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A Descriptive Supply Model for Demand-
Responsive Transportation System Planning

by Martin Flushberg, Sr.* and Nigel H. M. Wilson'*

TN A CONVENTIONAL fixed route
* transit system, level of service char
acteristics such as wait time and ride
time are generally not highly depend
ent on the demand for service. The es
timation of these parameters is quite
straightforward, given the specification
of the system. For example, passenger
wait time may be considered dependent
only on the headway distribution, ex
cept, of course, in congested systems,
while passenger ride time is dependent
only on trip length, vehicle speed and
dwell times. Level of service will influ
ence demand, but routes and schedules
can be considered the sole determinants
of level of service.
In the case of demand-responsive
transportation (DRT), however, in which
door-to-door service is provided to each
passenger, level of service is highly de
pendent on the demand for service. A
passenger's ride time is dependent not
only on the length of desired trip and
the vehicle speed, but also on the num
ber of other passengers served by the
vehicle en route and the location of their
origins and destinations. These factors,
in turn, depend on the level of demand,
its geographic distribution, the number
of vehicles in service and the dispatch
ing strategy, as well as other factors.
Wait time and other service character
istics are at least as difficult to predict
as ride time.
The complex nature of the supply
aide in DRT systems has made it un
usually difficult to predict key inputs
to DRT planning such as ridership, reve
nue, and net system cost. DRT system
planners are generally forced to use
simple rules of thumb in determining
vehicle requirements, when vehicle fleet
size decisions are not simply determined
by economic constraints. The lack of a
reliable tool for relating vehicle fleet
size to level of service and ridership can
result in demand-responsive systems
with either a serious oversupply or un-
dersupply of vehicles. The much dis
cussed Santa Clara County system pro
vides a classic example of the conse-
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quences of mismatching the number of
vehicles and the population served.
There have been a number of models
of DRT supply developed in recent
years, but each of the models has short
comings. The most widely used technique
for modelling DRT service has been com
puter simulation, an appropriate tool
because of the complex and stochastic
nature of the system. A simulation mod
el developed at MIT (1) (2) has been
validated with data from the UMTA
sponsored Dial-a-Ride demonstration
project in Haddonfield, New Jersey.
This model, which was developed both
to predict DRT system performance and
to assist in the development of computer
algorithms for DRT dispatching, offers
considerable flexibility in analyzing dif
ferent systems and options. However,
it requires a fairly large computer fa
cility and is relatively expensive and
time-consuming to use; thus, its effec
tiveness as a planning tool is severely
limited.

There have also been attempts at de
veloping a simple DRT supply model.
Among the better known models are
those developed by Wilson (1), Arrillaga
and Medville (3) and Lerman and Wil
son (4). The Wilson model consists of a
simple equation based on simulation re
sults that relates vehicle fleet size to
demand density and level of service.
This model was applied by Bechtel (5)
to the Santa Clara system and indicated
that there was an insufficient supply of
vehicles to meet the expected demand.
However, the model is weak in terms of
range of validity, the limitation of only
one service output measure, output
bounds, and the number of input param
eters, and is probably oversimplistic for
most planning efforts. The Arrillaga
and Medville model is a linear regres
sion model calibrated with data from
nine very different operating DRT sys
tems. This model has a number of ma
jor problems, and in fact gives clearly
erroneous service time estimates for
some feasible input sets because of the
simplistic linear form.
Both of the above models are descrip
tive models in the sense that they are
not based on any underlying theory, and
hence, have a limited range of validity.
The Lerman and Wilson model is based
on queuing theory, but because of many
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simplifying assumptions, has also been
shown to be valid only over a very lim
ited range of inputs.
In light of the inadequacies of existing
DRT supply models, there is a clear
need for a simple model that can be used
to predict DRT service levels, and en
able a planner to easily investigate a
wide range of demand-responsive trans
portation system design options. This
paper presents a descriptive supply
model that can be used in this manner.

