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Abstract 

In the literature, impact estimates of agricultural biotechnology vary strongly 

according to the region, the crop, the year, the scale, and the methodology of the 

study.  Therefore, this paper provides a methodological background for analysing, 

interpreting, and comparing these estimates.  All possible uncertainties entailed in the 

estimation procedure are reviewed as well as a methodology to incorporate them into 

a stochastic simulation model.  This procedure can be used to assess the welfare 

effects of agricultural biotechnology in the European Union. 
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Introduction 

Benefits generated by adoption of whichever new technology in agriculture cannot be 

directly observed in reality and have to be estimated by isolating all effects solely 

caused by the innovation itself, from observable changes in farm-level budget data.  

However, the underlying theoretical assumptions and empirical data of what finally 

consists in a ‘theoretical abstraction’ are subject to a wide range of uncertainties. 

 

The most important uncertainties are associated with the ex-ante nature of our 

research question.  Since the technology of which we try to estimate the impact, is not 

yet adopted on a sufficient scale by the farm sector, empirical farm-level impact data 

simply do not exist.  But even if these data existed, the related ex-post impact 

estimates would still be subject to a large set of uncertainties, measurement problems, 

biases and errors. 

 

When we try to aggregate these farm-level or ‘micro-economic’ impact estimates up 

to an aggregate or ‘macro-economic’ level, a second set of uncertainties emerges.  

Some are due to econometric measurement errors while others are related to the 

partial equilibrium nature of our modelling framework.  Moreover, the ex-ante setting 

implies that no information is available yet about the farm sector’s innovated input 

demand (adoption pattern) and input industry’s pricing strategies (price premium and 

technology fee). 

 

Conventionally, research benefits were estimated assuming that the research is 

publicly funded and innovated inputs competitively sold in the input market.  Figure 1 

represents the output (a) and input (b) markets surrounding the farm sector.  Let S0(p) 
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be the upward sloping supply curve and D(p) the downward sloping demand curve in 

the output market for the conventional agricultural commodity being modeled (Figure 

1a).  The innovation is assumed to be cost reducing, resulting in a shift of the supply 

curve from S0(p) to Sc(p) on the condition that the innovated input is competitively 

supplied.  This supply shift leads to an increase in economic welfare, equal to the area 

ABDE, the so-called gross annual research benefits (GARB).  The model presented in 

Figure 1a, has been used for numerous agricultural research evaluation and research 

priority studies (Alston, Norton, and Pardey, 1995).   

 

However, most of the recent agricultural biotechnology innovations have been 

developed by private firms protected by intellectual property rights (IPR’s), such as 

patents, which confer monopoly rights to the discoverer (with some limitations).  This 

is a new phenomenon in the agribusiness sector.  The result is that prices for these 

inputs are higher than they would be in a perfectly competitive market.  Therefore, 

Moschini and Lapan (1997) bring along some new elements in the conventional 

analytical framework.  They complete it by including the possibility that the 

innovation is protected by IPR’s in the input market.  Thus, the correct evaluation of 

the benefits from R&D aimed at agriculture needs to account for the relevant 

institutional and industry structures responsible for the actual development of 

technological innovations.   

 

The technology is assumed to be cost reducing and this can be visualized in the input 

market (Figure 1b) by representing input prices in efficiency units, resulting from a 

one-factor-augmentation model (Moschini and Lapan, 1997).  This allows the new, 

more productive, factor to be measured in the same physical units as the pre-
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innovation input.  Farmers will adopt the new variety if the price in efficiency units of 

the new input is less than that of the old input: w1/α ≤ c.  In other words, farmers will 

adopt a biotechnology variety when the value of the cost reduction plus the increase in 

yield is greater than the price differential between these varieties.  It is reasonable to 

assume that both types of seeds are produced at a constant marginal cost c.  We also 

assume that the conventional technology is produced in a perfectly competitive input 

market, so that its price approximates its marginal cost c.  However, in the case of the 

new technology, the IPR’s allow the firm to hold a temporary monopoly position, 

bounded of course by some limit pointed out by Lapan and Moschini (2000).   

 

Let X(w) be the downward sloping demand curve of the farm sector for genetically 

engineered seed in the input market (Figure 1b).  The higher the price w, the lower 

demand x will be for the improved variety due to the existence of alternative 

conventional technologies such as chemicals.  If the firm is the only player in the 

market, it faces the demand curve X(w).  The marginal return curve MR, or return of 

an additional unit seed sold on the market, can be easily derived from this demand 

curve (Figure 1b).  The firm will maximize profits by producing an amount GM seed 

equal to αx1, where marginal cost c/α in efficiency units is equal to marginal return 

MR.  Since it is the only player in the market facing demand curve X(w), the firm is 

able to raise its price above the marginal cost c/α .  Even at a price w1/α , the farm 

sector is willing to buy αx1 units of the GM seed variety.  This monopoly price w1/α 

will maximize firm profits and will allow the firm to regain the high R&D costs via a 

so-called monopoly rent, represented by rectangle w1/αHIc/α.  Because of the fact 

that the monopolistic seed price w1/α is higher than the marginal cost c/α, i.e. the seed 

price that would emerge in a perfectly competitive market, farm-level benefits are 
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lower and the corresponding supply shift is smaller.  The effects of a departure from 

the assumption of perfect competition towards monopoly are visualized in Figure 1 by 

a shift of the supply curve from Sc(p) to Sm(p).  Hence, the Marshallian surplus 

increase equals area ABCF instead of simply area ABDE as in the conventional 

framework of Alston, Norton and Pardey (1995).  However, according to Moschini 

and Lapan (1997), welfare effects of IPR-protected innovated inputs have to be 

estimated in the input market, with area cGHw1/α representing the change in 

Marshallian surplus.  Thus, the correct estimation of total welfare increase is equal to 

the sum of the shaded areas cGHw1/α and w1/αHIc/α.   

 

However, equivalent with what Alston, Sexton and Zhang (1997) pointed out in their 

study, extreme assumptions of monopoly or monopsony seem at least as inappropriate 

as one of perfect competition.  Indeed, different patents exist for the same phenotypic 

trait, e.g. RR® (Monsanto) and LL® (Aventis) for herbicide resistance.  Thus, the 

ML-model, which focuses on the extreme setting of pure monopoly, might need to be 

adapted to account for a departure from monopoly to different oligopolistic settings.  

This can be visually done in Figure 1b by rotating the marginal return (MR) curve 

towards the demand curve X(w) in the input market (Fulton and Keyowski, 2000).  If 

the MR curve in Figure 1b corresponds to the extreme position of monopoly in the 

input market, in the case of pure competition this curve would coincide with the X(w) 

curve.  An oligopolistic input market would then be an intermediary situation between 

these two extremes, with a marginal return curve situated somewhere between MR 

and X(w).  In Figure 1a, a departure from a monopolistic towards an oligopolistic 

input market can be visualized by shifting the supply curve from Sm(p) to somewhere 

between Sm(p) and Sc(p).   
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Micro-economic Level 

Agricultural Biotechnology Impact Data from Trials and Surveys 

Agricultural biotechnology (agbiotech) impact data can come from five sources, 

ranked by increasing representativity for estimating the technology-induced farm-

level supply shift: 

1. Laboratory trials; 

2. Field trials; 

3. On-farm partial adoption trials; 

4. On-farm field-level surveys; 

5. Whole-farm surveys. 

 

(1) Laboratory trials are insufficient for measuring farm-level impact effects, since 

they are completely isolated from the biophysical and climatic reality in which farms 

operate.  Since a lot of factors are artificially controlled, these trials only give an idea 

about the pure yield effects of the variety examined.   

 

(2) Since 1986, field trials1 with genetically modified organisms take place in 

different countries.  Unlike laboratory trials, field trials are subject to the stochastic 

forces of nature, so they are a more realistic reflection of the relative performance of 

different varieties in natural conditions.  However, these trials are still completely 

isolated from the context of a farm.  The traditional objective of field trials has been 

to determine whether there is a statistically significant difference among experimental 

treatments.  These treatments are very often different varieties (in variety trials) and, 

less often, different pest control regimes or different cultural practices (fertilizer rates, 

tillage, irrigation, etc.).  Two types of field trials can be distinguished: 
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1. Yield trials, measuring yield differences between varieties; 

2. Yield and pest control trials, measuring yields and differences in input use. 

 
Four sources of bias have to be taken into account when aggregating field trial results 

up to the farm-level (Marra, 2001).  First, yield differences measured by yield trials 

(holding everything else constant) often measure only the genetic potential to affect 

yield, while yields measured in pest control trials may capture additional cultural 

practices that can enhance that genetic potential (Gianessi and Carpenter, 2000).  

Therefore, where a transgenic crop is pesticide-tolerant instead of pesticide-inherent2, 

simple variety trials may produce yield differences that are less than one would expect 

to find on farms, tending to under-estimate farm-level impacts.  Secondly, the choice 

of varieties to be compared can also cause a bias in the measured yield difference.  In 

the case of a currently used conventional variety, which is compared to a transgenic 

variety, the latter is often penalised by the fact that it is not necessarily as well 

adapted to the biophysical and climatic conditions of the area as is the case with the 

conventional variety.  Varieties are agro-climatically specific, and thus varieties 

initially released by seed companies may not have been appropriate for all regions, 

especially the lower adopting regions (Falck-Zepeda, Traxler, and Nelson, 2000b).  

This will undoubtedly change as traits are genetically inserted in a larger set of 

varieties.  A more accurate method is to compare yields in properly conducted side-

by-side trials carried out with near-isogenic lines3
 that differ only in the possession of 

the inserted gene.  Such trials are the most reliable way to isolate the consequences of 

genetic differences, all other things being equal (Benbrook, 1999).  Again, the near-

isogenic conventional parent of the transgenic variety has generally not been among 

the set of conventional varieties farmers have chosen to grow in the area.  So, 

although these trials give a direct measure of the genetic yield potential (the change in 
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yield owing to the transgene only), they may result in an over-estimation of the farm-

level impact of adopting the transgenic variety.  In the long run, as more varieties are 

being genetically transformed, the ‘isogenic’ comparison will become a realistic 

assumption for ex-ante evaluations of the benefits of transgenic varieties.  Thirdly, 

side-by-side trials of pesticide-inherent transgenic and conventional varieties (e.g. Bt 

crops) can be biased by the so-called ‘halo’ effect.  The insect suppression of the Bt 

crop may spill over onto the conventional treatment, providing another source of pest 

control, which may increase the yield relative to what it would be if the conventional 

crop were grown in isolation.  The measured yield difference between the 

conventional and transgenic variety may be biased downward as a result.  Finally, 

biases can also be introduced in the second group of field trials: pest control trials.  

This is due to the fact that most agricultural scientists manage pests in field trials with 

the objective of maximizing yield while in real farm situations profit is maximized, 

not yield.  The direction of this bias is difficult to predict if the transgenic crops tested 

are pesticide-tolerant.  In the case of pesticide-inherent crops, the measured pesticide 

use difference and, thus, the economic impact may be under-estimated. 

 

(3) On-farm partial adoption trials deal with this issue by ensuring that under each 

technology the set of practices and input mixes that would minimize costs (or 

maximize profits) is employed.  Only the current conventional crop-pesticide system 

is the relevant counterfactual to compare to the new technology (Alston, Norton, and 

Pardey, 1995).  However, in such experiments biases still can be introduced if some 

of the decisions are left to the researchers. 
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(4) Surveys, and more specifically on-farm field-level surveys, such as the area-frame 

surveys from the USDA’s Agricultural Resource Management Study (ARMS) used 

by Fernandez-Cornejo et al. (2000) and McBride and Books (2000), are a way to 

avoid potential researcher-induced biases.  However, since there have been 

demonstrated differences between adopters and non-adopters of almost all new 

agricultural technologies or techniques that can also influence yield, production 

practices, production costs or returns (Feder, Just, and Zilberman, 1985), the 

economic impact solely due to the technology cannot be known with certainty from 

this type of survey.  When individual fields are surveyed, isolated from the context of 

farms, the difference in performance between the transgenic crop and the 

conventional crop cannot be calculated on each farm under the same management and 

general growing conditions.  It can only be calculated as an average of all selected 

fields planted with transgenic crop against the average of all fields not planted with 

the transgenic crop.  Marra (2001) did an interesting test to assess the bias introduced 

by this type of surveys.  Using whole-farm survey data from 1996, she calculated 

economic impacts of Bt cotton in three ways: (1) within an adopting farm, (2) 

between adopters and non-adopters and (3) as if the data came from a field-level 

survey.  While no particular direction of bias could be assigned to the third 

methodology, large disparities existed between the three methods regarding 

differences in yields, insecticide costs and spray numbers. 

