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1 Introduction

A common assumption in the literature on oligopoly pricing is that firms aim to maximize
their profits.! In game-theoretic terms, players are presumed to select best-responses to each
other’s choices. Although it may be reasonable to assume such maximizing behavior, there are
compelling arguments for why sellers sometimes make suboptimal decisions. They simply need
not be fully rational, for instance, or make mistakes. Also, they might lack the information to
identify their most preferred alternative. For example, a firm may not be able to precisely deter-
mine its profit-maximizing price ex ante and regret its decision ex post, i.e., after it has observed
the actual choices of its competitors.

With this in mind, this paper offers a novel perspective on oligopoly pricing by postulating
that sellers are myopic and simply aim to improve upon their current situation. Specifically, we
analyze a model of price competition with capacity constraints under the assumption that firms
choose better- rather than best-responses. This in particular means that they can, but may not,
behave like the neoclassical profit-maximizing firm.

Under this assumption, we employ the solution concept of Myopic Stable Set (MSS), which
was recently introduced by Demuynck, Herings, Saulle and Seel (2019). A set of price profiles
is myopically stable when it satisfies three conditions: deterrence of external deviations, asymp-
totic external stability and minimality. The ‘deterrence of external deviations’ requirement holds
when none of the sellers gains by moving from a price profile in the MSS to a price profile outside
the MSS. “Asymptotic external stability” ensures that from any price profile outside the set it is
possible to get arbitrarily close to a price profile inside the MSS through a sequence of domination
steps. Finally, ‘minimality” holds when the MSS is minimal with respect to set inclusion.

We establish the existence of a unique MSS for any given level of capacities. In terms of
characterization, we show that if the set of pure-strategy Nash equilibria is nonempty, then it
coincides with the MSS. A corollary to this is that the MSS reduces to the pure-strategy Nash
solutions that exist for sufficiently large or small production capacities. If capacities are in an
intermediate range, then typically there is no pure-strategy Nash equilibrium. In these cases,
there is a mixed-strategy Nash equilibrium, the support of which is shown to be contained in the
MSS. The MSS therefore also permits price dispersion, but the range of possible ‘sales’ is wider
than in a mixed-strategy Nash equilibrium.

The perspective taken in this paper has several advantages over the standard Nash approach
to oligopoly pricing and to capacity-constrained price competition in particular. For example,
the MSS solution concept rests on a less-stringent behavioral assumption since sellers are sup-
posed to behave myopically and choose better- rather than best-responses to rivals” prices. Yet,

they nevertheless charge precisely the same prices as they would have in a pure-strategy Nash

! An in-depth discussion of classical models of oligopoly pricing is provided by Vives (1999).



equilibrium. Moreover, the MSS offers a solution in pure strategies when there is none in Nash
terms. In these cases, and similar to the mixed-strategy solution, the MSS comprises a range of
prices. In fact, we find that it permits larger price fluctuations than in a mixed-strategy Nash
equilibrium. Yet, this price dispersion results from sellers following pure rather than random
strategies.? This set solution is therefore a unifying concept in that it encompasses all the exist-
ing pure- and mixed-strategy Nash equilibria in an intuitive and natural fashion.

By offering a behavioral foundation for oligopoly pricing, this research contributes to the
emerging literature on behavioral industrial organization as recently reviewed by Heidheus and
Ké6szegi (2018). Thus far, research in this field has mainly focused on psychological factors on the
demand side. As indicated by Tremblay and Xiao (2020), however, there is increasing attention
for analyzing behavioral aspects on the supply side. The application of the MSS stability concept
to oligopoly pricing contributes to this research agenda. In particular, it helps shedding light on
some real-world economic phenomena such as price dispersion, supply shortages and Edgewor-
thian price cycles. We, for example, examine how the MSS would be affected by a change in firm
size distribution (e.g., through a merger). The maximum myopically stable price is shown to in-
crease only when the merger becomes the new industry leader in terms of production capacity.
This may additionally lead to a decline in the minimum myopically stable price, and therefore to
a larger price dispersion, when the smallest firm does not take part in the merger. By contrast, a
merger among the smallest firms may reduce the range of myopically stable prices as it may not
affect the upper bound and increase the lower bound of the MSS.?

The MSS also provides a rationale for different types of pricing patterns, including the fol-
lowing two interesting possibilities: (1) A state of hyper-competition with corresponding supply
shortages, and (2) Edgeworth-like price cycles. Myopic oligopoly pricing can lead to a state of
hyper-competition in which sellers collectively price below the market-clearing price. The logic
is roughly as follows. Starting from a market-clearing situation, the biggest market player may
have an incentive to hike its price and operate as a monopolist on its contingent demand curve.
This creates an incentive for smaller producers to hike their own prices and (approximately)
match the price of the largest firm. The biggest supplier can now improve its situation by shav-
ing its price below the prices of its smaller-sized rivals, leaving the latter worse off than in the
initial market-clearing situation. This, in turn, makes prices below the market-clearing price a
better-response. Myopic oligopoly pricing may therefore induce a (temporary) state of hyper-
competition in which myopic sellers end up setting a price below market-clearing levels. The MSS

consequently provides a rationale for rationing, i.e., a situation in which demand exceeds supply.

%Several authors have argued that mixed strategies might be implausible in the context of oligopoly pricing games.

See Friedman (1988) and, more recently, Edwards and Routledge (2019).
3The MSS stability concept thus provides a pure-strategy rationale for price dispersion. See also the recent work

by Myatt and Ronayne (2019), who offer a theory of stable price dispersion with pure strategies.



The MSS moreover offers an explanation for the emergence and magnitude of Edgeworth-like
price cycles. Edgeworth (1925) pointed out the possibility of producers not being able to meet
their demand.* If so, prices may never stabilize but instead oscillate indefinitely between some
upper and lower bound. More specifically, his analysis hints at the emergence of asymmetric
price cycles that essentially consist of two parts. If prices are relatively high, then sellers have an
incentive to slightly undercut each other. This leads prices to decrease gradually until a floor is
reached (the price war phase). At that point, firms have an incentive to hike their price and act as
a monopolist on their residual demand curve (the relenting phase). This latter incentive comes
from (i) the fact that cheaper suppliers will not meet all demand forthcoming to them, and (ii)
part of these unserved customers still prefers to buy at the higher price. This in turn provides
an incentive for low-priced sellers to hike their price, which induces a new cycle.” Several em-
pirical studies have documented the existence of Edgeworth-like price cycles in practice. Eckert
(2003) and Noel (2007a,b), for example, provide evidence of such ‘sawtooth shape’ price pat-
terns in Canadian retail gasoline markets. Among other things, they show that large firms are
likely to initiate the relenting phase through a price hike, whereas small firms take the lead in
the price war phase. Wang (2008) reports on collusive price cycles in an Australian retail gaso-
line market.® More recently, Zhang and Feng (2011) and Hauschultz and Munk-Nielsen (2020)
have shown the presence of Edgeworth-like price patterns in online search-engine advertising
and pharmaceutical markets, respectively.

This paper is naturally related to the rich body of theoretical work on capacity-constrained
price competition, a literature that basically can be divided in two parts. One focuses on the ex-
istence and characterization of the mixed-strategy Nash equilibrium. Such mixed-strategy solu-
tions have been provided by Beckmann (1965), Levitan and Shubik (1972), Osborne and Pitchik
(1986), Allen and Hellwig (1986), and Deneckere and Kovenock (1992), amongst others. An-
other part aims to restore the existence of a pure-strategy Nash equilibrium by rationalizing why
residual demand for a high-priced seller would be significantly reduced or even eliminated. For
example, Dixon (1990) shows that producers may no longer have an incentive to act as a monop-
olist on their contingent demand curve when there are cost to turning customers away. Other

solutions along this line include Dixon (1992), Tasnddi (1999) and, more recently, Edwards and

*Edgeworth (1925) examines price competition under capacity constraints. Edgeworth (1922) considers the equiv-
alent case in which suppliers are not willing to meet the demand forthcoming to them. This may occur when the pro-
duction technology exhibits decreasing returns to scale, for example. Note also that, since the MSS is a static solution
concept, it essentially provides an intuitive explanation for particular price patterns following myopic better-responses.

For an analysis and discussion of Edgeworthian price cycles based on myopic best-responses, see De Roos (2012).
> Absent capacity constraints, Maskin and Tirole (1988) show how asymmetric price cycles may emerge in equilib-

rium when firms pick prices sequentially from a grid.
®De Roos and Smirnov (2021) analyze theoretically the pricing behavior of a less than all-inclusive price cartel and

provide a rationale for collusive Edgeworth-like price cycles. There is also evidence for asymmetric price cycles in

European retail gasoline markets. See, e.g., Foros and Steen (2013) and Linder (2018).



Routledge (2019). All this work concentrates on Nash solutions and is consequently based on
best- rather than better-responses, which is the focus of our analysis.”

Capacity-constrained price competition has also been studied in controlled experimental lab-
oratory settings. Kruse, Rassenti, Reynolds, and Smith (1994), for example, conducted a series
of twenty experiments to test the wide variety of theoretical pricing predictions. Among other
things, they find a general price decline during the first periods. Towards the middle or the end,
however, they observe patterns of upward and downward price swings. This is confirmed by
Fonseca and Normann (2013) who also find prices to move up and down for a wide range of

capacities. Interestingly, they conclude that:3

...the data are better explained by Edgeworth-cycle behavior. Not only are average
prices closer to the predicted Edgeworth-cycle prices, but we cannot reject the hypothesis

that firms are engaging in some form of myopic price adjustment.

The behavioral foundation that we present in this paper advances our understanding of such
complex pricing dynamics by providing a simple and relatively uncontroversial rationale for the
observed pricing patterns.

The remainder of the paper is organized as follows. The next section presents the model.
Section 3 offers a detailed description of the MSS solution concept. Section 4 contains our main
findings. These findings are illustrated by means of a linear demand example in Section 5. Sec-

tion 6 concludes. The proofs are relegated to the Appendix.

2 Model

Consider a homogeneous-good price-setting oligopoly with a finite set of firms: N = {1,...,n}
with n > 2. Each firm ¢ € N has a production capacity k; > 0 and produces to order at con-
stant marginal cost, which we normalize to zero. Without loss of generality, we assume that
k1> ky > ... >k, > 0so that firm 1 is the (weakly) largest and firm n is the (weakly) smallest
firm in the market. Total industry capacity is given by K = >,y ki and K_;j = >} ;cnn (5} k5 is the
combined production capacity of all firms other than :.

Let market demand be given by the function D : R, — R, . We make the standard assump-
tions that D(.) has a finite upper bound (D(0)) and is twice continuously differentiable, with

D'(.) < 0. There is a choke price a > 0 and therefore D(.) = 0 at prices larger or equal than .

’It is worth noting that both better- and best-response dynamics are well-known concepts in the game-theoretic
literature on learning. A central issue in this work is whether, and under what conditions, better- and best-response
adjustments lead to convergence to an equilibrium. See, for example, Milgrom and Roberts (1990), Monderer and

Shapley (1996), Friedman and Mezzetti (2001) and Arieli and Young (2016).
8Fonseca and Normann (2013, p. 201), italics is ours.



Sellers pick prices simultaneously and we denote supplier i’s strategy space by P; = [0,0) so
that P = [ [,y P is the set of all possible strategy profiles.

Since products are homogeneous, consumers prefer to buy from a supplier setting the lowest
price. As firms may face capacity constraints, however, it is possible that only part of them will
be served in which case higher-priced sellers might still receive demand. To specify individual
(residual) demand, let Q(p;) = {j € N|p; = p;} and A(p;) = {j € N|p; < p;} denote the set of
firms that price at and below p;, respectively. Furthermore, let p_; = (p1,...,Pi—1,Di+1,---,Pn)
indicate the prices of all firms other than i. Demand for firm ¢’s products is then given by
D;(pi,p—i) = D(p;) when all its competitors charge a strictly higher price. If there is at least

one other seller setting the same price, then its demand is:

b D(p)— ), k|0

Dilps,pi) = max { —
Zjen(p) s Jext)

Finally, if firm i sets the strictly highest price in the industry, its demand is:
Di(pi,p—i) = max {D(p;) — K_;,0}.