A DESCRIPTIVE SUPPLY MODEL
FOR DRT
The model described in this paper
was developed as part of a combined
supply /demand/equilibrium model of
many-to-many DRT systems.1 (Many-
to-many service, in which point-to-point
service is provided as demand anywhere
within the service area, is at once the
most common form of DRT service and
the most complex; and as such, is the
most important form of DRT to model.)
The supply model can be used on its
own in parametric analyses, in which
demand and other exogenous factors are
varied over wide ranges. This can serve
as an effective method of investigating
system performance and determining
vehicle requirements for a range of sys
tem configurations and demand levels.

Before describing the model, it is im
portant to understand the context in
which the model is best applied. A de
scriptive model, by definition, implies
a simple representation of a system, and
is valid only over the range of calibra
tion. Although an attempt has been
made to incorporate as many parameters

as possible in the model, many simpli
fying assumptions were made. The model
cannot be expected to offer the same
degree of flexibility as a simulation
model. It is intended less as a method
for accurately predicting service levels
than as a screening tool, enabling the

planner to identify feasible options and
determine the impact of modifying ve
hicle fleets and service levels.

MODEL OUTPUTS
The basic desired output of the sup
ply model was level of service (LOS),
defined as the ratio of total travel time
to the direct auto travel time. To obtain
this measure, travel time was broken
into its two components, wait time (WT)
and ride time (RT). These represent the
most commonly used service measures,
and experience has indicated that they
vary differently with respect to factors
such as demand density. Measures such
as wait and ride time uncertainty may
alse influence the demand for DRT ser

vice, but at this point there has been
no attempt to model uncertainty directly.

MODEL INPUTS
Experience with both the simulation
model and with actual DRT systems sug
gested that the following factors influ
ence passenger wait time and ride time,
and thus should serve as model inputs:
• Demand density (D)
• Service area size (A)
• Load and unload times (1 and n)
• Street network characteristics (f„
ratio of street distance to airline dis
tance to airline distance between two
points)*
• Mean direct trip length between
origin and destination (L)
• Vehicle speed characteristics (V)
• Dispatching system
Two difficulties were encountered
when consideration was given to incor
porating dispatching within the model
formulation. The first was the inherent
difficulty of attempting to parameterize
the many possible dispatching schemes,
while the second was the fact that the
simulation model could provide a con
sistent predictor of computerized dis
patching only. It was recognized, how
ever, that dispatching clearly impacts
wait and ride time. The decision was
reached to develop the model based on
a dispatching system that effectively
minimizes total travel time, and then
consider the impact of different dis
patching systems externally. The im
pact of dispatching will be discussed in
a later section.
Another factor that could potentially
influence level of service is vehicle ca
pacity. Experience and research have
both indicated, however, that the level
of service is sensitive to vehicle capacity
only over a small range of vehicle
sizes (6). The reason for this is that for
vehicles with capacities of perhaps sev
en or more, the desired service quality
more actively constrains the number of
passengers that can be picked up than
does physical capacity. It was decided
that a more effective approach than in
corporating vehicle capacity explicitly
within the model would be to develop
separate models for the operating sce
narios most closely related to vehicle
capacity. One model would represent
traditional DRT service which uses vans
or small buses that seat 10 passengers
or more, while the second model would
represent a shared-ride taxi system,
with a vehicle capacity of 4 or 5.

MODEL FORMULATION
The approach taken in formulating
the model was to develop bounds for
both wait time and ride time and formu
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late models which were bounded correct
ly and demonstrated the observed re
lationship with respect to the input
parameters discussed above. Calibration
of the models was based on a series of
simulation experiments; bear in mind
that the MIT simulation model had
previously been validated. A primary
objective of the model development was
accuracy within ± 10% of mean sys
tem performance as measured by the
simulation model, since fluctuation be
tween systems caused by factors not
modelled would be at least at this level.
System bounds are developed below.
To simplify the following discussion,
define:

DxA
Vehicle Productivity X = =

N
demands /vehicle/hour
Effective Vehicle Speed Veff =

(60-X (1+u) )V
(where, effective ve-

60
hide speed is the net speed, incorporat
ing all delays, to pick up and drop off
passengers.)
1. As vehicle productivity approaches
zero:
a. the ride time approaches the direct
ride time:

f.xL
RT =

Veff

b. wait time becomes the expected
travel time between a point and the
closest of N randomly distributed points
in an area size A: (7)

tional forms that provided the best
suits are:

