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Revenue Management in Railroad
Applications

This article explores common characteristics and critical differences
between a variety of railroad revenue management problems. Most
railroad problems tend to focus primarily on origin destination traffic
management rather than overbooking or price discrimination. These
problems tend to be highly network oriented, have booking arrival
patterns independent of fare class value, and except for long distance
passenger service, have very short booking lead times. Any of these
features of railroad problems can cause difficulties for traditional airline-
style, leg-based “EMSR” approaches. A bid price methodology effectively
addresses many of the common core requirements of these railroad

applications.

by Edwin R. Kraft, Bellur N. Srikar, and Robert L. Phillips

his article explores common char
I acteristics of and critical differ
ences between a variety of railroad
industry revenue management problems,
comparing these problems to their truck-
ing and airline counterparts. Passenger
and freight railroad revenue manage-
ment problems share a number of com-
mon characteristics since the services
are produced using similar technology,
but each has its own peculiarities due
to the differing nature of markets served.
Even within freight or passenger appli-
cations, distinctive market segments ex-
ist having different characteristics from
arevenue management perspective. Cur-
rent revenue management systems for
passenger railroads can be improved by
moving to a “bid price” approach; this
method can be applied to freight railroad
problems as well.
The next section describes several

key components of any revenue manage-
ment process. The remainder of the ar-
ticle discusses applicability of these ap-
proaches to railroad problems in particu-
lar, identifying both common elements
of and important differences between
freight and passenger problems. The
current implementation status of rev-
enue management at passenger railroads
is reviewed, but since no applications are
yet known in freight railroading, a sur-
vey of current academic literature is of-
fered in this area. Finally, future research
opportunities and needs will be noted.

Key Components of Revenue
Management

Revenue management increases rev-
enues through application of three tech-
niques: overbooking, discount allocation
and origin-destination traffic manage-
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ment.

Overbooking: The purpose of
overbooking is to compensate for reser-
vations made but not used. The need for
overbooking depends on the statistical
“no show” rate, as well as the carrier’s
willingness to risk an oversold situation.

Discount Allocation: The basic
principle of discount allocation is to pro-
tect seats for high valued future demand
by limiting current availability of low
priced fares, so that the risk between
revenue dilution and inventory spoilage
is optimally balanced. Discount alloca-
tion implements a form of price discrimi-
nation, exploiting the fact that different
customers may be willing to pay differ-
ent prices to receive essentially the same
service. For example, airline business
travelers usually pay a higher fare to re-
ceive essentially the same service as lei-
sure travelers (although business cus-
tomers gain more flexibility to change
their plans and book travel at the last
minute.) Low fares offered in price sen-
sitive market segments can stimulate
demand to fill capacity which might oth-
erwise go unused. Fare restrictions,
such as requirements for advance pur-
chase and Saturday night overstays, as
well as limitations on the total amount
of low-priced capacity offered, attempt
to prevent price-insensitive segments
from being able to utilize the discounted
fares.

Traffic Management: Traffic man-
agement addresses the situation where
different customers receive different ser-
vices, requiring the use of different com-
binations of resources in the process.
Typically, a long distance passenger pays
a higher fare than a short distance rider,
but shorter trips may produce higher
revenue per passenger mile. The solu-
tion to a traffic mix optimization or traf-
fic management problem determines the
optimal selection of short- and long-dis-
tance traffic, or short- and long-term car
or hotel room rentals, to most effectively
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utilize capacity and maximize total rev-
enues. Solving a traffic management
problem typically requires network mod-
eling and cannot be approached by indi-
vidual leg or time period.

Historically, the development of rev-
enue management literature has been
strongly influenced by the capabilities
and limitations of airline reservations
systems. As reported by Williamson
(1992), most airline reservations systems
were designed 20-30 years ago when the
market environment was much simpler.
These systems only allowed for physical
control of seat inventories at the fare
class and flight leg level, rather than by
origin-destination.

As airlines evolved hub-and-spoke
network structures, they began to rec-
ognize the need for origin destination
traffic management. Considerable effort
has been expended trying to devise ways
to “work around” limitations of old res-
ervations systems: see, for example, “vir-
tual nesting” by Smith, Leimkuhler, and
Darrow (1992), which groups origin-des-
tination fares into buckets by value
based on clustering algorithms, rather
than directly determining fare class hi-
erarchy based on the fare class code.
More recently, underlying airline reser-
vation system limitations have started to
be directly addressed based on “Seam-
less Availability” (Phillips, 1994a, see
Appendix), making “bid price” ap-
proaches to Revenue Management fea-
sible, even for airlines.

The “bid price” method works by cal-
culating “opportunity cost” for units sold.
Utilizing this method, one should never
sell a unit of capacity for less than its
opportunity cost, even though the direct
revenue impact may be positive. Follow-
ing Williamson (1992, p. 90-92):

The idea behind the bid price
approach is to establish a “cut-
off” value for each flight leg which
can be used to make decisions
whether to accept or reject differ-
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ent ODF (origin-destination-fare
class) requests. The difference in
the methodology of the bid price
approach, when compared to
other conventional seat inventory
approaches, is that ODF invento-
ries are either open to bookings
or closed; there are no explicit
booking limits for different ODF’s.
For a single leg itinerary, a fare
class is open for bookings if the
corresponding fare is greater than
the bid price, or shadow price, for
the leg. For a multi-leg itinerary,
the total fare must be greater than
the sum of the bid prices from the
respective flight legs it traverses.