Thus, (i) customers first visit the lowest-priced seller(s) at the set prices, (ii) at equal prices,
demand is allocated in proportion to production capacity, and (iii) rationing is efficient.’

Profits are then given by:
i (pi, p—i) = pi - min{k;, D;(p;, p—;)}, foralli e N.

To facilitate the ensuing analysis, we denote firm i’s profit by 7¢(p;) when p; is the strictly low-
est price and by 7/ (p;) when p; is the strictly highest price in the industry. Furthermore, we
assume that 7/ (p;) = p;(D(p;) — K_;) is strictly concave when there is residual demand for the
highest-priced firm (i.e., when D(p;) > K_;) and we write p} = argmax,, 7/(p;) to indicate
the corresponding residual profit-maximizing price.'’ Also, assuming that K < D(0), let p be
the price for which market demand equals total production capacity (D(p) = K) and let p = 0
when K > D(0). We refer to p as the market-clearing price.!! Figure 1 provides a graphical
illustration.

The next result relates an individual price choice to the market-clearing price p. Specifically,

it shows that if industry capacity is sufficiently small (i.e., K < D(0)), then m;(p;,p—i) = piki

“Such a surplus maximizing scheme is also used by Levitan and Shubik (1972), Kreps and Scheinkman (1983),

Osborne and Pitchik (1986) and Edwards and Routledge (2019), amongst others.
"We assume strict concavity for analytical convenience. Strictly speaking, it would be sufficient to impose a weaker

requirement such as single-peakedness.
'To economize on notation, we refer to p sometimes as a price and sometimes as a price profile with all firms pricing

at p. It is clear from the context what is meant. Note further that, since production is to order, there are in fact many

market-clearing prices in this model.
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Figure 1: An illustration of firm 1’s profit function when n = 2.

provided that D(p;) > K. That is, a firm produces at capacity whenever there is excess demand

at the set price.
Lemma 1. If 0 < p; < p, then m;(p;, p—;) = piks, forallie N.

As is well-known, existence of a pure-strategy Nash equilibrium in capacity-constrained pric-
ing games critically depends on available production capacities.'? If capacities are large enough
in relation to market demand, then there is a symmetric ‘Bertrand-type” pure-strategy solution
in which all sellers price at cost. A pure-strategy equilibrium also exists when capacities are suf-
ficiently small in the sense that market demand is elastic at all prices above p.'* In that situation,
all suppliers charge the same market-clearing price and produce at capacity. Finally, for an in-
termediate range of production capacities, there is no pure-strategy Nash solution. There does

exist a mixed-strategy equilibrium, however, which will be elaborated on in Section 4.3 below.

3 Solution Concept

In the following, we do not take the standard Nash approach. Instead, we employ the solution
concept of Myopic Stable Set which is based on the idea that sellers may simply aim to improve
upon their situation and not necessarily maximize their profits. In this section, we introduce this

equilibrium concept in detail.

12See, for example, Chapter 5 of Vives (1999).
3For a detailed analysis of this possibility, see Tasnadi (1999).



Consider a price profile p = (p1,...,pn) € P. We say that an alternative price profile p’ € P
dominates p when there is a firm that can unilaterally deviate to p’ and earn a higher profit under
p' than under p. That is, given the strategy profile p, this firm has a better-reply since it can
myopically improve itself by inducing price profile p'.

Definition 1. Let p,p’ € P be two price profiles. The price profile p’ dominates p, p’ > p, if there exists a
firm i € N such that m;(p') > m;(p) and p'_, = p_.

Next, given some price profile p € P, we write f(p) to describe the subset of P consisting of

all dominating price profiles in conjunction with p:

fp) ={p} v {p' € Plp’ > p}.

Given f, let the set of pure-strategy Nash equilibria be denoted by:

NE = {p e P|f(p) = p}.

To capture the better-reply dynamics that can be generated by the firms, we define the x-fold
iteration f“(p) as the subset of P that contains all the price profiles obtained by a composition of
dominance correspondences of length x € N. Thus, p’ € f*(p) when there is a p” € P such that
p € f(p") and p” € 5 !(p). Note further that if & < t, then f*(p) < f(p), for all k,t € N. We

indicate the set of prices that can be reached from p by a finite number of dominations by f~(p):

M) = .

keN

Given p/, p € P, we say that a price profile p’ asymptotically dominates p when, starting from p,

it is possible to get arbitrarily close to p’ through a finite number of myopic improvements.

Definition 2. A price profile p’ € P asymptotically dominates p € P if there exists a number x € N and
a price profile p” € f* (p) such that ||p’ — p"|| < € for all e > 0.

We denote by f®(p) the set of all strategy profiles in P that asymptotically dominate p. Formally,
f*(p) ={p € PI¥e > 0, 3u e N,3p" € f*(p) : [Ip" = p"|| < ¢}.

Notice that the set f*(p) coincides with the closure of the set fN(p).
We now have all the ingredients available to define the Myopic Stable Set (MSS) for the

capacity-constrained pricing game:

Definition 3. Let G = {N, (P;, m;),. } be a capacity-constrained pricing game as specified in Section 2.
The set M < P is a Myopic Stable Set when it is closed and satisfies the following three conditions:

i. Deterrence of External Deviations: Forall p e M, f(p) < M.

7



ii. Asymptotic External Stability: Forall p ¢ M, f*(p) n M +# (.

iii. Minimality: There is no closed set M' < M that satisfies conditions i and ii.

Suppose there is a set M of myopically stable price profiles. ‘Deterrence of External Deviations’
means that no firm can profitably deviate to a price profile outside M. ‘Asymptotic External
Stability” requires that any price profile outside M is asymptotically dominated by a price profile
in M. Hence, from any price profile outside M it is possible to get arbitrarily close to one in M
by a finite number of myopic improvements. Finally, ‘Minimality” means that there is no smaller
(closed) set for which the first two conditions are met. Roughly speaking, the MSS can thus be
pictured as a set of price profiles that, once entered through the dominance dynamics, is never
left.

4 Results

For normal form games, Demuynck, Herings, Saulle and Seel (2019) prove the existence of
a unique MSS when the strategy space is compact and the payoff functions are continuous. The
continuity assumptions are not satisfied in the capacity-constrained pricing model, however. In
this section, we show that this game also possesses a unique MSS for any given level of capacities.
Moreover, we characterize this solution and compare it to the set of pure-strategy Nash equilib-
ria as well as to the support of the mixed-strategy Nash equilibrium. Among other things, we

establish that the MSS encompasses all existing Nash equilibrium solutions.

4.1 Pricing Equilibria with Large or Small Capacities

We begin with exploring the relationship between the MSS and the set of pure-strategy Nash
equilibria. Towards that end, denote a subset of sellers S < N minimal when » ;¢\ ;1 k; = D(0),
for all i € S. That is, each combination S has sufficient capacity to meet market demand at a zero
price when a member leaves the coalition. To facilitate the analysis, let us now characterize the

set of pure-strategy Nash equilibria.*

o If K_; > D(0), then

NE — {p e Plp e [1,0s{0} x HieN\S[OaOO)}~
o If K < D(p}), then

NE = {pe Plpi=p >0, forallie N}

Vives (1986) provides conditions for non-emptiness of the set of symmetric pure-strategy Nash equilibria under

a surplus maximizing scheme. In Proposition 1, we additionally admit asymmetric pure-strategy Nash equilibria.



o If K > D(p})or K_; < D(0), then
NE - {2}

Proposition 1. Let G be a capacity-constrained pricing game as specified in Section 2. The set NE is the
set of pure-strategy Nash equilibria of G.

Simply put, there are two types of pure-strategy Nash equilibria. If industry capacity is suf-
ficiently large, then there is a set of pure-strategy solutions, all of which have firms making zero
economic profit. One solution in this case is the symmetric ‘Bertrand-type” pure-strategy equi-
librium in which all firms price at cost. There are also many asymmetric equilibria in which part
of the firms price above cost and have no demand. If aggregate capacity is sufficiently small, then
there is a symmetric pure-strategy Nash equilibrium in which each firm sets its price equal to the
market-clearing price.

To better illustrate the relation between the MSS and the set of pure-strategy Nash equilibria,

we now introduce the so-called weak improvement property.

Definition 4. A normal form game satisfies the weak improvement property when NE # & and f*(p) n
NE # & for each price profile p ¢ NE.

A normal form game possesses the weak improvement property when any non-Nash equilibrium
strategy profile converges to a Nash equilibrium through a finite sequence of myopic improve-
ments. Demuynck, Herings, Saulle and Seel (2019) extend previous results by Monderer and
Shapley (1996), Friedman and Mezzetti (2001) and Dindds and Mezzetti (2006) by showing
that supermodular games (Friedman and Mezzetti, 2001) and pseudo-potential games (Dubey,
Haimanko and Zapechelnyuk , 2006), including games of strategic complements or substitutes
with aggregation (e.g., Cournot oligopolies), exhibit the weak improvement property. The capacity-
constrained pricing model does not belong to any of the aforementioned game classes, however.
Nevertheless, we establish with the next proposition that this type of games also exhibit the weak

improvement property.

Proposition 2. Let G be a capacity-constrained pricing game as specified in Section 2. If the set of pure-

strategy Nash equilibria NE is nonempty, then this game exhibits the weak improvement property.

This result states that any price profile that is not a pure-strategy Nash equilibrium is asymp-
totically dominated by the pure-strategy solution(s). That is, from any price profile not in NE
it is possible to get arbitrarily close to a pure-strategy equilibrium by a finite number of myopic

improvements. !>

It is noteworthy that Proposition 2 is consistent with Bérgers (1992) who shows that the market-clearing price
survives iterated elimination of strictly dominated strategies when the (n — 1) firms have sufficient capacity to meet

demand when pricing at marginal costs.



Using the preceding results, we now show that the set of pure-strategy equilibria coincides

with the MSS whenever the former is nonempty.

Theorem 1. Let G be a capacity-constrained pricing game as specified in Section 2. If the set of pure-
strategy Nash equilibria NE is nonempty, then NE is the unique Myopic Stable Set.

The above approach captures the potential pricing dynamics of the game. This includes prices
that may emerge under myopic improvements and in particular also the pure-strategy Nash
equilibrium prices. More specifically, following Proposition 2, there is a price path of myopic
improvements from any non-Nash price profile to a pure-strategy Nash profile. Once the pricing
dynamics enters the set NE, however, there is no way out. Indeed, by the very nature of a Nash
equilibrium, none of the sellers can profitably deviate to a price profile outside NE. Combining
these two forces yields the result of Theorem 1; that is, there is a unique MSS that coincides with

the set of pure-strategy Nash equilibria NE.

4.2 Myopic Stability with Intermediate Capacities

Asindicated above, the set of pure-strategy Nash equilibria is empty in the capacity-constrained
pricing model when capacities are in an intermediate range (i.e., when D(p}) < K < D(0) + k1).
We now proceed with analyzing the MSS for these types of cases. To that end, we introduce two
notions that are useful in the ensuing analysis; the iso-profit price and the hyper-competitive

price.

Definition 5. For each firm i € N, the iso-profit price is:

min {p; € Pi|n(p;) = p - ki withp; # p}  if D(0) > K_; > D(p}) — ki,

Z P otherwise.

Given that all its competitors charge a lower price, the iso-profit price of firm i is the lowest price
above the market-clearing price p for which it receives the same profit as when it would price at
p- It should be emphasized that the iso-profit price differs from the market-clearing price only
when the following two conditions hold. First, firm i must face residual demand for some prices
(ie., D(0) > K_;). Second, its residual profit-maximizing price must exceed the market-clearing
price, which requires a sufficiently large capacity (i.e., k; > D(p}) — K_;). If either of the two
conditions is violated, then the iso-profit price coincides with the market-clearing price.

A detailed analysis of the various scenarios is provided in Lemma 2 below. Part (i) of Lemma 2
gives conditions under which the iso-profit price exceeds the market-clearing price and shows
that the iso-profit price is increasing in capacity. Part (ii) and (iii) describe when the iso-profit

price coincides with the market-clearing price, which is the case when the firm is sufficiently
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small. Part (ii) captures the possibility that a firm faces residual demand, but where its residual
profit-maximizing price is lower than the market-clearing price. Part (iii) shows the possibility
that a firm faces no residual demand at any price. In all cases, it holds that the iso-profit price of

the largest firm is strictly positive and above the market-clearing price.

