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Small, US Air Carrier Financial
Condition: A Back -Propagation Neural
Network Approach to Forecasting

Bankruptcy and Financial Stress

This article discusses the continuation of our research into the forecasting of air carrier bank
ruptcy . Prior studies (Chow , Gritta , and Leung 1991 ; Davalos,Gritta , and Chow 1999 )
focused on the larger airlines , called majors and nationals by the US Department of Trans
portation (DOT). These studies utilized both Multiple Discriminant Analysis (MDA ) and
Neural Network (NN ) models to identify financially stressed or failed airlines . The applica
tions of these models to the smaller carriers have not achieved the same results. A prelimi
nary study (Gritta et al. 2000 ) using only smaller carriers showed promise . Since that study
included only nine failed carriers , a larger sample was needed to better gauge the powers of the
model. This article presents a studyof the larger sample of smaller carriers and the results .

by Richard D .Gritta , Sergio Davalos ,Garland Chow , and Marcus Wang

n spite of the past five - to si
x -year record

profit ru
n

made b
y

the U . S . airline indus
Ltry , some carriers remain financially
unstable .With th

e

recent additions o
f Pacif

ic Western Air , Legend Air , PanAm , and sev
eral others , the number o

f bankrupt airlines
had risen b

y

mid -2001 to 137 since the
deregulation o

f

the airline industry in 1978 .

Most o
f

these have been the smaller airlines
categorized b

y

the US Department o
f

Trans
portation (USDOT ) as large and medium
regional ai

r

carriers . Should the economy
slow , o

r

should interest rates , labor costs or

fuel prices rise ,more may fail .

The purpose o
f

this article is to continue

our research into the forecasting of ai
r

carri

e
r bankruptcy .Several prior studies (Chow ,

Gritta , and Leung 1991 ;Davalos ,Gritta , and
Chow 1999 ) centered o

n the larger airlines

called majors and nationals b
y

USDOT .

These studies utilized both Multiple Discrim
inant Analysis (MDA ) and Neural Network

(NN ) models to identify financially stressed

o
r

failed airlines . Attempts to apply these
models to the smaller carriers have not

achieved the same success . A preliminary
study (Gritta et a

l . 2000 ) using only data for
these groups o
f

airlines showed promise .

That study included only nine failed and nine

solvent carriers , however . It was felt that a

larger sample was needed to better gauge the
powers o

f

the model . The purpose of this
article therefore is to significantly expand

that study , 2

Because o
f
it
smany implications for the

flying public , the anticipation o
f bankruptcy

in this industry is important .Given the frag

ile nature o
f

the airline industry , such a study
should b

e o
f

interest to governmental regula
tory authorities ,banks , lenders , and stock
holders , as well as other parties .
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rately predict 25 out of 26 instances of car
rier failure for the large carriers referred to as

“majors . ” When the network developed

from this study was applied to data on small
er carriers , classed as large and medium
regional airlines , the model did not perform
nearly aswell . It was concluded that factors
affecting the failure of larger carriers might

be different from those affecting the smaller

airlines . The success of a preliminary study
(Gritta et al. 2000 ), based on a limited sam
ple of only nine failed and nine nonfailed
small airlines , confirmed this hypothesis and

it is themotivation for this expanded study .

Overview of the Dynamics of

Neural Networks

A Review of Prior Financial Distress

Research Studies

Traditional balance sheet and income state

ment ratios have been employed by analysts

to measure financial condition . Ground
breaking research by Altman (1968) com -
bined the use of predictive statistical models

with these traditional financial ratios to cre

ate a more powerful approach to assessing
strength . Altman used multiple discriminant
analysis (MDA ), a type of applied multiple
regression in which the dependent (or pre

dicted variable )was a cardinal or coded vari
able, instead of a scalar variable . Known as

the Altman Z Score model , it was able to

achieve a success rate of 76 % in forecasting

corporate bankruptcy in advance of the
event . Inputs into his model included four
categories of ratios ; those which measured
liquidity (the ability of a firm to pay debts

on a timely basis ), leverage (the extent to
which a firm used debt to finance it

s

asset

base ) , activity o
r

turnover ( a gauge o
f

how
efficiently a firm was using it

s

assets ) , and
profitability (the firm ' s profits as a percent

o
f

revenue , assets , or stockholders ' equity ) .

Gritta (1982 ) later applied the Altman
Model to the airline industry and successful

ly predicted the demise o
f

Braniff and Con
tinental in the early 1980s . Further research

b
y

Chow ,Gritta , and Leung (1991 ) le
d

to

the development o
f

a
n industry specific

MDA model ; that is , one designed specifical

ly from a
ir carrier data . Called AIRSCORE ,

it achieved results o
n
a par with Altman ' s

7
6
% accuracy rate , but themodel showed

some bias toward large carriers . In addition ,

to achieve the 7
6
% success rate ,AIRSCORE

left some carriers unclassified o
r
in the “ zone

o
f ignorance ” as Altman (1968 ) referred to

it . Firms in this zone were not classified b
y

themodel . For that reason , a decision was
made to specify a more accuratemodel using

a newer technique , artificial intelligence .

