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Abstract  

Research shows that smaller field size favours biodiversity and it is hypothesized that 
autonomous arable crop equipment would make it possible to farm small fields profitably. To 
test this hypothesis algorithms were developed for machine time over a range of field sizes. 
The Hands Free Hectare (HFH) linear programming model was used to assess the economic 
implications of field sizes. The study considered rectangular fields in the West Midlands from 
1 to 100 ha farmed with tractor sizes of 38 hp, 150 hp and 296 hp. Results showed that field 
times (hours/hectare) were longer for small fields with equipment of all sizes and types, but 
field size had the least impact for small equipment. The results showed that autonomous 
equipment reduces costs on farms with fields of all sizes. If temporary labour is available, 
conventional farms with small fields use the smaller equipment, but the extra hiring increases 
wheat production costs by £30-£40/ton over costs on farms with autonomous equipment. The 
larger 150 hp and 296 hp tractors were not profitable on the farms with small fields.  The 
economic viability of autonomous equipment irrespective of field sizes shows that it could 
facilitate biodiversity gains and environment schemes, such as Environmental land 
management schemes (ELMS) in the United Kingdom and Agri-environment schemes (AES) in 
the European Union and elsewhere.  
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Introduction 

The changes of arable landscape structure are a matter of concern with substantial reduction 
of biodiversity (Firbank et al., 2008; Flick et al., 2012; Lindsay et al., 2013; MacDonald and 
Johnson, 2000; Haines-Younga et al., 2003; Robinson and Sutherland, 2002). In many parts of 
the world, to promote conventional agricultural mechanization, comparatively large 
rectangular fields are encouraged and most of the land consolidation studies around the world 
in the last decades have been motivated by the desire for larger fields (Kienzle et al., 2013; 
Lindsay et al., 2013; Robinson and Sutherland, 2002; Van den Berg et al., 2007). In the United 
Kingdom, field size has increased through removing hedgerows and in field trees to encourage 
increasing use of larger machinery and ensure economics of size (MacDonald and Johnson, 
2000; Pollard et al., 1974; Robinson and Sutherland, 2002). Small fields are largely neglected 
and considered as non-economic for conventional mechanization, for instance, the United 
States abandoned most of the small irregular-shaped fields and the European Union and 
Switzerland treated small fields with subsidized agriculture (Lowenberg-DeBoer et al., 2021). 
Nevertheless, under the umbrella of landscape management, small fields are promoted both 
by the researcher and policymakers in the European Union, United Kingdom, United States 
and Canada to conserve biodiversity (Europe, 2008; Fahrig et al., 2015; Stanners and 
Bourdeau, 1995). Research in  Canada and the United States found increasing biodiversity in 
smaller fields (Fahrig et al., 2015; Flick et al., 2012; Lindsay et al., 2013). Likewise, studies in 
the United Kingdom and Europe, also showed that small fields and a more fragmented 
landscape have higher biodiversity (Europe, 2008; Firbank et al., 2008; Gaba et al., 2010; 
González-Estébanez et al., 2011). Keeping the ongoing debate of arable crop farm size in mind, 
unlike conventional mechanization, the present study hypothesized that autonomous arable 
crop equipment (i.e., autonomous crop robotics) would make it possible to farm small fields 
profitably. 

Autonomous crop robotics in this study refer to the mechatronic devices which have 
autonomy in operation through predetermined path or itinerary. More specifically, the 
autonomous crop robots are mobile, having decision making capability, and accomplish arable 
farm operations (i.e., drilling, seeding, spraying fertilizer, herbicides, pesticides, and 
harvesting) under the supervision of human, but without the involvement of direct human 
labour and operator (Daum, 2021; Lowenberg-DeBoer et al., 2021; Lowenberg-DeBoer et al., 
2021, 2020).  In this study, autonomous crop robotics, demonstrated at the Hands Free 
Hectare (HFH) project (https://www.handsfreehectare.com/) in Harper Adams University, 
United Kingdom, represent the swarm robotics as the robots incorporate multiple smaller 
equipment’s to accomplish arable farm operations like the larger conventional machine with 
human operator. The autonomous crop robotics of the HFH project are constructed through 
the retrofitting process of the conventional tractors (Lowenberg-DeBoer et al., 2021). The 
autonomous crop robotics are considered as the game changing technology to revolutionise 
precision agriculture and facilitate the 'fourth agricultural revolution' usually termed as 
Agriculture 4.0 (Daum, 2021; Klerkx and Rose, 2020; Lowenberg-DeBoer et al., 2021; 
Lowenberg-DeBoer et al., 2021). Owing to population and economic growth, agricultural 
labour scarcity, technological advancement, increasing requirements of operational efficiency 
and productivity, and mitigating environmental footprint, autonomous crop robotics are 
suggested as a sustainable intensification solution (Duckett et al., 2018; Fountas et al., 2020; 
Future Farm, 2021; Guevara et al., 2020; Lowenberg-DeBoer et al., 2021; Santos sand Kienzle, 
2020). Even though the robotic systems of livestock and protected environment has 

