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Abstract

The small sample performance of Granger causality tests under different model dimensions,
degree of cointegration, direction of causality, and system stability are presented. Two tests
based on maximum likelihood estimation of error-correction models (LR and WALD) are
compared to a Wald test based on multivariate least squares estimation of a modified VAR
(MWALD). In large samples all test statistics perform well in terms of size and power. For
smaller samples, the LR and WALD tests perform better than the MWALD test. Overall, the LR

test outperforms the other two in terms of size and power in small samples.
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Monte Carlo Evidence on Cointegration and Causation
1. INTRODUCTION

Testing Granger non-causality in cointegrated time series has been the subject of
considerable recent research. The first result that naturally emerged on this subject was the
existence of "long-run" causality in at least one direction (Granger, 1988) where cointegration
was represented by a bivariate error-correction model. The extension of this result to more than
two variables was fairly straightforward under the existence of one cointegrating relation. In
fact, the two-step procedure introduced by Engle and Granger (1987) was all that was needed to
test non-causality hypotheses. As the literature presented below illustrates, the dimension of the
cointegration space complicates this testing problem considerably. But recent developments in
cointegration theory have solved important questions in what still is a somewhat controversial
issue.

In the empirical literature the Wald test computed from an unrestricted vector
autoregressive (VAR) model appears frequently. Toda and Phillips (1993) show that the
asymptotic distribution of the test in the unrestricted case involves nuisance parameters and
nonstandard distributions. An alternative procedure to the estimation of an unrestricted VAR
consists of transforming an estimated error correction model (ECM) to its levels VAR form and
then applying the Wald type test for linear restrictions to the resulting VAR model. Lutkepohl
and Reimers (1992a) present the distribution of the Wald statistic for the bivariate case based on
Johansen and Juselius' (1990) maximum likelihood estimator of ECMs. The limiting distribution
of the statistic for the p-variates model is discussed in Toda and Phillips (1993). Toda and
Yamamoto (1995) propose an interesting yet simple procedure requiring the estimation of an
"augmented" VAR, even when there is cointegration, which guarantees the asymptotic
distribution of the Wald statistic. An analysis and Monte Carlo results for cointegrated data is
presented in Dolado and Litkepofdrthcoming.

Mosconi and Giannini (1992) suggest that it is possible to achieve an efficiency gain by
imposing the cointegrating constraints under both the null and alternative hypotheses while
testing for non-causality in cointegrated systems. The test statistic proposed by Mosconi and
Giannini is a likelihood ratio (LR). The limited Monte Carlo evidence provided in their study

lends support for this approach. However, in practice the computation of the LR test is
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considerably more cumbersome than any of the Wald versions of the test (detailed discussion in
Section 3).

The paper presents results of a Monte Carlo experiment designed to study the
performance of two Wald and a likelihood ratio tests for Granger non-causality in bivariate and
trivariate cointegrated systems. Estimation and testing for two of the tests follows the maximum
likelihood approach of Johansen (1988) and Johansen and Juselius (1990). The third test, which
serves as a benchmark for comparing test performance, is computed from the multivariate least
squares estimates of a VAR (Toda and Yamamoto (1995) and Dolado and Liutkepohl (1994)).

Section two introduces the model and establishes the notation. The alternative tests for
Granger non-causality in cointegrated systems are the subject of Section three. Section four

explains the experiment and presents the results. Section five contains the conclusions.

2. MODEL AND NOTATION

The basic VAR model for p variables and k lags with Gaussian errors is given by

@.(L) D,L)]y, t=1,...,T (1)
o(L)z, = = €
@, (L) D,,L)]| X
where ¢, ....,£ are i.i.d. N ~K), and the maximum lag @(L) is k, y, consists of p variables

andx, of p, variables. We omit deterministic components for simplicity. In error-correction form
this model can be expressed as
AZt = rlAZt_l + ... t rk_lAZt_k+1 - I_IZt_k + et (2)

where
i= (L -®y-...-®), i=1,..., k1,
and
M= 1,-®,-...-®,
which using compact matrix notation reduces to
z =Tz +1z +E (3)

where Z is a p x T matrix of observations on first differences of,Z, Z contains the lagged
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differences, £ is the kth lag of 4’ is a (p x (k-1)*p) matrix of the stackdgs, and E is the p x
T matrix of disturbances for the p equations in the system.