That research (Davalos , Gritta , and Chow
1999 ) proved fruitful and was able to accu

The conceptual basis for neural networks

(NNs ) comes from biological research o
n the

neural architecture o
f

the human brain

(Caudill 1989 ; Rumelhart andMcClelland
1986 ) . Neural networks are composed o

f

interconnected neurons linked together

through weighted directed arcs organized

into layers much like the brain . There are
many different types o

f

neural networks .

They vary in the way nodes are connected
and in the way in which weights a

t
each

node are updated . The selection o
f

the type

o
f

network is a function o
f

judgment and
experimentation . Our analysis found that the
back -propagation network was the most

effective for our purposes . It is themost com
mon and widely studied type o

f

formulation

and it used for problems that involve super

vised learning (NeuralWare 1995 ) .

The goal o
f

this study is to b
e

able to cor
rectly classify and separate different groups ;

in this case , failed o
r

stressed firms vers

nonfailed . The network is presented with
both the input and expected output desired .

The network learns from experience b
y

mod
ifying the weights o

f

the connections in order

to minimize the difference between the
expected output and the network ' s output
given the presented input . The network also

US
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- --- - - -- - --- --

establish complex relationships among input

variables.
Because of the smaller sample sizes and , in
many cases , the frustrating problem ofmiss
ing data or incomplete data (because carri
ers were delinquent in filing reports or
reports filed were not complete ), it was felt
that the neural network model would be
superior to the earlier models discussed
above . In addition , there is no “ zone of igno
rance, “ as noted above .

learns by training through repeated exposure

to a set of examples of th
e

object o
r situa

tion . Supervised learning requires that the
network b

e presented with the correct
responses for each input pattern . The term
back propagation refers to the dynamic feed

back o
f

errors propagated backward
through the network . The error values are
used in adjusting the connection weights

between nodes o
f the neural network . The

back propagation network is guaranteed to
converge to a local optimal set o

fweights

(White 1989 ) .

Neural networks have certain strengths

not provided b
y

other models (Udo 1993 ) .

These include the ability to : Tolerate noise or

random data , or missing data , where al
l

the

data o
r

rules are not known ; self -organize
and learn b

y changing the network connec -

tions ; train b
y

experience and dynamically

adjust to changes in the environment ; gener
alize from specific instances ; and find and

The Back Propagation ( B - P )Method

The standard back propagation network has

several elements . They are a
n input layer ,

a
n output layer , and at least one hidden layer .

Each layer is fully connected to each suc
ceeding layer and each layer ca

n

contain any

number o
f

neurons o
r

interconnections . Fig

ure 1 depicts the feed forward o
f

node val
ues and the back propagation o

f

error infor
mation .

Figure 1 : Typical Back Propagation Network

Compared to

NETWORK OUTPUT EXPECTED OUTPUT

Generates

OUTPUT LAYERO ) ERROR

HIDDEN LAYER Back propagated b
y

adjusting node

connections

HIDDEN LAYER

INPUT LAYER

NETWORK INPUT | EXPECTED OUTPUT
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dimension (determined by the number of
input variables) in a direction (partial deriva
tive) that willminimize the global error. The
size of the adjustment is based on the learn
ing coefficient . In three dimensions , it is anal
ogous to being on a terrain andmoving in
the x , y, and z directions that moves to the
global minimum point. The learning coeffi
cient is the size of the steps taken . Note that
if the size of the steps is too large , the global
minimum may be overstepped .

Mathematics of the B - P Model

As the network learns to classify , error infor
mation is also propagated back through the
nodes and is used to update the weights
assigned to each connection . To avoid confu
sion , clear notation is needed in order to
describe the learning rule . Here the super
script is employed to note the layer of the
network being considered . The following is
the notation :

The back propagation (BP ) method is
based on the gradient descent algorithm , an
optimization method finding a global maxi
mum minimum in a problem space . In this
case it is the minimum of the global error. In
the BP method , except for the input nodes ,
each node (call it n ) generates an output

value by applying a function to theweight

ed sum of the output values from a
ll

nodes in

a lower layer ( s ) o
f

nodes linked to node n

in the next layer ( s + 1 ) . Every node in layer

S + 1 will receive input from every node in

layer s . Each node in layer shas a different
set o

fweights applied to the input values .

This process continues layer b
y

layer to the
output nodes . The resulting output from th

e

neural network is thus the function applied

to the weighted sum o
f

the output values
from the lower layer which are the function

o
f

the weighted sum o
f

the output values
from the next lower layer and so o

n .