https://www.handsfreehectare.com/
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developed more rapidly, research in autonomous crop robotics mostly concentrated on the 
technical feasibility (Duckett et al., 2018; Fountas et al., 2020; Lowenberg-DeBoer et al., 2020; 
Shamshiri et al., 2018). Considering the complexity of arable crop field operations, it is 
important to focus on the overall systems analysis (i.e., from drilling to harvesting) and 
understand the economic implications of autonomous crop robotics (Daum, 2021; Fountas et 
al., 2020; Grieve et al., 2019; Lowenberg-DeBoer et al., 2020). Economic implications of 
autonomous crop robotics play a crucial role in attracting investment, guiding adoption 
decisions, and further understanding of environmental and social benefits (Lowenberg-
DeBoer et al., 2021, 2020; Santos and Kienzle, 2020).  

The existing economic studies on autonomous crop robotics focused on one or 
two horticultural crops or rarely on cereals using prototype testing and experimental data 
(Edan et al., 1992; Gaus et al., 2017; McCorkle et al., 2016; Pedersen et al., 2017, 2008, 2006; 
Sørensen et al., 2005). Lack of information on economic parameters and machinery 
specifications act as a bottleneck in economic feasibility assessment because autonomous 
crop robotics are at an early stage of the development and commercialization processes 
(Fountas et al., 2020; Lowenberg-DeBoer et al., 2021; Lowenberg-DeBoer et al., 2021; 
Shockley et al., 2021). Most of the economic studies used partial budgeting where the changes 
of costs and revenues supported by all other constant assumptions are the problem, as the 
analysis is unable to present the real scenarios of economic impacts of crop robotics 
(Lowenberg-DeBoer et al., 2020). To date, four studies considered system analysis 
(Lowenberg-DeBoer et al., 2021; Shockley et al., 2019; Shockley and Dillon, 2018; Sørensen et 
al., 2005). Using Linear Programming (LP) models, the most successful systems analysis was 
performed by Lowenberg-DeBoer et al. (2021) and Shockley et al. (2019).  

In the context of the United States, Shockley et al. (2019) showed that relatively small 
autonomous machines are likely to have economic advantages for medium and small farms. 
The most up to date study by Lowenberg-DeBoer et al. (2021) assessed the economic 
feasibility of swarm robotics from seeding to harvesting operations using on-farm level 
demonstration data of economic parameters and collected equipment time information from 
agricultural engineering textbook of Witney (1988). The study assumed 70% field efficiency 
from drilling to harvesting operations for both autonomous crop robotics and conventional 
equipment sets. They showed that autonomous equipment is technically and economically 
feasible for medium and small sized farms. The study also mentioned that autonomous crop 
robotics diminished the rule of thumb of mechanized agriculture that is “get big or get out”. 
Based on their preliminary analysis, they hypothesized that in the context of the United 
Kingdom, autonomous crop robotics would make it economically feasible to farm small fields. 
Nonetheless, the study did not test that hypothesis because of data deficiency on machine 
times and field efficiency.  

To contribute to this knowledge gap, the objective of the study is to assess the economic 
implications of field sizes for autonomous crop robotics. Using the experience of the HFH 
project, demonstrated at Harper Adams University in the United Kingdom, the study 
developed algorithms to estimate equipment times and field efficiency for different sized 
rectangular fields. The study modified the LP model of Lowenberg-DeBoer et al. (2021) and 
updated the HFH-LP model by incorporating the equipment times and field efficiency 
parameters estimated through the developed algorithms. The modified HFH-LP model will 
facilitate farm management and machinery selection decisions. In addition, the inclusion of 
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field size scenarios will have implications for environmental management and promote the 
ELMS and AES followed by the United Kingdom, European Union, and other countries.  

Methods 

Estimation of field time and field efficiency for different sized rectangular fields 

The study developed algorithms to estimate equipment times (or field times) and field 
efficiency because the existing studies on arable crop machinery performance lack 
information on equipment times subject to field sizes. In this study, field time refers to hours 
required to complete per hectare arable field operation. The study estimated field efficiency 
as the ratio of theoretical field time based on machine design specifications like the estimates 
of theoretical field time to its actual field productivity. The field efficiency was presented in 
percentage. Even though logistics software is well developed in trucking and other 
transportation sectors (Software Advice, 2021), to date, there is no readily available 
commercial software to estimate equipment times. In farm equipment path planning 
literature, field times were sometimes generated as a by-product (Hameed, 2014; Jensen et 
al., 2012; Oksanen and Visala, 2007; Spekken and de Bruin, 2013). The agri-tech economic 
studies often rely on the general estimates of agricultural engineering textbooks like Hunt, 
(2001) and Witney (1988) to have equipment times and field efficiency estimates (see 
Lowenberg-DeBoer et al., 2021).  