Lemma 2. Suppose there is no pure-strategy Nash equilibrium.

(i) If D(0) > K_; > D(p}) — ki, foralli € N, and k; > k;j, foranyi,j € N, thenp; >p; > p > 0.
(ii) Forall i € N\ {1}, if k; < D(p]) — K_;, then p; = p. For firm 1, p; > p.

(iii) If D(0) < K_,,, withn > m > 1, then p; = p = 0 for each firm i = m,m + 1,m + 2, ..., n weakly

smaller than m.
Let us now introduce the hyper-competitive price.

Definition 6. For each firm i € N, the hyper-competitive price is:
pi = {min{Pz‘ € Pl (1) = pi - kz} :

In words, the hyper-competitive price is the lowest price for which a firm obtains the same profit
as when it sets the iso-profit price of the largest seller, given that this iso-profit price is the strictly
highest price in the market.

Lemma 3 presents some useful properties. Part (i) shows that hyper-competitive prices are
(weakly) below the market-clearing price whenever the latter is strictly positive. Part (ii) estab-
lishes a positive relationship between the hyper-competitive price and firm size. Part (iii) states

that the hyper-competitive price is zero for a highest-priced firm not facing residual demand.

Lemma 3. Suppose there is no pure-strategy Nash equilibrium.

(i) If K < D(0) and each firm i € N\{1} is strictly smaller than firm 1, then 0 < p; < p and p1 = p.
(ii) If K < D(0) and k; > kj, then p; > pj, forall i,j € N.

(iii) If D(0) < K_;, then p; = p =0, forall i € N.

Finally, Lemma 4 relates the iso-profit and hyper-competitive prices to a firm’s profit. Part (i)
of Lemma 4 states that, given that the largest supplier sets its iso-profit price, all his rivals can
profitably raise their price from the market-clearing price p to some higher price weakly below
firm 1’s iso-profit price. Part (ii) complements this by showing that if firm 1 prices below p; and
any highest priced seller ¢ other than firm 1 prices at p;, then the latter can myopically improve

by reducing its price below the market-clearing price.

Lemma 4. Suppose there is no pure-strategy Nash equilibrium. For all i € N\{1}:
(i) If p1 = Py, then m;(p;, p—i) > mi(p) for p; € (p,P1)-
(i) If p1 < Py, then mi(ps, p—i) > =} (py) for pi € (Pi, p-

11
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Figure 2: An illustration of the iso-profit price p; and the hyper-competitive price ps.

A graphical illustration is provided in Figure 2.

Now that we have introduced the iso-profit and hyper-competitive prices as well as some of
the corresponding properties, we can analyze the MSS when capacities are in an intermediate

range. Specifically, we show in the following that the MSS is given by:
M={peP‘ﬁi<pi<p1, \ﬁeN}- (1)

Theorem 2. Let G be a capacity-constrained pricing game as specified in Section 2. If the set of pure-
strategy Nash equilibria NE is empty, then M as given in (1) is the unique Myopic Stable Set.

In the following, we provide some intuition for this set solution by discussing it in relation to
three economic phenomena: (1) Edgeworth Price Cycles, (2) Hyper-competition, and (3) Merg-

ers.

4.2.1 Edgeworth Price Cycles

In Figure 3, the MSS is given by the shaded area. In principle, this area admits different

types of pricing patterns. The red arrows represent one particular better-response price path.
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Starting at point ‘c” firms are undercutting each other’s prices until point ‘a’. At ‘a’, firm 1 hikes
its price to p; at point ‘b”. This, in turn, makes it a better-response for firm 2 to price slightly
below p;. As this example illustrates, the MSS naturally captures Edgeworth-like price cycles

and consequently provides a clear rationale for such ‘sawtooth shape’ price patterns.

» 1 1
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Figure 3: An illustration of the Myopic Stable Set when n = 2 and k; > k».

4.2.2 Hyper-competition

Another striking possibility is that a smaller supplier may find it in his interest to set a price
below the market-clearing price. Such a scenario is depicted in Figure 4. As before, suppose that
there are two sellers who price close to the market-clearing price at “a’. By hiking its price, firm 1
may then induce a price profile at "b”. This, in turn, may trigger firm 2 to slightly undercut firm 1’s
price, which leads to a price profile around 'c’. In particular, firm 2 may set a price p5 € (Py, Py ]-
Slightly undercutting p/, may then constitute a better-response for firm 1, which results in a price
profile at, say, 'd’. Yet, in that case it is profitable for firm 2 to reduce its price from pf to some

price pf € (p2, p] below the market-clearing price. This would result in a price profile around ‘e’.
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Firms can leave such a hyper-competitive state by raising their price to the market-clearing level,

which in turn may induce similar pricing dynamics.!®

b2

Figure 4: An illustration of the Myopic Stable Set when n = 2 and k; > k».

The MSS therefore provides a rationale for ‘price wars” where all but the largest seller set a

price below the market-clearing price.

Corollary 1. If each firm i € N\{1} is strictly smaller than firm 1, then there exists a price profile p € M
with p1 = p and p; € [p;, p).

Note that such hyper-competitive price profiles are Pareto-dominated in that all producers would
be better-off (and no one worse off) when pricing weakly above the market-clearing price. More-
over, this result highlights the possibility of an equilibrium shortage, i.e., a situation in which

market demand exceeds aggregate supply.

*Note that this possibility strongly relies on the assumption of firms following myopic better responses since a

hyper-competitive price like at ‘e’ does not constitute a best-response to ‘c’.
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4.2.3 Mergers

How is the MSS affected when there is a change in firm size distribution? We address this
question by analyzing the impact of a merger. In the context of our model, a merger is taken
to mean a transformation of two or more firms into a single, larger, entity. We consider two
cases: (i) merging parties establish a firm with a production capacity that exceeds the capacity
of the biggest pre-merger supplier (Proposition 3), and (ii) merging parties form a firm with less
production capacity than the largest pre-merger supplier (Proposition 4). In the following, let
Kg = Y cq ki denote the joint capacity of a merger between a strict subset of firms S — N.

We start with scenario (i) in which the merger becomes the new industry leader in terms of
production capacity. The next proposition shows that this induces a wider range of myopically
stable prices when the smallest firm is not taking part in the merger. Specifically, it raises the
upper bound since there is a new largest firm post-merger that has a higher iso-profit price.
This, in turn, creates a downward pressure on the hyper-competitive prices of the non-merging

parties. All else equal, this effect is more pronounced the larger the merger.

Proposition 3. Consider a merger between a subset of firms S c N and suppose that Kg > k.

(i) The merger increases the upper bound of the Myopic Stable Set M. Moreover, the upper bound is rising
with the size of the merger.

(ii) If D(0) < K < D(0) + ki, then the merger has no effect on the lower bound of the Myopic Stable Set
M.

(iii) If D(pt) < K < D(0), then the merger leads to a decrease of the non-merging parties” hyper-

competitive prices.

Let us now turn to scenario (ii), which is the possibility that the merger does not affect the
size of the largest firm in the industry. In this case, there is a contraction of the MSS when the
smallest firm is involved in the merger. Specifically, since the iso-profit price of the biggest sup-
plier remains unaffected, the upper bound of the MSS does not change. By contrast, the hyper-
competitive prices of the merging parties increase so that the merger leads to a (weak) increase

of the minimum myopically stable price.

Proposition 4. Consider a merger between a subset S — N of firms and suppose that Kg < k.

(i) The merger has no effect on the upper bound of the Myopic Stable Set M.

(ii) If D(0) < K < D(0) + k1, then the merger has no effect on the lower bound of the Myopic Stable Set
M.

(iii) If D(p}) < K < D(0), then the merger leads to an increase of the merging parties’ hyper-competitive

prices.

In sum, any merger that excludes the smallest firm and becomes the industry leader in terms

of production capacity induces a broader range of myopically stable prices. In particular, the
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upper bound of the MSS increases, whereas the hyper-competitive prices of the non-merging
parties decrease. By contrast, there is a (weakly) narrower range of myopically stable prices
when the merger does not become the biggest industry player. In that case, the upper bound of
the MSS is not affected, whereas the hyper-competitive prices of the merging parties are replaced
by a single higher hyper-competitive price of the merger. Although the analysis is conducted
assuming a single merger, results would be similar in case of multiple mergers. This is because
the critical driver of the above findings is the impact on the MSS upper and lower bounds. The
key question is therefore whether or not there is a merger that takes over the leading position in

the industry.

4.3 Equilibria in Pure and Mixed Strategies

Theorem 1 and Theorem 2 establish the existence and characterization of a unique Myopic
Stable Set for any given level of capacities. In particular, they offer a pure-strategy solution when
there is none in Nash terms. Let us now conclude this section by relating the MSS as derived
above to the mixed-strategy Nash equilibrium. The existing literature has repeatedly shown that
there is a Nash equilibrium in mixed strategies under fairly weak assumptions.17 Specifically,
since in the above capacity-constrained pricing model demand is continuously decreasing and
residual profit functions are continuous and strictly concave, there exists an equilibrium in mixed
strategies without ‘holes” when capacities are within an intermediate range, i.e., when D(p}) <
K < D(0) + k;.'® We now consider this mixed-strategy equilibrium in more detail.

To begin, recall that there exists a unique residual profit-maximizing price p; for each firm
i € N. By construction of the contingent demand functions D(p;) — K_;, it then follows that
p™ = pi = p5 = ... = p), where p™ is the monopoly price. Note that p approaches p; when
K_; approaches zero.!” Since none of the sellers has an interest in charging a price in excess of
p}, this price constitutes the upper bound of the mixed-strategy support. Let the lower bound be
indicated by p;, where p; # p} is the price solving

p; [D(p;) — K—i] = min{pik;, pi - D (i)} -
The mixed-strategy support is therefore given by:

k=] [pi.pilc P.
ieN

"Maskin (1986) provides a general analysis and discussion of these existence conditions.
18Gee, e.g., Deneckere and Kovenock (1992) and, more recently, Tasnddi (2020).
YSince for any i,j € N, pf and p;!‘ are such that:

D(p¥) + pfD'(pf) = K_; and D(p}) + p¥D'(p¥) = K_;,

and therefore K—; < K_; < p; > p} by concavity of firms’ (residual) profit functions.
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Let us now relate K to the MSS. Recall that in this case there is a unique MSS given by the set M
(Theorem 2). The next result shows that the MSS permits larger price fluctuations in comparison

to the mixed-strategy equilibrium.

Theorem 3. Let G be a capacity-constrained pricing game as specified in Section 2. If the set of pure-
strategy Nash equilibria NE is empty, then K < M.

The intuition underlying this finding is as follows. Regarding the upper bound, with random
strategies no firm puts mass on prices above the maximizer of its (residual) profit function. By
contrast, the MSS permits such prices since prices in excess of the maximizer may still constitute
a better-response. The story is to some extent similar for the lower bounds. To see this, notice
that in a mixed-strategy equilibrium none of the sellers prices below p because either it can sell
its entire capacity at p or p = 0. As there are no pure-strategy Nash equilibria in this case, there
is at least one firm that would be willing to hike its price when all firms price at p. It can be easily
verified that this holds for the largest firm. Since the higher-priced firm has residual demand, the
lower-priced firms are capacity-constrained. This provides an incentive to also raise their prices,
which in turn implies that no seller puts mass on prices weakly below p. By contrast, following
the definition of the MSS upper bound p,;, p must be part of the MSS since profits are the same
at both prices. In fact, and as illustrated in Figure 2 and Figure 3 above, it is quite possible that
one or more sellers have a better-response below p.
In sum, the above analysis shows that myopic sellers set the same price as their profit-maximizing

counterparts when production capacities are either ‘large” or ‘small’. For an intermediate range
of capacities, the set of mixed-strategy profiles is a subset of the MSS. The MSS thus encompasses

all Nash solutions. The next section provides an example illustrating these findings.

5 Example

Let us examine a Bertrand-Edgeworth duopoly with linear market demand: D(p) = 1 — p.
Demand for the products of firm i, ¢ = 1,2 and i # j, is then described by the following demand

structure:
1—pi if p; < pj,
Di(pipj) = { gl (1 =) if pi = pj, (2)
max{0,1 —p; — k;} if p; > p;j.

