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Abstract 

Weather is a pivotal factor for crop production as it is highly volatile and can hardly be 
controlled by farm management practices. Since there is a tendency towards increased 
weather extremes in the future, understanding the weather-related yield factors becomes 
increasingly important not only for yield prediction, but also for the design of insurance 
products that mitigate financial losses for farmers, but suffer from considerable basis risk. In 
this study, an artificial neural network is set up and calibrated to a rich set of farm-level yield 
data in Germany covering the period from 2003 to 2018. A nonlinear regression model, which 
uses rainfall, temperature, and soil moisture as explanatory variables for yield deviations, 
serves as a benchmark. The empirical application reveals that the gain in forecasting precision 
by using machine learning techniques compared with traditional estimation approaches is 
substantial and that the use of regionalized models and disaggregated high-resolution 
weather data improve the performance of artificial neural networks. 
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Introduction 

Understanding yield variability is essential for agricultural risk management at the sectoral as 
well as farm level. Crop yields depend on a variety of factors including soil and weather 
conditions, fertilizer, and pest control. Among these factors, weather is pivotal because, in 
contrast to other production factors, it is highly volatile and can hardly be controlled by farm 
management practices. Extreme weather events lead to harvest failures and thus threaten 
food security all over the world (Wheeler and Braun, 2013). Since there is a tendency towards 
increased weather extremes in the future, understanding the weather-related yield factors 
will become increasingly important not only for yield prediction, but also for the design of 
insurance products that mitigate financial losses for farmers. Indeed, weather-based 
insurance products, such as index insurance and weather derivatives, have been propagated 
as a promising alternative to classical crop insurance (Barnett and Mahul, 2007). Elabed et al. 
(2013) and Jensen, Mude and Barrett (2018) find that the uptake of weather index insurance 
products depends to a great extent on the inherent basis risk, i.e., the discrepancy between 
the insurant’s losses and the indemnity payment which is derived from the weather index 
(Elabed et al., 2013; Woodard and Garcia, 2008). This discrepancy can evolve from weather 
differences between the insurant’s location and the reference station of the weather index 
(geographical basis risk, see for example Ritter, Mußhoff and Odening (2014)) or an imperfect 
correlation between crop yields and the weather index (production basis risk or design risk). 
The relationship between weather and crop yield, however, is complex and brings challenges 
to the design of appropriate weather indices for various reasons. Firstly, several weather 
variables must be considered simultaneously, particularly precipitation and temperature. 
Secondly, these variables interact in a highly nonlinear way (Schlenker and Roberts, 2009). 
Finally, not only the aggregated level but also the temporal distribution of weather variables 
affects crop yields (Musshoff, Odening and Xu, 2011).  

Two general approaches have been used for modelling the weather-yield nexus. The first is 
crop growth models that rest on biological and physical relations and simulate the dynamics 
of water, nitrogen, carbon, and other yield determinants in a specific soil context considering 
phenological stages and plant requirements (e.g. Asseng, 2004). The second approach consists 
of statistical methods, particularly regressions models, which have been employed to estimate 
crop yields as a function of weather variables (see Section 2 for a detailed literature review). 
These methods are mainly data driven and do not strive for an identification of causal 
relations. In this paper, we focus on statistical approaches, as they are most common in the 
context of weather insurance. Musshoff, Odening and Xu (2011) show that a trade-off exists 
between the regression model’s simplicity and the yield variation that cannot be explained by 
weather variables, i.e. basis risk. Several directions have been suggested to improve the fit of 
statistical yield models, including nonlinear regression or quantile regression (Conradt, Finger 
and Bokusheva, 2015). More recently, machine learning techniques have been applied to yield 
modelling (e.g. Khaki and Wang, 2019). The strength of this approach compared with 
traditional statistical methods arises from its flexibility in capturing complex functional 
relations and its capability of handling large data sets. This is particularly useful because it 
allows the consideration of weather variables with high temporal resolution, such as daily 
precipitation and temperature. 

Against this backdrop, the objective of our paper is to explore the potential of machine 
learning for estimating the relationship between crop yield and weather conditions on a farm 
level and to use it as a tool for reducing basis risk in index insurance applications. More 
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specifically, we want to investigate three hypotheses: First, we conjecture that machine 
learning allows a better fit to yield data compared with traditional regression models due to 
its flexibility. Second, we hypothesize that disaggregated weather data contain more 
information compared with aggregated weather variables, which allow for improving the 
estimation of crop yields. Third, we expect that the definition of small and homogeneous 
production regions eases the design of tailored weather indices and thus reduces the level of 
basis risk. We test these hypotheses for a large set of farm-level yields. Our data set contains 
68,944 observations for winter wheat and 14,624 observations for rapeseed and in total 
covers many production regions in Germany over an observation period of 16 years. The use 
of individual farm yields avoids the underestimation of yield volatility that arises from the use 
of aggregated data, such as county yields (Popp, Rudstrom and Manning, 2005). To answer 
the aforementioned research questions, we specify an Artificial Neural Networks (ANN) and 
measure its performance relative to a nonlinear regression model (Hypothesis 1). Firstly, we 
focus on Germany as a whole and investigate the model performance for different aggregation 
levels of weather data, namely using monthly and daily weather data (Hypothesis 2). 
Subsequently, we repeat the analysis for selected homogeneous soil-climate regions within 
Germany (Hypothesis 3). We trace estimation errors back to particular time periods and 
regions. Moreover, we distinguish the viewpoint of insurers and the insured when analysing 
deviations between actual and predicted farm yields. 