However, in conventional mechanization and precision agriculture literature, few studies 
estimated field efficiency (Adamchuk et al., 2011; Bochtis et al., 2010; Buick and White, 1999; 
Peterson et al., 1981; Renoll, 1970, 1969; Grisso et al., 2004; Grisso et al., 2002; Janulevičius 
et al., 2019; Shamshiri et al., 2013; Taylor et al., 2001; Taylor et al., 2002). But prior studies 
treated headlands as non-productive areas ( for details see Bochtis et al., 2010; Gónzalez et 
al., 2007), excluded overlap percentage (for overlap see Lowenberg-DeBoer et al., 2021), 
amalgamating productive field times (i.e., field passes, headlands turning, and headlands 
passes) and non-productive field times (i.e., replenish inputs, refuelling, and blockages), and 
ignoring headlands turning types (for headland types see Han et al., 2019; Jin and Tang, 2010; 
Tu and Tang, 2019). These characteristics are important in the estimation of field times and 
field efficiency. For instance, Lowenberg-DeBoer et al. (2021) assumed overlap as 10% and 
pointed out that future study should consider reduce overlap. It is evident that the precision 
agriculture literature assumed 10% benchmark overlap (Griffin et al., 2005; Lowenberg-
DeBoer, 1999; Ortiz et al., 2013).  A very few studies suggested that future research should 
separately calculate the headlands turning time, and stoppages time (Bochtis et al., 2010; 
Shamshiri et al., 2013; Taylor et al., 2001; Taylor et al., 2002) because productive times and 
non-productive times play a significant role in field efficiency estimation (Bochtis et al., 2010; 
Jensen et al., 2015; Shamshiri et al., 2013; Spekken and de Bruin, 2013).  

Keeping these points in mind, the study developed algorithms to estimate field times and field 
efficiency for autonomous crop robotics and conventional machinery with human operators 
(i.e., 38 hp HFH conventional equipment, 150 hp and 296 hp conventional machine) subject 
to different sized rectangular fields. Using the experience of the HFH demonstration project, 
the algorithms encompassed productive times and non-productive times separately, and 
incorporated the overlap percentage, and headlands turning type (for details see the technical 
note of Al-Amin et al., 2021a). The study assumed that the equipment entered the field from 
the entry side and completed the headlands first. Afterwards the machine made a “flat turn” 



Proceedings of the 4th Symposium on Agri-Tech Economics for Sustainable Futures 29 

to start the interior passes (i.e., the longest side of the field). Subsequently followed the “flat 
turn” for interior headland turns (i.e., the shortest side of the field) as shown in Figure 1.  

 

 

Figure 1: Typical field path considered in the algorithms based on the HFH demonstration 
project experience. 

 

The study adopted and modified the flat turning algorithm of Jin and Tang (2010). The HFH 
autonomous equipment (i.e., tractor for drilling and combine for harvesting) followed the “flat 
turn” with skipping two swaths (i.e., during headlands turning the machine skipped two 
swaths nearer and enter in the interior field after skipping those swaths) (for typical “flat turn” 
see Jin and Tang, 2010). The speed of the implement in the interior headlands turning was 
assumed to be one third of the interior field speed. The algorithms were calibrated following 
the experience of the HFH project and the equipment specifications of conventional 
technologies with human operators. Finally, the study assumed that the equipment ends on 
the entry side of the field. The algorithm was developed in an excel spreadsheet to allow for 
use and modification by researchers and students who are not familiar with coding (for details 
of the algorithms see Al-Amin et al. 2021b). 

Modelling the economic implications of field sizes on equipment use 

The study modified  the HFH-LP model to capture the economic implications of field sizes 
based on Lowenberg-DeBoer et al. (2021). The HFH-LP model is a decision-making tool which 
assesses the economic viability of autonomous crop robotics compared to conventional 
machines with human operators. The objective of the model was to maximize gross margin 
(i.e., return over variable costs) subject to primary farm resource constraints. The HFH-LP 
model is a one-year “steady state” model for arable crop farming, where the model assumes 
a monthly time step from January to December. The concept of “steady state” was adopted 
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from the Orinoquia model (for details see Fontanilla-Díaz et al., 2021). Following Boehlje and 
Eidman (1984), the HFH-LP deterministic economic model can be expressed as:  

The objective function: 

𝑀𝑎𝑥 𝜋 = ∑ 𝑐𝑗

𝑛

𝑗=1

𝑋𝑗                                                               … … (1) 

Subject to:  

∑ 𝑎𝑖𝑗

𝑛

𝑗=1

𝑋𝑗  ≤  𝑏𝑖 𝑓𝑜𝑟 𝑖 = 1, … … , 𝑚;                               … … (2) 

𝑋𝑗 ≥ 0 𝑓𝑜𝑟 𝑗 = 1, … … , 𝑛;                                               … … (3) 

 

where, π is the gross margin, 𝑋𝑗 is the level of jth production activities, 𝑐𝑗 is the gross margin 

per unit over fix farm resources (𝑏𝑖) for the jth production activities, 𝑎𝑖𝑗is the amount of ith 

resource required per unit of jth activities, 𝑏𝑖 is the amount of available ith resource. Net 
returns (i.e., total sales revenue minus total costs allied with variable and fixed factors of 
production) of the farm were examined.  