One advantage of the bid price

(19944, p. 8):

Supporting the on-line func-
tions of a dynamic system such
as the ODRMS is a number of
“off-line operations” . . . These off-
line operations include optimiza-
tion (calculation of bid prices), de-
mand forecasting and fare fore-
casting. Typically, the optimiza-
tion and demand forecasting func-
tions are run often—possibly as
often as every booking and can-
cellation while the fare forecast-
ing function is run more infre-
quently to reflect fare changes.
The underlying philosophy is that
the data in the system at any time
should reflect the latest informa-
tion available.

approach is that it is a very simple
method of managing seat inven-
tories. Hence, it would be very
easy to implement in a reserva-
tions system when compared to
OD and fare class approaches.
The disadvantage of the bid price
approach, however, is its open/
closed control philosophy. If a
given ODF passes the bid price
criteria, that ODF remains open
to bookings until the bid prices are
revised. Thus, in order for the
network bid price approach to be
an effective seat inventory control
approach, frequent revisions
would be necessary, requiring
both reoptimization and
reforecasting. For a truly optimal
system, revisions would be nec-
essary on a real-time basis.

Several recently-implemented real
world airline, hotel and rental car rev-
enue management systems utilize bid
prices as their main control methodol-
ogy. Many of these systems continuously
update the bid prices in real time and in
many cases, they update the demand
forecasts as well. Following Phillips
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In the “pure” bid-price approach, bid-
prices alone are used to control avail-
abilities. While appealingly simple, the
“pure approach” has two drawbacks:

(1) It is inherently incremental. The

bid price only indicates whether or
not a carrier should accept the next
incremental booking. It does not
tell the carrier what to do about
multiple booking requests (groups)
or non-incremental bookings (large
freight shipments with substantial
volume and weight.)

(2) The “pure” bid-price approach re-

quires that the bid-price be updated
regularly, especially following book-
ings and cancellations. While this
might be technically feasible, it is a
very heavy requirement to place on
an information system, particularly
in light of the possibility of occa-
sional hardware failures, commu-
nication links going down, etc.

For these reasons, the bid-price is
generally supplemented by other control
mechanisms that deal with the two is-
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sues above. One is a simple “safety net”
limitation that prevents bookings from
exceeding capacity (possibly adjusted for
overbooking). Another approach is to
define “gradients” to allow the reserva-
tion system to adjust the bid prices it-
self after each booking without requir-
ing full reoptimization. A third approach
is to define increments at which the bid
price should be recalculated (“triggers”,
see Phillips, 1994b). Thus, we might cal-
culate the bid price as $100 and also
specify triggers of (-5, +8), meaning that
the bid-price model should be recalcu-
lated if we get more than 8 net bookings
or more than 5 net cancellations. Sum-
marizing, the bid price method is attrac-
tive for railroad revenue management
applications for the following reasons:

(1) The bid price method easily
handles network traffic manage-
ment problems using a simple con-
trol mechanism: based on legs tra-
versed, if the sum of the bid prices
is less than the revenue for the
whole trip, the booking request
should be accepted, otherwise it
should be rejected.

(2) Bid-price based revenue manage-
ment systems must be designed to
update the bid prices frequently,
in real time if possible. These op-
erational characteristics also make
a bid price system well suited to
cope with the short booking curves
that are characteristic of many rail-
road passenger and freight prob-
lems.

(3) Updating bid prices frequently also
eliminates the need for any fare
class nesting assumptions.
Belobaba (1989) found, as the fre-
quency of updates to bid prices or
allocations approaches real time,
the impact of nesting diminishes
and eventually disappears entirely.
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Thus, as long as the model is
solved frequently enough, it is not
necessary to include nesting in the
mathematical formulation of the
optimization model. A bid-price
system can accommodate any
booking arrival pattern, as opposed
to an EMSR-based system
(Belobaba, 1987), which tends to
“overprotect” space for the higher
value fare classes.

(4) A bid price-based management
approach could readily combine el-
ements of Powell’'s (1987) “Re-
gional Impact Model” with tradi-
tional leg-based revenue manage-
ment, to jointly optimize equip-
ment allocation with line haul ca-
pacity utilization.

(5) A “safety net” function using “trig-
gers” (Phillips, 1994b) or other
similar control mechanism can be
used to detect when a multiple
group booking request should be
flagged for manual intervention or
other special handling in the sys-
tem.

Revenue Management as
Practiced by Railroads

Most railroad revenue management
problems tend to focus primarily on traf-
fic management rather than overbooking
or price discrimination. Amtrak’s long
distance passenger trains carry a very
small proportion of business trips—
nearly all the ridership consists of lei-
sure class travelers. In the northeast,
premium fare Amtrak Metroliner service
is primarily targeted to time sensitive
business travelers—most leisure class
customers are accommodated on lower
fare Northeast Direct trains. The relative
homogeneity of markets served by each
train service does not allow much of an
opportunity to improve revenue through
price discrimination. Standees are un-
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acceptable on long distance trains or
premium fare Metroliners, so
overbooking must be practiced very con-
servatively. However, there is still a tre-
mendous opportunity for traffic mix op-
timization in both freight and passenger
rail applications.

In general, railroad revenue manage-
ment problems tend to be highly network
oriented, have booking arrival patterns
independent of fare class value, and ex-
cept for long distance passenger service,
have very short booking lead times. Any
of these features of railroad problems can
cause difficulties for traditional airline-
style, “EMSR” leg-based revenue man-
agement approaches.

Railroad Problems Tend to be
‘Network Oriented’

Nearly all passenger railroad problems
are heavily network oriented, due to the
large number of intermediate station
stops made by the typical train. Each pair
of adjacent station stops defines a “leg”
for which the opportunity cost and/or
capacity allocations by fare class must
be determined.

Figure 1 illustrates the markets,
which can potentially be served by a
single train. Since this WAS to NYP train
makes 5 intermediate station stops, it
has 6 legs and can serve 21 possible ori-
gin-destination city pairs, or markets.
Having 6 fare classes per OD pair results
in 126 possible origin destination mar-
ket classes, which can be served by this
single train departure for each of which
demand forecasts must be individually
developed.