The remainder of this paper is structured as follows: Section 2 provides a literature review of 
standard statistical as well as machine learning approaches to estimate the weather-yield 
relationship; Section 3 presents details on the neural network applied in this study and 
introduces a regression model that is used as a benchmark; Section 4 contains the empirical 
application to German farm-level data; and Section 5 concludes with implications for the 
design of weather index insurance.  

Literature Review 

The estimation of the weather-yield relation by means of statistical approaches has a long 
tradition. Teigen and Thomas (1995) studied the relationships for US state-level yield for the 
period 1950–1994 and find that weather can explain 90 % of yield variation in most cases. This 
high percentage, however, can mostly be traced back to the time trend and not to the weather 
variables themselves (Vedenov and Barnett, 2004). For the application of weather derivatives 
to agriculture, Turvey (2001) estimates the linear dependency of county yields of corn, 
soybean, and hay on cumulative rainfall and cumulated degree days in Oxford County, 
Ontario, for the period 1935–1996, with a best fit 𝑅2of 0.33. Also, in the context of weather 
derivatives, Vedenov and Barnett (2004) apply more complex non-linear models to estimate 
the relation between U.S. district-level yields in 1972–2001 and temperature and 
precipitation. With data-driven combinations of the weather variables and derived indices, 
they achieve an 𝑅2 between 35 % and 87 %. Vroege et al. (2021) assess the potential of 
drought risk management with soil moisture data from satellites and weather stations for 89 
farms in Eastern Germany. They applied quantile regression and found that the risk exposure 
of farmers could be reduced significantly with new insurance products based on soil moisture. 
Besides weather risk management, another purpose of the statistical modelling of the yield-
weather relationship is the prediction of climate change impacts. Seminal papers in this 
context are Schlenker and Roberts (2006, 2009), who combine a county-level data set for U.S. 
maize yield with daily temperature observations and observe non-linear weather effects on 
yields; and Schlenker and Lobell (2010), who apply different specifications of the weather 
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variables (linear, quadratic, and piece-wise linear) and find robust negative effects of climate 
change on agriculture in Africa. At the country-level, Lobell, Schlenker and Costa-Roberts 
(2011) regress yield outcomes on linear and squared monthly temperature and precipitation. 
It turns out that the largest share of the explained variation comes from the country-specific 
intercepts and the quadratic time trend rather than the weather variables. To detect 
spatiotemporal patterns in the yield-weather relation, Trnka et al. (2016) used data for ten 
countries and two regions in Europe over the period 1901–2012 for wheat and barley. In 
addition to the classical weather variables, they applied drought indicators, frost days, 
potential evapotranspiration, and water vapor pressure deficit, and achieved adjusted 𝑅2 for 
wheat of between 0.00 and 0.71, and a normalized RMSE between 65 % and 130 % also when 
looking at subperiods. Nevertheless, they found an increasing influence of climatic variables 
in the more recent years. Bucheli, Dalhaus and Finger (2021) apply different weather indexes 
on a farm level yield data set in Eastern Germany and show that a tailored farm-specific 
drought index leads to the greatest reduction of basis risk and that no single universally best 
underlying drought index exists. 