 

(5) Finally, whole-farm surveys asking farmers about the transgenic and non-

transgenic acres on their farm, are the only way to hold constant the other factors that 

can influence the difference between the two.  Farmers are optimisers, both in their 

choice to adopt or not to adopt and in the input choices and production method for 
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each technology.  The Enhanced Market Data4 (EMD) used by Falck-Zepeda, Traxler, 

and Nelson (2000b), for example, compares paired Bt and non-Bt cotton fields with 

the same agronomic practices and rotations.  Although often not available in the 

public domain, these data provide the most reliable estimates of the farm-level impact 

of agricultural biotechnology.  Table 1 summarizes the findings of this section. 

 

It is clear that impact data issued from methodologies 4 and 5 can only exist when the 

new technology is already adopted on a sufficiently large scale, i.e. in an ex-post 

research evaluation setting.  In our methodology of estimating the aggregate impact of 

agbiotech in the EU, the ex-ante setting due to the absence of widespread farm-level 

adoption, limits our data pool to the group of field trials (and eventually on-farm 

partial adoption trials).  However, the farm-level and nation-wide experiences since 

1996 with genetically modified crops in the USA, Canada, Australia and China 

provide us extra information about the potential biases introduced by aggregating 

these field-level data up to the farm-level, country-level and finally the level of the 

EU (cfr. infra).  

 

This section allows us to draw some important conclusions about interpreting 

literature on the impact of agbiotech.  The test of Marra (2001) illustrates very well 

how survey methods can change impact estimates.  ‘Low-grade’ estimates (e.g. field-

level trials and surveys), although they give some indication about the potential 

impact, should be interpreted with more care than ‘high-grade’ estimates (e.g. whole-

farm surveys).  Given that these low-grade estimates are quoted in the popular press 

and used by other researchers and interest groups, errors in these estimates can be 

cause for grave concern.  Despite the unprecedented adoption rates of GM crops, 
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suggesting important farm-level benefits, the popular press continuously questions 

profitability of these crops using even inconsistent estimates, regardless of the source 

or survey method.  Immediately after the publication of the impact estimates of the 

USDA’s Economic Research Service (ERS), environmental groups have welcomed 

the ‘mixed impacts’ as evidence that the claims for GM technologies do not stand up.  

To illustrate the latter, we report some heads found in the popular press: “Input and 

yield gains insignificant” (Agra Europe, 1999) as a reaction on the ERS report of 

Fernandez-Cornejo et al. (2000), “OECD questions GM profitability” (Agra Europe, 

2000) as a reaction on the OECD (2000) report, and “GM Rape fails to perform as 

study reveals erroneous basis for UK field-scale trials” (Natural Law Party Wessex, 

2000) as a reaction on the paper of Green and Booth (1999), reporting field trial 

results of the FACTT-project (Familiarisation and Acceptance of Crops Incorporating 

Transgenic Technology).  The ERS estimates are based on area-frame surveys from 

the USDA’s Agricultural Resource Management Study (ARMS), while the FACTT-

results stem from field trials (probably without comparing near-isogenic lines).  Both 

sources are not based on whole-farm surveys, and hence should be interpreted with 

care and not just regarded as conclusive evidence of the impact of agbiotech.   

 

As Marra (2001) correctly points out, it is important to obtain reliable estimates, 

firstly in order to create a well constructed objective debate without over- nor 

misinterpretation of empirical evidence, and secondly because policy makers and 

consumers will benefit from better estimates of the farm-level benefits since these 

potential benefits can become the costs of regulation to both consumers and producers 

in regions such as the EU. 
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Self-selection Bias 

When whole-farm survey data are not available in the public domain, sometimes due 

to their expensive character, econometric techniques have been used to reduce the 

self-selection bias in field-level surveys.  Farmers’ adoption and pesticide use 

decisions may be simultaneous, due to unmeasured variables correlated with both 

adoption and pesticide demand, such as the size of pest populations, pest resistance, 

farm location, and grower perceptions about pest control methods.  Self-selection 

arises because farmers are not assigned randomly to the two groups (adopters and 

non-adopters), but they make the adoption choices themselves.  Therefore, adopters 

and non-adopters may be systematically different5 and these differences may manifest 

themselves in farm performance and could be confounded with differences due purely 

to adoption.  To eliminate this bias, Fernandez-Cornejo et al. (2000), in an attempt to 

estimate the impact of adopting genetically engineered crops, develop an econometric 

model, which corrects for self-selectivity.  Furthermore, their model ensures that the 

pesticide demand functions are consistent with farmer’s optimisation behaviour, since 

the demand for inputs is a derived demand.  An expansion of their research can be 

found in Heimlich et al. (2000). 

 

The bias introduced by self-selection is difficult to predict and depends on 

geographic, as well as socio-economic variables.  In the example of Marra (2001), 

yield gaps between transgenic and non-transgenic crops differ when not controlled for 

self-selection.  Two opposite contributing factors can be assigned.  Farmers who do 

not adopt GMO’s are either (1) less educated with smaller farms and generally lower 

yields (which would widen the yield gap) or (2) farms with higher yields and less 

initial pest pressure (which would narrow the yield gap).  Lin, Price, and Fernandez-
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Cornejo (2001) did an interesting study by comparing impact estimates in 1997 of Bt 

cotton, herbicide tolerant (HT) cotton and HT soybeans in the US according to three 

different data sources: (1) mean values for adopters and non-adopters obtained from 

the ARMS survey (methodology 4), (2) elasticities derived from the adoption-impact 

model of Fernandez-Cornejo, Klotz-Ingram, and Jans (2000) (methodology 4, 

corrected for self-selection bias), and (3) the EMD database (methodology 5).  The 

latter is applicable only to Bt cotton produced in the Southern Seaboard and 

Mississipi Portal regions.  Therefore, in Table 2 we represent the impact estimates for 

the case of Bt cotton adoption in the Southern Seaboard in 1997.   

 

Yields for adopters are estimated to be higher than those for non-adopters in all three 

data sources (Table 2).  However, the yield increase varies across the data sources, 

ranging from an increase of about 11-12 % based on means of the ARMS survey and 

EMD database to 21 % based on the elasticity reported by Fernandez-Cornejo, Klotz-

Ingram, and Jans (2000).  In general, pest control costs for Bt cotton adopters were 

lower in 1997 than those incurred by non-adopters.  However, the differences in pest 

control costs are quite large, depending on the data source used for the estimation.  

For example, while pest control costs for Bt cotton adopters averaged about 5-7 % 

lower than nonadopters in the Southern Seaboard, based on mean differentials 

between adopters and non-adopters from the ARMS survey and the elasticity-based 

estimate, the savings reached as high as 60 % based on the EMD data.  The estimate 

of pest control cost savings from the EMD data were obtained from a survey of 

consultants based on matched pairs of Bt and non-Bt cotton fields, closely resembling 

a controlled environment, which isolates the effects of factors other than 

biotechnology itself.  The elasticity-based estimate on the other hand, statistically 
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isolates the effect of biotechnology from other factors.  Yet the estimates differ 

greatly, suggesting a lack of consensus based on empirical evidence available to date.  

Thus, estimating benefits from biotechnology adoption based on the EMD data 

(which include comparable cost items as in the ARMS data), such as the study on 

1996 and 1997 Bt cotton by Falck-Zepeda, Traxler, and Nelson (2000a), would result 

in much larger benefits to US farmers than based on other data sources. 

 

Non-pecuniary Benefits 

Fulton and Keyowski (2000) provide some empirical evidence that the adoption of 

herbicide tolerant canola6 by Canadian farmers is best understood if the assumption 

that farmers are identical is relaxed and replaced with the assumption of producers’ 

heterogeneity.  Contradictorily, in spite of the fact that average production costs of the 

GM canola varieties were higher (due to lower7 yields) than their conventional 

counterparts, adoption of these varieties has been very fast (from 4 % of the total 

canola acreage in 1996 to 69 % in 1999).  However, this rapid adoption rate of GM 

canola in Canada still cannot be explained even if one takes into account producer 

heterogeneity.  This is essentially due to the fact that some benefits escape the 

traditional measurement techniques used to estimate the economic impact of 

agbiotech, so that the real benefits perceived by farmers may be higher than the 

estimates found in literature.  Hartley Furtan, an agricultural economist at the 

University of Saskatchewan, notes that it is difficult to ascertain whether 

biotechnology has increased the profitability of farmers, because it is hard to attach a 

monetary value to convenience, which he sites as a major contribute of GM crops 

(AgraFood Biotech, 2001):  



 17

It’s an important piece of what is pushing adoption by farmers.  Herbicide tolerant 

oilseed rape provides more flexibility when timing weed control and fewer pesticide 

applications are required, reducing labour and management costs.  But, how to 

calculate the economic benefit of this flexibility is difficult.   

 

While a lot of farm-level impact studies mention the importance of these non-

pecuniary benefits, up to date no study has actually made an attempt to quantify these 

effects.  In a recent paper, Marra (2001) stresses the need for an initial attempt to fill 

this gap in literature.   

 

Estimating Non-pecuniary Benefits: A Micro-economic Approach 

To initiate these attempts and illustrate the non-pecuniary effects of biotechnology on 

the farm-level we develop a stage-specific production function, inspired by Allen and 

Lueck (1998).  Arable farming is characterized by several distinct stages of 

production: planting, cultivation, fertilization, pest control, harvesting, and 

processing.  The output qs-1 from a specific stage s-1 is an input in the next stage s.  

For stage s, we define L as the length of the stage or the period during which a stage-

specific task has to be carried out in order to maintain the input qs-1 at a minimal 

economical level qmin, which depends on the entire production function and 

exogenous factors like output and factor prices.  If the task is not carried out timely, 

i.e. within the period L, the output of the previous stage is damaged.  As a result, 

fewer inputs are available for the next stages and overall output will be reduced.  As 

an example, we refer to the application of pesticides, which has to occur in a well-

defined narrow time period.  If timing is not respected, pests and weeds can harm the 

crop, resulting in severe losses.   
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At each stage the output depends on farmer effort (e), a capital input (k), and random 

stage-specific natural shock (θ) determined by such natural forces as pests and 

weather.  Hence, the farmer in our model takes the output from a previous stage as an 

input into the next stage and makes an optimal effort choice that depends, in part, on 

what nature did in the prior stage.  In particular, for stage s, the stage-specific random 

input of nature θs is distributed with mean 0 and variance σ2.  Further, agricultural 

timing problems can be examined by letting qs = q(d), where qs is the output for stage 

s and d is the date at which the stage’s tasks are completed.  Consequently, the 

production function for a single stage is qs = fs(es, ks, qs-1(d)) + θs.  In Figure 2 we 

represent the time dependency of the stage-specific input qs-1 via a symmetric function 

with a unique optimum q* at the optimum date d*.  Figure 2a is the case of a regular 

crop, while Figure 2b reflects its GM variety.  The timing function of the GM crop is 

flatter, resulting in a wider timing window, i.e. Lg > Lr.   

 

Several conclusions can be drawn from this figure.  Firstly, in order to maintain a 

minimal economical input level of qmin, cropping systems based on GM crops can 

spread their labour and capital over a larger period, reducing the time specificity of 

labour and capital.  Hence, labour (es) and capital (ks) costs are reduced because these 

factors can be used more efficiently, e.g. by renting or contracting.  In addition, insect 

resistant (e.g. Bt crops) and herbicide tolerant (e.g. RR® or LL® crops) crops require 

fewer pesticide applications, reducing labour and capital costs directly.   

 

Secondly, the optimal date d* is subject to the random forces of nature.  The 

prediction of d* requires information and management skills (human capital).  The 

latter are costly and hence, in a lot of cases the date at which the task is carried out, d1, 
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is not the optimal date d*, but shows a small deviance from it.  For a given ‘wrong 

date’ d1, in the case of the regular crop this deviance is more severe in terms of crop 

loss, than in the case of the GM variety, i.e. ∆qr > ∆qg.  As a result, agbiotech 

decreases financial risk, caused by bad spraying timing, since deviances from the 

optimal date have a lower payoff.  Moreover, less information and management skills 

are needed in order to estimate d*, implying lower information and management costs. 

 

Thirdly in some cases, e.g. the case of Bt crops, the variance of the optimal date 

decreases due to the fact that Bt crops are protected against the European Corn Borer 

(ECB; Ostrinia nubilalis Hübner) throughout the whole season, eliminating entirely 

the need for ECB insecticide applications at an optimal date.  If the variance of d* 

declines, the probability that a given date d1 is ‘wrong’, i.e. not the optimal date d*, 

decreases and hence the probability that crop losses occur, i.e. the financial risk due to 

bad spraying timing, is lower for Bt crops than for their conventional counterparts.  

Financial risk decreases can be easily translated into monetary terms of farm-level 

benefits.  It is important to note that this increased flexibility can occur in two 

subsequent stages.  Bt crops for example are continuously protected against the ECB 

and hence timing is less a problem in the planting as well as the crop protection stage. 