A
n

error function ( it can b
e any error

function ) is used to evaluate the difference

between theneural network output node val
ues and the expected output . This error is

back propagated to adjust the weights asso
ciated with each node . Since each node con
tributes to the global error , the adjustment
made to it

sweights is directly proportional

to the magnitude o
f

the weight . Thus , the
larger nodeweights g

e
t

themost adjustment .

The amount o
f

the error of each node is

based o
n the partial derivative o
f

the error

with respect to the node ' s output . This will
have th

e

effect o
f adjusting the weights

between th
e

individual nodes locally based

o
n the global error E o
f

the system . The
change (delta ) in the weight is further adjust

e
d b
y

the use o
f
a factor called the learning

coefficient . The learning coefficient affects
the rate a

t which the B
P

method converges

o
n the configuration o
f

network weights that

is the optimum for minimizing the global

error .
In summary , the gradient descent method

is based o
n making adjustments in each

x [ 0 ] = current output state o
f

the jt
h neu

ron layer

( 9 ) = weight on connection joining the it
h

neuron in layer ( S - 1 ) to jt
h

neuron in

layer s

weighted summation o
f inputs to jth
neuron in layer s

The back -propagation element transfers it
s

inputs as follows :

( 1 ) X ; 0 ) = f { { [ ( w ; 6 . x ; { - 1 } }

= $ ( 1 , 6 )

where f is can be any differentiable function .

In this study , a hyperbolic tangent function

(TanH ) function was selected based on sev

eral factors and some trial runs . That func
tion is defined a

s

( 2 ) f ( z ) = ( e ? - e % ) / ( e ’ + e ? )
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where e is the naperian logarithm . Z is any
real value . The network has a global error
function , E ,which is a differentiable function

o
f all of the connection weights in th
e

net -

work . The actual error function is not as

important as the critical parameter that is

passed back through the layers . That func
tion is

derivative o
f

the transfer function scales the

error .

The a
im o
f

this process is to minimize the
global error E o

f

the system . This is accom
plished by modifying the weights locally .

Given a se
t

o
f

weights w . 6 ) , theremust be a

method to adjust them in order to decrease

th
e

global error o
f

themodel . A gradient rule

is utilized to achieve this :

( 3 ) 0 , 16 ) = - DE / DI , )

( 7 ) Awils ) = -lcoef ( @ E / @ w ; ( 6 )

This is ameasure o
f

the local error atpro
cessing element j in level s . If the chain rule of

differentiation is used twice in succession ,

the relationship between the local error at a

particular processing element a
t

level s ( jt
h

node ) and al
l

the local errors at the level s + 1

(kth nodes ) is th
e following :

where Icoef is a learning coefficient . Each
weight is thus changed according to the size

and the direction o
f

the negative gradient o
n

the error surface .

Finally , the partial derivative in ( 7 ) can be

calculated from the local error values
described above , because , b

y

the chain rule

and ( 1 ) :( 4 ) 2 , 16 ) = f ( 1 , 3 ) · Ex ( ex _ { s + 1 ] . W ( s + 13 )

Thus , e ; is th
e

weight su
m

o
f

th
e

errors o
f
th
e

e
x ( + 1 ] o
f
a
ll

the nodes it connects tomulti
plied b

y

it
s own slope f ’ ( 1 ) .

If f is the hyperbolic tangent function a
s

defined above , then it
s

derivative can b
e

expressed a
s
a simple function o
f

itself :

( 8 ) O
E / Ow ; " = ( @ E / a1
8
) ( a1 ; / w ; ( S )

= - 2 ; ( 6 ) : x ( 5 - 1 )

Combining ( 7 ) and ( 8 ) together results in the

final function

( 5 ) f ' ( z ) = [ 1 + f ( z ) ] : [ 1 . 0 – f ( z ) ] ( 9 ) Awji = Icoef e ; [ 8 ] . x { s - 1 ]

Given equation ( 1 ) , equation ( 4 ) can b
e Thus , the change o
f

the connection
rewritten , weights between nodes j and i and levels s

and s - 1 are based o
n

a learning

( 6 ) e , " = ( 1 . 0 + x ; ( $ ) : ( 1 . 0 – x ; ( 6 ) . Ex ( ex ( + 1 ) .Whil6 + 1" ) coefficient which determines size

o
f

the error adjustment and the
given that the transfer function is hyperbolic error a

t

node ; level s and the output from
tangent . The summation term in equation ( 6 ) node i at level s - 1 . Remember that error j has
which is used to back -propagate errors is been back propagated from the global error .

