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FLAT , or nearly flat, fare schemes are ered in on -bus surveys administered on
T common in small- to medium -sized two small - to medium -sized systems in
urban bus systems. Since such fares do western Pennsylvania . Each system em
not vary with trip length , the fare col- ploys an essentially fiat fare structure
lected per mile fluctuates widely from in that the charge does not increase
one trip to another . Questions arise as with trip length , although variations in
to the appropriateness of a flat fare the fare level are present in such forms
structure , both from the standpoint of as passes for the elderly and quantity
equity and in relation to system reve discounts on tokens . One of the systems
nue needs . Several factors are pertinent does collect a five cent surcharge for
to the analysis of the problem , includ transfers and for long trips out of (or
ing operating costs, route length , trip into ) the city . These exceptions to the
length and demand schedules . This pa flat fare policy apply to only a very
per will examine the matter largely on small portion of the trips . Table 1 sum
a conceptual basis , but also in light of marizes the sizes of the two systems in
some empirical data which are at least terms of equipment , ridership and serv
suggestive of prevailing practices and ic

e offerings .

needs . 1 PROFILES O
F

SURVEYED
Over eighty -five percent o

f

the n
a

tion ' s urban bus systems serve cities
BUS SYSTEMS

o
f

under 250 ,000 in population . It is City A City B

with the needs o
f

these small - to me Population served 135 ,000 220 ,000
dium - sized operations that this paper is Number o

f

vehicles 3
6

concerned . Accordingly , the data exam Route miles 105
ined in the study are from systems in Daily ridership 5 ,000 1

5 ,000
this size category . The following sec Annual vehicle miles 645 ,000 1 ,555 ,000
tion outlines the content , collection TABLE 1method and system environments for
the data . Service specification provides Questionnaires were administered by

a convenient framework within which surveyors riding o
n the buses . Each sur

to begin the investigation , so a brief vey encompassed all trips taken o
n

a

presentation o
f

the theory ' s basic con system for an entire day (excluding

cepts is offered a
s
a prelude to the an non - respondents ) . The portion o
f the

alysis . collected data which is subjected to an
alysis in this paper consists o

f

the trip
Data length and the fare paid for each trip .

The data used in the study were gath - Table 2 lists the details o
f

each route

ROUTE DATA
Route Length Number Headway

Route (Miles ) of Buses (Minutes )

3 . 87

4 .04

1
0 . 56

11 . 38

11 . 95

4 . 74

8 .09
12 .89
13 .05

1
3 . 86

6
6 . 10

(morning )

1
3 . 60 (midday )

(afternoon )

(morning )

1
1 . 60

(afternoon )

9 . 60
(midday )

2
1 . 30
( (afternoon )

TABLE 2

CityÜ
<
<
<
<
<
<
<
<
<

co
m
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Some Implications of a Flat
Bus Fare Structure

by Hoyt G . Wilson® and G . John Kurgan®

surveyed . For routes that operated all
day , the data are grouped into three
time periods : morning peak , midday and
afternoon peak . In the statistical anal
ysis , the data for the two systems are
pooled and each route - time period com
bination is treated as a separate obser
vation .
With one exception , all of the routes
fall in a range of about four to twenty
one miles in length . The exception , at
sixty - six miles , is far outside these
limits . Route length here is defined as
the distance required to traverse an en
tire " loop " and return to the starting
point. Hence , for a linear route which
proceeds out and then returns along the
same path , it would be equal to twice
the length of the path .
Where costs enter the analysis , the
categories included are variable trans
portation costs . These consist of fuel ,
driver wages and vehicle maintenance .
A single per -mile figure is calculated
for each system based on accounting
data . The same per -mile cost is then ap
plied to each route within a system

Service Specification
The concept of service specification
modeling as developed by Rea [ 1,2] in
cludes an algorithmic procedure for
generating feasible transit networks.
The use of the concept in this paper ,
however , will be limited to its method
of specifying transit supply functions .
The supply function , or “ service speci
fication .” consists of a definition of what
level of service will be offered at each
level of demand (ridership ) . Rea refers
to demand in terms of link flows in a
network , but for present purposes this
concept can be transformed into rider
ship for a route . The simplifying as
sumption is made that for any given
headway on a particular route the qual
ity of service ( in terms of average
speed ) is roughly constant over a rea
sonable range of ridership . A service
specification for a route , then , will look
similar to the graph in Figure 1. Here ,
each step on the curve corresponds to
decreasing the headway .