 

However, even if Bt crops lower financial risk associated with bad spraying timing, in 

a recent article8, Hurley, Mitchell, and Rice (2001) remarkably disprove the common 

perception that Bt corn reduces overall profit variability and, hence, risk9.  After 

developing a conceptual model decomposing the value of Bt corn and determining the 

impact of Bt corn on profit variability, their empirical model finds that Bt corn 

increases profit variability and thus decreases the value of Bt corn by 10-25 % 
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depending on risk preferences.  This is due to the fact that, when a technology fee is 

charged, Bt corn increases the potential downside risk and decreases the potential 

upside risk.  The magnitude of these adjustments for risk aversion imply that ignoring 

the variance increasing impact of Bt corn leads to a significant bias in estimating the 

value of Bt corn. 

 

Estimating Non-pecuniary Benefits: A Bio-economic Approach 

In this section we explore a path for research for the calculation of non-pecuniary 

benefits of insect resistant crops (e.g. Bt corn) via bio-economic models inspired by 

entomology.  Since 1985, two researchers of the INRA (Institut National de 

Recherche Agronomique) in France have done excellent research on the modelling of 

the European Corn Borer (ECB), one of the major maize pests in France (Got, 1988, 

Labatte and Got, 1993, Got et al., 1994, Got, Labatte, and Piry, 1996, Labatte et al., 

1996, Got et al., 1997, Labatte et al., 1997). 

 

Conventionally, control efficacy was analysed by examining the relationship between 

control and infestation on the one hand and control efficacy on the other hand, 

considering the mechanism at work between the two variables as a ‘black box’.  Trials 

were often conducted in laboratory, yielding biased estimates because they were 

isolated from the biophysical and climatic context of the field.  Labatte et al. (1996) 

propose a methodology to ‘open the black box’ and examine the biologic relations 

which interrelate the different components of pest control (Figure 3b).  The result is a 

bio-economic model, composed of several sub-models, which can be used to predict 

optimal pesticide application dates and rates and to understand the underlying 

mechanisms of pest populations and control.  Environmental factors (crop, climatic 
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factors) are linked to biological cycles of the damaging insect (larval development, 

distribution and mortality) and finally to economic variables such as control efficacy 

or pest control productivity.  Since the stochastic nature of some environmental 

factors (e.g. temperature) are well documented, these models can give us ideas about 

the random forces of nature experienced by farmers and their implications on risks, 

task timing and flexibility and management.  Quantifying these forces via statistical 

distributions and bio-economic relations can provide an excellent and original 

methodology for estimating the non-pecuniary benefits of Bt corn by comparing the 

latter technology with conventional pest control techniques. 

 

In conclusion, the overall effect of agricultural biotechnology is that this technology 

decreases the dependence of the cropping system on the stochastic forces of nature, 

allowing for a more flexible task schedule, lower risks and less information and 

management costs.  These non-pecuniary benefits can be translated into pecuniary 

terms and added to the pecuniary benefits to estimate the total farm-level impact of 

agricultural biotechnology.  These impact estimates will be a better reflection for the 

rapid adoption rates observed in the USA and Canada since 1996.  Similar as in 

previous sections, conclusions can also be drawn about the interpretation of impact 

estimates reported in literature.  Since most of the estimates are based on directly 

observable variables such as yields, seed prices and pesticide costs, they only provide 

a part of the picture.  These data probably underestimate the perceived benefits and 

costs of a farmer who optimises a production system and operates in a real biophysic, 

climatic and economic environment.  Again these incomplete figures are quoted in 

popular press and used by other researchers and interest groups to influence policy 

makers, distributors and consumers.  Hence, the only complete estimate of the impact 
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of agbiotech is one, which is based on (1) whole-farm surveys and completed with (2) 

non-pecuniary elements.  However, in reality the necessary data are costly or difficult 

to obtain or simply non-existent, such as in ex-ante studies.  In the latter case, 

assumptions have to be made, combined with extensive sensitivity and scenario 

analyses to take into account all possible outcomes. 

 

Uncontrolled Stochastic Factors 

Due to the stochastic nature of pest attacks and weed proliferation (cfr. supra), pest 

control costs vary substantially in time (from one year to another) and in space 

(between regions, farmers, and even fields).  As a result, farm surveys typically reveal 

a wide statistical distribution of pest control costs.  Some agbiotech innovations, e.g. 

herbicide tolerant crops, not only decrease average pest control costs, but also their 

variance since the innovated techniques are more standardised and require less 

accurate task timing (cfr. supra), less on the spot decision making, less pest 

information and less management skills.  Hence, the benefits of agbiotech are also 

stochastic since they are calculated by comparing two stochastic variables: 

conventional and agbiotech pest control costs.  According to the year, the region, the 

farmer, and the field, agbiotech innovations will pay or not.  Typically in low 

infestation years or regions, these innovations yield negative returns due to their 

relatively high price premium.  However, in a lot of cases these negative returns are 

overcompensated by the perceived risk-decreasing10 benefits of agbiotech in ex ante, 

so that they can be regarded as a risk premium paid by the farmer in order to protect 

his crops against pest attacks.  As a result, even if a region may have ‘lost’ in an ex 

post analysis, in an ex ante analysis this would have been a winning strategy (Falck-

Zepeda, Traxler, and Nelson, 1999). 
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Extrapolation issues 

Until now, the few published studies calculating the welfare effects of agricultural 

biotechnology are applied on typical US export crops like cotton (Falck-Zepeda, 

Traxler, and Nelson, 2000b) and soybeans (Moschini, Lapan, and Sobolevsky, 2000).  

The major difference with the EU is the fact that these American studies regard an ex-

post setting, while the recent moratoriums on GMO’s in the EU and the absence of 

empirical farm level adoption impact data oblige us to use ex-ante assumptions about 

yield increases, cost reductions and technology fees.  A major question is to what 

extent the US adoption data can be extrapolated to the EU.  Since several conditions 

(biophysical environment, climate, pest pressure, input use and demand and other 

market conditions) strongly differ between both regions, extrapolation is hardly 

possible.  However, the empirical farm-level adoption data in the US provide us extra 

information about how the available EU data, primarily coming from field trials, can 

be realistically aggregated up to the farm-level, country-level and finally the level of 

the EU (cfr. supra).  

 

Disaggregation Problems in Aggregated Farm Budget Data 

The most crucial parameter for estimating the farm-level impact of agbiotech is the 

supply shift or K-factor, which is a combination of the yield-increasing and cost-

reducing effect of the technology and its technology fee.  The estimation of the K-

factor requires detailed farm cropping budget data for a representative sample of 

farms in all member countries of the EU.  However, disaggregated farm budgets 

displaying herbicide costs, weeding costs (labour and equipment) and insecticide 

costs (scouting, application, equipment) are difficult to obtain for all countries.  To 

illustrate the level of detail required to assess the farm-level impact of biotechnology, 
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Table 3 represents a farm budget of an “average” sugarbeet grower in the UK.  The 

data have been collected via the survey “Crop Profitability Initiative” (CPI) on a 

sample of 300 sugarbeet growers, organized by British Sugar (Limb, 2000).  In the 

case of genetically modified herbicide tolerant sugarbeets, the most crucial point to 

estimate is the total cost spent on the weeding operation (herbicides, tractor hoeing 

and chemical application costs).  In the case of Bt corn, this would be the cost of 

European Corn Borer (ECB) damage despite the use of pesticides, plus insecticide 

costs plus scouting and application costs.  However, since the percentage change in 

total costs has to be calculated, total farm cropping budgets are needed. 

 

The Farm Accountancy Data Network (FADN) is an instrument for evaluating the 

income of agricultural holdings and the impacts of the Common Agricultural Policy.  

The concept of the FADN was launched in 1965, when Council Regulation 79/65 

established the legal basis for the organisation of the network.  It consists of an annual 

survey carried out by the Member States of the European Union. The services 

responsible in the Union for the operation of the FADN collect every year 

accountancy data from a sample of the agricultural holdings in the European Union.  

Derived from national surveys, the FADN is the only source of micro-economic data 

that is harmonised, i.e. the bookkeeping principles are the same in all countries.  

Holdings are selected to take part in the survey on the basis of sampling plans 

established at the level of each region in the Union.  The survey does not cover all the 

agricultural holdings in the Union but only those, which due to their size could be 

considered commercial.  The methodology applied aims to provide representative data 

along three dimensions: region, economic size and type of farming.  While the 

European Commission is the primary user of analyses based on FADN-data, 
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aggregated data can be found in the ‘Standard Results’ database.  However, FADN 

data are highly aggregated, adding up all pesticide costs (herbicides, insecticides, and 

fungicides) for all crops into a single cost entry per holding: “plant protection 

products”.  Despite this aggregation problem, there is still a possibility to break down 

these farm-level aggregates into crop-specific costs.  Desbois (2000) reviews an 

econometric estimation procedure, based on an input-output matrix, and enabling to 

break down farm-level production costs into crop-specific cost items.  He applies this 

estimation procedure to the French arable sector.  His methodology features three 

steps: 

1. econometric estimation of technical production coefficients reporting 

production costs per crop; 

2. determination of individual production costs (per holding) by inserting the 

residuals of the econometric model proportionally to the outputs; 

3. breaking down labour (family and hired) costs proportionally to the crop 

margins. 

 

Paris and Howitt (1998) propose an alternative methodology based on a methodology 

originated in science: maximum entropy (ME).  Since 1957, physicists, statisticians, 

astronomers, engineers, medical doctors, and policemen have used the ME 

methodology to great advantage.  For example, an ME algorithm is used to recover 

the license plate of a speeding car by enhancing an illegible photograph that is 

completely out of focus, called an ‘ill-posed’ image.  The list of practical uses of ME 

is extensive.  In all these cases, the objective of the analysis is that of recovering an 

acceptable and informative image (estimated model) from limited (out-of-focus) 

information associated with an ill-posed problem.   
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The originality of Paris and Howitt (1998) and their predecessors consists in the fact 

that they translate these theories from science to modern econometrics.  Production 

economics are often ill-posed.  This means that the number of parameters to be 

estimated is greater than the number of observations.  In our case of aggregated input 

data, the input information is frequently represented by the total cost of input 

categories, which often are not broken down on a per activity basis.  The authors 

show that it is possible to exploit all the available information (no matter how scarce) 

to the maximum extent by adopting a suitable and consistent approach using the 

maximum entropy formalism.  A remarkable feature of the ME approach is the ability 

to exploit all the available information regardless of sample size.  Even for a single set 

of observations, a variable cost function can be recovered for a firm.  This is precisely 

the uncommon and novel aspect of this approach.  Hence, the ME methodology 

potentially offers a solution to the aggregation problem in the typically highly 

aggregated farm budget data of the European Union’s FADN network. 

 

However, the main reason for the lack of adoption of the ME formalism in 

econometrics is to be found in the requirement for an a-priori specification of support 

intervals and probabilities.  This subjective information that must be provided by the 

researcher, affects the parameter estimates in unpredictable ways.  Therefore, in a 

more recent paper, Paris (2001) developed the ‘Leuven estimator’11, inspired by the 

theory of light.  Light carries information.  Hence, it seems proper that its theory 

might be taken as a source of inspiration for the analysis of information contained in 

sample data.  The major innovation of his recent paper is the fact that he proposes a 

new class of ME estimators, e.g. Leuven 1, Leuven 2, etc., that does not depend upon 

any a-priori information and does not require the specification of support intervals.  
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These novel estimators overcome the weakness of the ME estimator and allow the 

analysis of ill-posed (and well-posed) models using a maximum entropy approach 

without requiring any subjective information.  Using Means Squared Error (MSE) 

loss function as a criterion, the class of Leuven estimators seems to perform 

competitively against all known estimators both in the case of ill-posed and well-

posed models. 

 

Aggregate Level 

Model Specification Uncertainties 

A first model specification uncertainty can be found in the discussions on the nature 

of the research induced supply shift: pivotal (convergent or divergent) or parallel.  

The point was first addressed by Lindner and Jarrett (1978), leading to some debate, 

with comments from Rose (1980) and Wise and Fell (1980) and a reply by Lindner 

and Jarrett (1980).  Lindner and Jarrett (1978) show that the estimation of research 

benefits is extremely sensitive to assumptions about the nature of the supply shift.  

For example, given a linear supply function, total benefits from a parallel shift are 

almost twice the size of total benefits from a pivotal shift.  When supply shifts in 

parallel, producers always benefit from research unless supply is perfectly elastic or 

demand is perfectly inelastic, and even in these extreme cases, producers are no worse 

off as a result of research.  On the other hand, with a pivotal shift, producers benefit 

only when demand is elastic.  When demand is inelastic, producers necessarily lose 

from a pivotal shift.  While the authors provide some intuition12 to predict whether a 

particular innovation will produce divergent, parallel, or convergent supply shifts, 

Rose (1980) contends that this prediction is virtually impossible13.  Given this 

statement and in the absence of information required to choose a particular type of 
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shift, Alston, Norton, and Pardey (1995) recommend employing a parallel shift, 

persuaded by Rose’s (1980, p. 837) suggestion: 

For most innovations, the best information available may be a cost-reduction estimate 

for a single point on the supply curve.  … [It] is unlikely that any knowledge of the 

shape of the supply curve, or the position at which the single estimate applies, will be 

available.  The only realistic strategy is to assume that the supply shift is parallel.   