The constraints of the HFH-LP model encompassed land, human labour, equipment times (i.e., 
tractor use time for drilling and spraying, and combine use time for harvesting), and cashflow. 
The land constraint was considered with the lens of field sizes. For instance, the 66 ha farm 
(i.e., representing the smallest average farm in the regions of the United Kingdom and the 
West Midland’s average farm) (DEFRA, 2018a) with 90% tillable area (i.e., 59.4 ha) consisted 
of 59 fields of 1 ha each and 6 fields with 10 ha each. The study used the same principles for 
other farm sizes. To estimate the equipment time constraints, the study initially estimated 
field efficiency through the developed algorithms. In the subsequent stage, using the 
equipment specifications, 10% overlap percentage, and estimated field efficiency, the study 
calculated equipment times (i.e., hr/ha) from drilling to harvesting operations for the 
equipment sets with a reference to 1 ha and 10 ha sized rectangular fields. Finally, the 
equipment times were used to estimate the coefficients of human labour constraint and 
equipment time constraints. For details of the land, human labour, and cash flow constraints 
see Lowenberg-DeBoer et al. (2021). The details of the  equipment time constraints were 
available at the technical notes of  Al-Amin et al. (2021a). The HFH-LP model was coded in the 
General Algebraic Modelling System (GAMS) (https://www.gams.com/), where the data 
exchange (https://www.gams.com/35/docs/UG_DataExchange_Excel.html) option (i.e., 
Microsoft Excel to GAMS) were used considering the future user-friendly implications (for 
details of the GAMS code see Lowenberg-DeBoer et al., 2021). 

Case Study and Data Sources 

The study was conducted based on the experience of the HFH project demonstrated at Harper 
Adams University, Newport, United Kingdom. The HFH-LP model represented the arable 
agricultural grain-oil-seed farm in the West Midlands in the United Kingdom. The land 
constraints were selected following DEFRA (2018a, 2018b) to represent the average farm size 
in the West Midlands, average cereals farm, average cereals farms over 100 ha, and an 
arbitrary larger farm in the United Kingdom (Lowenberg-DeBoer et al., 2021). To calibrate the 

https://www.gams.com/
https://www.gams.com/35/docs/UG_DataExchange_Excel.html
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HFH-LP model, the study used parameters from different sources. The information about 
commodity produced and the costs estimates were collected from the Agricultural Budgeting 
and Costing Book (Agro Business Consultants, 2018) and the Nix Pocketbook (Redman, 2018). 
The study followed the field operation timing of Finchet al. (2014) and Outsider’s Guide 
(1999). The equipment specifications and field specifications were collected from HFH 
demonstration experience (https://www.handsfreehectare.com/), conventional large and 
small machine specifications from John Deere (https://www.deere.co.uk/en/index.html), and 
Arslan et al. (2014) (for details of the data sources see the technical notes of  Al-Amin et al., 
2021a). 

Results 

Effects field sizes on field efficiency and equipment times  

The estimated average field efficiency of the whole cropping cycle for the four equipment sets 
differed substantially between 1 ha and 10 ha fields, but for a given equipment set the field 
efficiency was almost the same for fields of 10 to 100 ha (Figure 2). In this case the whole 
cropping cycle included direct drilling, five spray applications and harvesting. The interesting 
finding of the whole farm field efficiency is that the HFH equipment set (i.e., small 38 hp 
conventional machine with human operator and autonomous crop robotics were considered 
identical) had comparatively higher field efficiency, whereas 150 hp and 296 hp conventional 
equipment sets with human operator were not efficient for small fields. As beyond 10 ha, the 
field efficiency for a given equipment set was similar for all field sizes (i.e., 20 ha, 50 ha, 75 ha, 
and 100 ha), the study endeavoured to focus on the economic implications of 1 ha and 10 ha 
field sizes.  

 