* The Pennsylvania Transportation In
stitute , Pennsylvania State University ,
Research Bldg. B , University Park , Pa .
* *Transportation Engineer /Planner ,
Michael Baker , Jr., Inc., Beaver , Penn
sylvania .

One criterion for deciding what de
mand level justifies a step up to the
next level of service is the revenue re
quirement . That is , as soon as the fare
box revenue is great enough to cover
the cost of the additional bus hours , the
service is increased . This determination ,
of course , depends upon the fare level
and upon operating costs .2 The points so
calculated are called viability points .
These points , again , represent the low
est level of demand that can support
each level of service . By connecting all
of the viability points in Figure 1, one
could form a viability boundary .
At the other extreme , the level of
service may not be increased until the
existing equipment is used to capacity .
In this case , the ridership cannot in
crease until the level of service is in
creased . Points calculated in this way
are called capacity points and connect
ing them forms a capacity boundary .
The capacity and viability boundaries
together form the " service specification
envelope " for a given set of technol
ogies and levels of service . For the pur
pose here , going from one level to the
next corresponds merely to changing

bus headways , but in general it may
also represent a change in technology

or mode .

ANALYSIS
In the case of a flat fare system , in
which the per -mile fare is not constant ,
the service specification curve as shown
in Figure 1 is different for each route
length . Assuming that operating cost
per bus mile is constant , three variables
influence the viability points : route
length , passenger flow and headway .
Revenue does not increase when average
trip length increases , so a longer route
requires greater ridership to support it.
Instead of taking route length as the
implicit given factor , it is interesting to
take headway as given and investigate
the change in required route passenger
flow with changes in route length . This
is , in effect, asking , "Given the prevail
ing policies for changing headways as
route length is increased , what are the
implied requirements in terms of rider
ship for routes of different lengths ? ”
In order to answer this question em
pirically , required flow was regressed
on route length . A good fi

t

was obtained

(R2 = . 94 ) , indicating a fair amount o
f

consistency in the policy for adjusting
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GRAPH OF A SERVICE SPECIFICATION FUNCTION
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FIGURE 1

headway to route length . The regression become horizontal at a height equal to

line is labeled “ viability ” in Figure 2 . the average ridership for those routes .

The next question o
f

interest is how In this case the intersection with the
actual ridership compares with that re viability curve would occur a

t
a route

quired for economic viability . To inves length o
f

about 6 . 4 miles , a substantial
tigate this matter , actual route rider difference from the 3 . 4 miles obtained
ship was regressed o

n route length . The previously . The available data simply
regression line , which achieved a

n R2 of are not adequate to pinpoint the inter

.71 , is shown in Figure 2 as the line section o
f the curves more accurately .

labeled "actual . ” Comparison o
f

the two The essence o
f

the conclusion is the
lines in Figure 2 reveals that ridership same in either case however : a flat fare
does not increase with route length a

t system does not appear to be able to

a rapid enough rate to support the support longer routes ; the longer the
longer routes , given the flat fare struc - route , the larger is the deficit to be e

x

ture and the existing policy for setting pected .

headways . Based o
n the curves in the The change in actual ridership with

figure , one would expect a route length route length (Figure 2 ) is affected by
of about 3 . 4 miles to be the demarcation several underlying relationships , two o

f

between viable and non -viable routes . which are
The “ actual " line in Figure 2 exhib ( 1 ) the relation o

f

trip length to

its a pretty good fi
t

to all of the data , route length and
but it was found that when the data for ( 2 ) the relation o

f

ridership to trip

the one very long route were excluded ,re excluded . length .

