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ESTIMATION OF THE FARM-LEVEL YIELD-WEATHER-RELATION USING 

MACHINE LEARNING 

 

Abstract 

Weather is a pivotal factor for crop production as it is highly volatile and can hardly be 

controlled by farm management practices. Since there is a tendency towards increased weather 

extremes in the future, understanding the weather-related yield factors becomes increasingly 

important not only for yield prediction, but also for the design of insurance products that 

mitigate financial losses for farmers. In this study, an artificial neural network is set up and 

calibrated to a rich set of farm-level wheat yield data in Germany covering the period from 

2003 to 2018. A nonlinear regression model, which uses rainfall, temperature, and soil moisture 

as explanatory variables for yield deviations, serves as a benchmark. The empirical application 

reveals that the gain in estimation precision by using machine learning techniques compared 

with traditional estimation approaches is quite substantial and that the use of regionalized 

models and high-resolution weather data improve the performance of ANN. 

Keywords 

Yield Prediction, Machine Learning, Weather Risk, Risk Management, Index Insurance.  

1 Introduction 

Understanding yield variability is essential for agricultural risk management on a sectoral as 

well as on a farm level. Crop yields depend on a variety of factors including soil and weather 

conditions, fertilizer, and pest control. Among these factors, weather is pivotal because – in 

contrast to other production factors – it is highly volatile and can hardly be controlled by farm 

management practices. In fact, extreme weather events lead to harvest failures and thus threaten 

food security all over the world (WHEELER and BRAUN, 2013). Since there is a tendency towards 

increased weather extremes in the future, understanding the weather-related yield factors will 

become increasingly important not only for yield prediction, but also for the design of insurance 

products that mitigate financial losses for farmers. Actually, weather-based insurance products, 

such as index insurance and weather derivatives, have been propagated as a promising 

alternative to classical crop insurance (BARNETT and MAHUL, 2007). A main finding of the vast 

literature is that the effectiveness of weather-based insurance hinges on a high correlation 

between actual yields and the insured weather event (WOODARD and GARCIA, 2008). However, 

the relationship between weather and crop yield is complex, which challenges the design of 

appropriate weather indices. Firstly, several weather variables have to be considered 

simultaneously, particularly precipitation, temperature, and wind. Secondly, these variables 

interact in a highly nonlinear way (SCHLENKER and ROBERTS, 2009). Finally, not only their 

levels but also their temporal distributions affect crop yields (MUSSHOFF et al., 2011).  

Two approaches have been mainly used for modeling the weather-yield nexus: Firstly, crop 

growth models that rest on biological and physical relations and simulate the dynamics of water, 

nitrogen, carbon, and other yield determinants in a specific soil context taking into account 

phenological stages and plant requirements (e.g. ASSENG, 2004). Alternatively, statistical 

methods, regressions models in particular, have been employed to estimate crop yields as a 

function of weather variables (see Section 2 for a detailed literature review). These methods are 

mainly data driven and do not strive for an identification of causal relations. In this paper, we 
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focus on statistical approaches, as they are most common in the context of weather insurance. 

MUSSHOFF et al. (2011) show that a trade-off exists between the regression model’s simplicity 

and basis risk, i.e., the yield variation that cannot be explained by weather variables. Several 

directions have been suggested to improve the fit of statistical yield models, including nonlinear 

regression or quantile regression (CONRADT et al., 2015). More recently, machine learning 

techniques have been applied to yield modelling (e.g. KHAKI and WANG, 2019). The strength 

of this approach compared with traditional statistical methods arises from its flexibility in 

capturing complex functional relations and the capability to handle large data sets. This is 

particularly useful because it allows to consider weather variables with high temporal 

resolution, e.g., daily precipitation or temperature. 

Against this backdrop, the objective of our paper is to explore the potential of machine learning 

for estimating the relationship between crop yield and weather conditions on a farm level. More 

specifically, we want to investigate two hypotheses: On the one hand, we conjecture that 

machine learning allows a better fit to yield data compared with traditional regression models 

due to its flexibility. On the other hand, we hypothesize that disaggregated weather data contain 

more information compared with aggregated weather variables, which allow improving the 

estimation of crop yields. We test these hypotheses for a large set of farm-level wheat yields. 