Figure 2: Estimated (weighted average) whole farm field efficiency of HFH equipment 
(assumed same for both HFH small conventional equipment with human operator and 
autonomous swarm robotics), large conventional machine, and small conventional 
technology in different sized rectangular fields. 
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The result of the equipment times depicted that field times (hr/ha) were longer for small 1 ha 
fields operated with equipment of all sizes and types, but field size had the least impact for 
HFH small equipment (Table 1). The extra time required for small 1 ha fields was associated 
with the lumpiness of non-productive times (i.e., replenishing seed and spray materials, and 
refilling fuel), interior headlands turn, and interior field passes. In spraying operations, 
irrespective of autonomous crop robotics and conventional equipment sets, the lower field 
efficiency reflects the reality. For example, the HFH 38 hp sprayer implement covered a 7 m 
wide swath with relatively fast speed (i.e., interior field speed was 5 kph, where the interior 
headland turning speed was 1/3 of the interior field speed), consequently, the input refill (i.e., 
seed and spray materials) became a bigger issue. If the capacity of the sprayer tank and drill 
bin (i.e., for seed) closely matched what was needed for whole rounds, then the field efficiency 
was slightly higher. On the contrary, if the sprayer tank and drill bin capacity did not match 
the requirements of the whole rounds (i.e., a substantial amount remained in the tank or bin, 
but not enough for a whole round) then field efficiency was lower. The study showed that 
small fields required more headlands and interior rounds for non-productive times. In 
addition, the lumpiness associated with the interior headlands turn and interior field passes 
were also a bigger issue for 150 hp and 296 hp conventional equipment sets because small 
fields required manual intervention leading to the conclusions that the comparatively larger 
conventional equipment sets were not suitable for small fields (for details see the developed 
algorithms at  Al-Amin et al., 2021b). 

Economic implications of field sizes on machinery use  

The result of the equipment scenarios showed that return over variable costs were higher for 
small 1 ha fields operated with autonomous crop robotics irrespective of farm types (i.e., 
average farms in the West Midlands, average cereal farms, average cereals farms over 100ha, 
and larger arbitrary farms), whereas larger farm with 10 ha sized fields equipped with 296 hp 
conventional equipment set had a higher gross margin (Table 2). The interesting findings of 
the study are that 1 ha fields were more feasible with autonomous crop robotics, whereas 10 
ha field sizes were similar to the findings of Lowenberg-DeBoer et al. (2021) which supported 
larger conventional equipment for arbitrarily larger fields, if the ownership costs were not 
considered. However, inclusion of ownership costs revealed that net returns to operator 
labour, management, and risk taking were higher for crop robotics, except for the typical 
smallest farms in the West Midlands. The smallest farm with 1 ha and 10 ha sized fields 
operated by autonomous crop robotics and conventional equipment sets produced similar 
gross margins. This may be because the smallest farms operated with four equipment 
scenarios did not face any operator and labour time constraints and as such planted and 
harvested wheat-OSR rotation at optimal times.  

Although irrespective of 1 ha and 10 ha field sizes, the net returns were higher for the smallest 
farms operated with 38 hp HFH conventional equipment, and the smallest conventional 
equipment set required higher operator time than the autonomous crop robotics. The higher 
profit may be because the study did not exclude the operator compensation. In addition, the 
autonomous crop robotics included the investment of retrofitted equipment as the 
autonomous crop robotics were developed through the retrofitting process. It is also evident 
that in arable crop field operations, the smallest 38 hp HFH conventional equipment set 
required higher amounts of human labour and operator time than all other equipment sets. 
More specifically, the small 1 ha fields demanded more human labour and operator time than 
10 ha fields. Nevertheless, throughout the world agricultural labour is difficult to hire. In the 
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context of the United Kingdom, small conventional equipment will not be the feasible solution 
as the country is also facing agricultural labour scarcity. The study assessed economic 
feasibility with an average wage rate of £9.57/hr. However, with the increase in wage rate 
increases, the scenarios may change. There is uncertainty as to whether or not the labour 
could be always hired at this wage rate. 

 

Table 1: Equipment times of the machinery sets for rectangular fields of 1 ha and 10 ha 

Equipment Width of the 
implement (m)** 

Overlap 
percentage** 

Field speed 
(km/hr)** 

Field Efficiency 
(%) *** 

Area/hr hr/ha 

1 ha Rectangular Field 

HFH equipment set (38hp)*: 

Drill 1.5 10% 3.25 73% 0.32 3.12 

Sprayer 7 10% 5 46% 1.45 0.69 

Combine 2 10% 3.25 80% 0.47 2.14 

Larger conventional set (296hp): 

Drill 6 10% 5 24% 0.65 1.54 

Sprayer 36 10% 10 23% 7.45 0.13 

Combine 7.5 10% 3 32% 0.65 1.54 

Small conventional set (150hp): 

Drill 3 10% 5 46% 0.62 1.61 

Sprayer 24 10% 10 32% 6.91 0.14 

Combine 4.5 10% 3 45% 0.55 1.83 

10 ha Rectangular Field 

HFH equipment set (38hp): 

Drill 1.5 10% 3.25 84% 0.37 2.71 

Sprayer 7 10% 5 70% 2.21 0.45 

Combine 2 10% 3.25 92% 0.54 1.86 

Larger conventional set (296hp): 

Drill 6 10% 5 82% 2.21 0.45 

Sprayer 36 10% 10 49% 15.88 0.06 

Combine 7.5 10% 3 82% 1.66 0.60 

Small conventional set (150hp): 

Drill 3 10% 5 83% 1.12 0.89 

Sprayer 24 10% 10 45% 9.72 0.10 

Combine 4.5 10% 3 86% 1.04 0.96 

Note: * HFH equipment sets representing both 38hp conventional machine with human operator and 38hp 
autonomous swarm robotics. **The machine specifications and overlap assumptions were collected from the 
HFH experience and Lowenberg-DeBoer et al. (2021). *** The authors developed algorithms to estimate the field 
efficiency of rectangular fields (for details of the estimation procedures and algorithms see the technical note in 
the supplementary material). 
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Table 2: HFH-LP outcomes on the economic viability of technology choice subject to field sizes. The technology selection scenarios 
encompassed HFH small conventional equipment with human operator and autonomous crop robotics, large conventional machine with 
human operator, and small conventional technology with human operator. 
 