 

We agree with Beattie (1995) that a more definite answer is needed to fill this gap in 

the literature.  What is important is to have an understanding of supply curves and the 

derivation of cost changes (Rose, 1980).  In the literature on the aggregate impact of 

agbiotech, both types of supply shift appear.  Falk-Zepeda, Traxler, and Nelson 

(2000a, 2000b) and Price, Lin, and Falck-Zepeda (2001) use a parallel shift while 

Moschini, Lapan, and Sobolevski (2000) opt for a divergent pivotal shift of the supply 

function (cfr. infra). 

 

A second model specification uncertainty is centred on the discussions about the 

functional form of the supply and demand functions.  Two frameworks have 

frequently been used in empirical work on evaluation of research benefits: 

• Linear demand and supply functions, respectively P = a - αQ and P = b + βQ, 

with α = P/ηQ and β = P/eQ, where η and e denote the own price elasticity of 

demand and supply at the initial equilibrium; 

• Nonlinear constant elasticity (NLCE) demand and supply functions, 

respectively P = AQ-σ and P = BQγ, with σ = 1/η and γ = 1/e. 
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Voon and Edwards (1991) compare both models and conclude that the calculated 

benefits of research using the linear model are substantially larger than those using the 

NLCE model when the price elasticity of supply for the commodity is significantly 

lower than unity.  However, when the elasticity of commodity supply is greater than 

one, the calculated research benefits are considerably smaller than those calculated 

using the NLCE model.  The authors argue that commodity supply curves in 

agriculture are more likely to take the constant elasticity form.  Moreover, with 

inelastic supply at the initial equilibrium, a linear supply curve passes through the 

negative fourth quadrant.  An extrapolation of the linear inelastic commodity supply 

curve to this quadrant (i.e. production of the commodity at negative prices) is 

unrealistic.  This problem is avoided by the use of constant elasticity supply curves, 

since these curves pass through the origin.  The authors conclude that the use of an 

NLCE specification and a pivotal shift due to research is preferable to use of a linear 

supply curve with pivotal shift.  The issue whether measuring cost reductions and 

research benefits in the negative quadrant is correct, has been debated by Elbasha 

(1997), but convincingly defended by Edwards and Voon (1997).   

 

Zhao, Mullen, and Griffith (1997) finally shed additional light on the issue.  They 

show that when demand and supply curves are locally linear and there is a parallel 

shift in demand and supply, the economic surplus changes are exact if percentage 

change of prices and quantity is defined14 as E(.) = ∆(.)/(.).  When demand and supply 

curves are locally log-linear (NLCE) and there is a proportional (pivotal) shift, the 

price, quantity, and surplus changes are exact if percentage change is defined as 

E(.) = ∆ln(.)/(.).  In empirical applications, the errors in estimates of both price and 

quantity changes and economic surplus changes are small as long as the shift is small, 
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whatever the form of the true demand and supply curves.  The authors conclude that 

additional data, such as the distribution of firms by cost structure and how technical 

change affects these different firms (i.e. producer heterogeneity, discussed by Demont 

and Tollens (2001a)), are needed to accurately calculate producer surplus changes. 

 

In the literature on the aggregate impact of agbiotech, both types of supply functions 

coexist.  The linear model is used by Falk-Zepeda, Traxler, and Nelson (2000a, 

2000b) and Price, Lin, and Falck-Zepeda (2001).  Moschini, Lapan and Sobolevski 

(2000) on the other hand, develop a NLCE model, adapted to the actual working of 

the herbicide tolerance innovation and apply it to the case of RR® soybeans.  They 

develop an aggregate NLCE supply function incorporating four technology-specific 

parameters enabling to parameterize the herbicide tolerance innovation in detail: 
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General Parameters:  Technology-Specific Parameters:  

λ = scale parameter; 
A, G = parameters subsuming all other 
input prices, presumed constant;  
η = elasticity of yield with respect to 
sugarbeet price;  
δ = constant optimal density of seeds;  
w = price of seed;  
θ = elasticity of land supply with respect 
to sugarbeet profit per hectare. 

α = coefficient of unit profit increase due 
to the HT technology;  
β = coefficient of yield change due to the 
HT technology;  
ρ ∈ [0,1] = adoption rate;  
µ = markup on HT seed price (reflecting 
technology fee). 

average profit per hectare π

aggregate supply of land to soybean production 

L = λπ θ 

(optimal) yield function 



 31

Due to a comment of Moschini (Lin, 2001, personal communication), Price, Lin, and 

Falck-Zepeda (2001) recalculated their model using a NLCE framework, but found no 

significant difference in the outcomes of the two models.  However, the main 

advantage of the methodology of Moschini, Lapan and Sobolevski (2000) lies in the 

elegance with which first wave agbiotech innovations can be modeled.  Therefore, the 

latter methodology is used in our case studies on the welfare effects of agricultural 

biotechnology in the European Union (Demont and Tollens, 2001b). 

 

A third model specification issue is centred on the validity of consumer and producer 

surplus measures and on the conditions that must hold if these estimates are to provide 

an accurate indicator of changes in social welfare.  There are several alternative 

measures that have been proposed as money metrics for the consumer welfare change 

due to price changes: Marshallian (1890) consumer surplus15 and producer surplus16 

on the one hand, and Hicksian (1948) equivalent variation17 and compensating 

variation18 on the other hand.  The use of Hicksian demand curves leads to more 

correct welfare measures, while Marshallian measures are biased.  Recent empirical 

evidence on the French food industry warns for the use of Marshallian welfare 

calculations (Lavergne, Réquillart, and Simioni, 2001).  The authors estimate the 

welfare loss (deadweight loss) due to market power using real data on twenty-one 

sectors of the French food industry.  In each case, the Hicksian welfare loss is 

significantly different from the Marshallian welfare loss at a 5 % level.  For the sugar 

industry for example, they obtain Hicksian welfare losses that are 21 % to 24 % 

higher than the Marshallian ones.  This leads them to conclude that the Marshallian 

welfare measure is a poor approximation of the exact Hicksian welfare loss, and that 

the latter should be used in applied welfare analysis. 
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However, Alston, Norton, and Pardey (1995) argue that, since the parameters of a 

welfare analysis are stochastic, correcting for the income effect, by introducing a 

(stochastic) income elasticity of demand in a Hicksian methodology, adds an 

additional source of imprecision in the welfare measures.  Hence, there may be a 

trade-off of variance against bias.  This weakens the arguments in favour of correcting 

for income effects to obtain Hicksian welfare measures.  Moreover, when the income 

effect associated with price changes is small, consumer surplus is not a bad 

approximation.  In developing countries price changes of staple foods, e.g. banana or 

cassava, can generate substantial income effects, but even in that case, the income-

effect bias is likely to be swamped by errors in measuring positions of curves or shifts 

in them.   

 

The same discussions hold for the use of producer surplus in welfare measures.  The 

income effect associated with a change in a factor or product price is often substantial, 

making producer surplus a much less reliable measure of the corresponding 

equivalent variation or compensating variation.  Producer surplus measures the return 

to fixed or quasi-fixed factors and thus may be thought of as corresponding closely to 

the concept of economic profit: income over and above the opportunity costs 

associated with variable factors.  However, changes in producer surplus are likely to 

provide a more accurate reflection of changes in profit, especially when the effects of 

relatively small changes in prices are measured.   

 

What are the implications of these discussions for our case study on the welfare 

effects of agricultural biotechnology in the European Union’s sugar sector?  Since EU 

aggregate internal demand for sugar does not interfere in the model (Figure 4) due to 
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the EU’s Common Market Organisation for sugar, no measurements along the EU 

demand curve have to be carried out and hence no model specification errors are 

introduced in the estimation of EU domestic welfare effects on consumers.  

Estimating the welfare implications on consumers in ‘the rest of the world’ (ROW), as 

a region, on the other hand, does not escape these methodological difficulties 

(Demont and Tollens, 2001b).  Again, this bias will be largely swamped by 

imprecision, uncertainties and lack of information regarding data like technology 

spillovers, potential adoption, production costs, supply and demand elasticities and 

technology prices in the ROW.   

 

To conclude this section, we agree with Alston, Norton, and Pardey (1995, p. 48) that: 

… there are a number of sources of potential errors in the analysis and attention 

ought to focus on the more important ones, which in this case are not due using 

consumer surplus instead of either the exact money metric or an approximate 

measure of compensating or equivalent variation. 

 

Supply Shift 

The size of the research-induced supply shift, the K-factor, is a crucial determinant of 

the total benefits from research.  According to Alston, Norton, and Pardey (1995), 

three possible K-factors can be distinguished, depending on their accuracy and 

completeness.  The first factor (k1) is the shift that would occur if the new technology 

were adopted, but the input mix were the same as under the original technology.  The 

second factor (k2) represents the shift after optimisation of the input mix, but this 

assumes that variable input prices and the quantities of ‘fixed’ factors (such as land) 

used in producing the commodity are fixed.  The difference between both shifts is the 
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cost saving due to optimising the input mix for the new technology.  In the case of 

herbicide tolerant crops for example, less herbicides, time-specific labour (cfr. supra), 

information, and management are needed.  After adoption of the technology, these 

inputs can be gradually reduced generating extra costs savings, in addition to the 

yield-increasing effects of the innovated seeds.  Finally, k3 represents the supply shift 

after all optimising responses have been made, including the drawing of ‘fixed’ 

factors into (or out from) the production of the commodity whose profitability has 

been increased by the introduction of the new technology.  Adoption of herbicide 

tolerant crops for example, increases the profitability of the crops.  As a result, in the 

medium and long run more land will be allocated to these crops. 

 

Which of these supply shifts should we attempt to approximate in order to include 

them in our assessment of the impact of agbiotech?  The research-induced cost saving 

is understated by k1 because it does not allow for economising the input mix.  The 

unthinking use of experiment data (field trials) could lead unconsciously to a measure 

that corresponds to k1 unless explicit account is taken of the input-mix change.  

Adjusting for the optimal input mix would lead to a measure that corresponds to k2.  

This shift could be derived from a thoughtful ex ante study based on experiment data.  

The estimate of the research-induced supply shift from an ex post econometric 

estimation of the adoption of the agbiotech innovation might correspond to k3, which 

represents the entire research-induced supply shift, including the component of cost 

reduction (or output increases) that is attributable to drawing in quasi-fixed factors 

(e.g. allocatable factors such as land in a multi-output setting).  The problem is that 

the measure of k3 here is a measure of single-commodity cost changes, some of which 

have been achieved at the expense of cost increases in other commodities, from the 
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production of which quasi-factors have been drawn.  The difference between k2 and k3 

is not a net benefit.  It is a gross benefit for which there is a corresponding cost 

associated with a leftward shift (negative K-factor) of the supply of competing 

products and the net social benefit is zero.  Unless a full general-equilibrium analysis  

(see next section) is being undertaken, in which case it would be desirable to 

explicitly measure the impact of commodity-market and factor-market interactions, it 

would be best to attempt to estimate k2 rather that k3 (Alston, Norton, and Pardey, 

1995)19. 

 

In the first section of this paper we already emphasised the role of accurate agbiotech 

impact data and showed how the impact estimates differ according to three different 

data collection methodologies (Table 2), by referring to the farm-level impact study of 

Lin, Price and Fernandez-Cornejo (2001).  Since these impact estimates are at the 

base of welfare measures, their accuracy is of great importance to any aggregate 

macro-economic impact study.  To illustrate this, Price, Lin, and Falck-Zepeda (2001) 

compare the welfare estimates for Bt cotton obtained with the same three data 

sources: (1) mean values for adopters and non-adopters obtained from the ARMS 

survey (methodology 4 in the first section), (2) elasticities derived from the adoption-

impact model of Fernandez-Cornejo, Klotz-Ingram, and Jans (2000) (methodology 4 

corrected for self-selection bias), and (3) the EMD database (methodology 5).  Their 

results show remarkable differences between the three datasets both in the size of total 

world benefits (ranging from 140 to an amount twice as much, i.e. 285 million USD) 

and their distribution among farmers, input suppliers, and consumers.  Farmers’ share 

of the benefits ranges from roughly one fifth (with one half captured by the input 

suppliers) using the ARMS dataset, via one third (equally shared with the input 
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suppliers), to one half (with one fourth accruing to input suppliers).  In other words, 

the accuracy of the dataset determines whether the major winners are either farmers 

(EMD dataset), or input suppliers (ARMS dataset). 