Our data set contains 68,944 yield observations in total covering many production regions in 

Germany over an observation period of 16 years. The use of individual farm yields avoids the 

underestimation of yield volatility that arises from usage of aggregated data, such as county 

yields (POPP et al., 2005).  

The remainder of this paper is structured as follows. Section 2 provides a literature review of 

standard statistical as well as machine learning approaches to estimate the weather-yield 

relation. In Section 3, we present details on the neural network applied in this study and 

introduce a baseline model that is used as a benchmark. Section 4 contains the empirical 

application to German farm-level data. Section 5 concludes. 

2 Literature Review 

Before the use of machine learning, the weather-yield relation was analyzed using traditional 

statistical approaches. TEIGEN and THOMAS (1995) study the relation for state-level yield for 

the period 1950–1994 and can explain 90 % of the yield variation in most cases. This high 

percentage, however, can mostly be traced back to the time trend and not to the weather 

variables themselves (VEDENOV and BARNETT, 2004). For the application of weather 

derivatives to agriculture, TURVEY (2001) estimates the linear dependency of county yields of 

corn, soybean, and hay on cumulative rainfall and cumulated degree days in Oxford County, 

Ontario, for the period 1935–1996. The best fit amounts to an 𝑅2 of 0.33. Also in the context 

of weather derivatives, VEDENOV and BARNETT (2004) apply more complex non-linear models 

to estimate the relation between U.S. district-level yields in 1972–2001 and temperature and 

precipitation. With data-driven combinations of the weather variables and derived indices, they 

achieve an 𝑅2 between 35 % and 87 %. VROEGE et al. (2021) assess the potential of drought 

risk management with soil moisture data from satellites and weather stations for 89 farms in 

Eastern Germany. They apply a quantile regression and find that the risk exposure of farmers 

could be reduced significantly with new insurance products based on soil moisture. Besides 

weather risk management, another purpose of the statistical modelling of the yield-weather 

relationship is the prediction of climate change impacts. Seminal papers in this context are 

SCHLENKER and ROBERTS (2006, 2009), who combine a county-level data set for U.S. maize 

yield with daily temperature observations and observe non-linear weather effects on yields, and 

SCHLENKER and LOBELL (2010), who apply different specifications of the weather variables 

(linear, quadratic, and piece-wise linear) and find robust negative effects of climate change on 

agriculture in Africa. On a country-level, LOBELL et al. (2011) regress yield outcomes on linear 
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and squared monthly temperature and precipitation. It turns out, however, that the largest share 

of the explained variation comes from the country-specific intercepts and the quadratic time 

trend and not the weather variables. To detect spatio-temporal patterns in the yield-weather 

relation, TRNKA et al. (2016) use data for ten countries and two regions in Europe in the period 

1901–2012 for wheat and barley. Additional to the classical weather variables, they apply 

drought indicators, frost days, potential evapotranspiration, and water vapor pressure deficit, 

but achieve a rather poor fit with an adjusted 𝑅2 for wheat between 0.00 and 0.71 and an RMSE 

between 65 % and 130 % also when looking at subperiods. Nevertheless, they find an 

increasing influence of climatic variables in the later years.  

All these studies show how difficult it is to explain the yield-weather relation using classical 

statistical approaches. Hence, a lot of hope is put in the use of machine learning and the 

increased computational power, which allow a more sophisticated analysis of the relation. VAN 

KLOMPENBURG et al. (2020) conduct a systematic literature review and identify 50 studies since 

2008 that use machine learning for crop yield modelling. Explanatory variables are mostly 

related to weather, but also other features such as field management or nutrients are considered. 

For example, MATSUMARA et al. (2015) predict the maize yield in Chilin province, China, based 

on weather variables and fertilizer usage using a multi-layer perceptron with one hidden layer 

and compare the results with those of a linear regression model. Whereas the artificial neural 

network clearly outperforms the linear regression model, the predictive performance can mainly 

be traced back to the fertilizer and not to the weather variables. JEONG et al. (2016) apply 

random forests to global wheat yield raster data in 2000, U.S. county-level maize grain yield 

1984–2013, and potato tuber and maize silage yield data for over 1,000 points in the 