Considering only full fares for the
sake of simplicity and without loss of
generality, a request for NYP-WAS full
fare must be evaluated by the traffic op-
timization model against all other pos-
sible requests, such as NYP-WIL and
WIL-WAS. If one considers only NYP-WIL
full fare versus NYP-WAS full fare, then
the decision to accept NYP-WAS full fare
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Figure 1: Traffic Displacement

Example
WAS WIL. NYP
5 $60

WAS—NCR-—BAL—~————WIL-~-PHL~—~—NWK—NYP

is trivial. However, if WIL-WAS can be
sold also, then the choice becomes more
complicated. Now the value of NYP-WAS
is no longer equivalent to the $96 full
fare but has to be reduced to compen-
sate for the probability of down line dis-
placement of expected WIL-WAS revenue.

In Amtrak’s system, these relative
values are estimated by solving a deter-
ministic linear programming model
(Williamson, 1992, pp. 68-69). The
shadow prices and the reduced costs are
then used in a heuristic model (Powell,
1989) to determine the relative revenue
value of each market after scaling for dis-
placement costs, called the Cumulative
Relative Revenue (CER).

On low demand trains, since there
is a low probability of closing any leg, it
will always be beneficial to accept a long-
haul request such as NYP-WAS because
there is no short-haul revenue displace-
ment. However, if a train has peak de-
mand legs, then market allocations
among NYP-WAS, NYP-WIL, and WIL-
WAS have to be based not only on fare
values but also on the probability of sell-
ing short hauls versus long hauls. The
same principle can be extended to mul-
tiple market fare classes to determine the
optimal market class allocations to maxi-
mize revenue from the traffic mix ac-
cepted.

Table 1 gives the total number of legs
and the average number of legs traversed
by the average passenger for some typi-
cal Amtrak trains in July 1997. Normally
the average passenger does not travel the
entire length of the train’s route but still
traverses a large number of legs. A no-
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table exception (not shown) is Train 52/
53, the Auto Train, which operates as a
shuttle between Lorton, VA and Sanford,
FL with no intermediate stops. Clearly
this problem is quite difficult as com-
pared to a typical airline “hub and spoke”
problem, which may have perhaps two
or three flight legs per average passen-
ger.

Table 1. Number of Legs Per Amtrak
Train and Average Legs per Passenger

Train # of |Avg Legs
Legs| Psgr
Sunset Limited ORL-LAX 40 14
Cardinal WAS-CHI 27 12
California Zephyr CHI-OAK 38 16
Silver Meteor NYP-MIA 33 14
Metroliner #101 NYP-WAS 9 3
Northeast Direct #95 BOS-NPN | 24 8

Freight railroad problems are com-
parable in level of difficulty to passenger
rail problems, with an added twist: the
rail freight network must explicitly rep-
resent allowable origin to destination
connections, or “blocks,” so that not only
train capacity utilization, but also ship-
ment routing can be determined by the
optimization code. A “block” is a set of
cars temporarily joined for the duration
of a trip between a common origin and
destination (Campbell, 1996). Group-
ing cars in this manner is required for
both convenient assembly of trains in
yards and also to facilitate efficient
pickup or setoffs of groups of cars at in-
termediate locations.

Legs or route segments, to which
train capacity constraints apply, can be
derived from block pickup and setoff lo-
cations. For example, Figure 2 shows a
train which handles two blocks of cars:
Block “A,” picked up at node 1 and set
off at node 3; and Block “B,” picked up
at node 2 and set off at node 4. This
train’s route would be divided into 3 legs
or segments; break points occur when-
ever pick up or set off activity occurs.
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Figure 2: Representation of Blocks

and Legs
Block "A" | @
) Bk B p
Leg 1 Leg 2 Leg 3
| Includes “A" | Inchudes "A” + 8" Includes "8 I

A single freight shipment typically
rides on several trains, passing through
several intermediate terminals, before it
reaches its final destination. Figure 3
shows the number of trains used be-
tween origin and destination, for a small
12 yard, 16-train MIT test problem (see
Kwon, 1994 and Kraft, 1998.) By com-
parison, Figure 4 shows that shipments
often traverse many more “legs” than the
number of trains. Clearly real world rail-
road freight problems would be much
larger and more complex than the test
data presented here. But even this small
test problem exhibits a high level of in-
terdependency across trains and time
periods.

The ‘Highest Fare Class Books
Last’ Assumption is Seldom
Satisfied

“EMSR” (and related approaches) explic-
itly assume that bookings occur in re-
verse fare order—with the highest fare
booking last. If this assumption is vio-
lated, it is well known that “EMSR” tends
to “overprotect” allocations, or set aside
too much capacity for only the highest
fares. The cost of this overprotection
depends on how frequently the alloca-
tions are updated.

In industries other than airlines, the
basic paradigm of “highest fare booxs
last” is just not a good assumption. For
example, in the rental car industry, lei-
sure customers tend to pay some of tae
highest fares and they tend to book ezr-
lier than lower-fare business customers
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(who are often eligible for substantial
corporate discounts.) Similarly, it is cer-
tainly not the case that lower paying
freight always books earlier than higher-
paying freight—for example, some high-
value, high-paying freight may book very
early in order to be assured of space
available. For most of these industries,
a more realistic assumption is that book-
ings over time reflect a mixture of high-
value and low-value customers, with the
balance possibly shifting over time. As
airlines exercise more fare flexibility, this
assumption is tending to become truer
for them as well.

Availability of last minute discounts
such as “standby” pricing may encour-
age some customers to wait to the last
minute to get the cheapest possible price,
gambling that space will still be avail-
able, or to cancel existing reservations
and rebook the space at a lower price.
Freight and rental car applications have
natural price “fences” that discourage
this kind of customer gaming behavior.
For example, in the rental car example,
pricing depends on having a corporate
discount, and in freight, prices normally
are contracted in advance, a customer
cannot get a cheaper price simply by
waiting, but just risks the possibility that
available space might sell out.

