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a de

OVEVER THE PAST 75 YEARS vehicles First International Conference on PRTpowered by the internal combustion held in Minneapolis , Minnesota , Novem
engine have developed to become the ber 1971. The book , Personal Rapid
dominant forms of urban transportation Transit ,8 is a widely distributed collec
throughout the world . The engine's small tion of the papers presented at that con
size and packaged fuel supply has per ference . A second conference was held in
mitted its application to personal- sized May 1973 , and other transportation con
privately -owned vehicles that provide un ferences are devoting more of their pro
paralleled mobility in terms of on grams to PRT . Present hardware de
demand service 24 -hours a day at poten- velopments had origins with Mr. William
tially high speed between most origins Alden developer of the Alden StaRRcar ,
and destinations . The most successful a research group at General Motors
of these vehicles , the automobile , has which has developed into the Transpor
also introduced numerous social and en tation Technology Inc./Otis system and a
vironmental disadvantages to the urban group at Varo Inc. that developed into
environment . Among them are : the Rhor /Monocab system . First (and at
mand for more land, highways and park present only ) implementation of a PRT
ing ; air and noise pollution ; deaths and type system is the Alden -Bendix -Boeing
injuries ; and a dominant consumer of system at Morgantown, West Virginia ;9
limited petroleum reserves.1-4 Perhaps however , a demonstration and six month
more significant in most American cities testing of two large-vehicle and two
is that the overwhelming success of the small -vehicle PRT systems was held in
automobile has caused the near complete conjunction with Transpo '72 in Wash
elimination of public urban transporta ington , D.C. , June 1972.10
tion . Because large segments of the Fundamental hardware requirements
urban society does not have access to for area-wide application of PRT are :
automobile transportation , especially the ( 1) Fast -acting on - board switching
poor and the old , a large division in mechanism . This permits headway to be
mobility has resulted . independent of the switching function
In an attempt to develop a public and makes feasible network and off - line
transit system that would provide auto station operation .
like services to all segments of the urban ( 2 ) A small ( 2-6 passenger ) vehicle
population , considerable effort in the that does not allow standees . This pro
United States, Japan , and Europe has vides personalized service by high per
been focused on the development of Per formance vehicles operating on smaller ,
sonal Rapid Transit (PRT ). PRT is a cheaper , and more easily constructed
new class of fixed -guideway transit con guideways than is possible with larger
sisting of small (2-6 passenger ) auto vehicles .
matically -controlled vehicles that oper ( 3 ) Safe and reliable operation at
ate at short headways . Off - line stations headways that satisfy capacity and eco
an interconnected network provide nomic constraints .

non -stop origin to destination service . At present a number of manufacturers
In area -wide applications auto - like ve have perfected the switching mechanism
hicles operating on an exclusive guide on small vehicles , e.g. TTI and Monocab ,
way network interconnecting many but the short-headway operation has not
closely -spaced stations would provide been demonstrated . The shortest head
auto - like origin to destination service to way yet demonstrated was 8 seconds by
potentially a much larger segment of Ford and Rhor / Monocab.10 An order of
urban residents than is presently being magnitude reduction in headway is con
served by the automobile . Present con sidered necessary for area -wide applica
troversies on the viability of PRT are tion . This is a severe technological chal
focused on three fundamental issues : lenge in that it requires the violation
economics , system capacities and demand of the classical minimum safe -headway
forecasting . This paper reviews reported constraint.3 At present Germany,14
hardware development , the state of plan Japan ,15 and Switzerland ,16 are develop
ning software for PRT , and some area ing short-headway PRT_hardware and
wide PRT applications and presents a the U.S. Department of Transportation /
simplified analysis of a "break - even ” de Urban Mass Transportation Administra
sign of PRT area -wide network . tion is organizing a research and devel

opment program in short -headwaySTATE OF PRT DEVELOPMENT PRT.17
PRT has been reinvented numerous Planning . Planning methodology for
times . Present planning fundamentals area -wide PRT is in its infancy . PRT's
for PRT were formulated in the so -called network capability requires a 2 - dimen
HUD studies o

f

19682 and England's sional area -wide transit planning concept
Royal Aircraft Establishment's Cabtrack rather than a 1 -dimensional corridor
study . The first comprehensive concept that dominate present transit
change o
f

mmation occurred at the and highway planning processes .
on

ex
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Detailed . Network
Design ; Preliminary
Economic &, Environ
mental Impact Analysis