All of these studies show how difficult it is to explain the yield-weather relation using classical 
statistical approaches. Hence, a lot of hope is put in the use of machine learning and the 
increased computational power, which allows a more sophisticated analysis of the 
relationships. Van Klompenburg, Kassahun and Catal (2020) conducted a systematic literature 
review and identified 50 studies since 2008 that used machine learning for crop yield 
modelling. Explanatory variables are mostly related to weather, but also other features such 
as field management or nutrients. For example, Matsumara et al. (2015) predicted the maize 
yield in Chilin province, China, based on weather variables and fertilizer usage, using a multi-
layer perceptron with one hidden layer and compared the results with those of a linear 
regression model. The artificial neural network clearly outperformed the linear regression 
model, and the predictive performance could mainly be traced back to fertiliser use and not 
to weather variables. Jeong et al. (2016) applied random forests to global wheat yield grid 
data from 2000, U.S. county-level maize grain yield 1984–2013, and potato tuber and maize 
silage yield data from over 1,000 points in the Northeastern U.S. in selected years. They 
achieved an RMSE between 6 % and 14 %, which clearly outperformed a multiple regression 
model (RMSE between 14 % and 49 %). Also, with random forests, Everingham et al. (2016) 
aimed to predict regional sugarcane yields at Tully, Australia, at different time points up to a 
year before harvest to optimise fertiliser usage. The shorter the forecast horizon, the more 
important variables such as rainfall and temperature range became, and up to 79 % of the 
variability can be explained. Using a semiparametric version of a deep neural network, Crane-
Droesch (2018) model county-level yield in the U.S. Midwest from 1979 to 2016 using daily 
weather variables such as precipitation, temperature, humidity, wind speed, and radiation. It 
turns out that while the semiparametric model performs the best (with the largest effect being 
a time variable), the fully nonparametric neural network performed much worse than OLS 
regression. In a crop modelling challenge, Khaki and Wang (2019), as one of the winning 
teams, achieved an RMSE of 12 % with a deep neural network when predicting the yield 
performance of maize hybrids at over 2,000 locations in the U.S. They find considerable effects 
of solar radiation, temperature, and precipitation. Some studies also use remote sensing data 
and derived indices such as the Normalized Difference Vegetation Index (NDVI) or Enhanced 
Vegetation Index (EVI) (Fernandes, Ebecken and Esquerdo, 2017; Johnson et al., 2016; e.g. 
Pantazi et al., 2016; Sun et al., 2019; Wolanin et al., 2020).  
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Applications of machine learning methods for the estimation of the yield-weather relation in 
Germany, however, are rare. Paudel et al. (2021) designed a workflow for large-scale crop 
yield forecasting at different steps between planting and harvesting and applied it to the 
Netherlands, Germany, and France. For all of Germany, they achieved a normalized RMSE of 
between 7 % and 17 % at the end of season, which is much larger than the corresponding 
values from predictions by the European Commission’s MARS Crop Yield Forecasting System 
(MCYFS). At the county-level, Webber et al. (2020) combine support vector machines and 
process-based modelling using data on weather, soil, and crop phenology to explain yield 
failures. Their model, however, was not able to capture the losses in 2018, an exceptionally 
dry year in Central Europe (Toreti et al., 2019). 

It can be concluded that the use of machine learning in crop yield forecasting has continuously 
gained more attention in recent years and that it has the potential to reduce basis risk. 
However, until now, it is still not clear what kind of data and what geographical aggregation 
form of the region is beneficial for the use of machine learning. 

Methods 

This study aims to explore the weather-yield relationship with different models. Even though 
weather is only one of the factors explaining yield deviations, the application of weather data 
for estimating yield variation is advantageous in comparison to other farm related 
information, especially when it comes to developing risk management tools such as index-
based insurances. First, weather data are available at a high-resolution and independent from 
farmers' specific participation in the data collection process. Therefore, with weather data in 
general, it is possible to provide a continuous data stream. Another major advantage is the 
fast availability of weather data. This is especially important if it comes to an ad-hoc projection 
of the current expected yield. Other data such as fertiliser use, genomic information, used 
capital and labour as considered in Albers, Gornott and Hüttel (2017) or Khaki and Wang 
(2019), cannot be used for this purpose due to its lagged availability. Finally, weather data are 
reported by independent weather services and cannot be influenced by the insurance holder 
or provider. To reduce the influence of non-weather-related factors in our yield data, we do 
not consider in this study the yield itself, but rather the deviation of the yield from the farm 
yield average. By subtracting the farm-specific mean, constant location, or farmer-specific 
factors influencing the yield are removed to reduce the risk of omitted variable.  

For a realistic insurance application, an out-of-sample evaluation is essential. Therefore, we 
split the data into three subsets: training data, validation data, and test data. The training data 
set is used to adjust the weights and to train the models. The validation set is used to evaluate 
the different settings of the models and to choose the optimal hyperparameters. In the end, 
the out-of-sample performance of the model is evaluated based on the test set. For a more 
realistic scenario, the split is not done randomly but by complete years. Even if this split is not 
necessary for the regression model, we apply this process to ensure comparability across the 
models. To guarantee the independence of the data sets, the aforementioned farm yield 
averages are calculated based only on the training data. 

Different measures are applied in this study to assess the performance of the models and their 
potential to reduce the basis risk of an index insurance. The main tool is the root mean squared 
error (RMSE), which can be used to assess the average deviation between predicted and 
observed values. This measure, however, is an absolute value. Thus, a comparison across 
different regions and crop types is only possible to a limited extent due to the different yield 
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levels. Because of this, we use the normalized root mean squared error (nRMSE) as a second 
measure. This puts the RMSE in relation to the respective average yield level in the region. A 
drawback of both indicators is that overestimates as well as underestimates are weighted 
equally, although they have different implications for both the insurance holder and insurance 
provider. Hence, the level of basis risk is not reflected properly. From the perspective of an 
insurance holder such as a farmer, basis risk is defined as the probability of having a loss but 
not receiving compensation: 𝑃(no indemnity | loss) (Elabed et al., 2013). This is the case 
when a negative value is observed, but a positive value is predicted. From the perspective of 
an insurance provider, however, the opposite is considered as basis risk: an indemnity 
payment despite no actual loss, 𝑃(indemnity | no loss). This is the case if a negative value is 
predicted, but a positive value is observed. Please note that this definition of basis risk only 
focuses on the presence, but not on the severity. Complementing the RMSE and the nRMSE, 
we use both categories of basis risk (of the insurance holder and the insurance provider) as 
additional metrics in the model comparison and evaluate the shares of misclassified 
observations as realizations of the related basis risk. By studying different ways of exploiting 
and aggregating the weather data, we focus on production basis risk or design risk. 