analogous to the summation term in equa In sum , the lowest ( or bottom ) layer is

tion ( 1 ) which is used to forward propagate called the input layer , and the last layer ( or

the input through the network . In other top ) is the output layer . The layers in

words , th
e

inputs a
re forwarded through the between are called middle layers and there

layers to the output layer , errors are deter - can b
e any number o
f

such levels .Neurons ,

mined a
t

the output layer , and then these the elements , in one layer feed -forward their
errors are propagated back through the net input to the elements in the following layer .

work to the input layer using equation ( 6 ) Each connection between the neurons has a

o
r
( 4 ) . Themultiplication o
f

the error by the weight attached to it . Theweight represents
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the degree of influence of one neuron on
other .Depending on the sign , a connection
can reinforce or inhibit the link between the

two neurons . A positive value indicates rein
forcement and vice versa . As training set data
is presented to the input layer, the neural net
work adjusts the connection weights until
the error between the expected output and
the network output is minimized . Through

the connection weights the network memo
rizes the input .
Because the network connections change

with time and experience (input data), it is
necessary to define rules for how values
going into a neuron affect the amount of sig

nal generated and whether or not a connec -
tion is formed . Each neuron has an activa
tion level associated with it. This is the level
of signal that must be reached before the
neuron emits a signal. If the neuron is at the
input layer, the activation level is determined
by the input received directly from the envi

ronment . For a cell in themiddle or output
layer, the activation level is determined by
taking theweighted sum of the signals from
cells connected to it at a lower layer . This
computation is known as the transfer func
tion or activation function noted above . The
hyperbolic function used in this research gen

erates values between - 1 and 1. An alterna
tive function typically used in this situation is

the sigmoid function that generates values
between 0 and 1. Both of these functions are
suited to neural networks (NeuralWare
1995) since: (a ) They are smooth continu
ous functions, (b ) the function outputs are
within the range 0 to 1 or - 1 to 1, ( c ) they
are nonlinear which helps to solve linearly
inseparable problems , ( d ) they are useful in
multilayer networks ,and ( e) they are easy to
deal with mathematically .

encompassed the years , 1982 - 1998 . An
insolvent carrier was paired with a solvent
carrier of equivalent size (using operating

revenues). Of the hundred or so carriers fi
l

ing for bankruptcy since the year 1982 , there
was sufficient data for only 3

2 carriers that
actually filed for bankruptcy protection

under federal bankruptcy law . There were
two main reasons for this ; the carrier failed
before supplying enough financial informa
tion to USDOT o

r

the carrier was exempt

from the fullUSDOT financial filing require
ments and thus only filed very abbreviated

statements . As noted previously , this limita
tion confirmed the efficacy o

f

the use o
f

the

neural network methodology .

The total number o
f

observations was 65 .

Initially , the data set consisted o
f
3
2 bank

rupt and 3
3 nonbankrupt carriers . Upon

examining the random sample o
f

matched

solvent carriers , however , it became obvious
that some were clearly financially stressed

(that is , they had negative equity ratios , and

in some cases negative Altman Z Scores — a
n

indication o
f

severe financial stress ) . The
presence o

f negative equity is defined a
s

" technical insolvency ” even though a carrier
has not actually filed for bankruptcy . ? This

is the classic problem in this industry .Many

“ solvent " carriers operate in such a weak
ened financial condition but manage to sur
vive because their competitors are also weak .

It was thus decided to classify these carriers

a
s

distressed , or in a “ bankruptcy profile , ” as

Altman (1968 ) refers to them . There were a

total o
f
1
1

such airlines in the database .

The final sample thus consisted o
f
4
3

bankrupt and " distressed ” carriers . The rest

(22 ) were solvent and non -distressed . Data
gathered for the input level included 2

1

pieces o
f

financial data from carrier balance

sheets and income statements . In addition ,

several key financial ratios found to b
e pre

dictive in the earlier noted studies o
f

airlines

were included in the training set o
n

the
grounds that themore variables provided ,

themore efficient would b
e

the final neural

The Sample

The initial sample consisted of a matched
group o

fbankrupt small ai
r

carriers and sol -

vent carriers . The study time horizon
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network . These included the ratios o
f

work -

in
g

capital to total assets — a liquidity ratio ,

retained earnings to total assets — a prof
itability ratio , operating profits to total
assets , another profitability ratio , and book
value o

f equity to book value o
f

debt , a

financial leverage measure , and operating
revenues to total assets - a turnover ratio . Also
included was the Z score as defined b

y

Alt
man (1968 ) .