Northeastern U.S. in selected years. They achieve an RMSE between 6 % and 14 %, which 

clearly outperforms a multiple regression model (RMSE between 14 % and 49 %). Also with 

random forests, EVERINGHAM et al. (2016) aim to predict regional sugarcane yields at Tully, 

Australia, at different time points up to a year before harvest to optimize fertilizer usage. The 

shorter the forecast horizon, the more important become variables such as rainfall and 

temperature range, and up to 79 % of the variability can be explained. Using a semiparametric 

version of a deep neural network, CRANE-DROESCH (2018) models county-level yield in the 

U.S. Midwest from 1979 to 2016 in dependence of daily weather variables such as precipitation, 

temperature, humidity, wind speed, and radiation. It turns out that while the semiparametric 

model is best (with the largest effect of a time variable), the fully nonparametric neural network 

performs much worse than an OLS regression. In a crop modelling challenge, KHAKI and WANG 

(2019) as one of the winning teams achieve an RMSE of 12 % with a deep neural network when 

predicting the yield performance of maize hybrids at over 2,000 locations in the U.S. They find 

considerable effects of solar radiation, temperature, and precipitation. Some studies also use 

remote sensing data and derived indices such as the Normalized Difference Vegetation Index 

(NDVI) or Enhanced Vegetation Index (EVI) (e.g. PANTAZI et al., 2016; JOHNSON et al., 2016; 

FERNANDES et al., 2017; SUN et al., 2019; WOLANIN et al., 2020).  

Applications of machine learning methods for the estimation of the yield-weather relation in 

Germany, however, are rare. PAUDEL et al. (2021) design a workflow for large-scale crop yield 

forecasting at different steps between planting and harvesting and apply it to the Netherlands, 

Germany, and France. For whole Germany, they achieve a normalized RMSE between 7 % and 

17 % at the end of season, which is much larger than the corresponding values from predictions 

by the European Commission’s MARS Crop Yield Forecasting System (MCYFS). On a county-

level, WEBBER et al. (2020) combine support vector machines and process-based modelling 

using data on weather, soil, and crop phenology to explain yield failures. Their model, however, 

was not able to capture the losses in 2018, an exceptionally dry year in Central Europe (TORETI 

et al., 2019). 

It can be concluded that the use of machine learning does not automatically lead to better results 

and requires a careful specification. Moreover, crop yield modelling is usually done at a larger 
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scale, so that our study is – to our best knowledge – the first in modelling crop yield based on 

a rich farm-level data set in Germany.  

3 Methodology 

3.1 Baseline Model 

Our baseline model, which serves as a benchmark for the neural network model, is a multiple 

regression model. As the dependent variable, we use the deviation of the yield from the farm 

yield average in the training data measured in dt/ha. By subtracting the farm-specific mean, we 

remove constant location- or farmer-specific factors influencing the yield to reduce the omitted 

variable bias of the model. Following VEDENOV and BARNETT (2004) and VROEGE et al. (2021), 

we use the average temperature, the total precipitation, and the average soil moisture as 

independent variables. All weather variables are calculated as monthly values for April, May, 

and June, which represent the growing period. As in VEDENOV and BARNETT (2004), we 

additionally apply squares and same-month interactions of these variables to allow for a non-

linear relation. The regression model can be defined as follows: 

Δ𝑦𝑖 = 𝛽0 + ∑ 𝛽1𝑘𝑇𝑘𝑖 + 𝛽2𝑘𝑃𝑘𝑖 + 𝛽3𝑘𝑀𝑘𝑖 + 𝛽4𝑘𝑇𝑘𝑖
2 + 𝛽5𝑘𝑃𝑘𝑖

2 + 𝛽6𝑘𝑀𝑘𝑖
2

𝑘=April, May, June

+ 𝛽7𝑘𝑇𝑘𝑖𝑃𝑘𝑖 + 𝛽8𝑘𝑇𝑘𝑖𝑀𝑘𝑖 + 𝛽9𝑘𝑃𝑘𝑖𝑀𝑘𝑖 + 𝛽10𝑘𝑇𝑘𝑖𝑃𝑘𝑖𝑀𝑘𝑖 + 𝜖𝑖 

(1) 

 

where Δ𝑦𝑖 denotes the yield deviation for farm 𝑖 and 𝑇𝑘𝑖, 𝑃𝑘𝑖, and 𝑀𝑘𝑖 the values of the weather 

variables temperature, precipitation, and soil moisture, respectively, at farm 𝑖 in month 𝑘 (April, 

May, June). The 𝛽s denote the coefficients to be estimated and 𝜖𝑖 the error term. To estimate 

the model parameters, we use the ordinary least square (OLS) method. 