Scenario* Farm 
size 
(ha) 

Field 
size 
(ha) 

Arable 
area 

(ha)** 

Labour hired 
in the farm 

(days) 

Operator time 
required in the 

farm (days) 

Whole farm 
gross margin (£ 

per annum) 

Return to operator labour, 
management and risk taking (£ 

per annum) 

Wheat cost of production with 
allocated operator labour (£ per 

ton) 

Conv 38 hp 66 10 59.4 0 66 47048 15848 160 

Conv 38 hp 66 1 59.4 0 83 47048 15848 171 

Conv 38 hp2 159 10 143.1 41 118 110140 38725 148 

Conv 38 hp2 159 1 143.1 63 138 108452 37037 155 

Conv 38 hp3 284 10 255.6 140 144 191499 69185 138 

Conv 38 hp3 284 1 255.6 191 167 187583 65269 143 

Conv 38 hp4 500 10 450 323 171 330716 127117 130 

Conv 38 hp4 500 1 450 435 194 302777 99178 143 

Conv 38 hp5 500 1 450 450 179 321300 108538 135 

Robot 38 hp 66 10 59.4 0 19 47048 12301 136 

Robot 38 hp 66 1 59.4 0 23 47048 12301 138 

Robot 38 hp 159 10 143.1 0 46 113343 47543 122 

Robot 38 hp 159 1 143.1 0 5 113343 47543 124 

Robot 38 hp2 284 10 255.6 21 61 200782 80535 121 

Robot 38 hp2 284 1 255.6 31 66 200014 79767 122 

Robot 38 hp3 500 10 450 71 73 350879 145800 117 

Robot 38 hp3 500 1 450 88 83 349528 144449 118 

Note: *The superscript with equipment specification under scenario indicates the number of equipment sets. **Based on the experience of HFH demonstration project, the 
study assumed that the arable crop farm was 90% tillable, where remaining 10% were occupied for ecologically focused area such as, lanes, hedgerows, drainage ditches, 
farmstead, etc. 
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Table 2: HFH-LP outcomes on the economic viability of technology choice subject to field sizes (Continued) 

Scenario* Farm 
size 
(ha) 

Field 
size 
(ha) 

Arable 
area 

(ha)** 

Labour hired 
in the farm 

(days) 

Operator time 
required in the 

farm (days) 

Whole farm gross 
margin (£ per 

annum) 

Return to operator labour, 
management and risk 
taking (£ per annum) 

Wheat cost of production 
with allocated operator 

labour (£ per ton) 

Conv 150 hp 66 10 ha 59.4 0 25 47048 -26001 210 

Conv 150 hp 66 1 ha 59.4 0 45 47048 -26001 223 

Conv 150 hp 159 10 ha 143.1 0 60 113343 9242 155 

Conv 150 hp 159 1 ha 143.1 21 87 111668 7567 164 

Conv 150 hp 284 10 ha 255.6 17 90 201096 55257 136 

Conv 150 hp 284 1 ha 217.1 65 99 166931 35360 146 

Conv 150 hp2 284 1 ha 255.6 91 102 195363 -1487 162 

Conv 150 hp 500 10 ha 383.8 58 104 299526 106111 126 

Conv 150 hp2 500 10 ha 450.0 82 107 350053 81080 136 

Conv 150 hp 500 1 ha 213.5 65 99 166931 36718 144 

Conv 150 hp2 500 1 ha 434.3 212 116 327466 64323 140 

Conv 296 hp 66 10 ha 59.4 0 15 47048 -70973 287 

Conv 296 hp 66 1 ha 59.4 0 40 47048 -70973 303 

Conv 296 hp 159 10 ha 143.1 0 35 113343 -35731 183 

Conv 296 hp 159 1 ha 143.1 11 84 112478 -36596 197 

Conv 296 hp 284 10 ha 255.6 0 63 202449 11638 151 

Conv 296 hp 284 1 ha 227.6 53 99 176086 -4317 165 

Conv 296 hp2 284 1 ha 450.0 70 101 197007 -161910 276 

Conv 296 hp 500 10 ha 450.0 24 88 354591 91657 131 

Conv 296 hp 500 1 ha 227.5 53 99 176086 -4317 165 

Conv 296 hp2 500 1 ha 450.0 185 115 341980 -16938 160 

Note: *The superscript with equipment specification under scenario indicates the number of equipment sets. **Based on the experience of HFH demonstration project, the 
study assumed that the arable crop farm was 90% tillable, where remaining 10% were occupied for ecologically focused area such as, lanes, hedgerows, drainage ditches, 
farmstead, etc.
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The wheat costs of production curves revealed that irrespective of field sizes (i.e., 1 ha and 10 
ha) farming with autonomous crop robotics had higher economies of size advantage than the 
farms operated with conventional equipment sets (Figure 3).  