The case of interest in this experiment is when there is cointegration, that is, when the

rank ofIl equals r < p. This hypothesis is formulated as

H,(n: II = of’ 4)
wherea andp are p x r matrices, and r is the number of cointegrating reldii@asThis
restriction also provides some insight into the causality implications of cointegration whereby
causality can come about through the cointegrating relgbigh®r by conditioning o such
that a row ofx equating to zero essentially excludes "long- run causality” in the corresponding
equation.

The maximum likelihood estimation of this multivariate cointegration model follows a
reduced rank regression (RRR) due to Johansen (1988) and Johansen and Juselius (1990, 1992),
which for the concentrated (with respect to the paramgtersl, .., k-1) likelihood function can
be expressed as

R, =af'Rq + & (5)
where R are the residuals from the regression of Z,on Z , and R are the residuals from the
regression of Z on,Z (refer to equation (3)).

In this paper we investigate Granger non-causality in bivariate and trivariate Z ,, i.e., Z =
[y, x,]'and Z =[y %, %] (referto eq. (1)). In the trivariate case, the Z are cointegrated if r=1
orr = 2. We concentrate on r =2, and more specifically, on the case when the cointegration
space is made of two types of cointegrating vectors: those involving all variables, and those
involving thex's only. This setting has specific implications for the estimation of the model and
the testing for Granger non-causality because of the presence of joint restrictsoandfh
Specific discussion is presented in Section 3. Following Mosconi and Giannini (1992), we define

p, as the number of variablesyin(p, = 1 in this study), and,p as the number of variabl&s in

3. TESTING GRANGER NON-CAUSALITY
This study explores three alternative tests for non-causality. Two of them are computed
from the estimated parameters of the ECM representation (eg. (2)), while the third is computed

using the estimated parameters from a VAR representation (eq.(1)). The latter is used as a



benchmark for comparing test performance because of its simplicity.

3.1 NON-CAUSALITY TESTS USING AN ECM
3.1.1 Wald test

The first step towards testing causality in ECMs is to estimate the parameters in equation (2)
by Johansen's maximume-likelihood. Using the parameterization in equati@nddgs not
Granger-causg, if and only if the hypothesis (Lttkepohl (1993), p. 378):

Hy: @4,;= 0 for i=1,2,...,k (6)
is true, wheréb,, is the coefficient matrix or, in they, equations. In a bivariate system, for
instance®,,; is the 1x1 coefficient on,x in the y variable. Similaglydoes not Granger-cause
X, if and only if the corresponding,, ; coefficients equal zero. Lét= vec@,,...,® ] be the
vector of all VAR coefficients. Then, the test for the linear restrictions in eq. (6) is given by

testing H : Rp = 0 against H : B # O for suitable chosen R. The Wald statistics for testing H is
W = T¢’R/(RZ¢R’)‘1R¢ (7)

where Ris N xp k, Nis the rank of R aﬁg is the variance-covarianjze \0f has a Chi-

squared distribution with N degrees of freedom under H if some conditions hold (refer to Toda
and Phillips (1993), Section 4, Theorem 3). Suppose that we are interested in whether the p

elements ok, are "not causing” the,p elementsypfThen, for W to converge in distribution to a

Chi-squared, it must be that ralﬁlﬁg )=p or ramgl( )= p , whaardf} have been

partitioned accordingly .

Note that in practice this requires pre-testing of the ranks of sz and ap, - The implementation

of this test for cointegrated systems consists of: (a)Estimating «, B, I, (i=1, .., k-1), and Z, by
Johansen' s MLE, where r is taken to be the value determined by pre-testing for the rank of IT;
(b)Transforming the ECM estimates to corresponding VAR in levels estimates. That is,
reversing the transformation from equation (2) to equation (1). Litkepohl and Reimers (1992b
pp. 62-63) propose a one step formula to achieve this transformation;(c)Estimating 2,
consistently (see Lutkepohl and Reimers (1992b) pp. 63); (d) Computing W to accept or reject
the null hypothesis of non-causality.