3.2 Neural Network 

Second, we apply a neural network (NN) to estimate the weather-yield relationship based on 

the same dependent variable as in the previously described model. NN with at least two hidden 

layers are able to recreate any form of a mathematical model which is in line with the non-linear 

relationship between weather and crop yields (SHARMA et al., 2020). This model is illustrated 

in Figure 1. While setting up and training a NN, hyperparameter tuning is essential, but there is 

no strict method for selecting and tuning hyperparameters so far. In our study, we develop an 

NN of two hidden layers while performing grid search on a search space (Table A1) with Tune 

as platform (LIAW et al., 2018). We use the setting of hyperparameters with the lowest RMSE 

on the validation set. The search space for the grid search included learning rate, batch size, and 

number of neurons per hidden layer as hyperparameters. Since we are facing a regression 

problem, we have one neuron in the output layer. For training the model, we use stochastic 

gradient descent and the Adam optimizer (KINGMA and BA, 2014). To account for the non-

linear relationship between weather and crop yields, we decided in line with SHARMA et al. 

(2020) for a non-linear activation function and to use the ReLU function (rectifier linear unit). 

It can be written as 𝑔(𝑥) = max (0, 𝑥). The activation function is used for all neurons in the 

layer except for the output layer. The NN was implemented in Python using the PyTorch library 

and trained on a Linux engine (PASZKE et al., 2019). Before training the NN, the features were 

normalized. 

Every data set is split into three subsets: the training data set, validation data set as well as the 

test data set (NORDHAUSEN, 2009). The training data set is used to adjust the weights and to 

train the model. The validation set is used to evaluate the results of the grid search and to choose 
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for the hyperparameter settings with the lowest RMSE. In the end, the independent test set is 

used for evaluating the out-of-sample performance of the model.  

To analyse the effects of aggregated and disaggregated weather data, we feed the neural 

network with daily or monthly weather data. Therefore, we apply the monthly mean of soil 

moisture and temperature and the monthly sum of precipitation. 

Figure 1: Neural Network with two fully connected hidden layers 

 

4 Empirical Application 

4.1 Study Region and Data 

In the empirical application, we use a data set with the annual winter wheat yield from 4,309 

German farms in 2003–2018, measured in deciton/hectare (dt/ha). In total, the data set consists 

of 68,944 observations. Germany is advantageous for investigating the effects of drought on 

winter wheat since only about 2.7 % of the agricultural area in Germany is irrigated 

(SCHIMMELPFENNIG et al., 2018). The data set was provided by a financial accounting firm and 

an insurance company that has asked farmers for voluntary information on harvest quantity and 

area. The farms are spread across Germany with a majority in the south. The exact locations 

have been anonymized, but the municipalities in which the farms are located are provided. 

Since the yield data were collected through a voluntary survey, some inaccuracies may exist. 

For example, some respondents have entered the same value repeatedly although the years 

differ significantly in their weather conditions. Here, we suspect that respondents have not 

entered realistic values and therefor remove farms where at least half of the yields were 

identical. To correct outliers from inaccuracies in the data collecting process, we identify the 

1% percentile and the 99% percentile with the corresponding farms and deleted those farms 

from the data set. This is done for each study region individually.  

The weather data are provided by the Climate Data Center of Deutscher Wetterdienst (DWD). 

We utilize daily precipitation, daily temperature, and daily soil moisture data spanning from 

2003 to 2018 corresponding to the agricultural data. The temperature is an average of 24-hourly 

values and is measured in °C two meters above the surface. The amount of precipitation is 

measured in mm. Soil moisture data are estimated by the water balanced model AMBAV 

(agrometeorological model to calculate the current evaporation) (LÖPMEIER, 1994). Since we 

do not know the exact locations of the farms, we connect the yield data with the weather data 

via the respective municipality. The DWD interpolates temperature and precipitation data 

coming from around 300 weather stations to a 1 km x 1 km grid based on the interpolation 

method by FREI (2014). With 2018, we have an exceptional dry year in central Europe in our 
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test set (TORETI et al., 2019). It can also be observed in our weather data for all German locations 

(Figure 2 left) that 2018 had more extreme conditions compared to 2016 and 2017. While there 

was a generally higher level of the temperature, 2018 had both normal and particularly low soil 

moisture levels. In the case of precipitation, a generally lower level can be observed in 2018.  