Regression Model 

Our regression model, which serves as a benchmark for the neural network model, is a 
multiple regression model. As the dependent variable for both the regression model and the 
ANN, we use the previously described deviation of the yield from the farm yield average in the 
training data measured in dt/ha. Following Vedenov and Barnett (2004) and Vroege et al. 
(2021), we use the average temperature, total precipitation, and average soil moisture as 
independent variables. All weather variables are calculated as monthly values for April, May, 
and June, which represent the growing period for winter wheat and rapeseed. As in Vedenov 
and Barnett (2004), we additionally apply squares and same-month interactions of these 
variables to allow for a non-linear relation. The regression model can be defined as follows: 

𝚫𝒚𝒊𝒕 = 𝜷𝟎 + ∑ 𝛽1𝑘𝑇𝑘𝑖𝑡 + 𝛽2𝑘𝑃𝑘𝑖𝑡 + 𝛽3𝑘𝑀𝑘𝑖𝑡 + 𝛽4𝑘𝑇𝑘𝑖𝑡
2 + 𝛽5𝑘𝑃𝑘𝑖𝑡

2 + 𝛽6𝑘𝑀𝑘𝑖𝑡
2

𝑘=April, May, June

+ 𝜷𝟕𝒌𝑻𝒌𝒊𝒕𝑷𝒌𝒊𝒕 + 𝜷𝟖𝒌𝑻𝒌𝒊𝒕𝑴𝒌𝒊𝒕 + 𝜷𝟗𝒌𝑷𝒌𝒊𝒕𝑴𝒌𝒊𝒕 + 𝜷𝟏𝟎𝒌𝑻𝒌𝒊𝒕𝑷𝒌𝒊𝒕𝑴𝒌𝒊𝒕 + 𝝐𝒊𝒕 

(1) 

 

where Δ𝑦𝑖𝑡 denotes the yield deviation for farm 𝑖  in year 𝑡 and 𝑇𝑘𝑖𝑡, 𝑃𝑘𝑖𝑡, and 𝑀𝑘𝑖𝑡 the values 
of the weather variables temperature, precipitation, and soil moisture, respectively, at farm 𝑖 
in month 𝑘 (April, May, June) of year 𝑡. The 𝛽s denote the coefficients to be estimated and 𝜖𝑖𝑡 
the error term. To estimate the model parameters, we use the ordinary least square (OLS) 
method. 

Artificial Neural Network 

Second, we apply an artificial neural network (ANN) to estimate the weather-yield relationship 
based on the same dependent variable as in the regression model ANNs with at least two 
hidden layers are able to recreate any form of mathematical model, which is in line with the 
non-linear relationship between weather and crop yields (Sharma, Sharma and Athaiya, 2020). 
In this study, we use an ANN with one input layer, two hidden layers, and one output layer. 
Since we are facing a regression problem, we have one neuron in the output layer. The used 
layers are all fully connected layers, which means that all neurons in the previous layer are 
connected to all neurons in the latter one. While setting up and training an ANN, 
hyperparameter tuning is essential. In our study, we develop an ANN of two hidden layers and 
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perform grid search on a search space (Table A1) with Tune as platform (Liaw et al., 2018) for 
hyperparameter tuning. The application of grid search, as opposed to other methods such as 
random search, allows us to use a reproducible approach of hyperparameter tuning. This is 
important since we apply different machine learning models with a separate grid search for 
each model. To decide for the best setting of hyperparameters, the lowest RMSE on the 
validation set is used. This is also known as cross validation. The search space for the grid 
search included learning rate, batch size, and the number of neurons per hidden layer as 
hyperparameters. For training the model, we use stochastic gradient descent and the Adam 
optimizer (Kingma and Ba, 2014). To account for the non-linear relationship between weather 
and crop yields, we opt in line with Sharma, Sharma and Athaiya (2020) for a non-linear 
activation function and use the ReLU function (rectifier linear unit) 𝑔(𝑥) = max (0, 𝑥). The 
activation function is used for all neurons in the layers except for the output layer. The ANN 
was implemented in Python using the PyTorch library and trained on a Linux engine (Paszke 
et al., 2019). Before training the ANN, the input variables were normalized. With this it was 
tried to counteract overfitting and to enhance the performance of the model (Ioffe and 
Szegedy, 2015). This also accounts for the different dimension in the input variables. 

Empirical Application 

Study Region and Data 

In the empirical application, we use annual yield data for winter wheat and rapeseed of 
German farms. Germany is a convenient study region for the effects of drought on yield since 
only 2.7 % of the agricultural area in Germany is irrigated (Schimmelpfennig, Anter and 
Heidecke, 2018). Moreover, the conditions of farmland vary largely across Germany, which 
allow us to study the effect of different spatial aggregation levels (Hypothesis 3). Germany is 
subdivided into 50 regions with comparable soil and weather conditions, so-called soil-
climate-regions (SCRs), by the chambers of agriculture of the federal states and the Federal 
Biological Research Centre for Agriculture and Forestry. A clustering procedure was used to 
combine municipalities with similar characteristics in terms of soil quality, temperature, and 
precipitation into larger areas, which have relatively homogeneous conditions for agricultural 
production (Roßberg et al., 2007). In addition to Germany as a whole, we will later estimate 
regionalized models for five selected SCRs. 