It is assumed that k; > k2 so that firm 1 is strictly larger in terms of capacity. Below, we derive the

MSS for the entire range of production capacities and compare it to the standard Nash solution.
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5.1 Nash Equilibria

Let us begin with the situation where capacities are ‘large’ so that a pure-strategy Nash equi-
librium exists. Specifically, this is the case when each seller can serve the whole market at the
competitive price, i.e., when ki > ky > 1. The Nash equilibrium is then such that both firms

charge a price equal to marginal cost and therefore (by Theorem 1):
M = NE = {(0,0)}.

A pure-strategy Nash equilibrium also exists when capacities are sufficiently small. Specifically,

this is true when k; < k;, where k; solves the following equality:
k= D(PT) — ka. (3)

In our linear example, firm 1’s residual profit-maximizing price is:
1
1=z0—ky).
P =35 ( 2)
Substituting in (3) and rearranging gives the threshold value k; = (1 — k2) /2. Thus, for k1 < k;
(or, equivalently, ko < 1 — 2k;), there is a pure-strategy solution for which the market clears.

Moreover, by Theorem 1, this pure-strategy Nash equilibrium coincides with the MSS:
M =NE ={(1—Fki — ko, 1 — k1 —ka)}.

For the capacity ranges specified above there exists no nondegenerate mixed-strategy Nash
equilibrium. Let us now turn to the possibility where there is a nondegenerate Nash equilibrium
in mixed strategies. This is the case when k; > k; and 1 > k3 > 1 — 2k;. To determine the lower
bound of the mixed-strategy support, notice that firm 1 is indifferent between being the high-

and the low-priced firm when:20

T () = pt - (L—pf — ko) = = (1 — k2)® = 7} (1) = pr - min{ky, 1 — p1},

e~ =

so that

1
pr=—01- k2)2 when ky <1 —+/1— (2k1 —1)2,
4k,

.11
p1=§—§4/2k2—k%when1— 1—(2k —1)2 <ky < 1.

The mixed-strategy support of this Bertrand-Edgeworth game is therefore given by:

2
~ % (1—]{32) 1— ko ~ 1 1 21—k2
- — | = 2. /2Ky —
[plapl] [ Ak, ) 9 or [phpl] 2 2 ko k27 9 5

depending on the capacity levels.

“Note that in this duopoly example p1 exceeds p2, so that p1 is the lower bound of the mixed-strategy support. For

a detailed analysis, see Deneckere and Kovenock (1992).
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5.2 Myopic Stable Set

Let us now derive the MSS for this intermediate range of capacities. By Theorem 2, we know

that the upper bound of the MSS is the price p; solving
w1 (P1) = P1 [D(Dy1) — ko] = m (B) )
whereas the lower bound for the largest firm (firm 1) is given by:
p = max {0, D7k + ka)} . (4)

We therefore need to distinguish two cases.
The first is where combined production capacity is sufficiently large to serve the whole market

at the competitive price: k1 + k2 > 1. In this case, p = 0 and p, is the price that solves
w1 (B1) = P1 [D(Dy) — ko] = m1 (p) = 0,

which implies
D(py) = ks, and therefore 5, = D™ (kg) = 1 — ko.

In this case, p = 0 is also the MSS lower bound for firm 2. Thus, when 1 > ky > 1 — ko, the MSS

is symmetric and given by:
M =[0,D " (k2)] x [0,D"(ko)] = [0,1 — ko] x [0,1 — ks].

Observe that an increase in ky lowers the upper bound of the MSS since it reduces the residual
demand for firm 1’s products when it is the high-priced seller. This, in turn, makes that the
‘optimal high price’ is lower leaving fewer prices that qualify as a better-response.

Now consider the other possibility where k1 + k2 < 1so thatp = 1 —k; — k2 > 0. In this case,
the upper bound of the MSS is obtained by solving

p-(I—p—ka)=py (1 -Dpy — ka),

which is equivalent to
ki-(1—Fk1—ko)=py- (1 =Py — k2),

and therefore p; = k;. In contrast, the lower bound of the MSS differs across firms. For firm 1

this lower bound is the same as in the previous case. For firm 2, however, it is the price p» given

by:

w5 (B1) = P1 [D (By) — k1] = P2 - ko
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with Py # py. This price solves k; (1 — 2k;1) = paka, which gives py = ki (1 — 2k1) /k2 < p. Thus,
when 1 — ky > k1 > (1 — k2)/2, the MSS is asymmetric and given by:

M = @,T)l] X [ﬁg,f)l] = [1 — kl — kQ,kl] X [kl (1 — le)/kg, kl] .

Notice that k; has a positive impact on the size of the MSS since it reduces the lower bounds
while increasing the upper bounds (Proposition 3).2! Also, and in contrast to the previous case,

k2 has a positive impact on the size of the MSS by reducing the lower bounds.

5.3 Comparison

To conclude, let us now compare the range of the mixed-strategy support [p1, pi] with the
price range of the MSS for all (relevant) capacity levels. Figures 5 and 6 provide a graphical

illustration.

111 k&

Figure 5: Myopic Stable Set in a linear demand duopoly with ky = %k‘l.

In Figure 5, the MSS is depicted by the solid (thick) black line for every level of ki and k3
(expressed as a function of k1, which in this figure is k2 (k1) = % - k1). Starting from the left, for
sufficiently small capacities there is a pure-strategy Nash equilibrium that coincides with the MSS

(Theorem 1). For this specific example, this is true as long as k1 < k; ~ 0.345.22 At that point,

*'Note that p is decreasing in k; for k1 > 1/4, which holds true in this case.
ZThis threshold value can be computed by using k1 = k;, = % and k2 = k1. Combining gives k1 ~ 0.345
and k2 ~ 0.31.

20



the market-clearing price p (indicated by the thin solid line) starts to fall below the maximizer
of 7 (indicated by the straight dashed line). This provides an incentive for firms to hike their
price and become the high-priced firm.

The increase in capacities not only undermines the existence of a pure-strategy Nash solution;
it also widens the range of better-responses. To see this, recall that p, is the lowest price above p
for which firm 1 obtains the same profit. Therefore, and due to the fact that the profit function is
strictly concave and has a unique maximum (see Figure 1 and Figure 2), the MSS upper bound
(py) is increasing and the MSS lower bound (p2) is decreasing in the gap between p} and p. This
range of better-response prices is rising until k1 ~ 0.53, the capacity level at which p becomes
zero.”> Beyond that point, p remains zero. Since profits at p are zero, profits at p; must be zero
too. Note that residual demand for the high-priced seller gradually decreases when capacities
grow further. This implies that the residual demand choke price is declining and therefore p,
declines as well. The range of better-response prices is narrowing until k&1 > % and ko > 1.
At that point, the MSS coincides with the pure-strategy Nash equilibrium in which both firms

charge a price of zero.

Di

b1
D2

025  k 0.75 k1

Figure 6: Myopic Stable Set in a linear demand duopoly with ks = 1.

The MSS can be compared to the mixed-strategy support [p1, pf]. A non-degenerate Nash

equilibrium in mixed strategies exists when capacities are within the intermediate range 0.345 ~

BThis maximum MSS price interval is reached at k1 = 1 — k». Using k2 = %Iﬁ, this gives k1 ~ 0.53.
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ki < ki < 2. InFigure 5, the mixed-strategy support is the vertical distance between the dashed
lines. The upper bound of the support is given by the maximizer of the residual profit function
7, which is linearly decreasing in k1. Notice that for this range of capacities, the upper bound
of the MSS, p,, is higher than p}, because there are prices in excess of this maximizer that still
constitute a better-response to the market-clearing price. Note further that the mixed-strategy
support depends quadratically on k; and reaches its maximum at kf ~ 0.618. Finally, observe
that the lower bound of the mixed-strategy support, p1, exceeds both p and p>. Figure 5 thus
visualizes how the MSS strictly includes the support of the mixed-strategy Nash equilibrium
(Theorem 3).

Figure 6 gives another illustration of the same linear demand duopoly example, but this time
the capacity level of the smallest firm is kept fixed at ks = 1. Starting at k1 = 0.25, this means
that the difference in firm size is growing when k; increases. The threshold value at which the
existence of a pure-strategy equilibrium breaks downis at k; = % = 0.375. At that point, the
range of better-responses widens until k£; = 0.75 for the same reasons as before. Yet, and unlike
the scenario in Figure 5, p; is not declining and remains constant for larger values of k. This is
because k3 is constant, which means that the residual demand for firm 1 when it is the higher
priced seller is constant too. This, in turn, implies that the maximizer is independent of k; as well
as the iso-profit price p;.

Similar to the case depicted in Figure 5, Figure 6 also visualizes how the mixed-strategy sup-
port (given by the vertical distance between the dashed lines) is strictly included in the MSS as
indicated by the solid (thick) black line (Theorem 3). Furthermore, Figure 6 illustrates the pos-
itive relationship between the size of the MSS and the size of the biggest market player when

capacities are in an intermediate range (Proposition 3).

5.4 Merger in a Symmetric Oligopoly

Let us conclude this section by illustrating the impact of a merger on the MSS. To that end,
we consider a simple linear demand oligopoly with n identical firms. Each firm has a production
capacity k > 0 so that total industry capacity is given by K = nk. The demand structure is the
n-firm version of the duopoly demand specification presented above. In what follows, our focus
is on the situation where there is no pure-strategy Nash equilibrium. That is, capacities are in an

intermediate range: D(p}) < K < D(0) + k, which implies 1/ (n+ 1) <k < 1/(n —1).

5.4.1 Pre-merger

To specify the MSS, recall that the upper bound is given by the iso-profit price (Theorem 2),

which is the price p that solves:

' (p) =P[D(P) — (n— 1) k] = m; (p) -

22



The lower bound of the MSS is given by:
p =max{0,D ' (nk)}. (5)

Asbefore, we need to distinguish two cases. The first is when total industry capacity is sufficiently
large to meet market demand at the competitive price: n -k > 1 or k > 1/n. In this case it holds

that1/(n — 1) > k > 1/n and p = 0 so that the iso-profit price is determined by:
' () =p[D(@) — (n—1)k] =7 (p) =0,

which implies
D@)—(n—1Dk=0=p=D" (n—1)k)=1—(n—1)k.

Thus, in this case the MSS is symmetric and given by:
M=1[0,1—(n—1)k]".

Now consider the second possibility where 1/ (n + 1) < k < 1/n and p > 0. In this case, it
holds that D(p) = 1 — p = nk so that p = 1 — nk > 0. The iso-profit price is then obtained by

solving;:
p-(1-p—(n—1)k)=p-k=(1—nk) k,

which gives p = k. Moreover, each firm’s hyper-competitive price coincides with the market-

clearing price pre-merger. Taken together, the MSS is therefore given by:
M = [p,p]" = [1—nk,k]".
5.4.2 Post-merger

We now consider the impact of a merger between a subset of firms S < N on the MSS M,
where 1 < s < n is the number of firms involved in the merger. Since the merger becomes
the largest industry player, the post-merger upper bound of the MSS is given by p,, where the

subscript ‘s’ indicates the merged entity. This iso-profit price is the price solving:

e (B) = Ps [D(B,) — (n— s) k] = 75 (p) -

Like in the pre-merger situation, we need to distinguish two cases. One is where total pro-
duction capacity is sufficient to serve the market at the competitive price: (n —s)-k+ (s- k) > 1

or k > 1/n. In this case, p = 0 and the iso-profit price of the merger (p,) is the price that solves:

7l (D) = b5 [D(Ds) — (n — 5) k] = 75 (p) =0,

23



which implies
D(py) — (n =)k =0, py =D ((n—s)k) =1~ (n—s) k.

The lower bound remains p = 0 so that the MSS post-merger (M’) is given by:
M =1[0,1—(n—s)k]" 5.

Since the lower bound remains unaffected and the upper bound increases with the size of the
merger, there is a wider range of myopically stable prices in this case.
The second situation is one with a strictly positive market-clearing price: p = 1 —nk > 0. The

iso-profit price of the merged entity is then given by:

ﬂ-? (ﬁs) = Ds [D(]_)s) - (n - 8) k] = Ts (E) = (1 - ’I’Lk) Sk7
which implies p, = sk.