3.1.2 Likelihood ratio tests

A variety of tests of hypotheses on the parametersl} were introduced by Johansen and
Juselius (1990,1992). Mosconi and Giannini (1992) proposed that there may be efficiency gains
by applying the cointegration restrictions under both the null and the alternative hypotheses in
testing for non-causality. The alternative hypothesis is that of cointegration H (r) in equation
(4). Under the null of non-causality, does not Granger causg we must consider not only
H,(r) but also constraints on the parameter space definEdabglIl. The linear restrictions for
non-causality are expressed as

He(n: BT'V=0,BIIA=0 (8)
wherel" andIl are the parameters of model (3), B[] isp x p,, A=[l,, O] ispxp;, V=
(ley® A) is p(k-1) x p (k-1), }; is an identity matrix of order p, and B'A = 0. The subscript G on
H is used to indicate Granger causality. Note that the restrictions in (8) are equivalent to those in
(6) except that the former are now expressed in terms of the ECM formulation. We define the
known matrices as A and B to facilitate reference to Johansen and Juselius' notation (1990,
1992). The linear restrictions in (8) include both long- and short-run non-causality. Testing for
long-run non-causality only (that is, causality through the error correction term only) could be
expressed as:

He (): BIIA=0 9
where the constraints are imposed on the parameter space defihedruythe subscript GL
represents Granger non-causality in the long-run. Some of the specific implications for
estimation and testing in this case are discussed below.

The hypothesis of Granger non-causality (G) conditional on cointegration (C) can be

formulated as

Heo(r): BT'V=0,BIIA=0,IT =af’, (10)
and the likelihood ratio (LR) test for this hypothesis is
LR = -2In{Lna[H odN/L wdH 01} (11)

based on Johansen's results, Mosconi and Giannini (1992) indicate that (11) is asymptotically
distributed as a Chi-squared and they compute the degrees of freedom to hg: pr,-,pr,pr -rr

whenk=1and pr-pr -pr 16r +;p,p (k- 1) when k> 1, wherer gnd r are defined shortly.
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Estimation of the ECM underdd (k,r,r ) follows classical restricted MLE estimation.
This can be carried out using a switching algorithm proposed by Johansen and Juselius (1992)
and Mosconi and Giannini (1992), whereby all restrictions are imposed. This estimation problem
can be formulated by making use of Theorem 1 in Mosconi and Giannini (1992) which states that
the hypothesis BI A = 0 holds true if and only if

/ / /
M-ap’ - Op1Br1 (X3P + X 15B2)) _ My My (12).

0 0(22[3;2 My Ty
The explicit partitioning oft andp under the restriction BA = 0 andll = «f' is obtained by
noting that B'A = 0 implies

BTIA = B'af' A = B'Aay,f/, A + B'a,,B,,BA=0
anda,f’, = 0 implies

0

11 %o
OC__O a, =[Aay|ag
Bll 0
= = [B. | BBy,
§ 6, B, B, | BB,.]

where,

0y IS Py X 1,0,ISPX1,BispXr,B,dsp,xr,andr=r + 1. Inthis partition,;r = rabk(,

and r = rankil,,). Using this partition and the compact notation from eq. (3), the model to be
estimated under the null hypothesis gEH (r), or more specificafly H, §r,r.r),is:

Z,=TZ, + AayBiZy + oBpB’Z, + E. (13)
If there were no restrictions diy o and may be estimated using RRR as shown in equation (5).

That is, if the hypothesis of interest wergH (r;r ,r JIB8'= 0,11 = «ff', we can write the RRR

(concentrating o") as

2 We would like to thank an anonymous reviewer for pointing this out.



Ro = AallBiRkt * O‘zBézB/Rkt ! (14).

The experiment presented in this paper refers to the case in €g. (13) .
Estimation of eq. (13) includes restrictionsoofAc:,,) and restrictions ofi (Bf,,) and

the problem does not easily reduce to the usual eigenvalue pfoblem .

3.2 NON-CAUSALITY TESTS USING A VAR
3.2.1 Wald test

Toda and Yamamoto (1995) prove that the Wald test for restrictions on the parameters of

a VAR(K) has an asymptotj¢ distribution when a VAR(k +.¢, ) is estimated, wherg,d is the

An illustration of the estimation steps for the case in eq. (14) can be found in Zapata and
Rambaldi (1995).

Adopting a modification of a switching algorithm proposed by Johansen and Juselius(1992),
the estimation problem reduces to: (a)lnitialization: Set oy, and 3, and I' equal to zero in :