Our data set consists of annual winter wheat yields from 4,309 farms and annual rapeseed 
yields from 914 farms in 2003–2018, measured in deciton/hectare (dt/ha). In total, the data 
set consists of 68,944 observations for winter wheat yields and 14,624 observations for 
rapeseed yield. The data were provided by a financial accounting firm and an insurance 
company who collected the data via a farm survey about planting areas and harvest quantity 
for various crops. The farms are spread across Germany with a higher density in Southern 
Germany. Their exact locations have been deleted for confidentiality reasons, but the 
municipalities in which they are located are available in the data set. To correct for outliers 
from inaccuracies in the data collecting process, we identify farms within the 1st percentile 
and the 99th percentile of yearly yield per hectare in the years from 2003–2018 and delete 
those farms from the data set. This is done for Germany and the SCRs individually. For both 
crops, the complete data sets are split by years into training data (2003–2012), validation data 
(2013–2015), and testing data (2016–2018). 

In line with our research aim and Hypothesis 3, we first use the entire data set (Germany) and 
then turn to regionalized models for the three SCRs with the largest number of farms in our 
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data set (SCR South 1, SCR South 2, and SCR South 3) as well as one SCR in north-western 
Germany (SCR Northwest) and one in eastern Germany (SCR East).  Figure 1 shows the location 
of these SCRs. The descriptive statistics for the cleaned yield dataset for all of Germany and 
the selected SCRs are depicted in Table 1.  

 

Figure 1: Soil-climate-regions (SCR) considered in this study 

Table 1: Descriptive statistics of the yield data (dt/ha) for whole Germany and the 
considered soil-climate-regions (SCRs) 

 # farms # obs. Mean  St. Dev.  Min.  25 % 50 % 75 % Max. 

Winter wheat          
   Germany 3,344 53,504 74.20 13.57 26.59 65.86 75.09 83.02 113.58 
   SCR South 1 373 5,968 67.57 14.27 21.54 59.48 69.65 78.21 101.69 
   SCR South 2 482 7,712 73.96 12.17 32.21 66.84 74.99 81.21 114.25 
   SCR South 3 394 6,304 77.64 12.06 31,26 71.11 78.84 85.00 113.44 
   SCR 
Northwest 

97 1,552 80.11 12.83 37.65 72.63 80.28 89.01 136.16 

   SCR East 7 112 79.33 13.50 51.48 70.19 79.91 89.84 106.81 

Rapeseed          
   Germany 698 11,168 37.79 8.71 10.44 32.72 38.47 43.49 63.59 
   SCR South 1 72 1,152 35.95 9.58 10.66 30.91 37.35 42.27 63.27 
   SCR South 2 104 1,664 37.67 8.77 10.67 32.48 38.44 43.72 63.30 
   SCR South 3 64 1,024 40.82 8.36 10.48 36.15 41.48 46.21 62.50 
   SCR 
Northwest 

26 416 40.56 6.96 12.79 36.57 40.60 45.02 62.00 

   SCR East 6 96 40.90 10.95 11.17 34.45 42.55 49.98 62.47 

Note: Due to the separate outlier removals in all data sets, minima/maxima of the SCRs can be smaller/larger 
than the ones for Germany. 
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The five considered SCRs comprise about 40 % of all farms in the dataset, but the number of 
farms per SCR varies largely with a minimum of less than ten farms for SCR East, which was 
included to obtain a larger regional variation. The average winter wheat yield is 74.20 dt/ha 
for all farms and varies between 67.57 dt/ha (SCR South 1) and 80.11 dt/ha (SCR Northwest) 
for the selected SCRs. Naturally, the average yield of rapeseed is 37.79 dt/ha lower than the 
average yield for winter wheat and there is a smaller range among the SCRs. 

Weather data are provided by the Climate Data Center of Deutscher Wetterdienst (DWD) and 
contain information on daily precipitation, daily temperature, and daily soil moisture spanning 
the same period as the yield data (2003–2018). This detailed information allows us to feed the 
ANN with daily or monthly data and hence to study the effect of different temporal 
aggregation levels according to Hypothesis 2. Daily temperature is an average of 24-hourly 
values and is measured in Celsius two meters above the surface. The amount of precipitation 
is measured in mm. Soil moisture data are estimated by the water balanced model AMBAV 
(agrometeorological model to calculate the current evaporation) (Löpmeier, 1994). Since we 
do not know the exact locations of the farms, we connect the yield data with the weather data 
via the respective municipality. The DWD interpolates temperature and precipitation data 
coming from around 300 weather stations to a 1 km x 1 km grid based on the interpolation 
method by Frei (2014). Descriptive statistics for the monthly aggregated weather variables 
(April–June) for Germany and the selected SCRs are depicted in Figure 2. It can be observed 
for Germany that the conditions in 2018 were more extreme compared to 2016 and 2017. 
While the temperature was generally higher in 2018, median soil moisture and precipitation 
were lower. This development is also reflected in the selected SCRs. 