D 2~

Pa_g = 0.819

Doy = 0.728

ﬁ8=5 - 0455 -

Doy = 0.095
p =0.05

D Doy Ds=5 Ds=7 Ds—g pi
0.05 0.095 0.455 0.728 0.819

Figure 7: Effect of mergers on MSS coordinates {p;, pj}ics, jen\s forn =10,s = 1,s =55 = 7,5 =
9and k£ = 0.091

Regarding the lower bound, recall that the hyper-competitive price of the largest seller coin-

cides with the market-clearing price. Hence, for the merging firms, the hyper-competitive price
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remains the market-clearing price in this case. Next, let us determine the hyper-competitive price

of the non-merging parties, p; for j € N\S, who are the smallest industry members post-merger:
Pj- k= (ps) =Dy [D(Bs) — (n— 1) k],

which implies
pj=s[1—sk—(n—1)k].

Taken together, the MSS post-merger is therefore:
M' = [p,sk] x [s(1—(n+s—1)k) T

Notice that p, = sk > p = k for any s > 1 so that the upper bound of the MSS monotonically
increases in the size of the merger. As to the lower bound, these hyper-competitive prices are
concave in s and reach there maximum at (1 — &k (n — 1))/2k, which is smaller than 1. Hence,
the lower bound is decreasing in merger size until it reaches zero. Figure 7 provides a graphical
illustration of how the MSS expands with the size of the merger.

In sum, this example shows how a merger can (weakly) reduce the lower bound and strictly

increase the upper bound of the MSS, thereby inducing a wider range of myopically stable prices.

6 Concluding Remarks

Within the growing body of work on behavioral industrial organization, there is an increasing
focus on behavioral aspects of the firm. In this paper, we have relaxed the common assumption
that firms are pure profit-maximizers and supposed that sellers seek myopic improvements in-
stead. Under this assumption, we addressed a classic and persistent question in economics: How
are prices determined in industries with a few powerful firms? To analyze this oligopoly pricing
problem, we employed the Myopic Stable Set solution concept within the context of a capacity-
constrained pricing game and established the existence of a unique MSS for any given level of
capacities. This result was then compared with the standard Nash solution.

A main takeaway from our analysis is that the less demanding behavioral assumption of firms
choosing myopic better-responses does not affect existing pure-strategy Nash price predictions.
If the set of pure-strategy Nash equilibria is nonempty, like when capacities are sufficiently large
or small, it coincides with the MSS. With moderate-sized capacities, the Nash equilibrium is in
mixed strategies. For these cases, all prices in the mixed-strategy support are part of the MSS.
This set solution therefore offers an alternative foundation for oligopoly pricing. Moreover, we
have shown that the MSS provides a rationale for different types of pricing patterns. In particular,
it gives an explanation for the emergence and magnitude of Edgeworth-like price cycles as well as
states of hyper-competition in which supply falls short of market demand. We have also shown

how the MSS can be affected by changes in market structures.
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We see several avenues for future research. One is to use the notion of MSS within the
context of other oligopoly models. A potentially interesting variation on this paper’s capacity-
constrained pricing model would be to assume that production precedes sales. Another avenue
is to analyze oligopoly pricing under different behavioral assumptions such as heterogeneity in
rationality or competition among quasi-myopic agents.?* Finally, and especially because the MSS
is rich enough to permit heterogeneous pricing, we can imagine it to serve as a foundation for

further empirical and experimental work.
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Appendix: Proofs

Proof of Lemma 1. Suppose that D(0) > K so that p > 0. Since D(p) = K and demand is
decreasing in price, it holds that D(p;) > K when p; < p. This means that D(p;) > k; and
D(p;) — K_; > k;. It also implies that m (D(pi) — ZjEA(pi) k'j) > k;, because D(p;) =
K =Y icopn ki + 2jeaqs) k- Hence, if 0 < p; < p, then firm i € IV always produces at capacity

and therefore m; = p;k;. |

Proof of Proposition 1. If K_; > D(0), then p = 0. To begin, suppose all firms set the same
price. If all price at some p’ > p = 0, then none of them is capacity-constrained since K > K_; >
D(0) > D(p'). Hence, each seller has an incentive to (marginally) undercut his rivals. If all price
at p = 0, then firm 1 has no incentive to deviate since K_; > D(0). It would therefore face no
residual demand at a price above zero. As the largest firm has no incentive to deviate, none of
the firms has an incentive to deviate. We conclude that, when K_; > D(0), there is a symmetric
pure-strategy Nash equilibrium with all firms pricing at p = 0.

In addition, there are many asymmetric pure-strategy Nash equilibria, which have in com-
mon that there is a subset of sellers who price at zero. To see this, suppose that, by contrast,
all set a price strictly above zero. Suppose further there is one firm charging the strictly highest
price. In that case, this firm faces no demand since K_; > D(0). Hence, it would be better off by
charging a lower price, e.g., match the price of the lowest-priced firm(s).

Suppose then that there are two or more sellers who set the strictly highest price. If they
face no residual demand, there is again an incentive to deviate, e.g., they would be better off by
matching the lowest price in the industry. Yet, if they do face residual demand, then they are not
capacity-constrained. To see this, suppose the highest-priced sellers set a price p’ > 0. They are
then not capacity-constrained when:

Zkk D)= > ki|<kie=DE)< ) ki+ > k=K
JeQ(p) ™ JEA W) Q) jEAw)
which holds since K > D(0) > D(p').

Next, note that in this case undercutting p’ slightly is beneficial when:

. ki
(p; — €) - minf{ki, D(p; —€) — Z kj} > pj - ﬁ D(p;) - 2 kj |,
JEA P, —e) JeQ(p;) ™I jeAP))

with € > 0 and sufficiently small. If the undercutting seller is capacity-constrained, then cutting
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its price to p; — € is beneficial when:

k;
(0 — )k >P127 D(p};) — Z ki | =
o)) JeB0)
1 /
i —6>p127k D) — ), k| =
o)) Jea0)
/ / ]‘ /
pi_piiz 5 D(p;) — ki|>e—=
e p;) FENGA
/ 1 no_ .
pi |1 27]9 D(p;) Z k; > €.
e p;) jeA®,)

Note that the LHS is positive when the term inside the square brackets is positive. That is,

1
1> o D) — > kj|e=K= > k+ > k>D@),
2jent) b FENvA) LSO ENCA
which holds.
If the undercutting seller is not capacity-constrained, then cutting its price to p/ —e is beneficial
when:
/ ki /
(p; —€)D(p @>m[ hD%1¢$
Zjeﬂ(pi) J
/ ki /
pzD(pl—G)—ED( )>pi kD(pz) Rand
2jealp))
D(p} —€) — p)} i D) | > D@ - o =
(2 (2 ZJGQ( ) k; (3
ki D(p;)
/ 1 /
D; D; > € —
ZJEQ( ) ki D(p; — e)

/ ki D(p;
" [1 B ZJGQ(P ) ki D(pg _)6)] e
The LHS is strictly positive when:
k;
which holds because D(p; —€) > D(p’) and k; < Z]EQ(p

highest-priced sellers would have an incentive to (marginally) lower his price. We conclude that

D(p; —¢€) > D(p}),

k;. Hence, also in this case, each of the

in equilibrium there is a subset of firms that price at zero.
For such a subset S to emerge in equilibrium it must hold that none of the firms i € S has an

incentive to hike its price. Note that this is true for each subset that is minimal, i.e., each coalition
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S for which it holds that 3. ¢\, k; = D(0), for all i € S. Moreover, all sellers who are not part
of such a minimal subset can charge any price since all prices give zero profits.
Taken together, therefore, the set of (a)symmetric pure-strategy Nash equilibria when K_; >

D(0) is given by:

NE={pe P‘pe [T{0} x T [0,00)
€S iEN\S
Now suppose that K_; < D(0). We can distinguish two cases: (1) K > D (0) so that p = 0,
and (2) K < D (0) so thatp > 0.

Case (1): If K > D(0) > K_y, then p = 0. We argue that there can be no pure-strategy
Nash equilibrium in this case. To begin, note that there is no symmetric pure-strategy Nash
equilibrium. If all firms would price at 0, then firm 1 would have an incentive to hike its
price since K_; < D (0). If all sellers would price at some p’ > p = 0, then none of them
is capacity-constrained since K > D (0) > D (p'). Consequently, each supplier has an
incentive to (marginally) undercut its rivals. We conclude that there is no symmetric pure-

strategy Nash equilibrium in this case.

Let us now argue that there does not exist an asymmetric pure-strategy Nash equilibrium
either. First, notice that in such an equilibrium no firm can set a price at 0. Since K_; <
D (0), this clearly holds for firm 1 as this firm always has a price above zero for which
its (residual) demand is positive. However, given that firm 1 prices above zero, there is
no combination of firms (other than firm 1) with a combined capacity sufficient to meet
market demand at a price of zero. This implies that each firm that prices at zero has an
incentive to hike its price. We conclude that there is no asymmetric pure-strategy Nash

equilibrium in which one or more firms price at zero.

Suppose then that each firm prices above zero. In this case, there are one or more firms
setting the strictly highest price. These sellers either face no demand in which case they
have an incentive to set a lower price or they do face residual demand. By the same logic
as above, however, none of them would be capacity-constrained and each of them has an
incentive to (marginally) lower its price. We conclude that there is no (a)symmetric pure-

strategy Nash equilibrium when K > D (0) > K_;.

Case (2): If K 1 < K < D(0), then p > 0. We first argue that in this case there cannot be an
asymmetric pure-strategy Nash equilibrium. If there was, then one or more firms would
be charging the strictly highest price, say p’. If 0 < p’ < p, then lower-priced sellers could
profitably raise their price till p/, because in this case it holds that K < D (p’). Suppose
then that p’ > p and that there are two or more firms charging the strictly highest price.

32



These sellers are not capacity-constrained since K > D(p') when p’ > p. In this case, and as

shown in the first part of this proof, each has an incentive to (marginally) lower its price.

This leaves the possibility of a single highest-priced firm. Following a similar logic as above,
this firm cannot be capacity-constrained or have zero demand in equilibrium. In case it
would be capacity-constrained, lower-priced firms could profitably raise their prices. In
case of zero demand, the highest-priced seller could profitably deviate to a lower price.
The only possibility is therefore that there is a single highest-priced seller with positive
residual demand who is not producing at capacity. Suppose then that this highest-priced
seller is pricing at p’ > p. This implies that lower-priced suppliers are capacity-constrained
and therefore could raise their prices below, but arbitrarily close to p’. However, in that

case, the highest-priced seller has an incentive to match the price of his rivals, because:

ki k'z'
p'ED (p') > p' (D (p/) — K,Z-) — ?D (p') > D (p/) —K_;, —

K_;>D(p) [1—’;;} — K_;>D () [I;} = K>D(),

which holds. We conclude that if there is a pure-strategy Nash equilibrium in this case,

then it must be symmetric.

Suppose therefore that all firms charge the same price. If all price at p’ < p, then each firm
can profitably deviate to a higher price (Lemma 1). In a similar vein, if all price at p’ > p,

then K > D (p') so that each has an incentive to (marginally) undercut its rivals.

This leaves all firms pricing at p as the candidate equilibrium. Clearly, since all sellers
produce at capacity in this case, none has an incentive to cut price. Moreover, if K < D(p}),
then none of the firms has an incentive to hike its price. To see this, suppose that X' = D(p})
so that p = pf. Since its first-order condition for a maximum is satisfied at p = pf, firm 1

does not have an incentive to hike its price:

o1 (p)/op1 = D(p) — K—1 +pD'(p) = D(p}) — K1 + piD'(p}) = 0.

As for all other firms, i € N\ {1}, note that p} > p5 > ... > pj by strict concavity of the

residual profit functions. Therefore, it holds that:
onl'(p)/dpi = D(p) — K_; + pD'(p) < 0,

which implies that none of the firms has an incentive to raise price. Finally, note that if
K < D(p}), then p > pT so that firm 1’s marginal residual profit is negative at p and
therefore also for its smaller capacity rivals. Hence, also in this case none of the firms has
an incentive to hike its price. We conclude that there is a unique symmetric pure-strategy

Nash equilibrium when K < D(p}) and it has all firms pricing at p > 0. |
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Proof of Proposition 2. The proof is by construction. Following the definition of NE as provided

in Section 4.1, we distinguish two cases and consider each case in turn.

