Vx U (2 , (Xi), Z (Xi), . . .
Zp(Xi)] y } (22)

s.t. y e Fc (23)

where Xi is an existing feasible solution
and Fa is the feasible region in decision
space. By application of the chain rule
for differentiation , (22 ) can be written
as :

Max Š [au : 32% | Z(Xi) ]
k = 1 Vx Zk (Xi)y. (24 )

Also by the definition of the MRS (mar
ginal rate of substitution )

There are two major parts of the al.
gorithm : ( 1) the determination of the
best direction from an existing solution
toward the optimal solution and (2) the
step size along that direction . The basic
mathematical foundation of this algo
rithm is summarized below . Given that

the objective is to maximize a multiat
tribute welfare or utility function which

is defined over the p objectives

JU /82% • JU /aZr | Z (X ) =

- OZ. • OZK / Z (Xi) =

MRSkr (Xi) k = 1,2, . . . p (25)

where Zr is a reference objective used

to compute all MRSkr ’s .

The direction subproblem is therefore

given by :

Max U [Z , (X ), Z , (X ) , . . . ,

Z (X ) ] (21)

Geoffrion et.al (1972 , p. 358) showed
that the direction subproblem is to find
a direction di = yi - Xi, where yi is the
optimal solution to

p

Max & MRSkr (XI) VxZ (Xi) y (26)
k = 1
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TABLE 1

EXAMPLE APPLICATION OF THE WEIGHTING METHOD

Weights
Optimal SolutionOptimal Value of

objective Function" 20" ( in decision space in objective space

Non - inferior
Point Generated
in Fig . 4 and
Fig . 5.

Z*
(x2* , _ *) (2 * ,2, * )

(30, - 6)

(26,

.
cu

o

(12 ,

(12, 12)

(-3, 15)

s.t. y e Fd .
It follows that the step size subproblem
may be expressed as

Max U [Z, (Xi + td
i
) ,

2 . (Xi + tdi ) , . . . ,

Z ( X
i
+ td
i
) ] ( 27 )

s . t . I < t < 1 ( 28 )

where d
i
= y
i
- X
i
is the optimal direc

tion obtained from the direction sub
problem . When the utility function is not
specified , Geoffrion suggests plotting
each objective over the range o

f inter
est Z

k
( Š
i
+ tdi ) , 0 < t < 1 ; then let

ting decision -maker choose a solution in

this range o
f

choice .

The algorithm may clearly b
e exe

cuted in a
n iterative fashion involving

the decision maker and analyst as fol
lows :

Step 0 :

The dicision -maker ( o
r

the analyst )

selects a feasible solution X° e Fd ,

i = 0

Step 2 :

( a ) If the utility function can b
e spe

cified , solve ( 27 ) subject to ( 2
8
)

to obtain the optimal step t * . Go

to Step 2 ( c ) . Otherwise g
o

to

Step 2 ( b ) .

( b ) Plot the functions Z
k ( X
i
+ td
i
)

over the region where Oct < 1 ,

and le
t

the decision -maker deter
mine a t * b

y

inspection .

( c ) Set X
i
+ 1 = X
i
+ t * di , i = i + 1 and

g
o

to Step 1 .

T
o apply the above algorithm to the

example problem stated in ( 1
4
) and

( 1
5
) , we first assume the multivariate

utility in (21 ) is expressible in the prod
uct form given b

y
:

U [ 2 , ( X ) , 22 ( X ) ] = 2 , 22 , ( 29 )

The MRS , , evaluated a
t
a current solu

tion point X
i

can b
e thus given b
y :

MRS , , ( X ) = – dz , • dz , | Z (Xi )

= 2 , ( X ) ; 22 (Xi ) (30 )

T
o get a
n initial feasible solution , we

may solve a weighted problem with a
p

propriate weights . Suppose that weights
are w = W2 = 1 ; the solution associ
ated with this weighted problem has been
solved and presented in Table 1 . Thus
we obtain the initial solution ,

X
o

= ( 6 , 2 ) and Zı (Xº ) = 26 ,
Z ) ( X ^ = 2 .

Therefore , the algorithm b
e described

for the example problem a
s follows :

Step 1 :

( a ) The decision -maker articulates the
local MRSkr ' s at Xi .

( b ) Solve the direction subproblem

( 26 ) . Set d
i
= y
i
- XI .

( c ) If di = 0 or | di l < e , where e is

preset small positive number ,

stop . The BCS (best compromised
solution ) has been found . Other
wise g
o

to next step .
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First Iteration

Step 1 :

(a ) We calculate

MRS2 (Xº = 26 • 2 = 13.

( b) Since

V2, = (5, - 2), 72, = ( - 1,4)
and

MRSu = 1 , MRS21 = 13,

the direction subproblem ( 26) becomes :

Max (5, - 2) ( y ,, ,) T +
13 ( - 1,4 ) ( y, ,y, ) T =
- 8y , +50y2

s.t. (y ?,y2 ) e Fa.

The optimal solution of this subprob
lem is yo = ( 1,4)

Set do = (1,4) – (6,2 ) = ( - 5,2) + 0.
Go to Step . 2.
Step 2 :
( a) Using (22) , the stepsize subprob
lem (27 ) subject to (28 ) becomes :

Max U [Z , (Xo +tdo ) ,
2 , (Xº + tdo ) ]

Z (Xo +tdo) Z ( X + td
o
)

= [ 5 ( 6 — 5
t
) - 2 ( 2 + 2
t
) ]

[ - ( 6 - 5
t
) + 4 ( 2 + 2
t
) ]

= ( – 277 + 2 + 280t + 52 )

s . t . 0 < t < 1

Solving this problem we get t * =

0 37 .