CONCEPTUALIZE
1

General Cost

and Travel Data Analytic Analysis
of Design Service
and cost Tradeoffs

Design and

Economic constraints

Figure 1 . Stratified Planning Methodology

The large number of possible guide
way and station locations possible with
PRT and, at best , a very vague definition
of optimality in network design make it
imperative fo

r

both the planner and the
policy maker that various levels o

f

de
sign exist . These levels should b

e struc
tured from the very simple analytic
system -model that provides fundamental
concepts o

n the relation between cost and
service variables , to detailed simulation

o
f

network operation , a
s

is depicted in

Figure 1
. The number o
f

discrete levels

is debatable but the lowest level should
require only " back - of - the -envelope ” cal
culation and provide " quick -and -duty "

estimates for large variations in the
values o

f

the parameters . The last analy

*Department o
f Civil and Geological

Engineering , Princeton University ,

Princeton , New Jersey 08540 .

** Bell Laboratories , Allentown , Penn
sylvania .

sis requires a
n

extensive computer facil
ity manipulating a detailed data base .

The large computational cost associated
with the final analysis limits its versatil
ity and permits only small adjustments

in network design parameters . The pur
pose o

f the intervening levels is to se
quentially refine and improve the net
work design parameter to be used by the
next higher level o

f analysis . Interest is

often focused o
n the top level ; however ,

the bottom level is as important because

it provides intuition that assists in the
comprehension o

f

the results o
f

the
higher levels .

The authors have developed computer
software for the two lowest levels o

f

analysis18 , 19 and York 20 and Wade21
have developed detailed network simula
tions o

f passenger / vehicular flows that
would be a small part o

f
a level III

analysis ( a detailed economic and per
formance analysis that would yield de
tailed design and cost specifications has
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not been developed ). Further efforts to
improve on the level I analysis are pre
sented in Section III .
Implementation . Actual implementa
tion of small -vehicle PRT an urban set
ting has yet to be realized , although the
Morgantown project represents a giant
step by demonstrating wholly automatic
control of a fleet of medium -size vehicles
having on -board switching capabilities
and a guideway having o

ff - line stations .

Minimum headway is 1
5 seconds a
t

3
0

mph . A potentially significant step in

the implementation process o
f small

vehicle PRT could result if the Rohr /

Monocab system is chosen for implemen
tation in Las Vegas , Nevada . At one
time it was widely suspected that Den
ver , Colorado would b

e

awarded a grant
that would b

e the first step in a
n area

wide implementation o
f

small -vehicle
PRT ; however , at present the recom
mendation for implementation is e

x

pected to be for a medium -sized ( = 2
0

passenger ) vehicle system , 22 rather than
an auto -sized vehicle system .

PHASE 1 - DESIGN ANALYSIS

A simple parametric analysis , 18 of

basic PRT design and cost variable re
cently appeared in the Highway Re
search Record No. 427. The analysis
idealizes the network and service area

so that computations can b
e performed

o
n

a per unit area (density ) basis . The
results , presented in parametric form ,

are convenient for preliminary network
design , costs , and patronage estimates .