 

General Equilibrium Feedbacks 

The prices of inputs are exogenous to individual firms, but endogenous at the industry 

level, giving rise to the possibility of ‘general equilibrium feedbacks’20 from the input 

markets.  Such changes complicate both the problem of measuring the research-

induced supply shift and the problem of interpreting it in relation to a welfare analysis 

and evaluation (Alston, Norton, and Pardey, 1995).  This is especially the case for ex 

ante evaluations, where the potential adoption of the innovated inputs (e.g. herbicide 

tolerant sugarbeets) and disadoption of the old technology (e.g. conventional 

herbicides) are not known with certainty.  Expanded use of the new technology and 

contraction of the old will, in general, change demands for all factors if these 

technologies have different input requirements, and hence change the respective input 

prices.  Recognising the endogeneity of input prices, in effect, transforms the standard 

partial equilibrium model of adoption of innovations into a general equilibrium model 

in which the producer of the innovated inputs recognises the impact of his actions on 

other input prices. 

 

Lapan and Moschini (2000) show that the optimal pricing strategy of an innovating 

monopolist of a technologically superior intermediate input, typical for agbiotech 

innovations, may lead to incomplete adoption when the price of the alternative 

(competitively supplied) input is endogenous and altered by adoption of the 

innovation.  The fact that adoption is not complete means that an additional source of 
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inefficiency arises from the monopoly pricing of the new input: pure production 

inefficiency because an inferior technology is used when a superior technology is 

available.   

 

Prior research shows that, with complete information, the monopolist’s optimal 

strategy will lead to complete adoption of this technologically superior innovation.  

This is partly attributable to the partial equilibrium nature of prior models.  

Heterogeneity among users, uncertainty and information considerations are among the 

explanations that have been offered to explain the time path of adoption.  But in most 

models of diffusion the premise is that, eventually, the adoption of a superior 

technology will be complete.  Therefore, the authors address the question of how the 

innovator’s optimal pricing policy is affected when the adoption of the innovation 

may change the price of some other input used by final producers.  Innovations that 

alter the way goods are produced (process innovations) will change not only 

production costs, but also the relative demands for inputs, and thus have the potential 

to change their equilibrium prices.  Herbicide tolerant and insect resistant crops for 

example are having dramatic effects on the composition of farmers’ demand for 

herbicides and insecticides in the US.  Furthermore, because yield increase is a 

significant attribute of these innovations, the change in profitability of these 

transgenic crops affects demand for land and hence its price.   

 

Previous models concerning pricing and adoption of an innovation have held other 

input prices constant.  In their ex ante evaluation of the potential adoption of herbicide 

tolerant oilseed rape in France, Desquilbet, Lemarié, and Levert (2001) include the 

possibility that the price of the conventional technology (i.e. conventional herbicides) 
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is altered.  However, they do not attempt to model the adoption and the price reaction 

of the suppliers of conventional herbicides, but assume a fixed decline of 30 % of the 

herbicide price.   

 

Assessing general equilibrium feedbacks due to adoption of new technologies and 

disadoption of old technologies is difficult for ex ante evaluations, due to the lack of 

data and the presence of uncertainties, especially in the case of the current 

controversies about agricultural biotechnology.  For our ex ante framework, Moschini 

(2001) recommends to assume, at a first pass, that the competitively supplied 

alternative technology is produced at a constant unit cost, i.e. no price decline is 

possible.  This is a simplification, but at least it provides us with a (relatively easy) 

benchmark.  He further suggests keeping the simulation model as simple as possible 

at the beginning, while including some sensitivity analysis on the parameters that are 

believed to be critical. 

 

Adoption Pattern, Technology Pricing and System Dynamics 

But even when general equilibrium feedbacks are difficult to assess, these 

phenomenons are only part of a larger, more complex system of technology adoption.  

The adoption of agricultural technologies has been studied intensively (Feder, Just, 

and Zilberman, 1985, Abadi and Pannell, 1999) since Griliches’ (1957) pioneering 

work on adoption of hybrid corn in the US.  More recently, this literature is being 

reviewed and applied on the recent adoption of agricultural biotechnology innovations 

in the US (Hebert and Goldsmith, 2000, Nadolnyak and Sheldon, 2001).  Technology 

firms need to understand the biotechnology adoption process in order to develop 

marketing and pricing strategies compatible with the new state of the technology 
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involving stacking, bundling, input systems, new user groups, and intellectual 

property.  Government stakeholders too have an interest in the adoption process as 

they explore regulatory and welfare issues associated with proliferation of these 

technologies.  This process is endogenous as R&D firms, potential adopters, and 

government institutions all interact simultaneously creating complex adoption 

decision rules.  Unfortunately, previous work looking at biotechnology adoption has, 

for the most, been static in nature and overly dependent on exogenous variables 

(Chung and Buhr, 1997, Alexander and Goodhue, 1999, Moschini, Lapan, and 

Sobolevsky, 2000). 

 

Therefore, Hebert and Goldsmith (2000) show that the modelling of agbiotech seed 

adoption requires the integration of multiple factors in a dynamic environment.  

Previous approaches though have tended to look at technology adoption from a 

reductionist view, considering only a few issues at a time.  While making the 

problems more tractable, misspecification of complex interactions could occur 

(Chung and Buhr, 1997).  System Dynamics (SD) may be effective in modelling 

systems reflective of such complexities.  SD is a modelling approach based on system 

thinking.  That is, understanding organizational behaviour is best conducted using a 

systemic perspective that combines both individualistic and holistic approaches, 

inclusion, rather than reduction and narrowing (Hebert and Goldsmith, 2000).  Using 

four biotech crops (Bt corn, Roundup Ready® Soybeans, RR Canola, and Bt cotton), 

the authors validate the model employing three validation procedures.  Sensitivity 

analysis is conducted opening the “black-box” of the model and identifying the forces 

driving adoption.  Finally scenario analysis is employed to analyse an example of a 

policy and marketing issue related to biotechnology input supply. 
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In Figure 5, we show an adaptation of the mental representation of Hebert and 

Goldsmith’s (2000) model.  This representation identifies components and variables 

that are considered in the model.  From this, causal-loops and influence diagrams are 

constructed.  The model distinguishes seven elements: yield increase, yield variance, 

variable costs, production constraints (e.g. the obligation to plant refuge zones), 

complexity, uncertainty, and output heterogeneity (the presence of a price premium 

for non-GM output).  Both market and firm level impacts are parts of an endogenous 

process.  At the introduction of the new technology, the potential adopters make a 

decision based on the perception of the economic profitability they have about the 

innovation and based on the needs of their production system.  As they adopt, they 

learn by obtaining more information about this new technology and by improving 

their skills at its management.  These learning components provide feedback to the 

producer’s economic perception of the profitability of the crop.  Additionally, the 

adoption process is being affected by exogenous influences such as the state of R&D 

and market prices that add information along the process.  The aggregate adoption 

levels of the agbiotech innovation and disadoption levels of the conventional 

technology inform the input suppliers about the demand for the two respective 

technologies.  Prices of both technologies will be modified by the input industry 

according to the objective of profit maximisation.  Changes in prices, on their turn, 

alter the technology characteristics and the relative profitability and adoption of the 

new technology.  The result is a dynamic system, which potentially never reaches a 

state of equilibrium when new innovations are being developed and transferred to 

farmers in a continuous process.  As a result, the possibilities to predict a reliable 

adoption pattern are very limited for ex ante studies. 
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Moreover, these models are still mainly based on technological and economic 

variables, such as prices and profit.  However, the current consumer backlash against 

GM food, activists’ destruction of GM fields and moratoria on planting GM crops in 

the EU, illustrate that also political and social factors are part of the adoption process.  

Therefore, the conventional models of agricultural technology adoption based on 

profit will perform less accurately in predicting the potential adoption of GM crops in 

the EU. 

 

More specifically in the case of the European Union’s sugar sector, predicting the 

adoption pattern for GM sugarbeets is strongly hampered by the fact that sugarbeets 

are entirely produced under contract with sugar processors on the one hand, and the 

fact that the processing sector (processors and transformers) is very concentrated on 

the other hand.  Hence, the decisions regarding the use of sugar produced from GM 

sugarbeets of important transformers, like e.g. Coca Cola, will determine the demand 

for GM sugarbeets of sugar processors, while the latter will finally determine GM 

sugarbeet adoption, instead of the sugarbeet growers themselves.  It is questionable 

whether any adoption of GM sugarbeets will take place in the short run, given the 

current uncertainties about demand for GMO’s in the EU.  However, even in the no-

adoption scenario, the objectives of our study can be easily redefined.  In that case, 

instead of predicting the expected impact of adopting GM sugarbeets, the objective 

turns into assessing the benefits forgone, or costs, of a partial of complete rejection of 

a technology that is capable to improve production efficiency. 
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Econometric Measurement Errors 

Besides the K-factor, crucial parameters for the estimation of the impact of agbiotech 

are estimates of the response of agricultural supply to movements in expected price 

and estimates of the response of consumer demand to observed price changes.  Both 

are structural parameters of the simulation model and can be computed as elasticities, 

reporting the percent change in supply or demand for a one percent increase in price.  

If available, these elasticities are often taken from previous studies in literature.  

When interpreting and using elasticities from literature, it is important to check their 

accuracy and reliability.  Usually, not only the estimates vary, but also the models 

both in terms of specification and sample data used (Jongeneel, 1997).  Therefore, 

model specification and number of observations give an indication about the accuracy 

of the estimates.  The Nerlove model of agricultural supply response is one of the 

most successful in applied econometrics, as evidenced by the hundreds of subsequent 

studies that use it productively.  The model can be rewritten in a reduced-form 

equation relating output in period t (Qt ) as a function of observable variables, i.e. 

lagged price (Pt-1), lagged output (Qt-1), some lagged (Zt-1) and non-lagged (Zt) 

exogenous variables, and an error term εt (Poonyth, 1998): 

 

tttttt ZZQPQ εββββα +++++= −−− 1431211    (1) 

 

Supplementary statistics, when reported, can give an idea about the reliability of the 

estimated model.  Estimates of the R2 reflect the goodness-of-fit of the model.  

Poonyth et al. (2000) for example, use own acreage response elasticities for the 

European sugarbeet sector, estimated on the data period 1977/78-1995/1996, i.e. 

n = 19.  In Table 4 we represent the estimates of their area-harvested model.  Instead 
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of output Qt, area harvested At is modelled as a function of area harvested in the 

previous period At-1, price P, and three exogenous variables: quota quantity, price of a 

competing crop (wheat) Pc, and a trend variable.  The equations of large producers 

like Belgium, Denmark, France, Germany, UK, Ireland, and Sweden have a fairly 

high R2, while The Netherlands, Spain, Italy, Austria, and Finland have equations 

characterised by a lower R2.  In general, the goodness-of-fit seems to be satisfactory, 

since between 65 % and 99 % of the variance is explained by the model.   

 

When the regression includes lagged dependent variables, typical for supply response 

models, the Durbin-Watson D-statistic is not valid as a test for autocorrelated 

residuals (Neter, Wasserman, and Kutner, 1990).  In that case, the Durbin H-test can 

be considered as a valid alternative.  For ‘large samples’ the test statistic has a 

standard normal distribution.  Therefore, for a test of the null hypothesis of no 

autocorrelation against the two-sided alternative of autocorrelated errors, at a 5 % 

level, the decision rule is if –1,96 < H < +1,96 do not reject the null hypothesis.  Table 

4 shows that this condition is fulfilled in all equations.  However, this test may not be 

accurate in ‘small samples’, again, typical for supply response models in general and 

more specifically for the reported estimates, which are based on only 19 observations. 

 

Agricultural supply response estimates display curiously large variation across crops, 

regions, and time periods.  This has been noted by numerous studies using elasticities 

from literature for their simulation models (Jongeneel, 1997, Davis and Espinoza, 

1998, Falck-Zepeda, Traxler, and Nelson, 2000b, Price, Lin, and Falck-Zepeda, 

2001).  Diebold and Lamb (1997) argue that this anomaly may be traced, at least in 

part, to the statistical properties of the commonly used econometric estimator, which 
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has infinite moments of all orders and may have a bimodal distribution.  In practice, 

the reduced form equation (1) must be estimated.  Least squares (LS) may not be 

strictly appropriate, however, because the reduced-form disturbance is potentially 

serially correlated and the regressors include lagged dependent variables (Qt-1).  