 

 Figure 3: Wheat unit cost of production in pounds per ton with a reference to farm and field 
sizes. The labels on the data points are the size of the tractor used and the number of 
equipment sets.  

 

The key finding is that the study found a substantial effect of field sizes on wheat cost of 
production farmed with conventional equipment sets (i.e., 38 hp; 150 hp, and 296 hp). The 
wheat costs of production showed that 10 ha sized farms equipped with conventional 
equipment sets had comparatively higher economies of size advantage (big squares) than the 
farms without field size in consideration as shown in the “L” shaped upper middle wheat costs 
of production curve (triangles) adopted from Lowenberg-DeBoer et al. (2021). For 1 ha farm 
scenarios, even if the small 1 ha farm is operated with the smallest 38 hp conventional 
equipment set, the costs (small squares) were higher than 10 ha fields with all conventional 
equipment sets. The cost curves were calculated based on the production of profitable farms, 
where the study found that farming with 150 hp and 296 hp conventional equipment sets was 
unprofitable for the two larger farms. The unprofitable farms would not stay in business for 
long. This means that for conventional farms, the wheat cost curve required hiring substantial 
amounts of temporary labour. Farming with autonomous crop robotics had similar costs of 
production for 1 ha (small circle) and 10 ha (big circle) sized fields, where the “L” shaped curve 
(triangular) represents the wheat production cost curve for autonomous crop robotics without 
field size in consideration. 

Discussion 

The contribution of the present study is that the study endeavoured to focus on the economic 
implications of field sizes on arable field crop operations equipped with autonomous crop 
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robotics and conventional machinery with human operators in the context of the UK’s typical 
farms. The results of study have significant implications for farm management and machinery 
selection decisions, agribusiness adopters, and environmental management. The previous 
economic studies on autonomous machinery use missed the implications of field sizes 
(Lowenberg-DeBoer et al., 2021; Shockley et al., 2019), whereas small fields received 
substantial attention in environmental conservation studies to protect biodiversity and 
encourage ELMS and AES (Europe, 2008; Fahrig et al., 2015; Firbank et al., 2008; Flick et al., 
2012). To address the economic implications of field sizes, the study developed algorithms for 
estimating field efficiency and field times of different sized rectangular fields and equipment 
sets. This is the first attempt as prior studies more likely relied on the estimation of field 
efficiency and field time based on Hunt (2001) and Witney (1988). The estimation of the 
agricultural engineering books did not address the variability of equipment sets and field sizes. 
As such, the developed algorithms in this study would have future implications. The study 
ensured flexibility to address field and machine heterogeneity, calculate productive and non-
productive times separately, and incorporated overlap percentage for achieving real farm 
scenarios. In agriculture, there is no readily available software to calculate field times and field 
efficiency. Consequently, the engineers and agri-tech economists can use the algorithms for 
analysing the future technical and economic potentials of arable crop machines.  

The study found that field size had the least impact for the smallest equipment sets compared 
to the large conventional equipment sets with human operators. This means that the smallest 
equipment less likely favours field enlargement which in-turn conserves biodiversity. The 
finding supports the environmental management studies of small fields to conserve 
biodiversity (Fahrig et al., 2015; Gaba et al., 2010; González-Estébanez et al., 2011). The study 
assumed that HFH small 38 hp conventional equipment and autonomous crop robotics were 
identical. Future research should consider other small conventional equipment to address the 
equipment time issue with small fields. To empirically examine the on-field scenarios of field 
biodiversity, future research should incorporate field biodiversity, such as hedgerows, in field 
trees, and wetlands in the algorithms subject to field sizes.  

The findings of the return over variable costs more likely support autonomous crop robotics 
for small 1 ha fields. On the contrary, 10 ha sized fields favoured larger conventional 
equipment for larger arbitrary farms which is consistent with the findings of Lowenberg-
DeBoer et al. (2021). The outcomes from mathematical programming (i.e., net return 
scenarios with all the equipment sets) showed that autonomous crop robotics were the most 
feasible solution to profitably operate all the arable crop farms, except for the smallest farms 
in the West Midlands (Table 2). For the smallest farm, HFH conventional 38 hp equipment was 
the profitable choice. However, this smallest farm demanded substantial amounts of 
temporary labour and operator time. As agricultural labour is difficult to hire and the world is 
facing scarcity of agricultural labour, conventional 38 hp equipment would become 
economically infeasible even on the smallest farm. Autonomous crop robotics could be 
considered as a sustainable solution for arable field crop operation with the increasing scarcity 
of agricultural labour. The experience of the HFH demonstration project showed that 
autonomous equipment still required hired labour and operator time for supervision, being 
10% human supervision and 100% for hauling grain during peak harvesting time in July, 
August, and September. To make the autonomous crop robotics more economical and solve 
the problem of labour scarcity, the autonomous arable farms should endeavour to gear up the 
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technological innovation and come up with autonomous (i.e., self-driving) equipment for 
public roads.  