The analysis is weakened b
y

the inclu
sion o

f
a modal split model that , a . )

masks some fundamental relationships
between network capacity and cost , and

b . ) is highly sensitive to small variations

in the value o
f

assumed parameters

( perceived auto costs ) . The theoretical
basis for modal split models is micro
economic disutility theory ; however , a

quantitative comparison o
f travel modes

is extremely difficult because some utili
ties such a

s

comfort are essentially un
quantifiable and the weighting matrix
that attempts to convert various attri
butes into a single utility is , at best ,

unreliable . Experience and models based

o
n a comparison o
f

conventional transit
with the automobile are o

f

little value
because of the vast difference in service
offered by PRT a

s compared to conven
tional transit . Claims that PRT has the
potential to attract a large percentage

o
f

all urban trips can b
e

substantiated

b
y

the continued success o
f

transit in

areas where the automobile is not su
perior to transit , e.g. New York City ,

and by the Dial - a -Ride experience .

Capacity - Constrained , “ Break -Even "

Analysis . What follows is a Level I

analysis o
f area -wide PRT based o
n the

idealized -city model . The idealized -city
model normalized the network to a per
unit area basis and presents feasible
values for network design parameters
given averaged data o

n trip making
characteristics for that unit area . For

a " city " having uniform travel demand
the ideal network would be a square
grid o

f oneway lines with stations lo
cated a

t

mid -points between inter
changes . ? An appropriate unit size for
consideration should be a

s

small as pos
sible but larger than the line spacing
squared - say a square mile o

r square
kilometer .

For such networks , the one -way guide
way route mile , M ; the number o

f sta
tions , Ns ; and the number o

f inter
changes , Ni ; per unit area are given as
follows in terms o

f

line spacing , L :

M = 2 / L ; N. = 2 / L2 ; N = 1 / L2 ( 1 )

Because stations and interchanges re

quire switches and acceleration /deceler
ation lanes , the actual guideway mileage
required is substantially more than the
route mileage . A good approximation to

the additional length o
f guideway re

quired per unit area for stations and
interchanges can b

e obtained from Ref
erence 2

3

to b
e

0
.6 /L2,4 giving a total

one -way guideway requirement per unit
area , Ng , o

f

2 / L + 0.6 /L2 ( 2 )

The theoretical minimum guideway
capacity requirement , Cmin , is given by

Ng

D'phe
Cmin ( 3 )

M

where Dyph is the peak -hour vehicle d
e

mand and y is the average trip length
Equation ( 3 ) assumes a
n unrealistic uni

form distribution o
f

demand o
n the
guideway . Because peak -hour demand is

directional and near capacity utilization

o
f

the guideway should b
e avoided to

avoid congestion and its related reduc
tion in service we define a practical de

sign guideway capacity C = Cminin ,

where n is a realistic guideway utiliza
tion efficiency . A reasonable peak -hour
value is 0.5 .

Peak -hour person trips , DPph ,

lated to Dvph via a
n average vehicle oc

cupancy , & , DPph = Dyphs . For private
auto - like PRT service values of $ = 1

.0

are commensurate with low auto occu
pancy for work trips and the need for
vehicle shuttling to satisfy the skewed
peak -hour demand .

From Equation ( 3 ) the preferred ve
hicle design capacity measure -minimum
time -headway , th = 3600 / C (seconds ) , is

is re
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0

average 0
.3 person trips during the peak

hour take the PRT system having L =

42. The relationship between population
and average trip length are ideal for
real cities because high -density residents
tend to have shorter work trips than low
density suburban residents .

Costs . The costs per unit area o
f

the
above network can b

e divided into three
categories : operating , maintenance , and
capital costs . For Level I analysis main
tenance costs can b

e incorporated into
operating ( < $ 0.01 /vehicle mile ) and
capital cost ( 1 % added to the annual
cost equivalent ) .

Annual capital costs per unit area for
the system , $ c , can b

e expressed in terms

o
f unit costs , a , as

$ c CRF , N , + asCRFsNg +

a
g

CRF ,Ng ( 5 )

where the capital recovery factor , CRF , 5

converts total capital costs to a
n annual

basis and the subscripts v , s , and g indi
cate vehicles , stations and guideways ,

respectively . The peak -hour fleet -size re
quirement , Ny , is a product o

f

the peak
hour guideway utilization efficiency , 1 ,

and the guideway slots available per
unit area , or

= av

Stotis
ServiceArea

Figure 2 . Idealized PRT Wetwork

found to b
e inversely proportional to per

son trip demand rate , trip length and
line - spacing .