However, LS has nevertheless been used regularly in the applied agricultural 

economics literature.  Therefore, the authors propose an alternative minimum-

expected-loss (MELO) estimator, establish its improved sample properties, and argue 

for its usefulness in the empirical analysis of agricultural supply response.  For small 

samples the performance of the LS estimator is expected to be poor and the MELO 

estimator is expected to yield the most improvement.  Note that small samples are 

typical for the estimation of agricultural supply response, where generally only one 

data point per year is available.  As expected, however, the advantage of the MELO 

estimator decreases as sample size increases (Diebold and Lamb, 1997).  The study of 

Poonyth et al. (1998) recognizes indeed that ordinary LS estimations will not yield 

reliable estimates because of the presence of serial autocorrelation created by the 

lagged values of dependent variables.  Therefore, Maximum Likelihood (MLE) or 

instrumental variable estimation methods have been used, which yield estimates with 

the desired properties.   

 

Jongeneel (1997) proposes an alternative methodology, based on mixed estimation, 

for efficiently estimating producer supply responses for the EU arable sector.  

‘Efficiency’ and ‘mixed’ mean making use of all available relevant information in the 

inference procedure.  His estimation procedure allows for the incorporation of 

economic theory, time series or sample data, and quantitative prior information from 

previous economic research, or from other disciplines (e.g. agronomics).   
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Agronomic research has given information about the biological technical progress and 

the relationship between input use and output yields.  When estimating a model on 

aggregated time series data, the other available relevant information should be used to 

‘enrich’ the estimation procedure.  This requires that prior information used should be 

made clear from the outset.  Since there is a lot of information, usually from different 

sources, the researcher inevitably has to make his own judgment about this.  The 

advantage of this procedure is, however, that these subjective judgements are clearly 

specified and accounted for, which means they are open for debate.  This contrasts 

with the more classical procedure, which besides accounting for economic theory in a 

more or less systematic way, focuses particularly on sample data.  The author 

combines the sample information with both ‘qualitative’ and ‘quantitative’ 

information.  The first covers theoretical restrictions like homogeneity, convexity and 

symmetry of the underlying profit function, while the latter is quantitative prior 

information available from previous (non-)economic research.  Quantitative prior 

information is available either in a rather exact form or only in a vague form.   

 

If there are only some subjective beliefs about the range in which a coefficient is 

expected to lie, this has to be transformed into prior information suitable for 

incorporation into the original model.  The way to perform this ‘translation’ is by 

interpreting the vague prior as a confidence interval.  The information is partly 

derived from other studies and partly created on the basis of external information on 

yields and biological technical progress.  The added quantitative and theoretical prior 

information significantly influence the ultimately obtained results.  While the added 

restrictions improve the plausibility and reliability of individual coefficients, they 

reduce the goodness-of-fit, as measured by the individual equation’s R2. 
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It seems that estimation of supply response suffers from some important handicaps: 

(1) serial autocorrelation of the reduced-form disturbance due to lagged dependent 

variables in the regression equation, and (2) small sample sizes.  Diebold and Lamb 

(1997) attempt tackling the former econometrically by proposing an improved 

estimator, while Jongeneel (1997) emphasises the inclusion of prior information.  A 

valid alternative approach for the latter is to consider it as an ill-posed problem and 

apply the maximum entropy formalism, proposed by Paris and Howitt (1998).  Their 

methodology is especially suited to provide a robust answer to these questions since it 

makes use of all the available information at the farm level, which can be aggregated 

easily into regional and sector levels.  However, their framework still requires prior 

subjective information (cfr. supra), a weakness that potentially can be overcome with 

the new set of Leuven estimators (Paris, 2001). 

 

Finally, estimation of supply response can be hampered by the presence of 

government policies that distort output and input prices.  Some of these government 

interventions are embedded in the Common Agricultural Policy (CAP) of the EU.  To 

illustrate the influence of distorting market policies on the estimation of supply 

response, Figure 4 represents the quota system of the European common sugar 

market.  This Common Market Organisation (CMO) is central in the case study of 

herbicide tolerant sugar beets.  The quota system is in place since the establishment of 

the CAP for sugar in 1968.  Each year the EU fixes an intervention price Pi from 

which it deduces the price levels of A-quota (Pa) and B-quota (Pb).  To each country 

an amount of A-quota (Qa) and B-quota (Qb) is allocated.  Historically, anticipating an 

increase in consumption, these quotas have been fixed at a level, which is superior to 

domestic demand Qd (Combette, Giraud-Heraud, and Réquillart, 1997), the quantity 
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demanded at a price Pi, defined by the intersection of the demand curve (D) with the 

fixed intervention price Pi.  The production of C-sugar is not limited but it receives 

the world price (Pw), without price support.   

 

Now consider two producing countries, characterised by supply or marginal cost 

functions S0 and S’0.  The marginal return curve (abcdef) is stepwise with a 

discontinuity at b and d.  S0 represents a high cost producer since it fulfils its A- and 

B-quota (his marginal cost curve S0 intersects with the marginal return curve at Qa + 

Qb), but is too expensive to produce any C-quota (Pw is lower than the intersection of 

marginal cost and return).  S’0 is the marginal cost curve of a low cost producer, who 

is able to supply an amount of unsubsidised C-sugar (Qc), after fulfilment of his A- 

and B-quota.  In their production decisions, EU sugarbeet producers consider both 

market and policy factors.  For most producers, the price received for A- and B-sugar 

is sufficient to cover marginal production costs (S0), so producers generally will 

produce enough sugar to fill their quota.  For producers with marginal production 

costs between the prices received for B-sugar and C-sugar, the desired production 

levels should equal the sum of A-sugar and B-sugar quotas.  On the other hand, 

producers whose marginal costs are equal to the C-sugar price (Pw), will first fulfil the 

A- and B- sugar production quotas and then will produce above quota C-sugar.  For 

producers that consistently produce C-sugar, this implies that the world price is the 

producer incentive price, since producers receive the world price for a marginal unit 

of production.  Therefore, for C-sugar producing producers the elasticities calculated 

by Poonyth et al. (2000) are based on the world price as the incentive price, while for 

the other producers, the incentive price is a weighted average of A-sugar and B-sugar 

prices (Table 4). 
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Since 1968, quota and prices have not changed dramatically.  As a result, quota and 

price levels do not show a large variation during the last thirty years, hampering any 

econometrical estimation of supply response.  If the marginal cost curve for a typical 

producer would correspond to S0, then the expected coefficient on the price term 

would be close to zero, like in the case of Belgium, Denmark, Spain, Italy, Austria, 

Finland, and Sweden (Table 4).  On the other hand, if the marginal cost curve of a 

typical producer would correspond to S’0, then the quota coefficient should be close to 

zero as marginal production decisions should be unaffected by small changes in the 

quota.  If a country has some producers with marginal cost curves similar to S0, and 

others with marginal cost curves like S’0, then both quota levels and sugarbeet prices 

should have significant impacts on production (Poonyth, 1998), like in the case of 

Belgium, Denmark, France, Germany, The Netherlands, and the UK (Table 4). 

 

Now, consider a technological innovation represented by a parallel shift of the supply 

curve (from S0 to S1) by an absolute cost reduction of K (in Euro/tonne).  The total 

producer benefits of this innovation are K(Qa + Qb), visualized by the shaded 

rectangle.  Since prices and quota are fixed, no direct price effect will occur on the 

domestic market as a consequence of the technological innovation.  In a free market, 

increased supply due to the innovation would result in lower prices if the farm sector 

faces an inelastic demand.  Therefore, within quota production is entirely protected 

from any technology-induced price depreciation.  The producers capture the full 

benefits in the output market, while no benefits flow to consumers.  A low cost 

producer (S’0) will gain a ‘protected’ quota rent increase K’(Qa + Qb) from his A- and 

B-quota sugar, equivalent to high cost producers.  Moreover, he will capture an extra 
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benefit on the export market originating from his C-sugar.  This benefit, however, is 

not protected from price depreciation, so it will be less than K’Qc.   

 

The important implication for our analysis is that research benefits for within quota 

production are more or less21 independent of the magnitude of the supply response 

elasticity, since in our model in Figure 4 the area K(Qa + Qb) does not depend on the 

slope of the supply curves.  This concretely means that no estimates of supply 

elasticities have to be found for high cost producing countries (not producing any 

significant amount of C-sugar).  For C-sugar producing countries at the other hand, 

the magnitude of the supply response elasticity has a direct influence on the price 

depreciation on the world market, due to technological innovation, and hence on the 

out-of-quota research benefits K’Qc.  From this example it becomes apparent that the 

specific institutional policies intervening in the commodity market shape profoundly 

the model, its underlying parameters and the results.  An important conclusion is that 

there will not exist a unique simulation model for all agbiotech case studies, since it 

has to be adapted to the specific features of the Common Market Organisation (CMO) 

of each commodity being modelled. 

 

Chaos 

World prices for sugar are remarkably volatile.  In a recent article, Bourges (1998) 

reports sugar price volatility indices that are three to six times higher than these of 

raw materials, maize and wheat during the period 1962-1989.  In an attempt to 

validate a provisional version of a model of the world sugar industry, Boussard and 

Piketty (2000) show that sugar prices are inherently highly unstable.  The authors 

offer two possible explanations for this phenomenon.  First, the ‘cobweb theorem’ 
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explanation advances that there exist situations, especially those deriving from low 

demand elasticity22, where markets may not tend towards equilibrium.  Rather, prices 

fluctuate wildly, loosing their ability to provide reliable information between 

producers and consumers.  Instead, they generate risk, which is not neutral toward 

production, since it leads producers to be cautious and to reduce investment and 

production.  The second explanation for volatility of commodity prices departs from 

the observation that the market is subject to random disturbances due to 

meteorological or similar causes.  These should in principle be damped out over the 

course of time.  However, because the sugar market is far from being ‘free’, these 

shocks, instead of being absorbed by a large pool of consumers are amplified by the 

behaviour of regulated economies which, in one way or another, provide a price 

guarantee for their producers, thus distorting markets when unexpected temporary 

overproduction is spilled into a narrow market.  During the validation process, the 

authors discover that the outcome of their model is chaotic, which means that 

residuals are not independent of time and will logically grow to infinity.  They 

advance this specificity of chaotic series as one of the reasons why so many excellent 

econometric sugar models have performed so poorly in the past. 

 

What is the link between volatility of the world sugar price and our welfare analysis 

of agricultural biotechnology in the EU?  One of our case studies is the economic 

impact of herbicide tolerant sugarbeets in the EU.  At the center of the analysis is the 

calculation of a counterfactual world sugar price (after decline) to isolate the effect of 

the technology-induced supply shift from other exogenous changes in supply and 

demand (Demont and Tollens, 2001b).  It is important to note that this price change 

would differ from the observed change in world price if the technology had been 
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adopted as assumed.  It rather represents what the world price would have been if all 

supply and demand conditions had been identical except for the introduction of the 

new technology (Falck-Zepeda, Traxler, and Nelson, 2000b).  Since the core of the 

analysis finally consists in an equilibrium displacement model23 (EDM), one could 

question the value of this model in a situation where the world sugar price is highly 

volatile without tending towards equilibrium. 

 

However, despite the fact that sugar prices have been highly volatile in the period 

from 1970 to 1987, confirming the chaos theory of Boussard and Piketty (2000), 

Hannah (1999) offers three arguments that in the decade 1988-1998 the world sugar 

price reached an equilibrium range of 9 to 13 cents/lb with an average of 11 cents/lb.  

First, least cost producers (Brazil, Australia and Thailand) all expanded production 

and exports from 1988 to 1997.  Assuming rationality, it is inconceivable that these 

exporters would have expanded to the extent they did if it had not been profitable to 

do so.  Secondly, the evidence of the 1970’s and 1980’s suggests that significant 

expansion of HFCS (High Fructose Corn Syrup), a competitor of sugar, is triggered 

by high sugar prices.  According to the production cost calculations made by LMC 

(Landell Mills Commodities) International Ltd. (1997), the world average cost of 

production of HFCS is 14 cents/lb, sugar equivalent.  If the world sugar price had 

settled at a price higher than the production cost of HFCS, it would not have been a 

maintainable equilibrium.  HFCS would have been stimulated, taking market from 

sugar, and the result would have been overproduction of sweetener and declining 

sugar prices.  Thirdly, further evidence comes from the same production cost 

calculations showing clearly that sugar price and cane sugar production costs are 

converging over the period.   
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Our strategy of assessing the welfare effects of transgenic sugarbeets in the EU 

consists in assuming hypothetically24 that the EU’s sugar industry, as a competitive 

player in the world market, embraced the new technology of herbicide tolerant 

sugarbeets since the marketing year 1996-1997 (Demont and Tollens, 2001b).  This 

setting implies that the new technology is being introduced at a moment when world 

sugar prices are in equilibrium, according to the arguments of Hannah (1999) and that 

the use of an equilibrium displacement model, as proposed, is justified.  Hence, our 

model will produce reliable estimates of the counterfactual world price, as a result of 

a displacement of the equilibrium world price, and of the welfare effects of transgenic 

sugarbeets in the EU and the rest of the world. 