(ZO—FZl—Aé(ll[AS; Z) = 0(2[3228’2k + E; (b) Solve for o, and B,,. This requires solving the
usual eigenvalue problem |AB'S,, B - B'S,,S,s S, B| . Calculate®, and 622 the usual way
(refer to Johansen and Juselius (1990), p. 193); (c) Fix Bzzand a, atthe values in (b),
condition on &zﬁng/Zkto obtain (Z, -I'Z,-¢&, B;zB/Zk) = Aa B Z, + E and solve the
eigenvalue problem:
IASii s ~ SeapSaabSacsl = 0; The cross-product moment matrices conditioned on [3,, ar
St = B'SgoB, Sap = A'SgeB, Sy = SioB1 Saan = (A'Rg - GX)(A'Rg - Gix) I(T-K), S = (AR, -
G)(Re- Gox)'/ (TK), Sap = (R~ 2X2)(A Ro - Gyxy) I(T- k) Sikw = (Ric - GoXo)(Ry - Gxy)/ (T k),
where, x; = B'R, G; = (A'Ry) Xl(xlx )L G, F?le (x1X J!. The solution to this eigenvalue

problem generateB1 andx,, Notethat $,, may be singular, hence Lemma 1 (Johansen and

Juselius, 1992) shows how to solve the problem by first diagonaligipg S
of B,, a,,, &, andpB,, , the estimator fBtis given by:

r-r+£B@®’EB)BTV(V (Z,2))y*V) vV (Z,Z,)*, with definitions off and 2 as in Mosconi and
Giannini (1992, pp. 407). This estimator is derived following Spanos (1986) pp.583. We note that the

formula for " shown in Mosconi and Giannini (1992) contains several typographical errors; (e) Iterate
until convergence by repeating steps (b)-(d), where the convergence criterion is defined in terms of
increments in the likelihood function.

Finally, note that in systems with cointegration rank r =1, the model in equation (13) reduces to

/
Z, =17 +Aa,B,Z, +E
and the restrictions enter only through The estimation of,, andf, in this case follows Johansen and
Juselius (1990) pp. 199 - 200 since no conditionin@ @nnecessary, and the estimatol'as defined as

before. In our experiment this is the case for the bivariate models.

; (d) Finally, given estimates
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maximal order of integration suspected to occur in the process. Dolado and Lutkeponhl
(forthcoming)using a different approach, prove the same result and analyze the power properties
of this test. The Wald statistic is computed using only the first k coefficient matrices. This
procedure does not require knowledge of either the cointegration properties of the system or the
order of integration of the variables. Thus, if there is uncertainty as to whether the variables are

I(1) or 1(0), the adding of an extra lag insures that the test is being performed on the 3afe side .

4. THE EXPERIMENT AND THE RESULTS

The criteria used in designing the DGPs were: model dimension, degree of cointegration,
direction of causality, and stability. Six data generation processes (DGPs) were included in the
experiment; four bivariate (DGP(1) to DGP(4)) and two trivariate (DGP(5) and DGP(6)).

Bivariate models were included because their simplicity facilitates the study of test performance.
They also appear frequently in applied work related to purchasing power parity, threshold
cointegration, market efficiency, and other studies of economic dynamics with pairs of variables.
Higher dimensional models have been used to study, for instance, exchange rate behavior and to
test structural hypotheses of economic dynamics. In Monte Carlo work, however, higher
dimensionality creates problems of experiment management and interpretation. Because of this
we simulate trivariate models only. All six models meet the conditions of Theorem 3 from Toda
and Phillips (1993) relative to the "degree of cointegration.” The direction of causation is
controlled through either the long-run or the short-run parameters, or both. In all models there is
causality fronx toy, and at the same time relative "power of the test" comparisons are
permitted. For instance, models DGP(1) and DGP(2) are the same except that in model DGP(2)
the speed of adjustment coefficient gn y in the x equation is changed from 0 to 0.4. Table 1

presents the six models (data generation processes) used in this study.

The computation of this Wald test is very simple: (a) Estimate a VAR(k+d,,,,) process by
multivariate least squares, where k is the known or pre-determined optimum lag of the system.

Denote dJ(L)t .amax » L€ least squares estimator of the parameters in equation (1) with only the

k

« +dmax D€ @ consistent estimator of the

RS R R

k +dmax k +dmax
an asymptotic fo) distribution, with N being equal to the rows of the restriction matrix R.

coefficients of the first k lags considered; (b) Let b3

) has

variance-covariance of ®(L); . gmax - Then, A, = T(R&)Ldmax)/
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In all cases 1000 samples of size T + 50 were generated with the first 50 observations
discarded. For each DGP, five sample sizes were included; T=25, 50, 100, 200, and 400.

The tabulated results of the experiment are presented in Tables 2 and 3. Table 2 contains
the outcome for thbivariate modelswhile Table 3 presents the results fortifieariate
models In all cases the numbers in the body of the tables are the percentage of rejections at the
5% level, and the headings WALD, LR, and MWALD stand for Wald test computed from the
estimated ECM, likelihood ratio computed from the estimated ECM, and Wald test computed
from the estimated "augmented” VAR, respectively. The lag length for the estimated models is
"T" for the true lag, "O" for overfitting by one lag, and "U" for underfitting by one lag,
respectively.