7200 ng
ta

7200 m D
Pphp

Nr

th VL

( 4 )

DPph L

th is also linear with average vehicle

occupancy , & ; however , & is a character
istic o

f

the travel demand and cannot be
considered a design variable in the same
way average auto -occupancy is not a

highway design variable . Therefore ,

Equation ( 4 ) exhibits the tradeoff b
e

tween only two design variables , th and
L. Actually the demand is a monotonic
ally decreasing function o

f
L ( through

the impercise modal split model ) which
tends to place a lower bound o

n

th . Costs
impose the upper bound o

n th . Service re

quirements , in terms o
f

walk distance to

a station , indicate that the line spacings
should be not much larger than 0.62 mi .

( 1km ) to 0.5 mi . An estimate o
f the

population density required to generate

the peak -hour demand a
t

headways o
f

1 , 2 , 4 and 8 seconds is presented in

Table 1
. Assumed is that 50 % o
f

the

5,8

( 6 )

�
where V mainline velocity . Using ( 4 ) ,

and ( 6 ) , Equation ( 5 ) becomes

$ c a , CRF 7200 / ( toVL )

+ a
s

CRF , 2 / L2

+ agCRF , ( 2 / L + 0.
6
/ L2 ) 6

The relative impact o
n capital costs

o
f

the various system components is
available from Equation ( 7 ) . For e

x
ample , if we consider V = 35 mph , th

1 sec . , L = 0.
5 mi . and amortize the ve

hicles for 1
0 years and the guideways
and stations for 30 years a
t
6 % interest

(conservative interest for municipal
bonds ) then CRF , = 2 CRF : .0726

CRF and

$ c = 4CRF { 1.
6 a
g
+ 2as + 100Qv }

For a proportionate distribution o
f cap

ital costs the station and guideway costs
should be o

f

the same order o
f magni

tude , while vehicle cost should b
e
2 or

ders o
f

magnitude smaller . Indeed some

o
f

the widely -quoted target costs for
PRT systems have this distribution , i.e.
Ag = $ 1.5M /mile , a

s
= $ 400,000 / station

and a
y

$5,000- $ 10,000 /vehicle . Table 2

lists the distribution o
f

annual capital
costs for the above assumptions .

Annual Revenues . An estimate o
n the

annual patronage based o
n the peak -hour

demand is available by estimating daily
demands in terms of peak -hour demands ,

TABLE 1

POPULATION REQUIRED TO
SUPPORT PEAK -HOUR CAPACITY

OPERATION
Population Ave. Trip Length Headway

(/mi.2 ) (mi . ) ( sec . )

16,000 3 1

8,000 1

4,000 12 1

4,000 6 2

2,000 6 4

1,000 6 8
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1.0, ag

a

TABLE 2
DISTRIBUTION OF ANNUAL CAPITAL COSTS PER SQUARE MILE

Total Annual % Of Annual Capital Costs
Capital Costs Capital Costs Vehicles Stations Guideways

αν 5,000 $13.8M $1.07M 13.5 % 21.5 % 65%
αν 10,000 $14.8M $1.22M 24% 19% 57%
Assumed : L 0

.5 , n = 0.
5
, & = $1.5M /mi . , as $0.4M / , V = 35mph .