 

Figure 2: Monthly weather values for all farm locations (Germany) as well as for selected 
soil-climate-regions (SCRs) 
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Results 

First, we consider the models for all of Germany before moving to the regionalized models. A 
separate grid search was performed for each model. While in some models only marginal 
improvements could be achieved, performance could be increased by about 40 % in other 
models through grid search. The best performing hyperparameter configurations are shown 
in Table A2. All ANNs in this study are trained with 100 iterations each and during the training 
process no overfitting occurred.  

Addressing our first hypothesis, we first examine errors for the regression models and the 
ANN models for Germany as a whole and then examine the basis risk of these models. Table 
2 depicts the RMSE and nRMSE for models using all farms in the data set (Germany) for the 
two different crop types. For winter wheat, the regression model achieves an RMSE for the 
testing data of 13.06 dt/ha. Compared to an average yield of 74.20 dt/ha during the entire 
study period, this error appears quite substantial (17.6 %). Even for the training data, the 
RMSE of the regression model is substantial (10.23 dt/ha or 13.8 %), which demonstrates that 
the regression model cannot explain a large share of the yield deviations. This finding is also 
reflected by an R2 of 0.172. The daily and monthly ANN models perform better in-sample with 
an RMSE of 7.99 dt/ha (10.8 %) and 8.37 dt/ha (11.3 %) on the training set, respectively. 
However, this superiority does not hold for the test data, as the neural network with monthly 
data has a higher RMSE (14.44 dt/ha) than the benchmark model. The use of daily weather 
variables, however, reduces the RMSE to 12.38 dt/ha (16.7 %), so that it seems beneficial not 
to aggregate the data. Evaluating the performance of the models for the five SCRs separately 
reveals that the ANN with monthly data performs the worst in all southern SCRs whereas it 
outperforms the regression model in SCR East and SCR Northwest (Table 2). The ANN with 
daily data constantly performs the best, even though only with small differences in some 
cases. Comparing these results with other applications of machine learning models, e.g.,  Khaki 
and Wang (2019), a similar level of the RMSE (14.96 dt/ha) in the out-of-sample data can be 
observed.  

For rapeseed, the regression model performs worse than the machine learning models. The 
RMSE of the test set reduces from 9.02 dt/ha for the regression model to 7.89 dt/ha for the 
ANN with daily data. Compared to the average yield of 37.79 dt/ha, these errors remain 
substantial (23.86% and 20.9% for the regression model and ANN with daily data, respectively) 
and are even larger compared to the nRMSE for winter wheat. Evaluating the performance of 
the models for the selected SCRs shows a similar picture: Except for SCR South 1 and SCR South 
2 – where the RMSE remains more or less constant across models – the use of the ANN with 
daily data improves the results. 

These first results support Hypothesis 1 that the ANN is in general better performing in 
comparison to the regression model. The results also support Hypothesis 2 that the use of 
non-aggregated data is in general beneficial.  
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Table 2: RMSE and nRMSE for regression and ANN models based on all farms, evaluated for 
whole Germany and the five selected SCRs 

  Winter Wheat Rapeseed 

 Data set 
Regression 

Model 
ANN  

Monthly Data 
ANN  

Daily Data 
Regression 

Model 
ANN  

Monthly Data 
ANN  

Daily Data 

Germany 

Training 10.23 13.8 % 7.99 10.8 % 8.37 11.3 % 6.98 18.47% 8.57 16.2 % 6.07 16.1 % 

Validation 12.21 16.5 % 12.77 17.2 % 12.18 16.4 % 9.13 24.15% 8.94 21.5 % 9.62 25.5 % 

Testing 13.06 17.6 % 14.44 19.5 % 12.38 16.7 % 9.02 23.86% 8.62 22.2 % 7.89 20.9 % 

SCR East Testing 16.00 20.2 % 14.96 18.9 % 14.72 18.6 % 9.68 23.7 % 7.84 19.1 % 7.62 18.6 % 

SCR Northwest Testing 13.95 17.4 % 12.75 15.9 % 12.40 15.5 % 9.05 22.3 % 8.28 20.4 % 7.45 18.4 % 

SCR South 1 Testing 13.35 19.8 % 14.24 21.1 % 12.44 18.4 % 9.01 25.0 % 8.86 24.6 % 9.00 25.0 % 

SCR South 2 Testing 13.15 17.8 % 15.58 21.1 % 12.59 17.0 % 7.83 20.7 % 7.67 20.3 % 7.80 20.7 % 

SCR South 3 Testing 12.43 16.0 % 14.98 19.3 % 12.42 16.0 % 8.13 19.9 % 8.39 20.5 % 7.53 18.4 % 

 

To further explore the spatial variation of the forecasting power of the ANN, the RMSE of the 
daily model is depicted at the municipality level for both crops in Figure 3. The maps reflect 
the unequal distribution of the farms over Germany, their concentration in the south and 
northwest of Germany, and the lower number of farms with rapeseed. The RMSE shows a 
large range from 0.3 dt/ha to 37.2 dt/ha for winter wheat and from 1.1 dt/ha to 21.1 dt/ha for 
rapeseed. It seems that there are clusters with a lower RMSE and isolated municipalities with 
a very high RMSE. This spread of the results underlines the conclusion that the model is not 
performing equally across the regions. It shows large heterogeneity in model performance, 
which could be due to the unequal representation of the regions in the model. This finding 
supports our research aim to investigate whether more homogeneous regions can improve 
the model and thus reduce risk and improve the performance of the model. 