For any given flight leg, network rev-
enue management also works to invali-
date the “highest fare books last” as-
sumption. It seems to be the case that
customers who are booking on a longer
or more complex itinerary (and thus tend
to be higher value) tend to book earlier.
American Airlines’ virtual nesting ap-
proach (Smith, Leimkuhler, and Darrow,
1992) suffers the same problem: If a
short distance business fare is virtually
nested in the same “bucket” (grouping
of fares having approximately equivalent
value) alongside a long distance discount
fare, the timing of these demands would
be spread across time, not concentrated
at the end of the booking period. This
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would lead to overprotection of the higher
value fare classes under a “virtual nest-
ing” approach.

Short Booking Lead Times are
Typical

For passenger services, as shown in Table
2, long distance trains usually are reserved
with a long lead time, but high speed cor-
ridor services experience short booking
curves. This is consistent with the market
orientation of these services, whereby
Amtrak’s long distance and Northeast Di-
rect trains mostly serve a price sensitive
personal or leisure travel market, but the
New York to Washington Metroliner ser-
vice is oriented mainly towards business
travelers. For selected July 1997 Amtrak
trains, Table 2 gives the average booking
lead time, average lead time excluding can-
celled reservations, percent of same day
of departure bookings and percent of de-
parture day cancellations.

In general, high frequency corridor
services such as Metroliner and North-
east Direct experience both shorter book-
ing lead times and higher cancellation/
rebooking rates, since customers have
more traveling options to choose from.
Evening departures have more cancel-
lations and late bookings than morning
departures since many travelers change
their reservations if planned activities
end later or earlier than planned. Daily
updates to allocation levels are just not
frequent enough when, as in the case of
Metroliner #119, over 40% of demand
does not materialize until the day of de-
parture. Because of this system limita-
tion and other marketing considerations,
Amtrak’s Metroliners have been removed
from discount allocation and traffic mix
control optimization. They are
overbooked to a very limited extent.

Freight shippers, in general, are not
accustomed to having to reserve space
far in advance, if at all, although some
notable exceptions do exist—particularly
in international container shipping.
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Campbell (1996, p. 54) reports that
intermodal shippers generally provide no
more than a 24-hour advance notifica-
tion of demand. Some customers who
ship when goods are ordered, or in re-
sponse to spot-market commaodity prices,
may simply be unable to predict their
requirements far into the future. Others
manufacturing goods according to pre-
established production schedules, or
those who are shipping to warehouses
for inventory replenishment might be
able to better predict their needs, given
the right marketplace incentives to share
the information.

In the intermodal distribution chain,
the presence of third party freight for-
warders prevents railroads from sharing
information directly with the ultimate
customer. Suppose a shipper agent
knows a particular load is not immedi-
ately needed by the consignee. The agent
also knows this information is valuable
to the railroad, that the railroad can de-
rive an operational benefit from know-
ing it. The shipper agent can force the
rail carrier to share some of the benefits
of revenue management by controlling
information. Under this circumstance,
the railroad may need to establish a dif-
ferentiated pricing structure—possibly
including accompanying advance pur-
chase and nonrefundability restric-
tions—to induce shipper agents to re-
serve space earlier, to show up at the
origin loading point as arranged, and to
advise the carrier when the shipment is
really needed at the destination.

By contrast, rail carload freight has
along history of strong price and service
differentiation based on commodity. Rail-
roads normally market their service di-
rectly to shippers and consignees located
along their rail lines. The promise of more
reliable service may provide sufficient
incentive for railcar shippers to make
reservations earlier. Shippers of low-
priced commodities will find they can get
the best service commitments if they are
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willing to make reservations early, or are
willing to commit to purchase capacity
on a “take or pay” basis. By comparison,
leisure airline travelers generally get their
best deals by booking early—and a non-
refundable fare is the equivalent of the
“take or pay” shipping contract. For the
most part, freight railroads already pos-
sess the information they need to differ-
entiate rail carload service without hav-
ing to offer additional price incentives.

Critical Differences Between
Freight and Passenger Problems

The following sections explore critical
differences between railroad passenger
and freight revenue management prob-
lems. As compared to passenger imple-
mentations, freight revenue management
has an “operational” characteristic,
which might create organizational bar-
riers to its successful implementation.
Other differences include the ability to
“bump” low priority freight at intermedi-
ate terminals; the focus of freight rev-
enue management on developing achiev-
able service commitments and on im-
proving service reliability, as opposed to
price discrimination; and differing ser-
vice network structures and marketplace
environments of the respective busi-
nesses.

The Operational Characteristic of
Freight Problems

Freight applications differ from passen-
ger applications in a very fundamental
way. While passengers can board,
deboard, and make connections in ter-
minals on their own, freight has no in-
herent mobility—it must always be
handled operationally. Therefore, any
freight revenue management application
takes on operational process control
characteristics, focusing on management
of terminal operations to ensure that the
proper connections are made—as op-
posed to strictly maintaining a sales and
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marketing focus as passenger applica-
tions do. Thus, implementation of a
freight revenue management process
tends to be more intrusive in daily oper-
ating practices, compared to a passen-
ger implementation.

In rail carload freight, as shown in
Figure 5, although booking lead times
may be short, the traffic retention pe-
riod is quite long, several days at least.
Thus, particularly at intermediate ter-
minals with little originating traffic, a
railroad’s ability to plan terminal opera-
tions is better than might at first appear,
in spite of short booking lead times.

Figure 5: Future Workload Projection
Uncertainty Traffic Retention Period

Short Long

§ Short Distance

!_E Rail Passengers

Y| Trucking Rail Intermodal | Rail Carload

.§ Freight Freight

E Airline Business

¢§ o Travelers

3|Airline Leisure Long Distance

Travelers Rail Passengers

Still, at terminals with a lot of origi-
nating traffic, a decision whether or not
to classify a shipment onto a particular
outbound train must often be made with
imperfect information, and once a ship-
ment has been classified, the decision
becomes difficult and costly to change.
Therefore, it is important to get the deci-
sion “right the first time” as often as pos-
sible to avoid adverse service impacts,
or the expense of reworking incorrect
decisions later.