WT =
2V

— (where Veff
N

approaches V as X approaches 0)
2. As vehicle productivity becomes
very large: both wait time and ride time
approach infinity.
3. As area becomes very large, wait
time approaches infinity.
4. As number of vehicles approaches
zero: wait time and ride time approach
infinity.
A number of functional forms were
developed, with parametric relationships
that were based on observations of ac
tual DRT systems and experience with
the DRT simulation model. Both wait
time and ride time appear to be expon
entially related to productivity (with
wait time more sensitive to productivity
than is ride time) which is not surpris
ing, given the complex queuing process
represented by DRT service. The func-

WT =
J~A-

2xVelf V N
— exp (kj x

I A+4 k2
X)

N+12

*nxL AxX ^4
RT = exp (k3 ( )

Vef, N
)

These models were calibrated via log
linear regression over the following
range of inputs.
A (area) = 4 mi^ -24 mi2
N (vehicle fleet size) =4-34
fa (street adjustment factor) = 1.2
- 1.4
V (vehicle speed) = .20 mi/min - .80
mi/min
1, u (load and unload times) = .375
min - 1.25 min
D (demands per sq. mi. per hour) =
1 - 45
X (demands per vehicle per hour) =
4 - 12.7
The resulting constant values were:
kx = .22 for a bus system and .20 for
a shared ride taxi system
k2 = .9 for a bus system and 1.0 for
a shared ride taxi system
k3 = .084 for both bus and shared
ride taxi systems
k4 = .7 for both bus and shared ride
taxi systems
The percent RMS error, a measure of
the mean percent difference between the
simulation model results and the de
scriptive model results was approxi
mately 10% for the wait time model
(6% for the shared ride taxi version)
and just under 5% for the ride time
model. Chi-square and t-tests indicated
that the output distributions of the sim
ulation and descriptive models were not
significantly different.

REFINEMENTS TO THE MODEL:
SOME TRIAL APPLICATIONS
Trial applications to the model com
bined with further simulation experi
ments led to insights into the impact
of the dispatching system on service
levels, which in turn led to suggested
refinements to the basic model form.
Two trial applications will be presented;
the first is a test of the model against
data from the Haddonfield, New Jersey
DRT system. The Haddonfield system
provided the only experience with a
fully operational computer dispatch sys
tem.* The Haddonfield experiment uti



428 TRANSPORTATION RESEARCH FORUM

Used the dispatching algorithm that is
incorporated in the simulation model
used for calibration; thus, this appli
cation represents a true test of the de
scriptive model's predictive capability.
Before presenting the results of the
test, the concept of "effective vehicle
fleet size" must be introduced. This con
cept was developed during the valida
tion of the simulation model (2). It was
discovered that when vehicles leave and
then reenter service, for example, for
driver reliefs, the system operates as
if it had fewer vehicles in operation
than it actually has. Since passengers
waiting for service cannot be assigned
to vehicles scheduled to leave service,
the mean system wait time is greater
than it would be if there were a con
stant vehicle fleet size. As far as sys
tem wait time is concerned, the "effec
tive" vehicle fleet size is smaller than
the actual fleet size. Ride time, how
ever, does not appear to be similarly
affected. Although a backlog of passen
gers will appear before a vehicle re
enters service, resulting in a longer
than average ride for these passengers,
those passengers onboard a vehicle
scheduled to leave service will be
dropped off directly, and thus receive a
shorter than average ride. These two
factors appear to offset each other.
In testing the descriptive model
against real world results, an estimate
of effective vehicle fleet size must be
made.* Effective vehicle fleet size ap
pears to be a function of the number
of vehicles in service, the number of
times vehicles leave and enter service,
and the point where driver reliefs are
made in relation to the service area. To
date there has been no attempt to model
effective vehicle fleet size. Simulation
experiments have suggested that the
effective fleet size may be as much as
20-25% smaller than the actual vehicle
fleet size in cases where vehicles leave
service frequently (8).
In obtaining the results for the Had-
donfield trial, shown in Table 1, an ef
fective vehicle fleet size of 8 was as