The use o
f

the neural network requires
separating the initial sample data set into
two distinct data sets : a training set and a

holdout sample . The training se
t

is used to

train the neuralnetwork b
y repeatedly pre -

senting the network with instances o
f

the tar
get population - in this case , bankrupt and
nonbankrupt carriers — and the expected
output for each instance . The second set , the
holdout sample , is also comprised of exam
ples o

f

the target population . This holdout
sample is used to test predictability o

f

the

network created b
y

the first se
t
. The use of

theholdout sample is an issue o
n

which there

is no clear approach . The purpose of the
holdout sample is to validate o

r judge the
quality o

f

themodel developed . One o
f

the
issues to b

e

resolved in using this approach is

how to determine the size and makeup o
f

the
training set and the holdout sample . In terms

o
f

size , the holdout sample should contain
enough instances o

f

the different items being

classified . In terms of makeup , the holdout
sample should contain roughly the same
makeup a

s the target population and a
s the

training set . This requires that each holdout
sample b

e

examined to see if it represents the
desired makeup . In addition , it is possible
that some key training data may only b

e

included in the holdout sample . The leave - k

approach addresses these two issues . The
leave - k approach is useful on small data sets
and uses most o

f

the data for training . This
approach is suggested b

y

Hecht -Neilson

(1990 ) and Timothy Masters (1993 ) .

T
o further validate the robustness o
f

the
model , a " jackknife ” or Laffenbrach proce

dure (Swingler 1996 ) was performed . In this
procedure , th

e

samplewas randomized and a

single observation withheld . The neural net
work was run o

n the remainder and then
used to classify the single withheld observa
tion . That observation once classified was
then reinserted into the set and another

selected , and so o
n . This process was con

tinued until each member of the sample set
had been used a

s the holdout sample se
t
.

Another problem in developing the neural
network is determining the number o

f hid
den layers , the number o

f

nodes per hidden
layer , and the type o

f

training rule utilized .

These questions are usually determined
through trial and error b

y manipulating the

number o
f layers and nodes , and varying the

training rules , until there is negligible

improvement observed in theperformance o
f

the network . The authors examined many

different learning rules , hidden layers , and
transfer rules until the highest level o

f

accu
racy was attained . In each case , the process
continued through 150 ,000 iterations . The
best transfer function was a hyperbolic tan
gent function (TanH ) thatmaps the output

to a range o
f
- 1 to 1 . The optimal output

was achieved using only one hidden layer

and three hidden neurons .

Results

T
o classify the carriers , each observation was
classified a
s either ( 0 , 1 ) fo
r
a bankrupt o
r

financially stressed carrier or ( 1 , 0 ) for a sol
vent o

rhealthy carrier . Since the output val
ues o

f

the network are not discrete , they
were rounded u

p o
r

down . That is , any value
less than o

r equal to 0 . 5 was considered to b
e

“ O ” and any number above that was round

e
d

to “ 1 . " 10 Table I presents the results of the
best run o

f

the network . B stands for bank
rupt o

r

distressed ; NB for nonbankrupt or

solvent . Appendix A lists th
e

carriers in the
sample . They are coded in the table for legal
reasons .

The network classified 7
7
% o
f

the total
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Table 1 : Results of the Best Run of the Neural Network