there was very little correlation be In order to investigate the first o
f

tween route length and ridership . This these , average trip length ( for a route )

could indicate that within a range o
f

was regressed o
n route length . A

moderate changes in route length , rider straight line fi
t

the data very well
ship does not vary systematically ; it is (R2 = . 97 ) , with a slope o

f
0 . 55 . This

only when a drastically longer route is result is interesting as it suggests that
offered that a significant ridership in a

s route -miles are added , the new por
crease is observed . If this result is ac - tions are utilized a

t

the same rate as
cepted , for a moderate range o
f

route the old portions . That is , route seg
lengths (say , three to twenty miles ) , ments appear to be rather homogeneous
the actual ridership in Figure 2 would in terms o
f passenger flows . In particu



SOME IMPLICATIONS OF A FLAT BUS FARE STRUCTURE 163

RIDERSHIP AS A FUNCTION OF ROUTE LENGTH
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FIGURE 2

lar , any passenger trip will , on the
average , extend over about one -half o

f

the route . One instance in which this
must be the case is a round -trip jour
ney made o

n

a circular route . Then , o
f

course , the out and return trips must
sum to the total route length . Such
journeys undoubtedly contribute heav

ily to the result obtained , however a

good share o
f

the trips in the data d
o

not fall into this category .

The next relationship o
f

interest is

that between ridership and trip length .

Since the fare is invariant with trip
length , the price o

f transportation in

terms o
f dollars per mile is a
n inverse

function of trip length . The fares in the
sample data are flat in that they are
invariant with distance , however the
fares d

o vary between systems and
among classes o

f riders ( e . g . , a reduced
fare for senior citizens ) . This suggests
that a meaningful way to look a

t

the
variation in ridership with trip length

is to include the price variable and in -

vestigate the variation in ridership with
per -mile fare .

T
o carry out this analysis , a histo

gram was constructed o
f the number of
trips taken b
y

four -cent intervals o
f

fare per mile . The heights o
f

the bars
appeared to decrease in the manner o

f

a
n exponential decay function o
f

the
form

| Y = Ae - B
X

where Y is the number o
f trips and X

is the per -mile fare . This equation was
fitted b

y regressing the logarithm o
f

number of trips o
n per -mile fare (the

mid - point o
f

each bar o
n the histo

gram ) . The fi
t

was very good , yielding

a
n R2 o
f
. 96 . By normalizing the func

tion — that is , adjusting the constant so

that the integral from zero to infinity

is unity - a density function is obtained
which gives the portion o

f the trips
which fall in any range o

f per -milewhich fall in any . range
fares . This calculation yields

P ( X ) = 8 . 92 e - 8 . 92 X .

Then the fraction o
f a
ll trips that fall
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in the range between A dollars per mile each price . It should be made clear ,
and B dollars per mile is given by however , that they do not constitute de

mand schedules as the term is used in

P ( X ) dx . economics . In particular , they do not
reveal how the quantity of service pur
chased would vary with changes in the

Note that the function P ( X ) is an ex fare level. Nevertheless , they do confirm
ponential probability density function that users do indeed purchase more
with mean ( 8. 92 ) - 1 = 0.112 . transit trips at lower prices and fewer
In addition to trips , the number of at higher prices .
passenger miles at each per -mile fare Summary and Implications
level is of interest . Carrying out the The foregoing analyses must be in
same calculations on the distribution of terpreted in the context of the objec
passenger miles yields a density func tives of a typical transit operation .
tion . Most transit authorities do not hope to
Q ( X ) = 12.98 e - 12.98 X. earn a profit , but rather are more con

The value of R2 for the regression is cerned with the service they provide . It
again .96. Both functions are graphed may be questioned , then , whether an an
in Figure 3. As should be expected , the alysis of route profitability , such as that
distribution of passenger miles is more in Figure 2, is pertinent to their needs.
concentrated , since a trip at a lower The answer is that if revenue require
per -mile fare represents more passenger ments are at all constraining — that is ,
miles than a trip at a higher per -mile unless unlimited subsidies are avail
fare when the total fare is constant . able — then such considerations are very