Aph DPph = 5 Pa DPd , and the equivalent “breakeven ” fare to the unit capital cost
number o

f transit days per year . For element under the patronage assump
conventional transit peak -hour ridership tions stated above . Figures 3-5 present
represents 15-20 % of total daily rider parametrically fare required to pay for
ship . Experience from the Haddonfield , each element o

f

the capital cost . Note
N.J. Dial - a -Ride experiment indicates that the cost o

f amortizing the fleet o
f

that demand -responsive transit has vehicles is independent o
f

either demand
larger demand for service during off o

r

network design_parameters ( except
peak hours than conventional transit and V ) . Also noted on Figure 5 is the mini
therefore , a smaller percentage of total mum practical population density , p ,

daily trips are taken in the peak -hours . that corresponds to the paired values o
f

This improved demand distribution is th and L. Table 3 below summarizes the
somewhat offset because off -peak trips " break - even " fare components for thetend to be shorter than peak -hour trips . nominal values of the cost parameter .Consequently a realistic estimate o

f

A parametric analysis o
f

the guide
for PRT seems to be t = 0.15 . The area way portion of the “break -even " fare ,

wide time - independent service provided F a
s
a function o
f

demand a
t

constant
by PRT can also b

e expected to yield vehicle technology , say th = 1 sec . , indimore week -end patronage than conven cates a linear increase with demandtional transit . Assuming non -business which can be used to

day ridership to be 10 % o
f

business day
ridership gives about 265 transit days Fg = 2.59x10–8
per year . .3 DPph OthConsidering a per passenger mile fare , agth { 1+ } ( 1

1
)F , the yearly revenue per unit area , $ r ,

$ x = 265 F y DPph / 5 ( 8 ) define upper limits o
f

demand for which
By equating the yearly revenue to PRT is applicable . For example , if Fg
cost , interesting tradeoffs between sys max is chosen a

s

$ .10 / mile then the
tem costs parameters and service vari practical maximum population would b

e

ables are discovered . Equating Equation 21,000 pps for th = 1 ; whereas , F , < $ .10( 8 ) to Equation ( 7 ) (modified to include
maintenance and operating costs ) is impossible for th > 2.57 . A similar
press the “break -even " fare in terms o

f analysis is possible for the station com
system design and cost variables a

s ponent for the fare , Fs .

F = 0.03 + 1.05x10-6 thţ (CRF + Equation ( 9 ) is also in a convenient
0.01 ) { 7200nay / th / V + A

g

+ form to determine the sensitivity o
f

the

( a
s
+ 0.3ag ) / L } / (mg ) ( 9 ) fare to small changes in the assumed

Using assumed values fo
r

CRF , V , § , & ship index , % ,maintenance cost , the a
v

parameters such a
s the peak -hour rider

and ni Equation ( 9 ) reduces to erage vehicle occupancy , Š , and theF 0.03 + 2.59x10—8 { 100av + guideway utilization , n . Changes in totalthag + ( a
s
+ 0.3ag ) th
n

( 1
0
)

Equation ( 10 ) exhibits the sensity o
f

the

7200 ng

ex
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Figure 3 . Fare to pay for vehicles . Figure 4 . Fare to pay for stations .
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TABLE 3
“BREAK -EVEN ” FARE COMPONENTS
Total Operating Vehicles Stations Guideways

$/Mile 13.9 0.03 0.026 0.021 0.062

Percent 21 % 18.7 % 15.1 % 44.6 %

Assumed : L = 0
.5 , n 0
.5 , Š 1.0 , 3 = $ 1.5M /mi . , as $ 0.4M / , Q
y

=
=

$ 10,0007 , th = 1 , y = 6mi . Required population density : 8,000 /mi2 .

.15 , ag

0.10 2

LO 25
p.8

Th2
LOS

LOS
Ae

0.08

006

C
O
S
T/ TR
IP
FO
RG
U
ID
E
W
A
Y

D
O
LL
A
R
SI PAS
S
E
N
G
E
R
M
IL
E

05.L.108

P
OPOPULATIONDENSITY0.02 1000/MILE

0 3 4

COSTIONE-WAYGUIDEWAY- MOLLARS/MILE are

Fara t Dry

average electrical power requirements ;

automotive emission reductions ; trans
10.S.L.05.2016 portation energy requirements

Design Data : maximum flows in each
link o

f the network ; station capacity re
quirements ; vehicle fleet size ; empty ve
hicle shuttling requirements

The computer subroutines , inputs and
outputs shown schematically in

Figure 6
.