Carrier Classification Expected

Output

Neural Network

Output
Neural Network

Performance

1 B 01 -0.02 , 1.02 Correct

2 NB 10 0.89 , 0.11 Correct

3 B 01 0.88 , 0.12 Type 1

4 B 01 -0.02 , 1.02 Correct

5 B 01 0.04 , 0.96 Correct

6 B 01 0.75 , 0.25 Type 11

7 NB 10 0.02 , 0.98 Type 1

8 NB 10 0.30 , 0.70 Type !

9 B. 01 -0.01 , 1.01 Correct

10 B 01 0.29 , 0.71 Correct

11 NB 10 1.08, 0.08 Correct

12 B 01 0.02 , 1.02 Correct

13 B 01 -0.02 , 1.02 Correct

14 B 01 -0.03 , 1.03 Correct

15 NB 10 0.69 , 0.31 Correct

16 B 01 -0.02 , 1.02 Correct

17 NB 10 0.71 , 0.29 Correct

18 NB 10 0.99 , 0.01 Correct

19 B 01 -0.03 , 1.03 Correct

20 B -0.02 , 1.02 Correct

21 B 01 0.76 , 0.24 Type 11

22 B 01 -0.01 , 1.01 Correct

23 NB 10 0.52 , 0.48 Correct

24 B 01 -0.02 , 1.02 Correct

25 NB 1.12 , 0.12 Correct

26 B 01 -0.01 , 1.01 Correct

27 B

��||||�|||5|||2|2|�|�

01 -0.02 , 1.02 Correct

28 B -0.02 , 1.02 Correct

29 B 01 -0.01 , 1.01 Correct

30 B 01 0.02 , 1.02 Correct

31 NB 1.01 , 0.01 Correct

32 NB 0.79 , 0.21 Correct

33 B 0.20 , 0.80 Correct

34 B 0.92 , 0.08 Type 11
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Table 1 , continued

Carrier Classification Expected
Output

Neural Network
Output

Neural Network
Performance

35 B 01 -0.01 , 1.01 Correct

36 NB 10 0.85 , 0.15 Correct

37 B 01 -0.02 , 1.02 Correct

38 B 01 -0.12 , 1.12 Correct

39 B 01 -0.02 , 1.02 Correct

40 B 0.04 , 0.96 Correct

41 NB 0.05 , 0.95 Type

42 B 0.46 , 0.54 Correct

43 B 0.40 , 0.60 Correct

44 B 01 -0.02 , 1.02 Correct

45 B 01 1.10 , -0.10 Type 11

46 B 0.16 , 0.84 Correct

47 NB 10 -0.01 , 1.01 Type 1

48 -0.01 , 1.01 Correct

49 NB 0.28 , 0.72 Type 1

50 B 0.05 , 0.95 Correct

51 B 01 0.06 , 0.94 Correct

52 NB

�|
0
0
5|5||

||

5|

�
�||2[

�
�

�
�||
5|5|5|�
�

1.00 , 0.00 Correct

53 NB 1.01 , -0.01 Correct

54 NB 0.90 , 0.10 Correct

55 B -0.02 , 1.02 Correct

56 B -0.02 , 1.02 Correct

57 NB 10 1.06 , -0.06 Correct

58 NB 10 0.47 , 0.53 Type 1

59 NB 10 -0.05 , 1.05 Type !

60 B -0.01 , 1.01 Correct

6
1 B 0.56 , 0.44 Type 1
1

Type 1
16
2 B 0.96 , 0.04

63 NB 1.00 , 0.00 Correct

64 B -0.01 , 1.01 Correct

65 B 01 0.87 , 0.13 Type 1
1

Number o
f Layers : 3Activation Function Used : Tanh Iterations : 150,000

Input Layer Nodes : 2
1

Hidden Layer : 1

Number o
f

nodes : 3 Output layer nodes : 2

B - Bankrupt or distressed carrier

N
B - Nonbankrupt or solvent carrier
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sample accurately . Two types of errors are
present : Type I and Type II. A Type I error
occurs when a bankrupt carrier is incorrectly

classified as solvent . A Type II error results
when a nonbankrupt carrier is classified as

failed .Of the total 15 errors, 7 were Type I
and 8 were Type II. Thus the successful clas
sification rate for each group ofcarriers was :

77 %

11 %

Number Correct

Number of Type 1Errors

Number of Type II Errors

Total in Sample

50

7

8

65

12 %

100 %

As indicated the overall success rate of the
model was 77 % (50/65 ).More importantly ,
the success rate of predicting bankruptcy or
distress was 89 % (or 100 % -11 % , the failure
rate ) and that of solvency 88 % .
To further validate the results , a nonpara

metric binomial distribution test was per

formed . The probability of getting 7 or fewer
errors, the Type I error rate ,was found to be
equal to .0004 % . The probability of getting
8 Type II errors or less was slightly higher ,
0 .143 % ,but still statistically significant. The
neural network thus provides an accurate
classification of ai

r

carriers into th
e

two cat
egories . 11

In a comparative study , research b
y

Coats
and Fant (1993 ) demonstrated the superior

it
y

o
f

neural networks over MDA and
logit /probit models in forecasting insolvency
across different lines o

f

industry . This study
confirmed that superiority . The small carrier
network model developed here clearly out
performed the authors 'MDA AIRSCORE
Model . The neural network ' s success rates of

7
7
% overall , with 8
9
% for bankruptcy and

8
8
% for solvency , exceeded that of the MDA

model ' s 73 % , 76 % , 72 % , respectively , with

a " zone o
f ignorance ” o
f
2
0
% (Chow , Grit

ta , and Leung 1991 , Table 3 ) . The neural
network also outperformed the basic Altman

Model ,whose 7
6
% success rate is deemed to

be a benchmark in the financial literature . 12

Conclusion

This article has applied a powerful tech
nique , a neural network , to the problem o

f

identifying financially distressed smaller car
riers , known as large and medium regional
airlines . The neural network has several
advantages not provided b

y

discriminant
models , such a

sMDA and logit /probit . It can
tolerate noise and missing data , self organ
ize and learn b

y

changing network connec
tions , generalize from the specific to the gen

eral , and establish complex relationships
among input variables .

The airline industry has seen it
s

share o
f

financial distress in the past . The number o
f

bankruptcies among major carriers is note
worthy (Braniff ,Continental , Eastern , TWA ,

PanAm , and the near bankruptcy filings b
y

Northwest and USAir ) . The failure o
f

so

many smaller carriers , however , is just as dis
concerting . Most o

f
the carriers have had

troubled histories due in large part b
y

high

operating volatility and excessive debt
finance (Gritta , Freed , and Chow 1998 ) .