 

Modelling Uncertainties 

Objective versus Subjective Estimates 

Data, whether they have been estimated based on available real world information or 

provided by experts, always contain an uncertainty component.  Two types of data 

can be distinguished entering our modelling approach: 

• Objective estimates about existing facts or events: demand and supply 

elasticities, current prices and quantities, and production costs; 

• Subjective estimates about ‘immeasurable’ current or future events: farm level 

impacts, adoption rates and technology prices. 

 

The main difference between the two is that objective estimates can be checked for 

validity, while subjective estimates are not subject to validation.  When discussing 

subjective estimates, it is more common to refer to ‘performance’ than to validity 

(Fishel, 1985).  For a discussion on this rather involved topic, we refer to Linstone 



 53

and Turoff (1975).  But even when objective estimates can be validated, they are still 

subject to uncertainty due to measurement problems (e.g. supply and demand 

elasticities, cfr. supra), lack of data and small sample sizes (e.g. production costs).  

Therefore, not only the most likely value of a parameter has to be incorporated into 

welfare calculation models, but also its uncertainty. 

 

Already in the mid eighties, a decade before the adoption of the current wave of 

agricultural biotechnology innovations, Fishel (1985) expressed concern about the 

adequacy of conventional analytical techniques to examine the impact of modern 

agricultural biotechnology.  He even advanced the need to reexamine the 

philosophical conceptualisation about how technology assessment studies of 

biotechnology are considered and contends that there must be some analytical 

extensions to these methodologies in order to generate the kind of information that is 

going to be required by decision and policy makers.  Today with the introduction of 

agricultural biotechnology, literature has indeed provided some analytical extensions 

to the conventional models, reviewed by Demont and Tollens (2001a) in a recent 

paper.   

 

In this section, we depart from Fishel’s reflections about the concept of precision and 

the key role of uncertainty as an element of information equal in importance to the ex 

ante impacts we want to assess: 

… many of the events in which we are interested have not happened yet, so neither 

have the measures of those events.  Consequently, I am convinced that we, out of 

necessity, are going to have to rely more and more on “expert” opinion … what I am 

talking about is a greater role in the use of subjective estimates. … data obtained by 
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subjective estimation is still looked on as a second class method of data collection.  … 

This is regrettable, because it prevents our recognising that, beyond a necessary thing 

to do, subjective estimation techniques can be in their own right a relatively powerful 

tool (Fishel, 1985, pp. 10-11). 

 

Different techniques have been developed in order to meet the increasing demand for 

subjective estimates in science.  The potential use of these techniques in 

biotechnology impact studies has been reviewed by Tollens (1985).  Starting in the 

late 1950’s, techniques such as Critical Path Method (CPM) and the Program 

Evaluation and Review Technique (PERT) made subjective estimation legitimate 

(Moder and Phillips, 1970).  First, the PERT system, adapted25 by Moder and Phillips 

(1970), is based on three subjective estimates: (1) the optimistic value, occurring one 

time in twenty, (2) the most likely value, and the (3) pessimistic value, occurring one 

time in twenty.  These three estimates allow fitting of a beta distribution curve, which 

can be used in statistical methods.  Secondly, Fishel (1985) developed a similar 

method called ‘impression measurement’, in which five estimates are requested for a 

variable: the two 100 % certainty limits, the two 67 % certainty limits, and the most 

likely estimate.  Analogous to PERT, a unique beta distribution is estimated based on 

these five estimates.   

 

Finally, the Delphi method is a systematic iterative process, in which a questionnaire 

is sent to a respondent group of experts.  After the questionnaire is returned, the 

monitor team summarizes the results and, based upon the results, develops a new 

questionnaire for the respondent group.  The respondent group is usually given at least 

one opportunity to re-evaluate its original answers based upon examination of the 
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group response.  Usually Delphi undergoes four distinct phases.  The first phase is 

characterised by exploration of the subject, wherein each individual contributes 

additional information he feels is pertinent to the issue.  The second phase involves 

the process of reaching an understanding of how the group views the issue.  If there is 

significant disagreement, then that disagreement is explored in the third phase to bring 

out the underlying reasons for the differences and possibly to evaluate them.  The last 

phase, a final evaluation, occurs when all previously gathered information has been 

initially analysed and the evaluations have been fed back for consideration (Linstone 

and Turoff, 1975).  Obviously, the first two methods can be integrated in a Delphi 

process in order to generate a reliable idea about the most likely value of a parameter 

and its distribution.   

 

In our modelling approach, subjective estimates about ‘immeasurable’ future events 

can be classified into two groups: 

• Controlled subjective estimates, since they are under the control of decision 

makers, such as the price of the new technology; 

• Not-controlled subjective estimates, such as farm level impacts and adoption 

rates. 

The first group of estimates including technology fees and price premiums are 

especially eligible for a Delphi method, in which experts like decision makers are 

confronted with different opinions and the effect of different decisions.  To assess the 

second group of estimates, expert opinions (e.g. for adoption rates) can be used as 

well as objective estimates.  In the latter case, objective estimates (e.g. field trial 

results) are extrapolated to approximate subjective estimates about ‘immeasurable’ 

future events (e.g. farm level impacts). 
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Sensitivity Analysis (SA) 

When parameter values and assumptions of an economic model are subject to error 

and uncertainty, sensitivity analysis (SA) allows investigating these errors and 

uncertainties and their impacts on conclusions to be drawn from the model.  Pannell 

(1997) observes that, despite its usefulness in applied economics, SA has been largely 

neglected in the entire discipline of economics.  There has been hardly any discussion 

of methodological issues for SA in economic models.  The author provides an 

extensive review and overview of theoretical and methodological issues, different 

approaches and overall strategies in SA.  A common characteristic of the methods 

presented however, is that they do not require the modeller to explicitly specify 

probabilities of different situations.  Moreover, the paper is somewhat focused on 

decision support, while our modelling approach is rather centred on aggregate impact 

estimation, which is not completely under control of decision makers. 

 

A shortcoming of equilibrium displacement models (EDM) is the assumption that the 

structural parameters (elasticities) are known with certainty.  To overcome this 

deficiency, a common practice is to present a table showing some alternative values of 

the structural elasticities and the resulting alternative values of the outcomes of the 

simulation model, like in the seminal article of Gardner (1975).  This procedure is the 

equivalent to generating a few points from the unknown conditional distributions for 

the outcomes, without providing any information about their most likely values, 

though.  Therefore, arguing that one of the major shortcomings of EDM’s is the way 

in which SA is conducted, Davis and Espinoza (1998) propose a more unified and 

informative approach.  They propose to include the researcher’s entire subjective prior 

distributions on the structural elasticities, and not just the expected values as point 
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estimates.  Sampling techniques, like Monte Carlo simulation or Latin Hypercube, 

then can be used to generate posterior distributions for the outcomes of the simulation 

model.  Measures of central tendencies and dispersion can be easily calculated from 

the generated posterior distributions, as well as confidence intervals, p-values, and 

hypothesis tests.  In the literature on the welfare effects of agbiotech, the above 

mentioned stochastic equilibrium displacement model (SEDM) has been adopted26 by 

Falk-Zepeda, Traxler, and Nelson (2000b), and Price, Lin, and Falck-Zepeda (2001). 

 

For our case studies, our modelling strategy will apply this methodology in two 

distinct phases: 

• First phase: definition and introduction of prior distributions for all uncertain 

or subjective parameter estimates in the model and simulation of the posterior 

distribution of the outcomes; 

• Second phase: narrowing down the distribution of the subjective parameter 

estimates by an increasing reliance on expert opinions via Delphi methods, 

starting with the parameters for which the outcomes of the model are the most 

sensitive. 

Obviously, using economic theory and other prior information, the distributions of 

certain parameters can already be narrowed down in the first phase.  Distributions of 

supply and demand elasticities for example can be truncated and limited to the 

appropriate theoretical range, i.e. respectively the positive and the negative portion of 

the real line.  In addition, previous estimates of an elasticity reported in the literature 

can be used to furhter restrict the range and shape of the prior distribution on an 

elasticity.  The key is that the distributions and their parameterizations should be 

chosen so that the resulting prior destributions accurately reflect the researcher priors. 
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It is clear that the above-presented methodology is fundamentally different from a 

conventional econometric model: 

In an econometric model, the unrestricted estimation process forces the parameter 

estimates and the data set under consideration to be compatible.  Hopefully, the 

parameter estimates are then also compatible with the theory.  Alternatively, in an 

equilibrium displacement model, the researcher forces the parameter estimates and 

the theory to be compatible (Davis and Espinoza, 1998, p. 878).  … EDM’s are best 

suited for situations where data are insufficient for a complete econometric analysis 

and if data are sufficient for a complete econometric analysis, an EDM should not 

and would not be used in practice (Davis, 2001, p. 2). 

 

Model Validation 

One of the most important principles in any science is testing and consequently 

confirmation and falsification.  The EDM however, is presently not testable and 

cannot be confirmed or falsified.  The accuracy and validity of the EDM approach 

clearly rest on two maintained assumptions.  First, the structural parameter estimates 

are considered unbiased or at least reasonable.  Second, the structural model is taken 

as being true or correct.  The work of Davis and Espinoza (1998, 2000) and Griffiths 

and Zhao (2000) concentrates on the first maintained assumption (cfr. supra) by 

introducing the concept of stochastic equilibrium displacement model (SEDM).  

While the SEDM is certainly an improvement over previous attempts to allow for 

parameter uncertainty, the truth of the underlying structural model is still a maintained 

assumption.  Therefore, Davis (2001) presents four procedures designed to overcome 

this significant limitation by making them confirmable or falsifiable without 

completely destroying their major advantage, which is ease in implementation.   
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In an equilibrium displacement model, market clearing or market equilibrium is 

forced through equating supply and demand functions.  Solving this system of 

simultaneous equations yields two reduced form equations: a reduced form price and 

a reduced form quantity.  The unrestricted reduced form estimator comes from just 

econometrically estimating the reduced form equation, without imposing any of the 

overidentifying restrictions stemming from the defined prior parameter distributions.  

The restricted reduced form estimator comes from substituting the prior structural 

parameters being utilized in the SEDM into the overidentifying restrictions.  If the 

SEDM restrictions are ‘true’ then there will be no statistical difference between the 

unrestricted estimate and the restricted estimate.  Alternatively, if the restrictions are 

not ‘true’ then the unrestricted estimate and the restricted estimate will be statistically 

different.  In this context, the unrestricted reduced form model is to be interpreted 

only as a testing model, not necessarily a descriptive model.   

 

The attractive feature of this methodology is that data on all the endogenous variables 

are not needed.  Data on one endogenous variable is sufficient and, for most 

commodities, the obvious candidate is the price.  By comparing the restricted reduced 

form (i.e. the EDM result) with the unrestricted reduced form, Davis (2001) presents 

four increasingly sophisticated methods to confirm or falsify EDM models.  These 

procedures can also be applied on ex ante equilibrium displacement models, and 

hence on our modelling framework (Davis, 2001, personal communication). 
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EUWABSIM 

Our theoretical stochastic simulation model is materialised in the software package 

‘EUWABSIM’ (European Union Welfare effects of Agricultural Biotechnology 

Simulation Model).  This package is the unique combination of three interlinked 

modules: a Microsoft Excel 2000 module, a Mathcad 2000 module, and an @Risk 4.0 

module.  The originality and uniqueness of this combination of software packages lies 

in the interaction between the different modules (Figure 6).  First, data on parameters 

coming from the literature, expert opinions and economic theory are stored in an 

Excel file, which is the base module of the package.  Secondly, these data are sent to 

the Mathcad module.  The mathematical software program Mathcad, an add-in for 

Excel, enables to present and calculate the mathematical model in a formal way, 

including functions that are not incorporated in Excel, such as the calculation of 

integrals (Mathsoft Inc., 1999a, Mathsoft Inc., 1999b).  As a result, this mathematical 

module contains the mathematical body of the model.  The Mathcad module uses the 

data from Excel to calculate the outcomes of the model.  These outcomes are then 

returned to Excel.  Thirdly the computer program @Risk, also an add-in for Microsoft 

Excel, enables introducing prior distributions for parameters in the individual cells of 

an Excel sheet (Palisade Corporation, 2000).  Hence, this uncertainty module allows 

incorporating and analysing all uncertainty elements of the model.  For all parameters, 

@Risk randomly picks values from the defined prior distributions and sends them to 

the data cells in Excel.  Each time the data values are changed in Excel is called an 

iteration27.  For each iteration, Mathcad recalculates the model and sends the 

outcomes to Excel.  @Risk then collects all different values, generated by each single 

iteration, in a file.  This finally allows the program to generate posterior distributions, 

statistical analyses, and sensitivity and scenario analyses for the model outcomes.  
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Conclusions 

In the literature, impact estimates of agricultural biotechnology vary strongly 

according to the region, the crop, the time, the scale, and the methodology of the 

study.  Therefore, this paper provides a methodological background for analysing, 

interpreting, and comparing these estimates.  In the literature and the popular press, a 

large diversity of impact estimates is quoted.  However, the paper shows that there 

exist a hierarchy in estimation procedures.  As a result, some estimates may be biased 

and should be interpreted accordingly.  The presence of this diversity in impact 

estimates is partially due to the existence of uncertainties.  Some uncertainties may be 

due to methodological issues in the calculation of research benefits, while others are 

specifically related to the new technologies themselves.  Given this large set of 

uncertainties, one may question whether estimating the welfare effects of agricultural 

biotechnology in the European Union is feasible at all, before even the new 

technology has been adopted.  To answer this question, we agree with Fishel (1985, 

pp. 5-6) that: 

… issues related both to management decisions and to governmental adjustment 

programs will need to be anticipatory rather than reactive. … can we wean ourselves 

away from the overwhelming preoccupation with precision in our analysis?  Can we 

adjust ourselves to a “looser” form of analysis that is designed to help anticipate 

change rather than understand it?  