The minimumpath subroutine
finds the travel time and best travel
route between each station pair o

f

theFigure 5 . qui onun
PRT network . Both one- and two -way
links can b

e accommodated . The station
fare due to variations in assumed para attraction subroutine calculates the dis
meters are listed in Table 4 tribution o

f

walk -distance to each sta
tion from every point in its service area .

APPLICATIONS IN SPECIFIC CITIES The O - D reduction subroutine eases the
Level II analyses o

f

area -wide PRT manipulation o
f large data bases , e.g.

networks have been conducted in a num O - D data from a
s many as 1,000 traffic

ber o
f

cities . These include Boston , Gen assignment zones .
eral Research Co. ; 5 Birmingham and The modal split model is a binary
London , by the Royal Aircraft Establish
ment ; 7 ' Frieberg , b

y

Messerschmitt
choice model that assigns each trip be
tween each pair of station service areas

BBG ; 14 and Tucson and Los Angeles , b
y

Aerospace Co.24 As members o
f
a task

to the “ cheaper " mode . Cost is taken a
s

a linear combination o
f the total origin

force a
t the University o
f

Minnesota to destination travel time and perceived
the authors developed a Level II com travel costs . Aggregated data o

n trip
puter -based methodology for evaluating maker and modal characteristics and the
area -wide PRT networks . The method walk -distance distributions are used to

ology consists o
f

a set o
f computer calculate travel costs via each mode .

subroutines which operates o
n
a detailed

data base o
f

a standard origin -destina Network assignment has two basic
tion travel demand auto skim trees , a components . The first is a

n empty
specified PRT network and associated vehicle -shuttling algorithm that deter
performance parameters . ? Outputs in mines the optimum (capacity

clude : strained ) vehicle routing to satisfy aver
Ridership : trip and mileage model split

age and / or maximum wait time con
straints a

t stations . A demand matrix
Economics : fixed and variable costs ; for empty vehicles is constructed solving
total costs per trip , capital costs and classical transportation - type linear
annual costs ; annual farebox revenues ;

annual benefits from reduced auto usage ,

programming problem.20 When the re

sulting demand for empty vehicles is

safety and pollution ; benefit -cost ratio added to the demand for full vehicles ,

Environmental : peak -hour and 2
4 -hour the total flow o
f

vehicles is assigned to

TABLE 4

SENSITIVITY OF BREAK -EVEN FARE TO VARIATIONS IN PARAMETERS
Range o

f

Variable Sensitivity Nominal Value Variation Effect On Fare
0.726 0.15 +0.025 + $ 0.018

� -0.109 1.0 +0.25 $0.027

Maintenance (CRF ) 1.319 0.0826 +0.01 + $ 0.013

� -.0025 0.5 +0.1

Note : Variation o
f

single variable , all other variables have assumed values of Table 3 .

con

а

Ś

+ $ 0.00
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SUBROUTINE
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SUBROUTINE
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ANDBENEFITSELECTRICALPOWER
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NETWORK
ASSIGNMENT
SUBROUTINE

LINKFLOWSOFEMPTYANDOCCUPIEDVEHICLES

Figure7Networkevaluatedfo
r
th
e

TwinCities-- Stages

Figure 6 . Computerized Network Evaluation
Methodology

the network while satisfying capacity
constraints .

The computer software was used to and serving only the two central busi
analyze area -wide PRT networks for the ness districts . Finally , an area -wide sys
Twin Cities o

f Minneapolis and St. Paul , tem having 442 miles of one -way guide
Minnesota , and Duluth ,Minnesota and is way and 506 stations , shown in Figure 7

presently being applied in an iterative was designed . The effort was to demon
fashion to progressively improve the de strate how metropolitan area -wide net
sign o

f
a PRT network for Trenton , N.J. works can evolve in stages from an

Figures 7-9 show representative net initially small network . The networks
works for each o