This fact alone makes the separation into the
strong and the weak difficult . Theneural net
work , however , has proven to be a powerful
tool in this endeavor a

s

the current study has
documented . The “ black box ” nature o

f
the

neural network , however , does limit our
understanding o
r knowledge regarding just

how the method solves a particular problem ,

such a
s forecasting financial stress . Further
lightmay be shed o

n this b
y

examining the

network connection weights to determine the
contribution o

f

each node to th
e

output and
manipulating these weights .

Promising areas o
f

new research include

chaos theory and survival analysis , which
includes environmental factors and biologi

cal mechanisms . The ability of a fi
rm

to sur
vive in the airline industry might also b

e

explored using evolutionary -based compu

tationalmodels such as genetic algorithms .

The authors intend to explore these models

in future research a
s
a means o
f

further
increasing forecasting accuracy .
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Appendix A

Bankrupt

Air Carriers

Non -Bankrupt
Air Carriers

Air Florida Air Cal

Air North A
ir

Midwest

Air One A
ir

Wisconsin

Altair Alaska International A
ir

American International Arrow

Apollo

Bar Harbor A
ir

Aspen A
ir

Big Sky Airlines

Empire AirlinesBusiness Express

Capitol Air

Cascade Air

Cochise A
ir

Flagship Express

Golden Gate

Evergreen Air

Florida Express

Great American A
ir

Great Northern Airlines

Hawaiian Air

GoldenWest Hughes Air

Grand Airways Imperial Air

Gulf Atlantic Air Jet America A
ir

Hermans Air Kodiak Air

Imperial Airlines Mississippi Valley A
ir

Munz Northern A
irKiwi International

L 'Express Muse Air

Mark A
ir

Metro Airlines NE

New York A
ir

Northwest Executive

North Central Air

Pacific Express

Pacific Southwest Express

Pilgrim Airlines

Pan A
m Express Reeve Air

Reno Airlines

RockyMountain Airlines

States A
irWest

Sun West Airlines

Swift Air

US Africa Airways

Skywest A
ir

Southern Air

Virgin Island A
ir

Sun World

Wien Air Alaska Trans States A
ir

Zantop A
irWright A
ir
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Endnotes

1. USDOT classifies carriers by groups based on total dollar operating revenues .Major carriers have
revenues of $ 1.0 billion or larger, nationals , $ 100 .0million to $ 1.0 billion , large regionals from $ 20 .0
million to $ 100 .0million , and medium regionals from $0 to $20 .0 million . This study centers on the
latter two groups .

2. A preliminary version of this article was presented at the 4
th Air Transport Research Group Confer

ence (World Conference o
n Transportation Research ) in Amsterdam , The Netherlands , in July 2000 .

3 . The “zone of ignorance ” contains both failed and nonfailed firms , but it is difficult to separate them .

The accuracy o
f

themodel (either Altman o
r AIRSCORE ) can be increased b
y

increasing this zone . To

d
o
so , however , results in fewer firms being classified . Thus , there is a trade -off .With AIRSCORE , the

researchers varied the “ zone o
f ignorance ” in order to achieve Altman ' s standard of 76 % success in fore

casting insolvency , as that rate has become a benchmark in th
e

finance literature . For details , the inter
ested reader is referred to (Altman 1968 ) and (Chow , Gritta , and Leung 1991 ) . The neural network
does not suffer from this limitation . There is no “ zone of ignorance . ” This is a major reason fo

r

using the

methodology .

4 . This section o
f

the article relies heavily o
n

the back propagation algorithmsdeveloped for artificial

neural networks research . See Haykin (1998 ) and Swingler (1996 ) for details .What follows is a summary

o
f

the pertinent models .

5 . The choice of the transfer function can affect the convergence of the neural network to a solution

and the resulting algorithm that is used to implement the mathematics o
f

the neural network . The can
didate functions are the sigmoid and hyperbolic tangent ( TanH ) . The TanH function was selected for a

variety o
f

reasons (Swingler 1996 ) : ( 1 ) The range of values o
f

the TanH function is - 1 to + 1 . Data can

b
e normalized to fall within this range with a zero mean and unit standard deviation , ( 2 ) the TanH

function can b
e computed faster than the logistics function , ( 3 ) TanH leads to faster learning than the

logistics function , ( 4 ) it is a continuous , real -valued function whose domain is real , with a positive
derivative and with a bounded range , and ( 5 ) values at the extreme ends of the input range have less
impact than values near themid -rangewhere the derivative o

f

the function reaches itsmaximum . In addi
tion , it provided the best overall results when run o

n the data .

6 . Using al
l

carriers as the base data se
t

would undermine the validity o
f

the discriminator . For instance ,

if the percentage o
f

financially healthy carriers out of the total population were 9
0
% , a discriminator that

classified every carrier a
s financially healthy would b
e accurate 9
0
% o
f

the time . There would b
e n
o

guarantee that the outcome o
f any high scoring discriminator is valid .