sumed for wait time prediction. This
figure, obtained by simulation experi
ments during the validation of the sim
ulation model, is 18% lower than the
actual mean fleet size of 9.2 used for
the prediction of ride time.
The prediction of total travel time is
within another 7.4% of the actual travel
time, which suggests that the model is
highly reliable. The predictions of wait
and ride time were less accurate (wait
time within 9.5% and ride time within
24%); however, given the stochastic
nature of the system and some of the
assumptions used in setting up the trial
runs, these results are considered very
reasonable.5
Note that wait time was predicted
to be lower than ride time. With the
dispatching algorithm used during cali
bration, the simulation model will con
sistently predict lower wait than ride
time. Yet, observations of manually dis
patched DRT systems have indicated
that the opposite occurs. For example,
data from the La Habra, California sys
tem indicates mean system wait and
ride times of 21 and 15 respectively for
a three day period in June, 1975 (9).
This dichotomy can be directly traced
to the type of dispatching system being

First of all, it has been widely as
sumed that computer dispatching would
have a significant impact on service
levels. The Haddonfield experiment is
the only test of this hypothesis; the ad
vent of computer dispatching in Had
donfield resulted in a 20% decrease in
wait time, a decrease in wait time un
certainty, and no change in ride time.
Although this represents only a single
data point these results help explain part
of the reason for the difference between
simulated and real world results.
The remaining difference can be ex
plained by the way in which the dis
patching system treats wait and ride
time. In any dispatching system, either
manual or computer, passenger assign
ments are in some way based on pro
viding the best overall service. In the

Haddonfield
Data

Model
Results

COMPARISON OF DESCRIPTIVE MODEL
WITH DATA FROM HADDONFIELD*

# of Veil,
in Service
9-11

(mean = 9.2)
8 (WD
9.2 (RD

Mean System Mean System Mean System
Wait Time Ride Time Travel Time
9.5 min. 9.5 min. 19.0 min.

8.6 min. 11.8 min. 20.4 min.

*p»U coven a «ix hour period of
during which 262 demand* were ten

11.25 mi:, t - 1.4, and L = 1.47. r>timatea of
V.l. and u were .26, .875 and .376
(2).
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algorithm used in Haddonfield and in
the simulation model, passenger wait
and ride time were treated equally within
the assignment process. This approach
has been found to yield the minimum
total travel time, although different
"weightings" of wait and ride time
should not significantly impact total
travel time (10). On the other hand, ob
servations of manual systems, including
Rochester, have shown that dispatchers
consider ride time more onerous than
wait time, and will seek to minimize
ride time at the expense of wait time.
In addition, some drivers will at times
drop off a passenger already on board
even when they have been assigned a
prior pick up. As a result of these ac
tions, wait time will generally be higher
than ride time.
As a vivid illustration of the way
dispatching can impact wait and ride
time, consider a second trial application
of the descriptive model, a test against
data from the Rochester, N.Y. system
while it was under computer control.
In response to suggestions of the dis
patcher, the computer assignment algo
rithm in Rochester initially weighted
ride time 50% more heavily than wait
time. (This has since changed and wait
and ride time are now being weighted
equally). A comparison of the model
predictions with the actual data is shown
in Table 2.
The model, calibrated on the basis of
an algorithm that weighted wait and
ride time equally, underpredicts wait
time by 36% and overpredicts ride time
by 47%. Yet the total travel time esti
mate, the desired output of the model,
is within 7.5% of the actual value.
The conclusion to be reached is that
the descriptive model as it has been pre
sented can accurately predict total
travel time for a computer dispatched
DRT system and wait time and ride
time_ for systems whose dispatching is
predicated on an equal weighting of
these two variables, and where the
driver plays no role in stop sequencing.
To make the model more generally ap

plicable would require the addition of
parameters that can account for changes
in dispatching.
It is hoped that additional experience
with computer dispatching in DRT sys
tems will provide sufficient data to cali
brate such a model. In the interim, how
ever, the following refinements to the
model are suggested in order to make
the model more general.