Taking ‘anticipation’ as our primary study objective, our modelling framework can be 

continuously updated with new information from experts, ore even from the first 

biotechnology adoption experiences in the European Union.  However, 

‘completeness’ should be our second study objective, accomplished through extensive 

sensitivity28 and scenario analyses.  
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Table 1 : Potential Bias in Measured Economic Impact 

 Transgenic Trait 
Type of Trial Pesticide-tolerant Pesticide-inherent 

1. Laboratory Trial +/- +/- 
2. Yield Trial, Currently Used 

 Conventional vs. Transgenic 
- - 

 Yield Trial, Near-isogenic Lines + + 
 Pest Control Trial +/- - 

3. On-farm Partial Adoption Trials - 0 
4. On-farm Field-level Surveys +/- +/- 
5. Whole-farm Surveys 0 0 

(Marra, 2001) 

Table 2 : Impact of Adopting Bt Cotton in the Southern Seaboard of the US on 
Crop Yields and Pest Control Costs by Data Source in 1997 

Item Data Source 
 Means of ARMS Elasticity-based EMD 
Crop Yield + 11,6 % + 21,0 % + 11,3 % 
Pest Control Costs - 5,27 % - 7,08 % - 60,0 % 

(Lin, Price, and Fernandez-Cornejo, 2001) 

Table 3: Total Farm Budget of an Average Sugarbeet Grower in the UK 

Category  CPI 300 Average 
 Adjusted Yield (t/ha) 59,70  
 Average Beet Price (£/t) 25,96  
Total Output 1549,76  
Variable Costs (£/ha) Seed 99,11  
 Fertiliser 89,40  
 Organic Manure/Lime 16,33  
 Herbicides 115,70  
 Insecticides 36,29  
 Fungicides 7,75  
 Foliar Feeds 4,84  
Total Variable Costs (£/ha) 369,42  
Gross Margin (£/ha) 1180,34  
Operational Costs (£/ha) Primary Cultivations 40,16  
 Other Cultivations 25,63  
 Drilling 27,96  
 Fertiliser Applications 16,90  
 Chemical Applications 33,78  
 Tractor Hoeing 10,64  
 Irrigation 6,06  
 Other 5,59  
 Harvesting 149,25  
 Delivery 238,57  
Total Operational Costs (£/ha) 554,53  
Other Overheads (£/ha) 100,00  
Total Costs (£/ha) 1023,95  
Unit Costs (£/ha)  17,15  
Enterprise Margin (£/ha) 525,80  

(Limb, 2000) 
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Table 4 : Area Harvested Equations of the European Union Sugarbeet Sector 

 Consta
nt 

At-1 P Quota Pc Trend R2 DH 

Belgium 14,814 0,415 0,035 0,453 - - 0,94 0,238 
Denmark 14,148 0,633 0,045 0,153 - - 0,96 1,422 
France 50,895 0,320 2,987 0,664 -3,325 - 0,95 0,621 
Germany 71,696 0,492 3,042 0,321 -7,098 - 0,99 0,893 
The Netherlands 48,048 0,440 0,483 0,162 - - 0,65 0,864 
Spain 23,003 0,649 0,048 - - - 0,71 1,562 
UK 21,797 0,663 3,677 0,200 -7,238 - 0,94 1,243 
Italy 33,376 0,369 0,016 - - - 0,70 0,200 
Ireland 13,219 0,576 0,136 - - - 0,91 1,388 
Austria 17,169 0,603 0,079 - - - 0,77 1,366 
Finland 2,753 0,723 0,040 - - 2,117 0,81 1,346 
Sweden 10,034 0,447 0,043 - - 5,600 0,92 1,036 

(Poonyth et al., 2000) 

 

Table 5 : US Welfare Effects of Adopting Bt Cotton in 1997 by Data Source 

 Mean of ARMS Elasticity-based EMD 
Stakeholder 106 USD % 106 USD % 106 USD % 
U.S. Farmer Surplus 31,4 22,4 78,2 36,2 132,1 46,4 
U.S. Consumer Surplus 9,9 7,1 19,9 9,2 30,9 10,8 
Monsanto 62,0 44,2 62,0 28,7 62,0 21,8 
Delta & Pine Land 12,9 9,2 12,9 6,0 12,9 4,5 
ROW Producer Surplus -35,8  -77,8  -132,3  
ROW Consumer Surplus 59,8  120,7  179,3  
Net ROW 24,0 17,1 42,9 19,9 47,0 16,5 
       
Total World Surplus 140,2  215,9  284,9  

(Price, Lin, and Falck-Zepeda, 2001)    ROW = Rest of the World 
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Figure 1 : Change in Marshallian Surplus (area ABCF or cGHw1/αααα) and 
Innovated Input Suppliers’ Surplus (area w1/ααααHIc/αααα) Resulting from an IPR-
Protected Innovation in the Input Market (Moschini and Lapan, 1997) 
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Figure 2 : Change in Task Flexibility Due to Agricultural Biotechnology 
Innovations 
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Figure 3 : Diagrams Showing the Conventional Study of Pest Control Impact 
and the Proposed Study (Labatte et al., 1996) 
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Figure 4 : Quota System of the European Common Sugar Market 
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Figure 5 : Mental Image of the Technology Adoption Process (adapted according 
to Hebert and Goldsmith (2000)) 
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Figure 6: Schematical Representation of the Simulation Model 'EUWABSIM' 
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1 For a comprehensive overview of field trials taken place since 1986 in OECD countries, we refer to 

the OECD’s database of field trials which is online accessible through http://www.olis.oecd.org/ 

biotrack.nsf.  You can make your own field trial table and search or browse the database, by country, 

or by organism.  Summaries of the data are also available (OECD, 2001). 

2 Pesticide-inherent crops have a pesticide genetically inserted into the seed, such as the Bt crops (corn, 

cotton, potatoes and soybeans). 

3 Near-isogenic varieties are nearly identical in terms of their genetic makeup, except for the insertion 

of a specific gene or trait. 

4 These data have been obtained from a survey of consultants conducted by Plexus Marketing Group, 

Inc. and Timber Mill Research, Inc.  In this survey, cotton consultants were recruited to provide 

agronomic and pest management information on matched pairs of Bt and non-Bt cotton fields.  These 

matched pairs of fields were carefully selected so that they represented equivalent histories of crop 

production, agronomic practices and productivity. Data were included for fields in Alabama, Arkansas, 

Georgia, Louisiana, Mississippi, North Carolina, South Carolina, and East Texas. 

5 An interesting study related to this topic can be found in the paper of Fernandez-Cornejo, Daberkow, 

and McBride (2001), who examine the relationship between farm size and the adoption of agricultural 

biotechnology.  Their results show that the adoption of herbicide tolerant soybeans is invariant to farm 

size (scale-neutral), while for Bt and herbicide tolerant corn, adoption seems to be biased towards 

larger farm operations.  However, the latter could be due to the fact that their 1998 sample only 

included the innovaters and early adopters who in general tend to control substantial resources. 

6 a Canadian oilseed rape variety 

7 Benbrook (1999) found similar evidence of this yield drag for herbicide tolerant soybeans. 

8 This article has its origine on the 2000 Annual Meeting of the American Agricultural Economists 

Association.  Matty Demont initiated a conversation with Terrance M. Hurley and Paul D. Mitchell 

about the potential risks effects of Bt corn, by referring to the articles of Horowitz and Lichtenberg 

(1994) and Carpentier and Weaver (1997), and suggested that Bt corn could possibly increase risk, 

instead of decreasing it as conventionally assumed.  This discussion would have encouraged the 

authors to initiate an empirical study on the risk effects of Bt corn (Mitchell, personal communication). 
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9 For a more aggregate analysis on the influence of climat and technological change on the risk in corn 

production, we refer to the study of Kim and Chavas (2001).  Using time series data (1974-1997) from 

several research stations in Wisconsin,  they econometrically examine the effects of technological 

change on the mean, variance and skewness of corn yield and corn profitability, as they evolve under 

technological progress.  Their empirical results indicate that technological progress contributes to 

reducing the exposure to risk as well as downside risk in corn production.  They also stress the role of 

the relative maturity of corn hybrid as a means of managing risk. 

10 The recent findings of Hurley, Mitchell and Rice (2001) however, show that the opposite can occur 

too, like in the case of Bt corn (cfr. supra). 

11 This idea originated during his stay in Leuven in March 2001. 

12 The authors believe that biological as well as chemical innovations, such as agricultural 

biotechnology, result in a divergent shift, while mechanical and organisational innovations are scale 

dependent and result in a convergent shift of the supply function. 

13 One exception is the case of a yield-increasing innovation, which does not require input changes per 

unit of land (Hicks neutral technical change), likely resulting in a divergent supply shift. 

14 (.) refers to a price or quantity variable and ∆ implies the finite change of the variable 

15 Consumer surplus, as defined by Marshall (1890), is the excess of the price the consumer would be 

willing to pay over the actual cost of the good. 

16 Producer surplus is the excess of the return to the factor owner above that necessary to induce him or 

her to provide the factor, and it is analogous to the concept of consumer surplus (Mishan, 1968). 

17 Equivalent variation, a concept defined by Hicks (1948), is the amount of additional money (income) 

that would leave the consumer in the new welfare position if it were possible to buy any quantity of the 

commodity at the old price. 

18 Compensating variation is the amount of additional money (income) that would leave the consumer 

in the initial welfare position if it were possible to buy any quantity of the commodity at the new price.   

19 For a more detailed review on the issues and uncertainties in the estimation of on-farm benefits of 

agricultural research and on how a constructive dialogue with scientists can be achieved, we refer to an 

interesting methodological paper of Pannell (1999). 
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20 A partial equilibrium approach only takes into account the agricultural market, while a general 

equilibrium model includes all related markets surrounding the agricultural sector. 

21 This depends on the functional form used for the supply functions, but even then, supply elasticities 

have no major influence on price-protected within-quota research benefits. 

22 According to Hannah (1999), developed countries have very low or zero price elasticities for sugar.  

This means when supplies are short (and prices high) they try to purchase their requirements, driving 

the price even higher.  Developing countries, on the other hand, have higher price elasticities, 

purchasing more when prices are low and less when prices are high.  Developing countries have 

therefore a stabilising influence on the market, whereas developed countries destabilise the market. 

23 The equilibrium displacement model originated with Muth (1964) and is one of the most frquently 

used tools in agricultural economics (Davis and Espinoza, 1998). 

24 As we mentioned earlier, this strategy reveals the benefits foregone or costs of the current 

moratorium on GMO’s in the EU, and more specifically on transgenic sugarbeets. 

25 The original development of PERT used the ultimate limits, or the 0 and 100 percentiles of the 

distribution of the variable. 

26 Moschini, Lapan and Sobolevski (2000) on the other hand, apply a conventional way of doing SA.  

They recalculate their model for some alternative values of the structural elasticities, relative to a 

benchmark, without introducing any subjective prior distributions of the structural parameters. 

27 The number of iterations can be chosen arbitrarily in @Risk.  However, the more iterations, the more 

detailed are the estimates of the posterior distributions.  The iteration process can be automatically 

stopped when convergence of the model results is attained. 

28 In an ex post analysis roughly 50 % of the time is spent on data collection, 25 % on modelling and 

25 % on sensitivity analyses.  In an ex ante analyses, lack of adoption data limits the data collection 

phase to 25 % of the research time.  Assumptions, hypotheses, expert opinions, and economic theory 

are also considered as data.  Since both methodologies use essentially the same modelling frameworks, 

an equal proportion (25 %) of the time is devoted to modelling.  Finally, in an ex ante analysis, 50 % of 

the time is spent on sensitivity analysis to assess the sensitivity of the results to the parameter values 

and assumptions made in the analysis.  Note that even in an ex post setting, sensitivity analysis is 

important, due to measurement problems in the estimation of the model parameters. 
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