Case (1): Suppose that K_; > D(0). Toshow that f*(p) "NE # ¢J foreachp ¢ NE, we proceed

in four steps.

Step 1: Following the proof of Proposition 1, if K_; > D(0), then there are two types of
non-Nash price profiles: (i) a price profile with some firms pricing at zero, or (ii) a price
profile with all firms pricing above zero. In case of (ii), move to Step 2. In case of (i), let S
be the set of sellers who price at zero and let p € P\ N E be the corresponding price profile.
Since the price profile p is not a Nash equilibrium, the largest member of S can profitably
raise its price. Note that the resulting price profile is also not a Nash equilibrium so that
we can repeat the argument. We conclude that there exists a sequence, which results in all

firms charging a strictly positive price.

Step 2: Following Step 1, there exists a profitable price path from a non-Nash price profile
with some firms pricing at zero to a non-Nash price profile with all firms pricing strictly
above zero. Let p’ € P\NE be a non-Nash price profile with all firms charging a strictly
positive price. We can again distinguish two cases: (i) all sellers set the same strictly pos-
itive price, or (ii) there are two or more firms charging a different strictly positive price.
In case of (ii), move to Step 3. In case of (i), note that since K > D(0) it is profitable for
each firm to (marginally) undercut the price of its competitors. Hence, there is a profitable

deviation in this case resulting in a price profile consisting of two or more different prices.

Step 3: Let p” € P\INE be a price profile resulting from Step 1 and Step 2. That is, p”
exclusively consists of prices above zero and contains at least two different prices. We can
again distinguish two cases: (i) there are two or more firms charging the strictly highest
price, or (ii) there is a single seller setting the strictly highest price. In case of (ii), move to
Step 4. In case of (i), and following the proof of Proposition 1, the highest-priced firms are

not capacity-constrained and can profitably undercut their highest-priced rivals.

Step 4: By steps 1,2 and 3, there is a sequence of myopic improvements from any non-
Nash price profile to a non-Nash price profile with (i) strictly positive prices only, and
(ii) a single strictly highest price. Let p be a given non-Nash price profile with these two
characteristics and let the single highest-priced seller be denoted by h. Note that, since
K_1 = D(0), the highest-priced seller has no residual demand. Consequently, this firm
can profitably deviate to a price p; lower than the lowest price in p and arbitrarily close
to zero: ||p; — 0]| < ¢ for all ¢ > 0. This would create a situation with a new highest-
priced firm (perhaps via Step 3) and the argument can be repeated. This implies that there
is a sequence of myopic improvements from the price profile p to a price profile with a

sufficient number of sellers pricing arbitrarily close to zero. That is, there is a k > 0 such
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Case

that the x-fold iteration of Step 4 generates a sequence:

p=7"p"€ f(p°).p* € f(p'),.p" € f(P"),

where p" is arbitrarily close to some p’ € NE: ||p"—p'|| < ¢, forall e > 0. Then, by definition,
p' € f*(p) so that f*(p) n NE # (.

(2): Now suppose that K < D(p}) so that all firms pricing at p > 0 is the unique pure-
strategy Nash equilibrium (Proposition 1). To begin, note that each seller who prices below
p can profitably raise his price to p (Lemma 1). The remaining type of non-Nash price
profile to consider is therefore one with all prices weakly above and at least one strictly

above p-

If there are two or more firms charging the strictly highest price (above p), then the situa-
tion is comparable to Step 2 and Step 3 of Case (1) above. That is, a highest-priced seller
can profitably deviate to a price (marginally) below the highest price. The resulting price
profile is then one with a single strictly highest price. The maximum profit for this highest-
priced firm (as before, indicated with subscript h) is obtained when it sets its residual

profit-maximizing price, i.e., the price p; solving:

D(py)— Y, ki+piD'(p}) = 0.
J€A(py)
Note that the solution to this maximization problem would be no different when all its com-
petitors price at p. Since all firms pricing at p is a pure-strategy Nash equilibrium, however,
it must hold that 7} (p}) < m,(p). This implies that a single highest-priced seller can myopi-
cally improve by charging p and produce at capacity. This argument can be finitely repeated
until all firms price at p. We conclude that if K < D(p}), thenp € fN(p) n NE # &, which
implies f*(p) n NE # (. ]

Proof of Theorem 1. The set NE as defined in Section 4.1 is a MSS when it is closed and satisfies

deterrence of external deviations, asymptotic external stability, and minimality.

Closedness: If X < D(pj), then the pure-strategy Nash equilibrium is a singleton, which is
closed. If K_; > D(0), then the set NE is given by:

€S iEN\S

NE = {pEPpEH{O} < 11 [O,OO)}.
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Hence, it is effectively the product of a finite number of closed sets, which is closed.

Deterrence of External Deviations: Notice that the set of pure-strategy Nash equilibria is effec-
tively the set of undominated strategy profiles: NE = {p € P|f(p) = p}, which implies that no
firm can profitably deviate to a price profile outside NE.

Asymptotic External Stability: This condition holds by Proposition 2, which establishes that the
capacity-constrained pricing game exhibits the weak improvement property. Hence, from any
price profile not in NE it is possible to get arbitrarily close to a pure-strategy equilibrium by a

finite number of myopic improvements.

Minimality: Since the set NE is closed and the previous two conditions hold, minimality follows
directly from Corollary 3.11 in Demuynck, Herings, Saulle and Seel (2019); a mirror result which
effectively shows that MSS = NE when the set of pure-strategy Nash equilibria is nonempty.

Combining the above, we conclude that the set NE is a MSS. It remains to be shown that it is also
the unique MSS.

Uniqueness: Suppose there would be another MSS, M, different from NE. As NE is a MSS, first
note that neither M > NE, nor NE > M, because otherwise the minimality requirement would
be violated for either M or N E. Moreover, note that neither M n NE = &, nor M n NE # ¥
with M # NE. If so, then there would be a price profile in NV E thatis notin M. Yet, for each price
profile in N E it holds that no firm has a profitable deviation to a price profile outside N E/, which
implies that the Asymptotic External Stability condition would be violated for M. We conclude
that M = NE and therefore that NE is the unique MSS. n

Proof of Lemma 2. Let us prove each of the three cases in turn.

(i) Foreachie N,if D(0) > K_; > D(p}) — k;, then D(p) > D(pj) because either (1) K < D(0)
and p > 0 so that D(p) = K > D(pf), or (2) K > D(0) and p = 0 so that D(p) = D(0) >
D(p;). Hence, in this case, p; > p > 0. Since the residual profit functions are strictly
concave and have a unique maximizer at p;, it follows that the iso-profit price is at the

decreasing part of the residual profit function: p; > p¥ > 0, forall i € V.

Let us now show that the iso-profit price is increasing with firm capacity. To that end,

consider two firms i and j with k; > k; and suppose that p > 0. Suppose further that they
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both pick a price p from (0, D~*(K_;)). Comparing their residual profits gives:

' (p) — 7 (p) = p(D(p)— K_i)—p(D(p) — K_;)
(6)
p(K_j — K_i) = p(k}i — kj) > 0.

Moreover, for p > 0 and following Definition 5 of the iso-profit price, it must hold that:
) (B) = ) (B;) = p (ki = kj) > 0. (7)

To show that p; > p; > 0, suppose the opposite, i.e., p; > p;, in view of a contradiction. As

established above, firms’ residual profits are decreasing at their iso-profit price so that:
m; (;) < = (Bi) forp; > b,

and, therefore:
w (5;) — 7 (5;) <7l ) — 7 (B;) = p (ki — kj).-

Notice, however, that:

l(B;) — 7k (5;) = b; (D)) — K—i) —p; (D(p;) — K—;)

= —p; (K —ki) +p; (K —kj) =pj (ki —kj) > p (ki —kj),

which contradicts the previous result that 7} (p;) — 7/} (p;) < p (ki — k;).

Now suppose p = 0. In this case, and again following Definition 5, it holds that:

' (p;) = p; (D(p;) — K_i) =p- ki = 0,

which implies that the iso-profit price of firm i is given by:
p;i =D (K_;) >0,
and, therefore:

D YK_;)> D' (K_;) >0,

for every i, j € N with k; > k;. We conclude that if k; > k;, thenp, > p; > 0, foralli,j € N.
Notice that this also shows that firm 1 has the highest iso-profit price.
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(ii) Suppose now that D(p) — K_; > k;, for all i € N\ {1}. Since in this case D(p}) > K, it
follows that D(p;) > K = D(p) for every i # 1, which implies that p > p}. Since in this case
every firms i (except firm 1) sells at capacity (see Lemma 1), its profit line pk; intersects the
residual profit 7' either at the maximum or at the decreasing part. Consequently, the only
price for which p - k; = 7l'(p;) is the market-clearing price p at which the residual profit of
firm i reaches its peak and declines afterward at any higher price p; > p. Finally, recall that
in case of intermediate capacities: D(p}) < K and D(0) > K_;. Hence, for firm 1 it always

holds that p; > pj > p.

(iii) The third situation to consider is when D(0) < K_,,, withn > m > 1. In this case, it
holds that D(0) < K and therefore p = 0. Notice that residual demand for firm m is zero
at all prices, which implies that all firms weakly smaller than firm m also face no residual
demand. We conclude that p; = p = 0 for each firm i = m, m + 1, m + 2, ..., n with capacity

ki < k.

Proof of Lemma 3. Let us discuss the three cases in turn.

(i) Suppose that K < D(0) and that firm 1 is the strictly largest seller. In this case, p > 0 and

the iso-profit price p, is the price solving the following equation:

m'(P1) =Dy (D(Dy) — K_1) = p- k1.

The hyper-competitive prices are given by:
(1) = Py (D(By) — K—i) = Bi - ki
Hence, it immediately follows that p; = p. Asto a firm i € N\ {1}, note that

P (D@D~ K)o 5 (D)~ Ko

p= " and p; s )
Comparing and rearranging gives:
~ P (D) — K_ p1 (D(py) — K_; _ ki — k)| K — D(p
p—Pi= 1 (D(p) 1)_171( (P1) ) :p1'( 1 ) (P1)] >0,
kl ki klki

which holds because p; > p and firm 1 is the strictly largest seller. We conclude that if
K < D(0) and each firm i € N\{1} is strictly smaller than firm 1, then 0 < p; < p and

pr=p.
(ii) Given that D(0) > K and following the same steps as under (i) above, it holds that

~ (ki kj)[K— D(p,)]
Pi—Pj = ik

> 0,
for any two firms 4, j € N with k; > k;.
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(iii) If D(0) < K_;, then D(0) < K and therefore p = 0. Moreover, the residual demand of firm
i€ N\ {1} atp, is D(p,) — K_; < 0, which implies 7/(p;) = 0 and therefore p; = p = 0.

Proof of Lemma 4.
(i): Suppose p; = p;. We show that for all p; € P; such that p < p; < p; it holds that m;(p;,p—;) =
piki. The proof relies on the following claim:

Claim 1: For all 7 # 1 such that p; € (p, p;) then firm i is capacity-constrained.

Proof. Since p1 = p; then either, (i) p = 0, which implies D(p;) — XJ;ea,) ki = 0, or (ii)

D1
p > 0, which implies D(p;) — >jens,) ki > 0. Taken together, this means:

D)~ >, k=0,
JEA(Dy)

The above can be rewritten as

D)~ >, kj=ki foreachie N\{1}.
jeAm)\(i}

Consider some firm i € N\{1} that prices at p; € (p,p;). Its demand is then generally given
by:

kA
Di(pi,p—i) = max{ o | D(pi) = > k; |,0p.
2jeap) Fi e

Note that since

\%

JjeA(Dy)
it holds that
JEA(p:)

since D(p;) > D(py) and X e n(p) ki < 2ijea(s,) ki for pi < P1. Hence, each firm i € N\ {1}
faces strictly positive demand when pricing below p;. Note further that this also implies

that this firm is capacity-constrained when no other firm prices at p;, because

Dlp)— D, ki>Dm)— > ki=>k
Je5 ) JAENG)
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because D(p;) > D(py) and X jcn () ki < 2jea(p, )} ki for pi < 1.
Finally, suppose that there is at least one other firm pricing at p; € (p,p;). In this case, firm
i is also capacity-constrained, because

k;

jeatp) b <At

D(p;) — Z k; > Z kj+k; =
jeA(ps) 7e€QUp)\{3}
D(pz) — Z kj — 2 kj > k.
JEA(pi) JeQ(pi)\{i}
This inequality holds, because D(p;) > D(py) and 3. ic a () ki + 2 e it ki < 2jene,) Fi-
O

Since Claim 1 holds, we conclude that if p; is such that p < p; < p;, then m;(p;, p—;) = pik;
which is increasing in price. Hence, m;(p;,p—i) > m;(p) when p; € (p,p;) and p1 = p,, for
each firm i € N\{1}.

ii): efinition, p; = min{p; € B;|m;(p;) = 7 (p1)}. emma 1, we know thatif 0 < p; < p,
ii): By definition, p, i P, h(p1)}. By L 1, we know that if 0 p.
then m; = p;k;. Consequently, since 7; is strictly increasing in p; in the range (p;, p] it holds

that m;(p;, p—i) > wf‘(ﬁl) for p; € (pi, p] [ ]

The following Lemma 5 and Lemma 6 are used in the proof of Theorem 2.
Lemma5. Ifpe M and p’ € f*(p), then p’ € M.