Figure 2: Monthly weather values for all farm locations (Germany) as well as for selected 

soil-climate-regions (SCRs) 

 

Since the conditions to farm agricultural land vary greatly in the different regions of Germany, 

we also split our data set into regions with comparable soil and weather conditions. The 

chambers of agriculture of the federal states and the federal biological research centre for 

agriculture and forestry have agreed on the soil-climate-region (SCR) classification. A 

clustering procedure was used to combine municipalities with similar characteristics in terms 

of soil quality, temperature, and precipitation to larger areas, which have relatively 

homogeneous conditions for agricultural production (ROßBERG et al., 2007). In our analysis, we 

first use the entire data set (Germany), then the three SCRs with the largest number of farms in 

our data set (SCR South 1, SCR South 2, SCR South 3) as well as one SCR in north-western 

Germany (SCR Northwest) and one in eastern Germany (SCR East).1 In Figure 3, the location 

of the selected soil-climate-regions can be seen. The descriptive statistics for the cleaned yield 

data sets of these subgroups are depicted in Table 1, the monthly weather variables for the SCRs 

in Figure 2. 

 
1 The exact names of the soil-climate-regions are: SCR South 1: BKR113 – ‘Nordwestbayern-Franken’; SCR 

South 2: BKR114 – ‘Albflächen und Ostbayerisches Hügelland’; SCR South 3: BKR115 – ‘Tertiär-Hügelland 

Donau-Süd’; SCR Northwest: BKR147 – ‘mittleres Niedersachsen, nordöstliches NRW’; SCR East: BKR108 

– ‘Lößböden in den Übergangslagen (Ost)’ 
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Figure 3: Soil-climate-regions (SCR) in Germany (ROßBERG et al., 2007) and presentation 

of the SCRs considered in this study 

 

Table 1: Descriptive statistics of the yield data (dt/ha) for whole Germany and the 

considered soil-climate-regions (SCR) 

 # farms # obs. Mean  St. Dev.  Min.  25 % 50 % 75 % Max. 

Germany 3,344 53,504 74.20 13.57 26.59 65.86 75.09 83.02 113.58 

SCR South 1 373 5,968 67.57 14.27 21.54 59.48 69.65 78.21 101.69 

SCR South 2 482 7,712 73.96 12.17 32.21 66.84 74.99 81.21 114.25 

SCR South 3 394 6,304 77.64 12.06 31,26 71.11 78.84 85.00 113.44 

SCR Northwest 97 1,552 80.11 12.83 37.65 72.63 80.28 89.01 136.16 

SCR East 7 112 79.33 13.50 51.48 70.19 79.91 89.84 106.81 

 

4.2 Results 

We start with the results for the whole data set before we take a closer look into specific soil-

climate-regions to examine regional and temporal differences. The applied data set is split by 

years into training data (2003–2012), validation data (2013–2015), and testing data (2016–

2018) to create a realistic scenario as we would have it in an insurance application. Whereas 

the training and validation data are used to specify and estimate the model, the performance of 

the different models is eventually compared based on the independent test set. Even if this split 
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is not necessary for the baseline model, we also apply it to ensure comparability across the 

models. For each machine learning model, a separate grid search was performed to improve the 

performance. While in some regions, only marginal improvements could be achieved, the 

RMSE could be reduced by about 40 % in other regions through grid search. Although this 

method is very resource- and time-intensive, it offers the possibility to achieve comparable 

results for different trials. The best performing hyperparameter configurations are shown in 

Table A2. During the training of the model, it turned out that overfitting already occurred after 

a few iterations depending on the region. With the feature normalization, it was tried to 

counteract this and to enhance the performance of the model. This also accounts for the different 

dimension in the input variables. 