Fortunately, Revenue Management
provides a rational means to approach
this kind of decision-making, in spite of
uncertainty in future demand. The only
requirement is that demand must be
understood at least well enough to cali-
brate a probability distribution. Such a
distribution can be estimated based on
historical experience as well as leading
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indicators, such as empty car orders or
advance information received from con-
necting railroads. An exact “point esti-
mate” of demand is not required. The
fundamental reasoning underlying the
revenue management approach is well
explained by Elkins (1991, pg 7-8):

If we reserve a unit of capac-
ity (an airline seat or a hotel room
or 30 seconds of television adver-
tising time) for the exclusive use
of a potential customer who has a
70% probability of wanting it and
is in a market segment with a price
of $100 per unit, then the expected
revenue for that unit is $70. Faced
with this situation 10 times, we
would expect that 7 times the cus-
tomer would appear and pay us
$100 and 3 times he would fail to
materialize and we would get noth-
ing. We would collect a total of
$700 for the 10 units of capacity
or an average of $70 per unit.

Suppose another customer
appeared and offered us $60 for
the unit, in cash, on the spot.
Should we accept his offer? No;
because as long as we are able to
keep a long-term perspective, we
know that a 100% probability of
getting $60 gives us an expected
revenue of only $60. Over 10 oc-
currences we would only get $600
following the “bird in the hand”
strategy.

We should never sell a unit of
capacity for less than we expect
to receive for it from another cus-
tomer, but if we can get more for
it, the extra revenue goes right to
the bottom line.

This implies that management must
be willing to take some calculated, short-
term risks in order to maximize long term
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gains. The inevitability of an occasional
poor decision must be accepted. Oper-
ating performance must be evaluated on
an appropriate long-term basis, not post-
audited on a 20/20 hindsight basis. A
fear of this kind of critical post-auditing
can lead to a highly reactive, rather than
proactive management style. In many
instances, even current trip planning
systems may be able to confidently fore-
see a future opportunity or problem, but
it may still be difficult to get railroad
operating managers to proactively act on
this information.

As well, external factors such as the
operating budget can inappropriately in-
fluence management, often leading to
poor decisions. As one railway manager
put it, “It is easy to justify running ex-
tra trains to clear out a congested termi-
nal. Itis not so easy to justify spending
the money from the extra train budget
ahead of time to prevent the terminal
from going down.”

This hesitancy to act on less-than-
perfect information may stand as a sig-
nificant barrier to successful railroad
implementation of Revenue Management
systems. The best solution is not to wait
for perfect information, which is an un-
attainable goal; but instead to make the
best use of information already available
to support rational decision-making,
based on the objective of maximizing
expected profits. This strategy must be
understood and clearly supported by top
management—otherwise, system recom-
mendations will not be followed, and
implementation will fail.

Shl;rment Priorities, ‘Bumping’
and Service Reliability

Another difference between freight and
passenger problems is the ability in
freight to displace a lower priority ship-
ment, even at an intermediate terminal,
in favor of a newly arrived load. Airlines
do not normally “bump” passengers
based on the fare class of the ticket they
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hold nor do they routinely schedule con-
nections in intermediate terminals on
anything other than a “next flight out”
basis. In railroads, this ability to “bump”
shipments at intermediate terminals is
very important, since a railcar or trailer
may require several days to reach its des-
tination, which provides ample opportu-
nity for a higher priority shipment to
materialize in the meantime. This prob-
lem is compounded by the typically short
booking curves, which exist in the freight
rail industry, as previously discussed.

In railroad carload freight, the ratio-
nale for establishing shipment priority
typically has been first-come-first-served
rather than any criteria based on cus-
tomer needs or due date information.
Even in intermodal shipping, according
to Jay Hirst of Alliance Shippers (Rail-
way Age, 1993, p. 60), the ability to pri-
oritize traffic to match customer expec-
tation is still far from ideal:

Terminals have a bad habit of
not being able to prioritize. Ter-
minal operations just seem to al-
low for one set format to process
trailers and containers, rather
than being able to do what the

customer requires . . .

The ability to establish shipment pri-
orities is important to maintaining ser-
vice reliability, because it is not always
possible or cost effective to move all traf-
fic on the first available train. In the case
of traffic overflowing capacity, it is es-
sential to make certain that cars having
no remaining slack in their commitment
delivery times have first access to avail-
able space. Kraft (1995) and Kwon (1994)
directly link traffic volume variability to
railroad freight service reliability. Follow-
ing Kraft (1995, p. 28):

Service failures can result if

there is a mismatch between de-
mand and the amount of capac-
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ity provided. If demand is higher
than the capacity of the train, ex-
cess cars spill over to the next
day’s train, unless an extra train
is operated, which may not always
be physically possible or eco-
nomic. If demand is much lower
than planned, some trains may be
annulled, consolidated, or held for
tonnage, leading once again to
unreliable transit times. There is
a direct link between the variabil-
ity of customer demands and the
reliability of transit time produced
by a railroad freight transporta-
tion system.

Management has some lati-
tude to allocate capacity among
different customers and traffic
lanes, but in the short term only
within fixed limits determined by
the number of locomotives in the
system, train crew availability,
and requirements to reposition
both crews and locomotives to
handle future demands. Passing
siding lengths and train handling
considerations determine the
maximum train size, which can be
operated over any route. But,
there may not be sufficient loco-
motives to power all the trains at
this maximum size.