The results for both hypotheses;/-> x andx -/->y for thebivariate modelsare
tabulated in the Tables. The results correspond to the experiments conducted when the
variance-covariance is contemporaneously correlated. The results for the identity covariance
matrix do not differ substantially and due to space constraints are not presented here . All three
tests suffer from size distortions in small samples. As the sample size increases they approximate
the correct siz@eft block of Table 2).An exception is the underfitting of model DGP(3) where
both the WALD and the LR suffer a substantial size distortion even for large samples (the
percentage of rejections is 63% for both the LR and WALD cases, respectively). The MWALD
test rejects 4.8%of the cases. A possible reason for this size distortion is that model DGP(3) is
an ECM(2); that is, the true model contains one short-run lag, and the error correction term. By
underfitting DGP(3), an ECM(1) is estimated omitting all short-run dynamics. When computing
the MWALD test under the underfitting scenario, a VAR(2) is estimated and the test computed
on the reduced model, a VAR(1). Clearly, the estimation of a VAR(2) does not omit important
dynamics. For model DGP(2), where the null hypothesis is not consistent with the true, the
MWALD test requires a sample size of at least 100 to achieve a relatively high power. The
WALD and LR rejections approach 100% for sample sizes of at least 100 . These results
indicate a substantially lower "power of the test" for MWALD in small samples. The percentage
of rejections goes to 100% for all three tests as the sample size increases indicating local

asymptotic power.

These results appear in Zapata and Rambaldi (1995).
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The right side of Table 2 presents the tabulated results for the hypothesis/txay
(the null hypothesis is not consistent with the true) fobitaariate modelsin large samples
(equal to or larger than 100), the three tests generate equivalent results. In small samples,
however, the percentage of rejections of the LR is significantly higher than that of WALD and
MWALD. The percentage of rejections of WALD is slightly higher than that of MWALD in
samples of size 50. These results point to a lower power of the test for MWALD in small
samples. The percentage of rejections for model DGP(2), where bidirectional causality is
present, is similarly low for MWALD and WALD in small samples. The importance of this
finding is that in small samples, when bidirectional causality is expected, the LR seems to be the
only test with enough power to detect a false null hypothesis initheate modelstudied
here.

Table3 contains the tabulated results for thieariate models The left block of the table
presents the results for the hypothesis yhdt> x (the hypothesis is consistent with the truth).
Overall, results are similar to those fwvariate models All three tests show significant size
distortions in small samples. In large samples the MWALD test approximates the correct size,
the WALD suffers in model DGP(6) "U" from the same size distortion as model DGP(3) when
short-run dynamics are omitted in the estimation of the ECM. The LR shows the largest
deviation from the theoretical size of 5% for model DGP(6). The size distortion occurs in both
the "O" and "U" cases . The right block of the tadflews the results for the hypothesis that
>y (the hypothesis is not consistent with the null). For samples of size 25, the power of the LR
test is very high itrivariate models For samples of size 50 or smaller the MWALD test
appears to be sensitive to model structure as a false null hypothesis is not rejected too often
(DGP(5)). The power performance of the WALD test falls between the other two tests. For

samples of size at least 50, the power approaches 100.

5. SUMMARY AND CONCLUSIONS

This paper has presented Monte Carlo evidence on the performance of two Wald and a
likelihood ratio tests for non-causality in cointegrated bivariate and trivariate models. The
models were estimated using Johansen's maximum likelihood approach and least squares

estimation of an augmented VAR. The experiment was designed to a) address questions of test
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performance as related to sample size, lag structure, unidirectional and bidirectional causality;
and b) to compare the small sample performance of a more efficient LR test to two versions of
the Wald test, namely a Wald statistic computed from an estimated "augmented” VAR
(MWALD) and a Wald statistic computed from an estimated ECM. The main conclusions that
emerge from the experiment can be summarized as follows.