Table 2 depicts the RMSE for models using all farms of the data set (Germany). The RMSE for 

the testing data with the baseline model amounts to 13.06 dt/ha. Compared to an average yield 

of 74.20 dt/ha of the whole study period, this error is substantial. The RMSE for the training 

data of 10.23 dt/ha, however, shows that the regression model also cannot explain a much larger 

share of the yield deviations in-sample. Applying the neural network with monthly data, 

surprisingly even further increases the RMSE of the test set to 14.44 dt/ha. The switch to daily 

weather variables reduces the RMSE for the testing data to 12.38 dt/ha. Evaluating the 

performance of the models for the five SCRs reveals that the NN with monthly data performs 

worst in all southern SCRs whereas the NN with monthly data outperforms the baseline model 

in SCR East and SCR Northwest (Table 2). The NN with daily data constantly performs best, 

even though sometimes only with small differences. 

In Figure 4, the location of the municipalities in which the farms are located can be observed. 

As mentioned before, most of the farms are located in the south of Germany and some of them 

are in the west and east. The map also depicts the RMSE for each municipality based on the 

same model as above showing a large range.  

Table 2: Root mean squared error (RMSE) for baseline and NN models based on all 

farms, evaluated for whole Germany and the five selected SCRs 

Iterations = 100 Data set Baseline Model NN Monthly Data NN Daily Data 

Germany 

Training 10.2322 7.9910 8.3717 

Validation 12.2169 12.7779 12.1812 

Testing 13.0645 14.4394 12.3756 

SCR East Testing 16.0009 14.9553 14.7233 

SCR Northwest Testing 13.9559 12.7541 12.3952 

SCR South 1 Testing 13.3573 14.2376 12.4437 

SCR South 2 Testing 13.1562 15.5831 12.5938 

SCR South 3 Testing 12.4398 14.9825 12.4165 
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Figure 4: RMSE per municipality for NN based on monthly data 

 

We want to investigate two potential explanations for the rather high error in general: First, 

using the same model for all farms in Germany might be inadequate given the large 

heterogeneity of farming and weather conditions. Hence, we will split the data into subsets 

using the aforementioned SCRs and estimate a separate model for each SCR. Second, the 

particularly dry year 2018 might be responsible for the large error, so that we will have a closer 

look at the performance of the models in the single years of the testing set.  

We start with splitting the data sets into the selected SCRs and estimating SCR-specific models. 

The results in Table 3 strongly differ between the three southern SCRs and the other two SCRs. 

Regarding the baseline model, the southern SCRs have an RMSE for the testing data between 

12.25 and 13.07 dt/ha, which is not too different from the baseline model results from Table 2 

for one model for all farms (between 12.43 and 13.36 dt/ha). The NN with monthly data does 

not change the performance substantially whereas the NN with daily data reduces the RMSE to 

between 10.72 and 11.97 dt/ha. The latter outperforms the model based on all farms with an 

RMSE between 12.42 and 12.59 dt/ha, so that estimating separate SCR-specific models seems 

beneficial.  

On the other side, the results for SCR East and SCR Northwest show a different picture. The 

RMSE for the baseline model increases to 28.38 (SCR Northwest) and 38.90 dt/ha (SCR East) 

and for the NN with monthly data to 16.68 and 17.67 dt/ha, respectively. These errors are much 

larger compared to those based on one model for all farms (between +3.92 and +22.90). Only 

the NN with daily data shows comparable results, with a clear decrease in the RMSE for SCR 

East (–2.60) and a slight increase for SCR Northwest (+0.86). It turns out that estimating SCR-
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specific models can substantially worsen the results whereas only the NN with daily data seems 

to have a robust performance. By using daily weather data, the NN has far more parameters that 

can be trained compared to the NN with monthly data and so it is able to better capture certain 

weather events. A substantial difference between the southern SCRs and the other two is the 

number of farms and hence the number of observations in the data set. The southern SCRs 

include between 373 and 482 farms whereas the other two consist only of 97 (SCR Northwest) 

or even 7 farms (SCR East). Given the size of the data sets, the results may lead to the 

conclusion that the NN can be improved by using regionalized data sets containing farms with 

similar soil and climatic conditions, but that they must be of a certain size to benefit from these 

similarities. 