Proof of Lemma 5. Towards a contradiction, suppose that p’ ¢ M when p’ € f*(p) and p € M.
Since M is closed, thereisa ¢ > 0such that Bs(p') n M = &, where B; is the open ball with radius
d. Furthermore, by the definition of f*, there is a k € N and a p* € f*(p) such that p* € Bs(p'),
which means p* ¢ M. Since p* € f*(p), there is a sequence p°, p!, ..., p* of length « such that

P =p,p" € f(°),....p" € F(P").

Let &' € {1,...,x} be such that p¥' is the first element in this sequence with the property that
p¥ ¢ M. Hence, p” ' € M and p* € f (p”lfl), which violates deterrence of external deviations

of M. Consequently, p’ € M. |

Lemma 6. Let 7} (p;) denote the profit of firm i € N when at least one other firm j # i is charging the
same price p;. Then, it holds that 3 (p;) > m! (p;) and ©! (p;) > w!* (p;) for any p; € (p, ).
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Proof of Lemma 6. Let us start by showing that:

w (i) > 2 (pi).

We can distinguish two cases: (1) the firms charging the same price are capacity-constrained,
or (2) the firms charging the same price are not capacity-constrained. Note that in either case
the single highest-priced firm is not capacity-constrained, because with p; € (p, @) it holds that
K > D (p;). As to (1), we have that

s (pi) > m} (pi) == piki > p; [D(pz') - Z kj] = K> D(p),
JeA(pi)

which holds. As to (2), we have that

m (pi) > 7 (pi) <=>Pz'2ki)kj [D(Pz‘) —JEZ kj] > pi [D(pz‘) - kj] ;

7eQ(p; ieA(p;) JjeA (pi)

with A’(p;) # A(p;). This is equivalent to

k;
7€2pi) M| J€A(pi) 7€Qpi) 7€Qpi) JEA (ps)
or

J€QU(pi) JeA!(ps)

k,
= | D(p;)) — K + kj| > D(pi) — k;.
ZjeQ(pi) k; 2 J] Z

Rearranging gives

| o) 3 ke [ Q2 o
ZjGQ(pi) J JeA (p;) ZJEQ(Pi) J
Since D(p;) < K, the above simplifies to
ki
o,
ZJ'GQ(Z%‘) kj

which holds. We conclude that 7§ (p;) > 7! (p;) when p; € (p, @).

Let us now show that:

m (pi) > 7} (i) -

We can again distinguish two cases: (1) the firm charging the lowest price is capacity-constrained,
or (2) the firm charging the lowest price is not capacity-constrained. As to (1), the story is the

same as above. As to (2), we have that
7 (pi) > 7} (pi) <= piD (pi) > pi [D(pi) - Z kj] ,
)
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which holds because 3.1 (,,) kj > 0. We conclude that 7{ (p;) > 7} (p;) when p; € (p, @). n

Proof of Theorem 2. First note that the set M is closed by definition. In the following, we show
that the set M also satisfies Deterrence of External Deviations, Asymptotic External Stability and Min-

imality. Finally, we prove that M is unique.

Deterrence of External Deviations: Let p € M be some price profile in M. We show that there is
no profitable deviation to a price profile in P\M. Take any firm i € N and suppose that it is the
highest priced firm in the market. We have that either D(0) > K_; or D(0) < K_;. In the former
case, firm ¢ has positive residual demand. Then, by strict concavity of 77?, its profit is lowest in
M at p,. By Lemma 1 and Lemma 6, since 7! (p;) = 7(p;) and 7*(p;) = 7(p;) for all p; € [p;, 4 ]
there is no other price in the set M giving a lower profit. By definition of p;, such a profit 7/ (p, )
is equivalent to the situation in which firm ¢ charges p;. We therefore conclude that, whenever
D(0) > K_;, the lowest profit for any firm i is obtained either at p; or at p; given that it is the
highest priced firm in the market. Note that if a firm 7 unilaterally deviates toa p’ € P\M, it must
be either that (a) p, < p;, or (b) p; > p,. Consider first case (a). Then, by Lemma 1, this firm
will obtain m;(p}) = p} - ki < mi(pi) = pi - k; and therefore decreasing price below p; is not an
improvement. Take now case (b). If firm i deviates with a p} > p,, it holds that 7/ (p!) < 7/ (p;)
and therefore for any price p > p; such deviation is unprofitable.

Finally, consider the case D(0) < K_;. By Lemma 3, we have that p; = 0. Then, the only
possible deviation to P\M for firm i is to some p} > p,. However, profits are zero at all prices in

excess of p; so that no firm has a profitable deviation to such a price.

Asymptotic External Stability: Consider a price profile p € P\M. We show that there exists a
p’ € M such that p’ € fN(p). To begin, notice that if p € P\M, then there is at least one firm
pricing below its hyper-competitive price p; or above firm 1’s iso-profit price p;.

Let L(p;) = {i € N|p; < p;} be the set of sellers who are pricing below their hyper-competitive
priceand let H(p,) = {i € N|p; > p, } be the set of sellers who price above firm 1’s iso-profit price.

Moreover, let A > 0 and 7 > 0 denote the cardinality of L(p;) and H (p, ), respectively.

Step 1: If L(p;) = @, then H(p;) # ; In this case, proceed with Step 2. If L(p;) # @ then, for
each firm i € L(p;), pi < pi < p, so that m;(p;, p—;) = pik; by Lemma 1. This implies that
each firm i € L(p;) can profitably deviate to the market-clearing price p € M, which induces

a sequence of price profiles:
p=p",p'ef().p?ef(p'),. .p ef <pA_1) :

If p* € M, then the External Stability condition is met. If p* ¢ M, then proceed with Step 2.
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Step 2: Letp*, with A > 0, be the price profile resulting from Step 1. By construction, it holds that
L(p;) = @and H(p,) # @. Suppose D(0) > K which implies that p > 0. First, recall that p;
is the price solving 7;(p;) = 7/(p,), foralli € N. This implies 7(p;) < 7/*(p;) when p; = p,,
because 7!(p;) is strictly concave. Next, denote by h(p*) € H(p;) the firm charging the
highest price at p*. Since p} > p; by construction and following the previous observations
in combination with Lemma 1, firm h(p’\) has a profitable deviation to p. This induces a
new price profile p* 1 in which case either all firms price weakly below p,, or there are still
one or more firms pricing above p;. In case of the former, the External Stability condition
is met, whereas in case of the latter we can repeat the argument. Denote by h(p**!) the

A+1

firm charging the highest price at p***. This firm has a profitable deviation to p > pj,,x+1).

Extending the above logic delivers a sequence:

p/\+1 ef (p’\) ’ p>\+2 e f (pA+1> ,...,pAJr” €f <p/\+n—1) .

Hence, by construction, pM" = p/ € M, and therefore the External Stability condition is

met.

Finally, suppose that D(0) < K so that p = 0. Consequently, K_; < D (0) for otherwise
all firms pricing at zero would constitute a pure-strategy Nash equilibrium. Now consider
some price profile p ¢ M with at least one firm pricing above p;. If p is such that firm 1
prices at zero, then let this firm raise its price to p}, which is profitable and in the set M,
because pj < p;. Note that since K_; — k; < D (0) for any firm i other than firm 1, each
firm pricing at zero can profitably raise its price to pj. This results in a price profile with

all firms strictly pricing above zero.

Next, consider the highest price in the market. If there are two or more firms charging the
highest price, say p;, then they are not capacity-constrained since D (pi) — Xljea(p) ki <
2je(p:) ki, which is equivalent to K > D (p;) and this holds, because K > D (0). If their
profits are positive, then there is a myopic improvement by cutting their price slightly since
this gives a discrete increase in demand. This yields a situation in which one firm charges
the strictly highest price. As D (p;) —K_; = 0in this case, we have that D (p,) — K_; < 0 for
each firm i other than 1 and, therefore, D (p) — K_; < 0 for any p} > p; and i € N. Hence,
this single highest-priced firm receives zero profits and, hence, has a profitable deviation

to p.

Minimality: Towards a contradiction, suppose that there exists a closed set M’ & M satisfying
of External Deviations and External Stability. We distinguish two cases: either the -clearing price

profile p € M’, or the -clearing price profile p ¢ M'.

Case 1: Suppose that p € M ’. Note that at p, if a firm 7 has a positive residual demand, then
it has a profitable deviation to any p; with p < p; < p;, by concavity of the residual profit
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functions. Note that this always holds for firm 1 (Lemma 2). Recall also that, by Lemma 2
we have that p; > ... > p,,. It follows that, from p, the largest price interval is effectively
determined by firm 1. Fix such a firm 1 and let it deviate to any p; for which p < p1 < p;.
Thus, by the property of of external deviations of M’ and the fact that p € M’, the following

price profiles are contained in A’:
Mi={pePlp<pr<py,pj=pVj+1} <M.

Moreover, as firm 1 can charge a price in M’ arbitrarily close to p;, then, by Lemma 5, the

following price profiles are also contained in M’
M{ic My={pePlp<p <p,p;j=pVj#1} =M.

Now fix p; = p; in M. Then, by Lemma 4, each firm i other than firm 1 has a profitable
deviation to any p; for which it holds that p < p; < p;. It then follows from the of external
deviations of M’ that

Mjc My ={pePlp<p;<p,Vie N} = M.

Next, fix some p € M} with p; = p; for some i # 1 and p; < p;. In this case, it is implied
by Lemma 4 (ii) that this firm ¢ has a profitable deviation to some price p} € (p;,p]. Note
that, since the choice of 7 is arbitrary and the fact that M’ satisfies the of external deviations

condition, it follows that
M, c My={peP|p;, <p; <p,Vie N} < M.

Finally, note that since firm i can charge a price in M’ arbitrarily close to p;, it must hold by
Lemma 5 that:

Mj c Mg ={pe P|pi <p; <p;,Vie Ny = M,
and therefore M, = M < M’, a contradiction.

Case 2: Suppose now that the price profile p ¢ M’. Fix some p € M’. We show that p € f*(p).

It then follows from Lemma 5 that peM ' a contradiction.

Step 1: Let L(p) = {i € N|p; < p} be the set of sellers who are pricing below the market
clearing price. Either L(p) is empty or not. In case of the former proceed with Step 2. In case
of the latter, note that each firm pricing below the market-clearing price has a profitable
deviation to p (Lemma 1). By letting each firm to deviate we induce a new price profile

p' € fMp) for some A\ > 0, in which each firm prices weakly above the market-clearing
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price. Notice that, since M’ satisfies of external deviations, it must hold that p’ € M'. If

p' = p, then we have a contradiction concluding the proof. Otherwise proceed with 2.

Step 2: Let p be the price profile resulting from Step 1. Thus p is such that all firms weakly
price above p with at least one seller pricing strictly above p. In this second step, we show
there exists a path of myopic improvements such that the resulting price profile consists of
two prices. Specifically, this price profile has one or more firms charging the highest price
pp, and one or more firms charging the lowest price p;, — €, with € positive and sufficiently

small.

To begin, consider a lowest priced firm . If this firm is not capacity-constrained, then all
higher priced sellers face zero residual demand. If p; = p, then all higher priced sellers can
profitably match p; in turn. This, induces a new price profile p € f#(p) for some p > 0, By
the p-fold iteration of deterrence of external deviations we have that peM ! a contradiction
concluding the proof. If p; > p, then each higher priced firm can profitably deviate to a

price p; — € = p for some € > 0. This results in a price profile with two prices: p; and p; — e.