Figure 3: RMSE for test years per municipality for ANN based on daily data 

 

To further investigate these errors, we take a closer look at the residual plots of the models 
for Germany (Figure 4). The variance of the predicted values is lower for the ANN, especially 
for the ANN with daily data, compared to the regression models. Table 3 depicts the share of 
observations with positive predicted but negative observed yield deviations (a disadvantage 
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for the insurance holder) and the share of observations with negative predicted but positive 
observed yield deviations (a disadvantage for the insurance provider). These observations can 
be interpreted as realizations of the basis risk for the insurance holder and the insurance 
provider, respectively. The minimal share of misclassifications for the insurance holder is 
achieved by the ANN with monthly data for winter wheat (19.4 %) and the ANN with daily data 
for rapeseed (18.1 %). This supports our first hypothesis that using ANNs can improve the 
estimation of the weather-yield nexus.  

Performance differences between years can be seen in both Figure 4 and Table 3. For the 
regression models, Figure 4 shows a clear separation of the years into layers. This is also 
confirmed by the results in Table 3, where most incorrect classifications disadvantageous to 
the insurance holder can be traced back to observations from 2018. In 2017, there is a small 
share of observations with no payout despite an observed loss that can be identified across 
the models and crop types (between 0 % and 12.6 %). Thus, for this year the share of 
misclassifications disadvantageous to the insurance holder is lowest. However, at the same 
time the insurance provider faces the largest share of misclassifications in 2017 (between 37.8 
% and 71.1 % across models and crop types). These results demonstrate the expected 
asymmetric distribution of the basis risk between the insurance holder and insurance 
provider, which could not be seen from the (n)RMSE. 

Figure 4: Residual plots for winter wheat and rapeseed for Germany 
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Table 3: Share of observations with (no indemnity | loss) disadvantaging the insurance 
holder (H) and (indemnity | no loss) disadvantaging the insurance provider (P) for winter 
wheat and rapeseed for Germany 

 
Winter Wheat Rapeseed 

Year Regression 
Model 

ANN Monthly 
Data 

ANN Daily Data Regression 
Model 

ANN Monthly 
Data 

ANN Daily Data 

 
H P H P H P H P H P H P 

2016 21.9% 22.8% 31.5% 6.6% 22.2% 28.2% 13.5% 28.2% 25.8% 19.8% 14.1% 37.8% 

2017 0.0% 71.1% 1.2% 68.4% 12.6% 37.8% 0.0% 51.9% 7.5% 46.5% 7.2% 44.7% 

2018 42.0% 0.6% 25.8% 19.5% 42.0% 0.9% 68.4% 0.9% 30.0% 13.8% 32.7% 14.1% 

Overall 21.3% 31.6% 19.4% 31.6% 25.6% 22.3% 27.3% 27.0% 21.1% 26.7% 18.1% 32.3% 

 

To investigate Hypothesis 3 that more homogenous regions can improve the performance of 
the models, we will split the data into subsets using the aforementioned SCRs and estimate 
separate models for each SCR. Moreover, we examine the temporal differences in the 
performance of the regionalized models. Due to the greater availability of yield data, we focus 
on winter wheat.  

The results for the SCR-specific models in Table 4 strongly differ between the three southern 
SCRs and the other two SCRs. Regarding the regression model, the southern SCRs have an 
nRMSE for the test data between 15.8 % and 19.3 %. This is close to the results of the model 
that has been specified for the entire data set (cf. Table 2). The ANN with monthly data does 
not change the performance substantially, but the ANN with daily data is able to reduce the 
nRMSE up to 14.5 %. The latter outperforms the model based on all farms with an nRMSE 
between 16.0 % and 18.4 %. 