The traditional freight railroad re-
sponse to volume variability has been to
annul or consolidate trains if volume is
too low, or to operate extra trains or sec-
ond sections (resources and budget per-
mitting) if volume is too high. Operation
of extra trains is generally not harmful
unless unplanned departures create line
capacity problems with excessive train
delays, or throw operating resources
such as locomotives or crews out of bal-
ance. Some carriers plan for extra sched-
ule “slots” to allow for extra train opera-
tions. However, the strategy of annulling
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or consolidating trains has an extreme
adverse effect on service reliability (Kwon,
1994). Recently, some freight rail carri-
ers have started to emphasize “running
to plan” or the operation of a fixed set of
scheduled trains every day. However,
even if all trains run on time every day,
reliability problems may still be caused
by overflowing available train capacity
(Kraft, 1995).

Campbell (1996) and Kraft (1998)
both propose revenue management for-
mulations which can lead to establish-
ment of shipment delivery “due dates”
and associated penalty costs for miss-
ing these delivery targets. Once due dates
and penalty costs are established, these
can be used to determine shipment pri-
orities in real time to determine which
shipments should actually be loaded
onto a train.

Market Structure of Railroad
Freight Problems

Another difference between passenger
and freight applications relates to the
fundamental market structure. While
airlines and passenger rail applications
have a “mass market” orientation, freight
railroads provide service to a relatively
small number of industrial customers.
Particularly in carload freight, the rail-
road should know its customers indi-
vidually; marketing may negotiate trans-
portation contracts, specifying unique
price and service characteristics required
by each customer. These contracts es-
tablish a framework for a long-term busi-
ness relationship, whereas most airline
and passenger rail revenue management
models view the customer relationship
only in terms of the current transaction.

While air travelers may be able to
choose from several airlines, and freight
shippers might choose from a long list of
trucking companies, most likely a rail
customer is directly served by only one
or two railroads. For certain commodi-
ties, it might not be economical to pro-
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duce a product in a certain place or ship
to certain markets except by rail. Still,
when a contract is signed, the customer
expects that transportation will be pro-
vided at the price agreed to, and that
service levels will generally fall within a
contractually agreed upon range of tran-
sit time and reliability.

Although trucking companies rou-
tinely reject offered loads that don’t meet
their revenue management criteria (see
for example, Powell et al., 1988), outright
rejection of loads is more difficult for rail-
roads than if the customer had a large
number of competitive rail options. The
irony is that high value loads having
many competitive alternatives (where
trucking is an option) are ones the rail
carrier is least likely to want to reject.
Still, there could be room for a railroad
to negotiate delivery times for individual
shipments, within the overall parameters
of the governing transportation contract.

In railcar freight, since prices are
contracted in advance, when the cus-
tomer calls to offer a shipment, the dis-
cussion should focus on the question of
when service can be provided, not at
what price. The railroad does not reject
any offered loads. However, the customer
can always choose to reject service of-
fers and ship by another mode.

Survey of Railroad Revenue
Management Applications

The application of revenue management
is well established in passenger railroads.
Amtrak was first in the railroad indus-
try to recognize the need for controlling
seating availability by fare class in the
markets they served. A milestone was
reached in July 1991, when Amtrak
implemented the world’s first automated
railroad revenue management system.
On average, Amtrak realizes an addi-
tional 3% to 5% in incremental revenues
from the current revenue management
practices.

The primary focus of revenue man-
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agement at Amtrak has been to ensure
that short distance, low revenue riders
do not block capacity across peak load
segments, which could be sold to longer
distance, higher revenue passengers.
Traffic management considers the trade-
off between the revenue value of accept-
ing a booking request, versus the ex-
pected opportunity cost of alternative
future requests that may be displaced.

Amtrak’s ARROW reservation system
supports serial nesting of fare classes,
where a higher value fare can always be
sold if a lower value fare class is still
open, but not “virtual” nesting based on
origin-destination clustering algorithms
(Smith, Leimkuhler, and Darrow, 1992).
Because ARROW is a leg-based reserva-
tions system, when a fare class is closed,
all markets in that class using that leg
will be restricted for sale. To prevent
high-valued long haul markets being
entirely shut out by closing discount fare
classes, traffic control is affected by spe-
cific origin destination market sales lim-
its. This allows short distance low rev-
enue origin destination pairs to be re-
stricted or closed entirely, while still al-
lowing sales for long-haul higher revenue
markets in the same fare class. Hence,
the Amtrak revenue management opti-
mization must not only generate leg class
authorizations, but also origin destina-
tion market class authorizations. AR-
ROW can override leg class restrictions
if the market class still has availability
based on market class limits.

At Amtrak, the overbooking model
currently is used very conservatively and
causes negligible standees. More often,
standees have resulted due to other
causes such as passengers presenting
invalid tickets for the train they are on,
or last minute equipment changes.
Amtrak’s current discount allocation
model is based on Belobaba’s (1987)
“EMSR” approach. The “EMSR rule” is a
heuristic rule to allocate capacity on a
single flight leg by equalizing the expected
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marginal revenue of each fare class.

Sabre Decision Technologies (SDT)
implemented an integrated decision sup-
port system for the French National Rail-
ways (SNCF). When SNCF’s long term
“Railplus” and short term “Railcap” (Ben-
Khedher et al., 1998) schedule develop-
ment and capacity optimization systems
were developed, the revenue manage-
ment system was integrated with it to
support intermediate stage planning for
both marketing and operations. This pro-
duced a fully integrated rail decision
support system for planning of train
schedules, equipment allocation, pricing
and revenue management of SNCF’s high
speed TGV train service. The Eurostar
revenue management system is basically
the same as the SNCF system with very
similar models and also implementing
virtual nesting controls. The main dif-
ference in the Eurostar system is that
certain additional variable costs are in-
cluded in the models.

VIA Rail Canada is controlling res-
ervations by origin and destination in
order to maximize revenues (Berwick and
Therrien, 1997). VIA’s demand forecast-
ing system is integrated with both their
capacity allocation and their revenue
management system. The capacity allo-
cation system considers the marginal
cost and the revenue generated from
additional cars, and demand character-
istics that may vary over different legs of
the train cycles. (Cordeau, Desaulniers,
Lingaya, Soumis and Desrosiers, 1998).