The result is y ' = ( 4 , 4 ) . Set d ' =

y ' - X ' = ( - 0 . 2 , 1 . 3 ) + 0 . Go to

Step 2 .

Step 2 :

( a ) Solve the new stepsize problem

Max ( – 19 . 4 + 2 + 60 . 5t + 1
0
3
)

s . t . 0 < t < 1

The result is t * = 1 .

( b ) Note X
2

= X ' + d ' =

( 4 , 4 ) , Z ( X2 ) = ( 12 , 12 ) .

Repeating the procedure , we obtain

y
2

= ( 6 , 2 ) , d2 = ( 2 , - 2 ) , x3 = ( 4 . 3 ,

3 . 7 ) , and Z (X3 ) = ( 14 . 4 , 1
0 . 3 ) in the 3rd

iteration . Finally convergence is achieved

a
t

the 4th iteration , where we get d
3

=

( 0 , 0 ) ; thus the algorithm stops with the
best -compromize solution ( 4 . 3 , 3 . 7 ) , a

t

which (Z1 , 2 , ) = ( 14 . 4 , 1
0 . 3 ) . The con

vergence to the BCS is also shown in the
objective space in Fig . 6 .

The above procedure has been com
pletely computerized (Dyer , 1973 ) allow
ing the decision maker to interact d

i

rectly with the algorithm through a com
puter terminal . However , the overall per
formance o

f the Geoffrion method , a
s

Wallenius (1975 ) pointed out , is not a
s

good a
s might b
e expected , mainly due

to the difficulties experienced b
y

the sub
jects in estimating the MRS .

( b ) Note X ' = Xo + t * do =

( 4 . 2 , 2 . 7 ) , Z ( X ' ) = ( 15 . 6 , 6 . 6 ) .

Second iteration

Step 1 :

( a ) Note MRS21 ( X ' ) = 1
5 . 6 / 6 . 6 =

2 . 4 . Use this in ( 27 ) get a new d
i

rection subproblem .

( b ) Solve the new direction subprob

CONCLUSION

We have shown that the problem o
f

investment in rural roads may b
e for

mulated a
s
a multi -criteria optimization

problem . Moreover , we have illustrated
that the form o
f this problem is such

that two widely known techniques for

" solving " multi -criteria mathematical
programming problems may b
e applied .

These techniques , the weighting method
and the iterative preference incorpora
tion method due to Geoffrion e

t . a
l , differ

dramatically in the types o
f

information
required by the decision -maker and the
degree o

f

interaction between the deci .

sion -maker and the analyst .

The weighting method , prototypical o
f

the methods generally classified a
s gen

erating methods , strive to approximate
the noninferior set (the set o

f all efficient
alternatives ) , with the implicit assump
tion that knowledge o

f this set will al
low the decision -maker to select a best
compromise solution . The iterativemeth

o
d o
f

Geoffrion e
t . al , like all preference

incorporation approaches o
f

which it is

but one example , seeks to identify the
best compromise solution without gener
ating the entire noninferior set ; this is

lem

Max 2 . 6y , + 7 .6y2

s . t . ( y1 , 92 ) e Fa .
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APPLICATION OF GEOFFRION ' S METHOD TO THE
EXAMPLE PROBLEM

2₂4

ty° )- (-3,1s

--- - - 72(9')-(12,12)=2(x²)

2
6
x
? ) - ( 14 . 4 , 10 . 3 )Z2

Z ( X ' ) - ( 15 . 6 . 6 . 0
yux . . )

.
FIGURE 6

mization method selected to analyze proj
ects in which the evaluation problem has
the form o

f
a vector mathematical pro

gram must b
e selected in light of the

prevailing decision making environment .
Where problems are small and a desire

to know all noninferior alternatives pre
vails , methods such a

s

the weighting
method are appropriate . When adequate
decision maker technical sophistication
and time for interaction with the analyst
exists , iterative preference incorporation
methods such a

s

that due to Geoffrion

e
t
. a
l

are appropriate .

ACKNOWLEDGMENT

accomplished by soliciting preference in -

formation from the decision maker
which leads to the best compromise so -

lution through the generation o
f fewer

noninferior alternatives .

The two methods discussed here illus
trate the significant difficulties associated
with the multi -criteria evaluation o

f

transport investment projects such as
rural roads in developing countries
which involve conflicting objectives . Chief
among these difficulties is the fact that
generating methods ( such a

s the weight
ing method ) do not systematically guide
the decision maker to a final decision
and may , for problems with large num
bers o

f objectives , require the consider
ation and assimilation o

f

more informa
tion (principally information in the form

o
f
“ trade -off ” curves describing nonin

ferior alternatives ) than can b
e

reason
ably handled . Preferences incorporation
methods , the alternative to generating
methods , particularly more sophisticated
methods like the Geoff rion e

t .almethod ,

require preference information ( e . g .mar
ginal rates o

f substitution ) which may

b
e beyond the ability o
f the decision

maker to supply due either to problem
complexity or lack of technical under
standing o

f the problem a
t

hand .

In light of the above observations and
the current state o

f

the art , it can b
e

concluded that the multi -criteria opti -

The senior author would like to thank Professor
Jerry Cohon o

f

Johns Hopkins University for his
brilliant lectures and textbook which provided
details o

f

the numerical applications o
f

the meth
ods discussed .

FOOTNOTES

1 The MRS (marginal rate of substitution ) of

two objectives , a
s we shall point out , is the nega

tive reciprocal o
f

the ratio o
f
w , ' s . When all w ' s

are zero , it implies that all the MRS ' s of objec
tives are undetermined . In other words , there
exists no utility function for the decision -maker

in this case.

2 The computational cost for applying a gen
erating technique increases exponentially with the
number o

f objectives .
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