To examine the temporal dimension of the RMSE and the influence of the particularly dry year 

2018, we compare the RMSE for each year separately for one model for all farms (Germany) 

and the five SCR-specific models (Figure 5). The RMSE for the baseline model is particularly 

high in SCR East and SCR Northwest in 2018. From the monthly weather values in Figure 2, 

however, it cannot be concluded that 2018 was a special year only in these regions, so that the 

exact reason for the high RMSE remains unclear. The performance of the NN based on monthly 

data also differs between the three years although with a smaller range. The NN with daily data 

does not only lead to the smallest RMSE, but its performance also varies little between the three 

years. This shows that the NN based on daily data yields to stable results, even in particularly 

dry years such as 2018.  

 

Table 3: RMSE for five SCR-specific baseline and NN models  

Iterations = 100 Data set Baseline Model NN Monthly Data NN Daily Data 

SCR East 

Training 12.9636 7.5726 8.0731 

Validation 37.8269 10.7268 13.2185 

Testing 38.8951 17.6671 12.1200 

SCR Northwest 

Training 10.3422 8.1497 8.9967 

Validation 17.4650 14.8219 11.0313 

Testing 28.3832 16.6757 13.2549 

SCR South 1 

Training 12.7603 7.8476 7.5579 

Validation 14.3575 9.6640 10.0686 

Testing 13.0683 12.8757 10.7178 

SCR South 2 

Training 10.4563 7.7469 7.6343 

Validation 11.9801 11.4379 10.7674 

Testing 12.4357 12.9929 11.9735 

SCR South 3 

Training 9.8270 7.8283 7.6072 

Validation 12.9103 12.5030 10.2084 

Testing 12.2540 12.2230 11.2918 
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Figure 5: RMSE by year of the testing set for one model for all farms (Germany) and 

SCR-specific models 

 

5 Conclusions 

In this paper, we explore the potential of machine learning techniques for improving the 

estimation of weather-induced yield losses. We specify an artificial neural network and 

calibrate it to a rich set of farm-level wheat yield data in Germany covering the period from 

2003 to 2018. A nonlinear regression model, which uses rainfall, temperature, and soil moisture 

as explanatory variables for yield deviations, serves as a benchmark. Our empirical application 

reveals that the gain in estimation precision by using machine learning techniques compared 

with traditional estimation approaches is quite substantial. The reduction of the RMSE on the 

test data amounts to 30 percent on average for the regionalized models. While the use of daily 

weather data instead of monthly weather data lead to a significant improvement of the model 

fit for all models, the use of regionalized models is only beneficial if the region is of a certain 

size. It is noteworthy that even for the best fitting ANN, the level of the RMSE amounts to more 

than 10 dt/ha and is quite high relative to the average wheat yield level. This reveals that a 

considerable part of the yield variability on a farm level is unsystematic and hard to predict by 

statistical methods or the use of “big weather data”.  

This finding has important implications for the design of weather-index based insurance 

because it documents that a rather high level of basis risk remains with insured farms if 

insurance products are based on a general weather-yield relationship. This suggests the use of 

other indices, such as area yields, as an underlying for index-based insurance. Our results, 
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however, should be considered with caution because they are only a first attempt to tap the full 

potential of machine learning in this context. Future research should use models with flexible 

model structures, e.g., convolutional neural networks or locally connected layers, to better 

estimate the meteorological factors affecting yield. We also propose the application of neural 

networks with high-resolution data to other crops and regions to generalize the findings of our 

study.  

 

 

6 Appendix 

Table A1: Search Space for hyperparameter grid search 

Learning Rate 0.001 0.002 0.004 0.0065 0.008 0.016 0.032 0.064 0.08 0.12 

Batch Size 8 16 24 32 40 48         

# Neurons 

/Hidden-Layer 
40 45 50 55 60 65 70 75     

 

Table A2: Hyperparameter configurations after grid search 

  
Batch Size Learning Rate 

# Neurons 

/Hidden-Layer 

Germany 
Monthly 8 0.002 65 

Daily 8 0.001 65 

SCR East 
Monthly 48 0.001 65 

Daily 48 0.12 50 

SCR Northwest 
Monthly 8 0.001 65 

Daily 8 0.016 75 

SCR South 1 
Monthly 8 0.001 60 

Daily 8 0.008 70 

SCR South 2 
Monthly 8 0.001 40 

Daily 24 0.032 75 

SCR South 3 
Monthly 8 0.001 65 

Daily 8 0.032 70 
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