For freight applications, the litera-
ture on shipment routing and schedul-
ing is well developed. The Less-than-
Truckload (LTL) trucking network design
problem, and certain air cargo problems
are very closely related to the railroad
shipment-scheduling problem. Powell
implemented interactive optimization
systems for Ryder/PIE (Powell and
Sheffi, 1989) and later for Yellow Freight
(Braklow, Graham, Hassler, Peck, and
Powell, 1992) to find opportunities to
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bypass break bulk facilities, and per-
formed interactive “what if” analysis in
real time on various shipment routing
strategies. Barnhart and Sheffi (1993),
Farvolden, Powell and Lustig (1993),
Jones, Lustig, Farvolden and Powell
(1993) all solve similar LTL shipment
routing problems. Kwon (1994) outlines
a railroad freight car scheduling prob-
lem formulated in path variables, and
solved it using a standard column gen-
eration approach. Kraft (1998) proposed
a “Dynamic Car Scheduling” process
using a customized dual adjustment
heuristic to solve an integer
multicommodity network flow problem.

However, all these routing and
scheduling models have cost minimizing
formulations—they do not take revenues,
or in some cases even delivery time com-
mitments into account. A true revenue
management application should be
based on a profit maximizing formulation,
and should also address “load selection”
in some manner, not just optimize empty
equipment repositioning. Examples of
research meeting these criteria include
Powell’s (1988) work on optimal load se-
lection for full truckload carriers, Ph.D.
dissertations by Nozick (1992), Campbell
(1996) and Kraft (1998) on intermodal
and railcar revenue management, and a
survey paper by Kaslingam (1996) on air
cargo revenue management.

Although revenue management has
become commonplace in passenger rail-
roading, no freight railroads are yet
known to have implemented it. However,
railroads’ direct competition—the truck-
ing industry—has done so, which may
account for some of trucking’s recent
competitive success against railroads.
This is one reason why understanding
Powell’s (1988) work should be impor-
tant to the railroad industry.

Powell’s (1988) work is also relevant
because the need to account for empty
equipment repositioning makes freight
revenue management more complicated
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than its passenger counterpart. On an
airline between the same city pairs, full
fare business travelers will always be
preferred over leisure travelers paying a
discounted fare. The airline would like
to fill the airplane exclusively with busi-
ness travelers, if it could. This leads to
the airline concept of “nested” fare
classes, where a full fare ticket can al-
ways be sold to a business-class trav-
eler even if the predetermined business
class allocation happens to be sold out.

This strict hierarchical relationship
may not always hold true in the case of
freight. The first few vehicles into a zone
have a high probability of finding
backhauls, representing highly valuable
business. Additional loads become less
profitable, such that some other busi-
ness may take priority at a certain point.
Powell’s (1987) system develops and
maintains opportunity cost information
for equipment supply, in a continuous
real-time mode. Although Powell (1987)
never labeled it as such, his model clearly
implements a special case of bid-price
revenue management, as applied to a
freight transportation problem in the
trucking industry.

A comprehensive revenue manage-
ment system for rail freight should ad-
dress both equipment supply and also
the allocation of space on trains. Powell’s
(1988) model addresses equipment sup-
ply but does not address train capacity
utilization. Campbell (1996) and Kraft
(1998) address train capacity utilization
but not equipment supply. Nozick’s
(1992) model includes both equipment
supply and train capacity constraints,
but assumes deterministic demand.
Nozick’s (1992) model has been used to
address the efficiency and organization
of intermodal drayage, and the effects of
a traffic priority system on fleet sizing
and intermodal car and trailer fleet man-
agement.

Campbell (1996) researched the ap-
plication of revenue management tech-
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niques in railroad intermodal applica-
tions, focusing on the allocation of rail-
car capacity to origin-destination ship-
ping lanes. His research extends tech-
niques originally developed for fixed ca-
pacity networks, adapting Belobaba’s
(1987) “EMSR heuristic” to apply to flex-
ible capacity networks as well.
Campbell’s dissertation uses an origin-
destination rather than leg-based defi-
nition of “EMSR.” Campbell’s proposed
booking control mechanism is primarily
based on origin destination market sales
limits, very similar to Amtrak’s system.

Kraft (1998) focuses on the process
of developing appropriate and achievable
delivery time appointments using a “bid
price” revenue management approach,
and then managing the operational ser-
vice delivery process to conform to these
commitments. The concept for schedul-
ing delivery appointment times is mod-
eled after current motor carrier industry
practice, where a delivery appointment
time is established for each shipment at
the time the initial order is placed.

Kaslingam (1996, p. 43) proposed a
chance-constrained formulation for air
cargo discount allocation. Interestingly,
some early airline overbooking and seat
allocation models also proposed a
“chance constrained” approach (see
Charnes and Cooper, 1963) . Kraft, Oum,
and Tretheway (1986) suggest that seat
allocations be set “by choosing a prob-
ability level for seating all full fare pas-
sengers. For example, the airline might
choose to allocate seats to full fare pas-
sengers such that 95% of the time all
full fare passengers will be accommo-
dated...”

In passenger applications,
overbooking conditions are usually re-
solved on a voluntary basis, in which
case the expected cost of overbooking
constraint violations can be precisely and
accurately quantified. Only rarely must
an overbooking condition be resolved on
an involuntary basis, which leads to a
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typically small-expected penalty for lost
customer goodwill. Thus a penalty cost
can be assigned for overbooking viola-
tions and the optimization program is al-
lowed to choose the overall best level, by
trading off the penalty cost versus ex-
pected revenue gain.