f

these three cities . were developed by Professor J. Edward
The Twin Cities form a rather large Anderson using design guidelines dic
metropolitan area . Their combined pop tated by a Level I analysis . Iterative
ulation is 740,000 and the 7 -county SMSA design techniques at Level II were not
has a population o

f

1
.8 million . Average used to optimize the line and station lo

population density in the cities is less cations a
t

each stage . A summary o
f

the
than 5,000 /min . For the Twin Cities a results of the Stage 1 and Stage 8 net
sequence o

f eight networks were ana works is presented in Table 5.8The sta
lyzed starting with a network consisting tistics show that the system is attract

o
f only 2
1 miles o
f

one -way guideway ing a high percentage of the trip ends
TABLE 5

COMPARATIVE NETWORK SUMMARIES
Twin Cities Duluth Trenton

( pop = 740,000 ) ( pop = 100,000 ) ( pop = 105,000 )

Network Statistics Stage 1 Stage 8

One -way route miles 21 442 75 29

Number o
f

stations 64 506 128 61
Vehicle fleet size 870 17,600 3,400 2,500
Average station demand 87 88

( / h
r
. )

Ridership Statistics
PRT /auto modal split 96 34 40 ( assumed 5

0 % o
f

1972 intracity
vehicular trips )

Economic Statistics
Total Capital costs ,

millions $ 1,230 177 87
Total annual costs ,

millions $ 12 154 21 10.5

Annual capital costs ,

millions $ 7 93 13 7.9

Annual revenue ( $ .08 /

pass . mi . fare ) 4

Annual benefits , *

millions $ 22 133 22 6.7

Total cost per ride , $ .59 .97 .65 .28 ( 2/3 Fed ) ,

.59 ( n
o

Fed )

Total cost per
passenger -mile , $ .18 .12 .14 .08 (2/3 Fed ) ,

.17 ( n
o Fed )

* Includes auto cost and travel time savings , air pollution and auto accidents .

250

87

4 81 -
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DULUTH ) 0

NorthemChy

$ Figure 9
CiTOFTRENTON

lation is concentrated in a small area
(7.8 mi ), giving it a population density
13,000 /mi2 . At present , Princeton
University's Transportation Program isFigure8 Networkevaluatedfo

r

Duluth
evaluating transit alternatives for the

in the network area . Cost per passenger City o
f Trenton under a technical studies

mile is higher for the limited network
grant from the US -DOT /UMTA.25 One

in the high trip density area (supported o
f

the options is city -wide PRT . As a

by Equation ( 1
1
) ) and the total cost / preliminary exercise

, the network , shown
passenger mi . for Stage 8 is comparable in Figure 9 and consisting o

f

2
9 route

to total auto cost . Costs per trip are in miles and 6
1 stations , was developed

the same range a
s dial - a - ride ( $ .50 based o
n a Level I analysis . Cost and

$ 1.25 ) in other cities and higher than benefits o
f

this network were estimated .

buses ( $ .40 - $ . 70 ) . A benefit -cost ratio Because the data base is not yet com

< 1 fo
r

the large network is largely pleted , modal split was assumed to b
e

due to a
n excellent highway system in 5
0
% o
f

the 1972 intra -city vehicular
that long trips o

n PRT take longer than trips . A summary o
f

results are pre

auto trips resulting in a travel time cost sented i
n Table 5 based on cost estimates

instead of benefit . given in Table 6
.

Results are similar to

those obtained in the Twin -Cities and
Duluth is a city with a total popula Duluth studies . The cost per passenger
tion o

f 100,000 and average population
density o

f about 1,600 p /miz . However ,

mile is high , resulting from the high

since the population and major activity network are due in part to a
n

extremely
capital costs . Difficulties in the Trenton

centers appear in clusters , the majority short average trip length o
f

3
.5 miles .