Long-run non-causality (that is, non-causality through the error-correction term (ECT) as
in models 1, 2, and 5) is consistently detected by the three tests when the model is correctly
specified. The MWALD test for non-causality approaches the nominal size as the sample
increases. For small samples the empirical size is larger than the nomical size. The results at
samples of size 100 and larger appear quite accurate. Overfitting or underfitting does not seem to
affect the empirical size of the test in detecting non-causality. The MWALD test is based on an
estimator that does not incorporate the information about the degree of integration and/or
cointegration of the variables in the system. An advantage of the MWALD test is that it has a
limiting chi-squared distribution even if there is no cointegration or the stability and rank
conditions are not satisfieéd . On the other hand, as the estimator (VAR) is less efficient than the
maximum likelihood estimator for cointegrated systems, MWALD would be expected to have a
lower power of the test than the WALD and the LR tests in all cases studied in this experiment.
The results show this to be the case for small samples, 25 and 50, only. Therefore, it is important
to note, given the power performance of the tests in larger samples, that the MWALD approach
has much practical appeal because of its simplicity.

The empirical size of the WALD test approaches the nominal size when the model is
estimated with the true or the overfitted lag structure. The results at samples of size 50,
nonetheless, appear quite accurate. Underfitting (i.e., specification of the short-run dynamics)
affects the test size. Both LR and WALD tests are very sensitive to the specification of the
short-run dynamics in ECMs even in large samples. The size distortions were very apparent
when an ECM(2) model was underfitted, as in DGP(3) and DGP(6). The effect of underfitting

on the size of the tests is believed to be the result of the bias of the Johansen's maximum

! If the simulation study had considered cases where there is no cointegration or the stability

and rank conditions are not satisfied, the conclusions could have had a different flavour, as
correctly indicated by an anonymous referee.
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likelihood estimator when models are underfitted. Gonzalo (1994) finds OLS to be superior to
the Johansen's maximum likelihood estimator when the ECM is underparametrized .

The empirical size of the LR test approaches the nominal size when the model is
estimated with the true lag structure. For the bivariate models in the experiment, underfitting did
affect test size. In trivariate models both underfitting and overfitting seem to affect the empirical
size of the test. Alternative covariance structures appear to have a significant effect on empirical
size when the estimated model is not the true lag structure.

One practical implication of these results is that in choosing the lag structure of ECMs,
alternative selection criteria must be examined; it appears that in testing for directional causality
in these systems, parsimony may not be the guiding principle as all three tests suffer from severe
size distortions regardless of the sample size when important dynamics are omitted.

Overfitting affects the power of the three tests at small samples (25,50) and this effect
appears to be stronger when there is bidirectional causality through the ECT (DGP(2)).

In summary, our experiments suggest that all three tests have a high power of the test in
moderate to large samples regardless of model structure. In small samples (50 or less
observations), the MWALD test suffers the most loss in power, with the LR performing best in
terms of power. This is encouraging for practitioners who may often have limited data upon
which to make inference about economic dynamics.

In closing, it must be pointed out that Phillips (1995, pp.1053) has advocated the use of
the "Fully Modified VAR" (FMVAR) approach. It appears that, judging from the results for the
MWALD test in these experiments, this new FMVAR approach has much to offer to applied
researchers studying "causality" and other related dynamic questions. Using this estimator,
Phillips shows that a Wald test for non-causality has a limiting distribution that is a linear
combination of independent chi-squared variates (see Theorem 6.1 pp. 1054). Non-causality
tests based on the FMVAR approach are expected to have higher power than those based on the
Augmented VAR estimator (i.e MWALD) since the FMVAR approach does not involve the
inefficiency of having to estimate coefficient matrices for surplus lags (see Phillips, 1995, pp.
1053).
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TABLE 1. Data Generation Processes (DGP).

Model I I, o B
DGP(1) -0.25 1.00
0.00 -2.00
DGP(2) -0.25 1.00
0.40 -2.00
DGP(3) 050  0.50 -0.25 1.00
0.00 0.5 0.00 -2.00
DGP(4) 050  0.50 0.00 0.25 -0.25 1.00
0.00  0.25 0.00 0.00 0.00 -2.00
DGP(5) -0.68  0.10 1.00 0.00
0.00 0.31 0.50 0.75
0.00 -0.38 -0.50 1.00
DGP(6) -1.07  -0.48  0.49 -0.68  0.10 1.00 0.00
0.00  -0.46  0.02 0.00 0.31 0.50 0.75
0.00 0.02  -0.31 0.00 -0.38 -0.50 1.00

Note:  Two cases of the covariance maftixvere used: a) an identity matrix, and b) a symmetric matrix with 0.5
replacing the zeros in the identity matrix. In the bivariate modegtd, pp,=1, 1, =1 andy =1} is a 2x2 matrix; and
in the trivariate models,p1, p,=2, =1 and,r =1, and is a 3x3 matrix.
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