WTa = (1+ a + /3)WTJ
RTa = RT-0WT
Where:

WTa = Wait time adjusted for dis
patching system
RT, = Ride time adjusted for dis
patching system
a and f3 are parameters which reflect
different dispatching algorithms
p = a measure of weighting of wait
and travel time6
a = an indication of whether the sys
tem is computer dispatched.
Suggested ranges for these parameters
are:
a = 0 for computerized dispatching
a — .1-.3 for manual dispatch, de
pending on the demand level. In Had
donfield, a. was approximately .2.
= -.6 to .6 (negative if wait time

is weighted higher than ride time, pos
itive if weighted lower).
A word of caution in using this form:
it is possible for WT or RT to go below
their minimum bound in certain situa
tions. This constraint places an upper
and lower bound on j3

.

To illustrate the way in which this
format can be applied, let us return to
the Rochester example. Set a=0 and,
since ride time was weighted 50% higher
than wait time, we might set /3=.5.
The resulting values of WT and RT are
29.1 and 13.9 respectively, extremely
close to the actual values of 30.5 and
16.0.

COMPARISON OF DESCRIPTIVE MODEL
WITH DATA FROM ROCHESTER*

# of Veh.
in Service

Rochester 2-5
Data (mean = 3.4)
Model Results 2.9(WT); 3.4(RT)

Mean System
Wait Time
30.5 min.

19.4 min.

Mean System
Ride Time
16.0 min.

23.6 min.

Mean System
Travel Time
46.5 min.

43.0 min.

*T>ata is for one evening of service ; to-date
the computer system has been successfully used
for evening service only. Data represents a 4.6
hour period during whleh 62 demands were
served. Five instances of "no shows" were treated

as half-demands. Effective vehicle speed, account
ing for street adjustment factors was measured
at 11.3 miles per hour. L-2.2, A = 17.5. The ef
fective vehicle fleet slxe was assumed to be 15%
smaller than the actual mean fleet sise.

TABLE 2
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USE OP THE MODEL TO
DETERMINE PARAMETRIC
RELATIONSHIPS
Given the ability of the descriptive
model to predict total travel time (for
a computer dispatched system), there
is an opportunity provided to explore
the behavior of a many-to-many system
in a wide range of situations, and de
termine how various system character
istics effect level of service.
Figure 1 tests the hypothesis that
there are significant economies of scale
in DRT systems, i.e., as demand density
increases, productivity can be increased
without decreasing service quality. It
is clear from this figure that such econ
omies of scale do exist at all service
levels, for some range of demand den
sity. This behavior is due to the in
creasing probability with increasing de
mand densities that different passengers
will be travelling along similar paths at
similar times, making the formation of
more efficient tours. As service quality
is relaxed, the time window to provide
service by a common vehicle is also
lengthened, resulting in higher produc
tivities at a given demand density. The
higher the quality of service provided,
however, the more quickly these econ
omies of scale are exhausted. For ex
ample, if the mean LOS is about 2,
economies effectively disappear beyond
a demand density of about 10-15 pas
sengers per square mile per hour. For
a LOS of 4, however, economies exist
even at demand densities of greater
than 20.
In developing this graph, demand den
sity was varied from 1 to 20 demands
per square mile per hour. Most existing
many-to-many systems operate in the
range of 2-5 demands per square mile
per hour. In that range the model pre
dicts productivities of 2.5-4.0 for a high
quality service (LOS-1.7), and 6.0-8.5
for a relatively poor quality service
(LOS=4.2). The productivities of ex
isting systems have typically been well
within these ranges, and although these
productivities may be low when com
pared with projections made before any
systems were implemented (11), they

PRODUCTIVITY vi. DEMAND DENSITY

FIGURE 1

LEVEL OF SERVICE vs.
SERVICE AREA SIZE

• 10 12 14 14

Jkfea<K1.)