7 . Technical insolvency is normally the first stage in bankruptcy . A fi
rm

has liabilities (debt ) that exceed

assets , and hence has a negative equity position . This can prompt creditors to fil
e

claims against the

firm , thus precipitating a bankruptcy filing . The reclassification of these 1
1

carriers was necessary in

that the neural network was not performing a
s expected . The NN was being presented with contradic

tory instances o
f

data using the bankruptcy criteria a
s
a determination o
f

financial health . This affects the
outcomes o

f training and the reclassification o
f

the 1
1

carriers improved significantly th
e

performance

o
f

the network . It should b
e

noted that this reclassification does not affect how the neuralnetwork learns

(trains ) . The learning method remains th
e

same : back propagation . It does , however , affect th
e

values

o
f

the connection weights within the network . The authors decided to continue using the 65 carriers
and not to add more to the sample in order to accommodate a wider range of financially distressed car
rier profiles and counteract any tendency o

f

the network to overfit the data .
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8. Income statement items included as variables were operating revenues , depreciation , total operating
expenses, earnings before taxes and interest , income before taxes, income after taxes , and net income .
Balance sheet accounts included were cash , receivables , current assets , total assets , current liabilities ,
taxes , total noncurrent liabilities , total deferred credits , total liabilities , retained earnings , and equity .
These financial statistics were selected because they are themost useful income statement and balance
sheet items necessary to an in -depth financial analysis of any airline . From this data , virtually any ratio
thatmeasures financial condition can be constructed . In addition , these were the data gathered for the
major carrier model (Davalos ,Gritta , and Chow 1999 ). There are, of course, other factors that could
increase the explanatory ability of the NN . Operating statistics (such as load factor , stage length , and
other traffic data ) may be added in future research by the authors .

9. A heuristic in th
e

development o
f

neural networks is that the more information provided to the neu
ral network , the better is the performance . While the authors were aware that several variables were
key in contributing to configuration o

f

the neural network and the outcome o
f

the network , they also
wanted to identify and evaluate the contributing effect o

f

other nonkey variables . With respect to the
accuracy o

f

the prediction , the neural network is stopped when either a target RMS (rootmean squared )

value is reached o
r

the designated number o
f

iterations is reached . In al
l

cases the RMS value was no

greater than 0 .0125 . Linearity is not assumed with neural networks , therefore it is possible that several
input variables can have combined effects upon the outcome variable . It is the intention o

f

the authors

to accommodate such possible interactions b
y

using a larger set o
f

variables . Examination o
f

the neural

network will allow the determination o
f

which variables contributed to the outcome and such variables

can either b
e

eliminated o
r

their input connections pruned from thenetwork . This will result in increas
ing th

e

performance and generalization o
f

theneural network . The performance is improved b
y

elimi
nating extra calculations and the generalization is improved b

y

minimizing the ability o
f

the network to

memorize the correct responses to the input .

1
0 . Since the neural network uses the Tanh activation function ,which produces continuous values , it is

not possible to produce the output values o
f
0 , 1 and 1 , 0 . Thus , the output values are decimal -valued .

However , the output values do not necessarily correspond to the degree o
f

financial health . The neural
network learns from the input , and internal weights are adjusted to produce a

n output thatmatches the
expected output . Since the neural network adjusts it

s internal weights after every data point presented ,
the neural network reflects a state o

fweighted connections that can best approximate the expected out
put . It is notnecessarily true that decimal -valued output reflects degrees of financial health , th

e

output

generated is based on how the neural network reacts to the different patterns o
f input . It is possible for

a financially healthy carrier to generate output values that are closer to 0 , 0 than to 0 , 1 if its pattern of

input variables is substantially different from the other financially healthy carriers .

1
1 . The results obtained were similar to those found in th
e

preliminary study noted above (Gritta e
t a
l .

2000 ) . That study achieved a
n overall success rate o
f
8
8
% .While that rate exceeds that in th
e

current
study , the authors feel that the very small sample size (only nine bankrupt and nine nonbankrupt carri
ers ) limits the validity o

f

that prior study to some degree . The 88 % success rate at forecasting financial
stresswas about the same a

s

the prior study ' s 91 % . The authors are more confident in themodel devel
oped with this larger sample and the statistical tests employed .

1
2 .When th
e

small carrier data was input to the large carrier NN (Davalos ,Gritta , and Chow 1999 ) , the
authors were never able to achieve a predictive rate above that due to chance . The accuracy rate was only

5
4
% . This research thus confirms the necessity of developing a separate model fo
r

th
e

small a
ir carri

e
rs . A
t

this time , the authors a
re unable to explain the failure o
f

the original large carrier NN to predict

small carrier financial stress . The smaller carriers face different competitive environments , use different
aircraft types , et

c
. , and these factors may explain the failure of th
e

large carriermodel .
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