o
f trip -ends lie in a relatively small land

area . As a partial test o
f

the feasibility CONCLUSIONS

o
f

PRT , a network o
f

7
5 one -way miles Quantitative results presented in this

with 128 stations was evaluated using
Level II computer software . The net

paper are not overwhelmingly favorable

to area -wide PRT but indicate that well
work , Figure 8 , was designed b

y

L. designed PRT network could b
e made

Brady Reed based o
n

a level I analysis
and is not further optimized . Summary

competitive with the automobile in

medium -sized o
r

medium -density cities .

results for the network are presented The results from the Level I analysis

in Table 5 based o
n the cost estimates

given in Table 6
. Patronage , costs and

provide easily understood guidelines for

benefits are comparable to those gen
detailed network designs . Cost estimates
predicted b

y

these " back - of - the -enve
erated for the Twin Cities network . lope " calculations are upheld in Level II

Benefits are relatively better than Stage analyses , and the intuition gained o
n

8 .

cost and design tradeoffs is most valu
Trenton is a

n

old medium -sized East able .

ern city . It has a population o
f

104,000 Analyses o
f

area -wide networks for
similar to Duluth's ; however , this popu the Twin Cities , Duluth , and Trenton are

TABLE 6

COMPARATIVE COST ASSUMPTIONS
Twin Cities Duluth Trenton

guideway /mi . $ 1.3M 1.0M 1.5M
stations $ 0.4M 0.4M 0.4M
vehicles $ 7,000 7,000 7,000
operating $ 0.02 /mile 0.03 /mile $ 0.033 ( calculated )

maintenance 2 % y
r
. capital 1
2
% y
r
. capital 1 % y
r
. capital
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“ The

marginally favorable to PRT . Costs per
passenger -mile (assuming no Federal
capital assistance ) ranges between $.12
and $.18 which are slightly higher than
present full auto costs and in the range
of dial - a -ride costs . Full capital costs of
these systems are huge ( $1.2B for the
442 mile Twin Cities network and $87M
for the 29 Trenton network ). Because of
this capital intensity , “ break -even ” costs
are very sensitive to variations in capital
costs . This difficulty is compounded by
the fact that we are making cost esti
mates on nonexisting technology.
On the positive side it is noted that :
( a ) the analyzed networks were first
guesses from a level I analysis and are
not optimized .
( b ) a large savings in total transpor
tation energy requirements is gained by
PRT , e.g. for Duluth it represented a
potential 35% savings in transportation
energy.19

( c ) the potential of combining goods
movement with people movement to ob
tain better daily utilization of the sys
tem ( lower values of 8 ) would yield a
distribution of capital costs . The lowest
possible value (operating costs ) were
calculated to be 3.3 ¢/mile for the Tren
ton network .

( d ) the social benefits of providing
auto - like transportation to today's bus
captives should be seriously considered .
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FOOTNOTES

1 Numbers in brackets refer to references listed
at the end of the paper .

2 Primary contributions came from General Re
search Co. [ 5 ] and Stanford Research Institute

( 6 ) .
3 This constraint termed the k - factor b
y

Hajdu

[ 1
1
] is k = minimum intervehicular spacing /

minimum stopping distance . Enforcement o
f

the
constraint k 2
1

for present hardware would not
permit headways ( 5 seconds a
t

3
0 mph ( 1
2 , 1
3
) .

4 Assuming 3
5 mph ( 5
6 kph ) main line speed ,

2
0 mph ( 3
2 kph ) turning speeds and acceleration
and jerk limits o

f

0.25 g and 0.25 g / sec respec
tively .

1

5 CRF = +1

( 1 + i ) n + 1

where ir interest rate ; n = lifetime (years )

6 Actually N
g
= N
.
( V.V2 ) and ( 7 ) could b
e

solved fo
r

V * that minimizes $ ; however , fo
r

realistic values of a th and L values

o
f v * are unrealistically low ( 1 mph ) .

7 This software is more completely documented

in ( 1
9
) .

8 It must be emphasized that the statistics
presented in this section are tentative in that
they were obtained using unproven ridership
estimation techniques . Furthermore , the numbers
are sensitive to cost estimates o

f nonexisting
technology , which must b

e regarded a
s

uncertain .