The findings of wheat costs of production also contribute to the economies of size literature. 
In agricultural production economics studies, the cost curves are typically used to analyse the 
economic-return-to scale of agricultural enterprises, spreading the fixed costs, and labour 
reducing technologies (Debertin, 2012; Duffy, 2009). To avoid the misuse of economies of 
scale (i.e., must follow the proportionate change in all input categories), based on the usual 
scenarios of agricultural farming, studies concentrated on economies of size (i.e., input 
categories do not change proportionately) (Debertin, 2012; Duffy, 2009; Hallam, 2017; 
Lowenberg-DeBoer et al., 2021; Miller et al., 1981). It is evident that agricultural production 
economic studies typically form the "L" shaped cost curve because the agricultural enterprises 
rarely showed diseconomies of size (i.e., increases production costs with increased 
production) (Debertin, 2012; Duffy, 2009). In the context of the United Kingdom, even though 
Lowenberg-DeBoer et al. (2021) investigated the economies of size of wheat costs of 
production, nevertheless, question remains on the implications of field sizes on the costs 
structure of arable field crop operations equipped with autonomous crop robotics and 
conventional equipment sets. The study found substantial effect of field sizes on wheat cost 
of production farmed with conventional equipment sets. This indicates that conventional 
equipment sets were unprofitable for larger farms and the smallest farms required substantial 
amounts of labour which is not a feasible option in the context of the United Kingdom. The 
autonomous crop robotics had the advantage of economies of size compared to conventional 
equipment sets irrespective of field sizes. This means that fields operated with autonomous 
crop robotics would be the possible solution from both an economic and environmental point 
of view. The advantage of small fields for enhancing biodiversity is already known for the 
United Kingdom, United States, Europe, and Canada. Therefore, the present study 
hypothesized a nexus between field sizes, autonomous crop robotics, and biodiversity 
enhancement which needs empirical investigation.  

However, despite having significant contributions in farm management, agri-tech economics, 
and environmental management literature, the study had some limitations in the 
development of algorithms and existing economic modelling scenarios. The algorithms still 
need some manual intervention for interior headlands turning and interior field passes in the 
case of relatively small fields. For instance, if the field is too small relative to the size of the 
equipment, the algorithm breaks down and manual entries are needed. The algorithms also 
assumed zero blockages that should be extended based on field experience. The study fails to 
address the impacts of different field shapes which demands attention. In terms of economic 
model scenarios, the study only considered four equipment sets and there may be other 
equipment sizes (i.e., 50 hp, 60 hp, and 70 hp) that fit the given circumstance better, especially 
for small 1 ha fields. Future research could incorporate various field sizes of less than 10 ha 
because the field efficiency was similar for the larger fields. In addition, future endeavours 
should consider the economic implications of autonomous crop robotics on biodiversity 
enhancement and mitigation of environmental degradation. 

Conclusions 

Arable farms with small fields are promoted to conserve biodiversity and support the AES and 
ELMS followed by the European Union, United Kingdom, and other countries elsewhere. 
However, agri-tech economic studies on autonomous arable crop equipment’s (i.e., 
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autonomous crop robotics) have previously failed to address the implications of field sizes. To 
contribute to the scientific knowledge, the study hypothesized that autonomous crop robotics 
would make it possible to farm small fields profitably. To test the hypothesis, using the 
experience of the HFH project demonstrated at Harper Adams University in the United 
Kingdom, the study developed algorithms to calculate equipment times for different sized 
rectangular fields. The economic implications of field sizes were assessed with the modified 
HFH-LP model. Equipment time results reveal that small 1 ha fields required longer time for 
all equipment sets. The extra time was associated with the lumpiness of non-productive times 
(i.e., replenishing seed and spray materials, and refilling fuel), interior headland turns, and 
interior field passes. The results of the HFH-LP model show that irrespective of field sizes, the 
autonomous crop robotics were the most profitable solution for all arable crop farms, except 
for the smallest farms in the West Midlands. The smallest (i.e., 66ha) farm was profitable with 
38 hp HFH conventional equipment, but the farm required more temporary labour and 
operator time. Given existing agricultural labour scarcity, even the small conventional 
equipment will not be the sustainable solution. The autonomous crop robotics will be the 
probable solution for arable crop farming because the autonomous crop robotics had the 
advantage of economies of size compared to conventional equipment sets irrespective of field 
sizes. The cost advantage even in small fields indicates that autonomous crop robotics ensured 
both the economic and environmental goals of arable farming. 
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