FIGURE 2

should not be surprising given the low
demand densities.
It has been noted that area size plays
an important role in a DRT system. As
area size increases, and the number of
demands remain the same, the distance
between stops on a vehicle tour would
be expected to increase. Thus level of
service would be expected to increase
with increasing area size. Figure 2 sup
ports this hypothesis. Level of service
is shown as a function of area size, for
constant demand levels (not demand
densities) and vehicle fleet sizes. Notice
that at fairly low productivity levels,
service levels are less sensitive to area
size. Interestingly, level of service ap
pears to be linearly related to service
area size. As productivity increases, the
level of service becomes more sensitive
to area> size; this, of course, is a reflec
tion of the non-linear relationship be
tween level of service and productivity.
Finally, Figure 3 illustrates the "trade
off" between demand density and area
size for constant level of service and
constant vehicle fleet size. The same
number of vehicles that are needed to
maintain a particular level of service in
a small area with a particular demand
density would be needed to maintain the

DEMAND DENSITY vs. AREA SIZE
Constant Vehicle Fleet Size

V

■ 10 13 M 1*

FIGURE 3
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same level of service in a larger area
with a lower demand density.

PERSPECTIVE
The descriptive supply model pre
sented in this paper is intended to be
used primarily as a screening tool. In
this context, the model would typically
be used to predict system performance
for a range of possible service area
sizes and vehicle fleet sizes. This would
enable the planner to determine which
options are feasible and how many ve
hicles would be needed to maintain a
certain service level for a given system.
The service time outputs of the model
could be used as input to a demand mod
el; alternatively, in the absence of an
actual demand model the supply model
could be used to predict performance
over a range of feasible demands. Clear
ly, assumptions will have to be made
about such input parameters as speed,
load/unload times, and perhaps effective
vehicle fleet size. However, the model
can be easily used to perform sensitivity
analyses on each of these parameters.
One word of caution; since the model
is a descriptive model its range of re
liability extends only to the range of
calibration.
The model has been able to accurately
predict total system travel time for
both the Haddonfleld, N.J. and Roches
ter, N.Y. DRT systems, and it is this
measure that the model can most re
liably predict. An approach has been
suggested that would make the model
responsive to differences in the dispatch
ing system used. With this approach, it
should be possible to predict reasonable
total travel times for manually dis
patched systems, and to predict reason
able wait and ride time values in gen
eral. However, the impact of dispatching
on level of service is clearly an area
which requires additional research.
An objective of the research which
led to this model was to develop an in
expensive, simple to use model that
could predict level of service as re
liably as the MIT simulation model, and
avoid the problems of earlier descrip
tive models by being properly bounded,
being sensitive to a wide range of input
parameters, being reliable over a fairly
wide range of inputs, and displaying
the proper relationships between system
parameters. The model described in this
paper has achieved this objective, and
should provide a valuable tool for the
planning of many-to-many DRT sys
tems.

FOOTNOTES
1 Contract #DOT-TSC-97T.
2 A perfect grid system would have an "ad
justment factor" of 1.273. Measurement* of ac
tual distances for the Haddonfleld, N.J. and Ro

chester, N.Y. CRT service areas resulted in ad
justment factors of 1.4 and 1.2 respectively.
3 The Rochester, N.Y. DRT system ia imple
menting a computer dispatch system and, al
though it ia not as yet fully operational, some
data are available, as will be discussed later.
4 When using the model as a screening' tool it
does not seem unreasonable to assume an ideal
ized system in which vehicles never leave service.
6 The discrepancies may be in part traced to
the estimates for V.l.u and effective vehicle fleet
size. A number of simplifying assumptions used
in calibrating; the model should be pointed oat,
however. The model was calibrated with the as
sumptions of uniform demand density and square
service areas. Simulation experiments have in
dicated that, except in extreme cases, neither of
these assumptions will significantly affect the re
liability of the results. However, this may account
for small differences between predicted and actual
system performances.
6 One of the reasons that this approach Is feas
ible is that total travel time has been found not
to vary significantly with different weightings of
wait and ride time. Thus 6 represents the relative
weight of wait and ride time within total travel
time.
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