However in freight applications, ca-
pacity constraint violations must gener-
ally be resolved by involuntarily “bump-
ing” excess shipments off the train, truck
or airplane. The decision which freight
to forward versus which freight to hold
back is typically made by the carrier,
seldom in consultation with the cus-
tomer. The consignee typically receives
notification of a “bumping” decision or
missed connection after-the-fact, if at all.
Even if a freight carrier must pay a fi-
nancial penalty for late deliveries, the
cost of a service failure will still be domi-
nated by such “soft” considerations as
lost customer goodwill. Since the cost of
constraint violation is hard to quantify,
then a chance-constrained approach
may be both a more direct and honest
treatment for freight applications.

Future Opportunities and
Research Needs

Since the primary focus of most railroad
revenue management problems is on
origin destination traffic management
and not on price discrimination, the tra-
ditional airline leg-based “EMSR” ap-
proach really does not address well the
central issue of railroad revenue man-
agement. A bid price methodology is a
very attractive basis for both passenger
and freight railroad revenue manage-
ment, because it effectively addresses
many of the common core requirements
of these applications.

(1) For long distance passenger trains,
a bid price approach is highly at-
tractive because of the large num-
ber of legs traversed by the aver-
age intercity passenger, as well as
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the high number of interconnect-
ing trips between trains.

(2) For short distance, high speed ser-
vices, real time, frequent updates
provided by a bid price system al-
lows the application to cope with
extremely short booking curves,
and high cancellation and
rebooking rates.

{3) For freight applications, the bid
price approach provides an intui-
tive means for developing achiev-
able delivery due dates and clear
movement priorities for each ship-
ment, using a modified shortest
path algorithm, as in Kraft (1998).

The beauty of the bid price approach
lies in its simplicity. A bid-price system
can readily accommodate any kind of
booking arrival pattern, as opposed to
an “EMSR"-based system that tends to
“overprotect” space for the higher value
fare classes. Updating the bid prices fre-
quently eliminates the need for any nest-
ing assumptions. A “safety net” function
using “triggers” (Phillips, 1994b) or other
similar control mechanism can be used
to detect when a multiple group booking
request should be flagged for manual
intervention or other special handling in
the system—including consideration of
whether additional train capacity should
be provided.

Talluri and Van Ryzin (1998) discuss
strengths and weaknesses of the bid
price control method in general, and
present several conditions under which
bid price controls might lead to subopti-
mal decision-making. However, they con-
clude that a bid price control scheme is
“close to being globally” optimal, and are
continuing to research improved meth-
ods for developing more accurate bid
prices.

To succeed, freight revenue manage-
ment implementations should be inte-
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grated within a higher-level capacity
management framework to ensure that
operating resources are properly posi-
tioned to meet anticipated demands—as
SNCF and Sabre Decision Technologies
have already done for passenger rail ap-
plications. Such a system would be de-
mand forecast-driven and would address
global issues of resource management,
such as locomotive and crew manage-
ment, availability of rail line and termi-
nal schedule slots, and empty equipment
repositioning. Implicitly assumed is the
ability to run trains on time, and that
connections can be made in terminals
as scheduled. For freight carriers, this
would be facilitated by moving towards
a preplanned, scheduled train operation.

Most intercity passenger rail carri-
ers have already implemented some form
of revenue management. It would ap-
pear to be relatively straightforward to
extend revenue management to
intermodal freight services, where trains
operate on strict schedules and termi-
nal operations are more flexible than for
railcars. Although rail carload service
potentially stands to gain the most, fun-
damental improvement in classification
yard and train-operating discipline is
necessary before revenue management
can succeed there.

From a research perspective, an in-
tegrated framework is needed to incor-
porate both empty equipment allocation
and revenue management of train capac-
ity in a single model. Nozick’s (1992) dis-
sertation probably comes closest right
now to addressing this need, but her
approach needs to be generalized to
handle stochastic, rather than determin-
istic demand.

In theory, rail carriers should pro-
vide capacity so they can sell space on
trains to generate revenue and make a
profit. In the past, however, decisions to
provide train capacity have often been
based on cost minimization, not profit
maximization. Integrating capacity man-
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agement into a revenue management
framework provides, for the first time,
an ability to understand the revenue, as
well as the cost implications of a deci-
sion to provide capacity, and the ability
to incorporate that information into real
time decision-making.

Seamless Availability

Historically, airline carriers have con-
trolled reservation system availability by
sending “batch updates” of booking
class/leg departure availability levels at
various intervals. More recently, some
reservation systems have provided the
capability of message-switching booking
requests in “real time” to the carriers.
In some sense, this capability has been
around since the early days of the reser-
vation systems. However, initially the
booking requests were relayed to the
carriers “one leg at a time” with no easy
way for the carrier to determine whether
or not the requests came from the same
passenger or from two different passen-
gers. For example, a booking request for:

UA 178 JFK - ORD C-Class, connecting
to UA 150 ORD - SFO C-Class

would be received by the carrier as two
separate requests, one for the JFK-ORD
leg and one for the ORD-SFO leg with no
way to determine that this was a single
request rather than two requests. This
effectively made Origin-Destination
based revenue management impossible.

With a Seamless Availability capa-
bility in the reservations system, the en-
tire booking request, including all con-
necting legs, is transmitted in a single
message to the carrier. This enables the
carrier to determine the full requested
itinerary and manage accordingly. This
capability has been available in some
form from most of the reservation sys-
tems for several years, and all the major
systems have or are now implementing
Seamless Availability. The implementa-
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tion of Seamless Availability has been a
major incentive for airlines to develop
true origin-destination revenue manage-
ment capabilities.

Reservation system limitations have
often been relevant outside the airline in-
dustry—particularly in the hotel and rental
car industries. For example, most early
hotel/rental car reservation systems did

lished by length-of-stay/length-of-rental.
Since control by length-of-stay/length-of-
rental is an extremely important aspect of
revenue management in these industries,
this was not a trivial limitation. Fortu-
nately, these reservation systems have
been somewhat easier to change than the
airline systems and most major systems
have been brought up to date.

not allow availability controls to be estab-
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