These distribution functions , particu
pertinent to the determination of what

larly that for passenger miles , provide service can be offered . For example , if
a cross -sectional picture of how demand one route is operated at a large loss,

varies with price. They offer the transit that severely limits the service that can
operator an estimate of how much of be offered on other routes . If such a
his "product " is being purchased at money -losing route is only lightly pa

DENSITY FUNCTIONS FOR TRIPS AND PASSENGER MILES

12 .98

Passenger miles

D
E
N
S
IT
Y

FU
N
C
T
IO
N

,PIX)

Trips

PER MILE FARE , X (dollars per milo )

FIGURE 3
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tronized, it might be possible to increase
the net benefits to transit users by
spending the money to provide service
elsewhere . In a similar vein , those trips
taken at a high per -mile fare are in a
sense subsidizing the lower - priced trips .
From the standpoints of both equity and
revenue considerations , it is reasonable
to strive for a narrower distribution of
per -mile fares .
It was shown earlier that both trip
length and ridership appear to increase
linearly with route length . This sug
gests that there is no essential change
in the pattern of demand for passenger
miles as route length increases . The
same conclusion is supported by the
distribution of passenger miles as
shown in Figure 3. The smooth analy
tical curve ( exponential density func
tion ) exhibits an excellent fi

t

to the
data even though the data represent
several different route lengths and
fares . The thrust o

f

these observations

is that it evidently would not be in

appropriate to charge o
n

a per -mile
basis at a uniform rate , independent of
the length o

f the trip . In other words ,

a passenger mile is a passenger mile .

Blind adherence to a constant per
mile fare might well be modified for
three economic reasons . First , adminis
trative cost sets limits o

n the precision

o
f

such a pricing scheme . The relative
costs o

f defining zones , printing tick
ets and inconveniencing the driver dic
tate how coarse the practical approxi
mation should be . Simplicity and ease

o
f

collection are the primary incentives
for using a flat fare system . Second , the
cost o

f
a bus mile o
n
a longer route , on

which the average trip is longer , is un
doubtedly somewhat lower than for a

shorter route . This would justify a

somewhat tapered rate a
s trip length

increases . Third , and in a similar vein ,

there are some constant costs associ
ated with picking up and discharging a

passenger . These include wear and tear

o
n the equipment due to stopping and

starting and delay costs to other pas
sengers . Such considerations argue for a

small minimum fare in addition to the
per -mile charges .

Besides the economic reasons just
mentioned , a transit authority may wish

to deviate from a constant per -mile fare
policy o

n the basis o
f

non -economic con
siderations . Transit can be utilized as a

means o
f subsidizing residents o
r

in

dustries in certain localities . It can al

so be a tool for influencing the patterns

o
f

land development and geographic
population distribution . Buses may be
heavily subsidized in order to reduce
traffic congestion o

n certain routes .

Such manipulations may be entirely
valid , although they are well outside o

f

the intended realm o
f

this study . At
tention here is focused o

n economic
matters .

In summary , observations verify that
there is a wide variation in the price
paid per mile under a flat fare system .

Given observed transit usage behavior
and the existing policies for setting
headways , a flat fare scheme cannot
support longer routes ; the longer the
route , the greater is the deficit to be
expected . Both equity and revenue con
siderations call for a fare structure that
increases with trip length . The distribu
tion o

f patronage b
y per -mile fare indi

cates that the quantity o
f

service de
manded varies systematically with
price , irrespective of trip length , route
length o

r headway . Based solely o
n de

mand considerations , then , a constant
per -mile fare seems to be appropriate ,

although cost factors call for some mod
ification o

f

this policy .

It is emphasized that no hard and
fast conclusions can be drawn from the
small sample o

f

data employed here .

The results should be regarded a
s in

dicative of existing patterns and con
ditions . Whether the findings apply to

larger systems or even to other systems

o
f comparable size can only be deter

mined b
y

further studies .
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FOOTNOTES

1 Data used in this study were gathered as
part of a project supported by the UMTA Uni
versity Research and Training program a

t

the
Pennsylvania State University

2 Just what constitutes operating costs for
this purpose is open to some question .