Next, suppose that there is a single lowest priced seller who is capacity-constrained. In this
case, we can distinguish two scenarios. Either, (i) it raises its price till p; for which k; =
D (p;). That is, to the lowest price for which its capacity is non-binding, while remaining
the lowest priced firm in the market, or (ii) it raises its price till it matches the price of the

second lowest priced firm(s). We study the two cases separately.

Case (i): In this case, we are back in the first situation where none of the higher priced
firms faces residual demand. Hence, they can profitably lower their price to p; — . Again,

the result is a price profile with two prices: p) and pj — ¢.

Case (ii): Let firm ¢ be one of the lowest priced firms. Either, (iia) firm ¢ raises its price
until it is no longer capacity-constrained, or (iib) firm i matches the next lowest prices firm.

We consider the two possibilities separately.

(iia): Firm i raises its price till p for which it holds that D (p}') — 3., A®) k; = k;. Thisim-
plies that all firms pricing below p/’ can also profitably raise their price till p/, whereas
all firms pricing above p; face no residual demand. Hence, these higher priced firms
can myopically improve by lowering their price to p; — ¢, which again results in a price

profile with two prices: p} and p; — e.

(iib): Firm i raises its price to the price of the next lowest priced firm(s) in which case all
lower priced firms can do the same since they are capacity-constrained. This brings
us back either to the situation described under (iia) above or iterate (iib) until the
highest priced firms still face residual demand, in which case lower priced firms can

raise their price till p;, — ¢, where pj, is the highest price in the market.
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Step 3: Let p € M’ be the price profile resulting from the previous steps. Note that, by
construction, at p there are two groups of firms: the highest priced firms H (p) charging py,
and the lowest priced firms L(p) charging p; = p, — €. According to Step 2 we have two
cases: either (i) the lowest priced firm are not capacity-constrained or (ii) the lowest priced

firm are capacity-constrained. Let us consider the two cases separately.

Case (i): Since we are in the case such that the lowest priced firms are not capacity-constrained
then the residual demand of the highest priced firm(s) is zero and so its profit. Therefore,
each highest priced firm has a profitable deviation to a price p; — € for an arbitrarily € > 0.
Such a deviation is profitable by the fact that m;(py) = 0 < m;(p;,p—;) for any p; € (p, ),

which is the case.

By letting each highest priced firm h € H(p) to deviate we induce a new price profile p’ €
f4(p) for some ¢ > 0. Such a price profile is also characterized by two groups of firms:
the highest priced firms H(p’) charging p), and the lowest priced firms L(p’) charging p;. If
the lowest priced firms are capacity-constrained, then move to Case (ii), otherwise case (i)
applies again.

Case (ii): Since we are in the case such that the lowest priced firms are capacity-constrained

then the residual demand of the highest priced firm(s) is positive and so its profit.

At pp,, an highest priced firm h has a profitable deviation undercutting p; = pj, — € for some

e > 0 when

7 (pn — 2€) > mp(pp) <=

kn(pn — 2€) > Zkhk [D(ph) - 2] k’j] Pn =

7€ pn) JEA(pn)

k
kenpn — 27’1

D(ph) — k‘j Pn > Qk‘he <
7€Q(pn) kj Z

JEA(pn)
o [1 B D(pn) — ZjeA(ph) kj] 1

Y —
ZJ'EQ(ph) kj 2

Let denote by A the LHS of the above inequality, i.e.

Dpn) = 2jeapn ¥i | 1
2jesaion) ki 2

A=p,|l1-—
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Note that A > 0 when

L Dn) > 2jeapn ki

Zk>Dph Zk(z)

Zjeg(ph) kj J€Q(pn) JjeA(pn)
Z kj + Z kj = K > D(pp),
J€QU(pn) JeA(ph)

which holds since p;, > p by Step 1.

Since the choice of € in Step 2 and Step 3 was arbitrary, we conveniently fix € € (0, A) such
that each highest priced firm in H(p) has a profitable deviation to p;, — 2¢ < p;, — €. Note
we can let each highest priced firm deviates by the same e. Indeed, every round a highest

priced firm deviates and then A increases implying that € is well defined.

The transition of each highest priced firm induces a new price profile p’ € f¥(p) for some
v > 0, characterized by two groups of firms: the highest priced firms charging pj and the
lowest priced firms charging p;. Since a lowest priced firm is capacity-constrained, Case

(ii) applies again.

Step 4: The iteration of previous steps constitutes a procedure which generates a sequence
p=p'ef@"),p* € f(p), .0 € FO"T).

By construction, there exists a k > 0 such that |[p” —p|| < ¢, forall € > 0. Then, by definition
of f*, it holds that p € f*(p). By Lemma 5, it follows that p € M’, a contradiction.

Uniqueness: Finally, we show that M is the unique MSS. By contrast, let us assume that there
is another MSS M’. First, we show that M n M’ # &. Towards a contradiction, suppose that
M n M’ = @. Then, by asymptotic external stability of M, for all p € M there is p’ € M’ such
p' € f*(p). Then, by closedness of M the intersection between the open ball around p’ with
radius e and M is empty, i.e. Bc(p') n M = @. By definition of f*, thereis x € Nand ap” € P
such that p” € f"(p) and p” € B.(p'). By r-fold application of of external deviations, it holds
that p” € M, but p” € B.(p'), a contradiction. Thus M n M' # &. In what follows we prove
that M < M’. Equality follows from the minimality of M’. As before, we have that either the

market-clearing price belong to the set M’ or not.

(1): p e M'. Then by Case 1 of the minimality proof, M’ contains also M\ {p}.
Hence, M < M'.

(2): p ¢ M'. This possibility is ruled out by Case 2 of the minimality proof. |
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Proof of Proposition 3. (i) The merger is assumed to become the new industry leader in terms
of production capacity. This implies an increase of the highest iso-profit price post-merger. To
see this, note that the iso-profit price of the largest firm is given by p; = D~1(K_;). Since total
industry capacity K is constant, an increase in k; implies an increase in the iso-profit price of the
largest seller. We conclude that the merger leads to an increase of the MSS upper bound and that
this effect is stronger the larger the merger, all else equal.
(ii) If D(0) < K < D(0) + k1, then p = 0. This also is the lower bound of the MSS in this case
and, since total industry capacity is unaffected by the merger, remains the lower bound.
(iii) If D(p}) < K < D(0), then p > 0. In this case, the lower bound of the MSS is given by p
for the largest seller(s) and by the hyper-competitive price p; for each firm j with strictly less
production capacity. Since the merger is assumed to be the single largest supplier, suppose that
there is one firm (firm 1) with strictly more capacity than each of its rivals. Using the definitions
of -competitive price and -clearing price, we can write:

5= D (D(P}ﬁ) - Kfi)’B _ D (D(p;:) - K1)

i 1

Combining gives:

=p- k1 +p K1 =0,D(py)

. Dm) - K-; pki+b (K- Ky)
pi = k; = > ’

and therefore

Di(k1, ki) = ]; -pky — ]:ipl (k1 — ki), (8)
foreach i € N\ {1}.

Now consider a merger with joint capacity Kg > k;. Note that this is equivalent to an in-
crease of ki assuming that total industry capacity K remains constant. Consequently, one can
evaluate the impact of the merger on the MSS by assessing the effect of an increase of k. Total
differentiation of (8) with respect to k; yields:
dpi _ 1 [dpkldm

dky dky

dky K (k1 = ki) = (Py p)} ’ 9)

where, the first term dp/dk; = 0 (since K is constant) while the third is negative since p < p;.
Regarding the second term, note that a small change in k; affects the iso-profit price p; = p -
ki/(D(p;) — K_1) as follows:

pk1 — dD(p,) dp;  dK_
dp, d(m) p[D{P) — K] - < R dk11>]3-k1

dky dy [D(p,) — K_1]°
Since df;; = —1, this simplifies to
dp; p[D(p) — K] -0
B _ dD(p :
k1 [D(py) - K-1]* + %1)3' k1
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To see that it is positive note that the numerator is negative. The denominator is also negative

when

[D(p)) — K1]* < —dDd(m)P' k1, (10)

P1

which is equivalent to

d[D(py) — K_1] D1
dp1 D(p,) — K

< -1, (11)

and this inequality holds because residual demand is elastic at p;. Hence, the second term is also
negative so that fl% < 0. That is, the merger leads to a decrease of the hyper-competitive prices

of non-merging parties. n

Proof of Proposition 4. (i) By assumption, the merger does not become the largest seller in the
industry. Hence, the upper bound of the MSS remains unaffected.

(ii) If D(0) < K < D(0) + ky, then p = 0. This also is the lower bound of the MSS in this case
and, since total industry capacity is unaffected by the merger, remains the lower bound.

(iii) If D(p}) < K < D(0), then p > 0. In this case, all myopic stable prices are in the interval:
max {p;,0} < p; < p;. The hyper-competitive prices of the merging parties are replaced by a
single, higher, hyper-competitive price post-merger. To see this, consider the effect of an increase

in capacity of a merging firm 7 (leaving K constant):

dp; ki (dp dp;  P1—p dp,
dk: ks <dki “aw VR ) a7
In this case, it holds that dp/dk; = 0, dp,/0k; = 0, p; > p = 0, and therefore dp;/dk; > 0. [ |

Proof of Theorem 3. To prove that £ — M when the set of pure-strategy Nash equilibria is empty,
we show that: (i) p; > p¥, and (i) p; > p;, foralli e N.

Case (i): To begin, let us establish that p; > p;. We can distinguish two cases: (1) p > 0, and
(2) p=0.

(1) Suppose that p > 0. If all price at p, then all produce at capacity. Hence, there is no
incentive to cut price. Since the set of pure-strategy Nash equilibria is empty, it then must
hold that at least one firm is willing to hike its price. It can be easily verified that when
the largest firm does not want to raise its price, none of the firms has an incentive to raise
price. Hence, firm 1 has an incentive to hike its price, which implies p < p]. Moreover,
by strict concavity of 7}, firm 1’s residual profit function is increasing up to the (unique)

profit-maximizing price and decreasing at prices in excess of pj until its contingent demand
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Case

is zero. Since firm 1’s profits are positive at p > 0, this implies that p, is on the decreasing
part of the residual profit function and therefore that p; > pj. Finally, by strict concavity of
7l, it holds that pf > pf, for all i € N\ {1}, so that p; > p}.

(2) Now suppose that p = 0. Since the set of pure-strategy Nash equilibria is empty it
holds that K_; < D(0). Hence, firm 1 faces a strictly concave residual profit function
with a unique maximizer pj. Because it receives zero profits at p = 0, it follows that p, =
DY K_1) > pf. Moreover, following the same logic as under (1) above, pi > p} and

therefore p; > p}, for all i € N\ {1}.

(ii): Let us now turn to the lower bound and show that p; > p;, for all i € N. We again

distinguish two cases: (1) p > 0,and (2) p = 0.

(1) Suppose that p > 0. Since each firm can sell its entire capacity at p, all prices be-
low p are strictly dominated. As p; < p for all firms strictly smaller than firm 1, none of
these firms puts mass on its hyper-competitive price (or any lower price). Regarding the
largest firm(s), recall that they have an incentive to raise their price above p in this case,
which means 7/ (p}) > n/*(p). Consequently, none of the largest sellers puts mass on prices

weakly below p, which is their hyper-competitive price.

(2) Now suppose thatp = 0. Since K_; < D(0), firm 1 can guarantee itself a strictly positive
profit independent of the prices set by its competitors. Hence, firm 1 puts zero mass on
p = 0in equilibrium. Yet, given that firm 1 prices strictly above 0, the same logic applies to
firm 2. That is, this firm can guarantee itself a strictly positive profit by pricing below but
arbitrarily close to the lower bound of firm 1’s mixed-strategy support. Consequently, firm
2 also puts zero mass on p = 0 in equilibrium. This iterative domination argument can be
repeated till firm n. We conclude that when p = 0, none of the firms puts mass on 0 in a

mixed-strategy Nash equilibrium.

Taken together, p; > p;, for all i € N, and therefore I c M. [ ]
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