On the other hand, the results for SCR East and SCR Northwest show a different picture. The 
nRMSE for the regression model increases to 35.4 % (SCR Northwest) and 49 % (SCR East) and 
for the ANN with monthly data it increases to 20.8 % and 22.3 %, respectively. These errors 
are much larger compared to those based on one model for all farms (between +1.9 and 
+28.80 percentage points). Only the ANN with daily data shows comparable results, with a 
clear decrease in the nRMSE for SCR East (–3.6 pp.) and a slight increase for SCR Northwest 
(+1.0 pp.). It turns out that estimating SCR-specific models can substantially worsen the results 
whereas only the NN with daily data seems to have a robust performance. By using daily 
weather data, the ANN has far more parameters that can be trained compared to the ANN 
with monthly data. Thus, the ANN with daily data can better capture certain weather events. 
A substantial difference between the southern SCRs and the other two is the number of farms 
and hence the number of observations in the data set. The southern SCRs include between 
373 and 482 farms whereas the other two consist only of 97 (SCR Northwest) or even 7 farms 
(SCR East). Given the size of the data sets, the results may lead to the conclusion that the ANN 
can reduce the error by using individual models for homogeneous sub-regions (supporting 
Hypothesis 3), but that these regions must contain enough observations to benefit from these 
similarities.  
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Table 4: nRMSE of Winter Wheat for five SCR-specific regression and ANN models 

 Data set Regression Model ANN Monthly Data ANN Daily Data 

SCR East 

Training 16.3 % 9.5 % 10.2 % 

Validation 47.7 % 13.5 % 16.7 % 

Testing 49.0 % 22.3 % 15.3 % 

SCR Northwest 

Training 12.9 % 10.2 % 11.2 % 

Validation 21.8 % 18.5 % 13.8 % 

Testing 35.4 % 20.8 % 16.5 % 

SCR South 1 

Training 18.9 % 11.6 % 11.2 % 

Validation 21.2 % 14.3 % 14.9 % 

Testing 19.3 % 19.1 % 15.9 % 

SCR South 2 

Training 14.1 % 10.5 % 10.3 % 

Validation 16.2 % 15.5 % 14.6 % 

Testing 16.8 % 17.6 % 16.2 % 

SCR South 3 

Training 12.6 % 10.1 % 9.8 % 

Validation 16.6 % 16.1 % 13.2 % 

Testing 15.8 % 15.7 % 14.5 % 

 

To examine the model performance over time and the influence of the drought year 2018, we 
compare the nRMSE for each year separately for one model for all farms (Germany) and the 
five SCR-specific regionalized models (Figure 5). The nRMSE for the regression model is 
particularly high in SCR East and SCR Northwest in 2018. From the monthly weather values in 
Figure 2, however, it cannot be concluded that 2018 was an exceptional year only in these 
regions, so that the exact reason for the high nRMSE remains unclear. The performance of the 
ANN based on monthly data also differs between the three years although with a smaller 
range. The ANN with daily data does not only lead to the smallest nRMSE, but its performance 
also varies little between the three years, demonstrating its robustness. 
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Figure 5: nRMSE by year for winter wheat of the testing set for one model for all farms 
(Germany) and SCR-specific regionalized models 

 

Figure 6 depicts the share of misclassifications disadvantageous to the insurance holder and 
insurance provider for the regionalized models. There are two main observations. First, the 
total share of misclassifications is lowest for the ANN with daily data, which again seems to be 
more robust compared to the other models. Second, the share of misclassifications is rarely 
fairly distributed between the insurance holder and insurance provider – in many cases, just 
one side is affected. Which side is affected depends not only on the year, but also on the 
selected model. Compared to the results from one model for all of Germany (Table 3), it can 
be seen that the very high level of misclassifications disadvantageous to the insurance 
provider in 2017 could be reduced by using the regionalized ANN with daily data.  
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Figure 6: Share of misclassified observations with (no indemnity | loss) and (indemnity | 

no loss) for winter wheat for SCR-specific models 

Conclusions 

In this paper, we explore the potential of using machine learning techniques for improving the 
estimation of weather-induced yield losses. We specify an ANN and calibrate it to a rich set of 
farm-level yield data in Germany covering the period from 2003 to 2018. A nonlinear 
regression model, which uses rainfall, temperature, and soil moisture as explanatory variables 
for yield deviations, serves as a benchmark. Our empirical application reveals that the gain in 
estimation precision by using machine learning techniques compared with traditional 
estimation approaches is quite substantial.  This improvement of model fit can be traced back 
to two sources: the flexibility inherent to ANN and the use of daily weather data instead of 
monthly weather data. In contrast to the common expectation that yield models can be better 
fitted to smaller, homogeneous regions, we find that the use of regionalized models is only 
beneficial if a sufficient sample size is available. From an insurance perspective, however, it is 
noteworthy that even for the best fitting ANN, the level of the nRMSE amounts to 14.5%. This 
shows that a considerable part of yield variability at the farm level cannot be captured by 
statistical methods which solely use “big weather data.” 

Our findings have important implications for the design of weather-index based insurance 
because they document that a rather high level of basis risk remains if insurance products are 
based on an estimation of the weather-yield relationship. This suggests the use of other 
indices, such as area yields, as an underlying index for index-based insurance. Our results, 
however, should be considered as a first attempt to tap the full potential of machine learning 
in this context. Future research should use models with flexible model structures, e.g., 
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convolutional neural networks or locally connected layers, to better estimate the 
meteorological factors affecting yields. Moreover, considering basis risk explicitly in the 
objective function of the ANN could further improve the design of weather indices for yield 
insurance. Finally, we propose the application of neural networks with high-resolution data to 
other crops and regions to generalize the findings of our study.  
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