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Keynote Presentation: Adoption of transformative 
technologies on the farm: connecting technology, individual 

and system-oriented approaches 

Laurens Klerkx 

Knowledge, Technology and Innovation Group, Wageningen University, Hollandseweg 1 

6706KN Wageningen, Netherlands 

 

Abstract 

In this keynote presentation for the Adopting Agri-Tech Innovations session at the 4th 
Symposium on Agri-Tech Economics for Sustainable Futures, I will outline how technology 
adoption has been viewed from technology, individual and system-oriented perspectives. 
Looking at strengths and weaknesses of the different approaches, and their complementary, 
I will show how these approaches may inform different sorts of readiness in view of the 
adoption of (potentially) transformative agri-tech innovations, such as precision farming 
technologies and robotics. Drawing on recent frameworks, and illustrated with some 
examples, I will argue that having a broad consideration of different sorts of readiness of the 
technology, individual user, regulatory and enabling environment can help to better grasp and 
navigate the complexity of agri-tech innovation adoption processes.  The presentation will 
conclude with some reflections on what contemplating different sorts of readiness implies for 
innovation systems, in terms of organizing and supporting technology design and 
development, and its wider dissemination and scaling into farming practice.  

 

Presenter Profile 

Laurens Klerkx Laurens Klerkx is Full Professor of Agrifood Innovation and Transition at the 
Knowledge, Technology and Innovation Group of Wageningen University, The Netherlands, of 
which he has been part since 2002. He obtained his PhD from the same university and is an 
expert in the field of (agricultural) innovation studies, doing social science research and 
teaching and supervision (at Bachelor, Master and PhD level). Laurens (together with 
colleagues and his team of PhD students and postdocs) has done research in many countries, 
such as The Netherlands, England, New Zealand, Vietnam, Tanzania, Kenya, Ghana, Chile and 
Mexico. Throughout his career, Laurens has (co-)authored and published more than 120 
articles in international peer reviewed journals. His work informs policy makers, through 
contributions to policy and practice-oriented publications and direct engagement through 
invited presentations with organizations like the World Bank, the European Commission, the 
Food and Agricultural Organization of the United Nations (FAO), the Organization for 
Economic Cooperation and Development (OECD), and the United Nations Commission for 
Trade and Development (UNCTAD). Furthermore, he frequently interacts with practitioners 
through presentations and workshops on systemic perspectives on innovation and the 
implications for research and development professionals. 
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Laurens is, editor-in-chief of the Journal of Agricultural Education and Extension, editor of 
Agricultural Systems, associate editor of Agronomy for Sustainable Development and a 
member of the editorial board of the International Journal of Agricultural Sustainability. He is 
a member of the steering committee of the International Farming Systems Association, 
member of the Science Advisory Panel of AgResearch Ltd (New Zealand) and has held several 
advisory positions for several research and innovation programmes and projects in Europe, 
New Zealand, Australia, and Latin America. 
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Adoption potential of digital and automation technologies 
in smaller-scale livestock farming  

Andreas Gabriel and Johanna Pfeiffer 

Digital Farming Group, Institute for Agricultural Engineering and Animal Husbandry, Bavarian 
State Research Center for Agriculture (LfL), Ruhstorf a.d. Rott, Germany. 

 

Abstract 

Media reports in Germany convey the impression that digitalization has already made its way 
onto almost all farms. However, a recent online survey on the adoption of digital technologies 
on Bavarian farms clarifies that the reality is different in the small-scale agricultural context of 
Bavaria. The farmer survey yields a total of 2,390 fully completed and analysable 
questionnaires, of which 1,376 participants were livestock farmers. Of these, 888 operate in 
dairy production with an average herd size of 48 cows. With information on firmographics, 
socio-demographics, and adoption behaviour for seven selected digital technologies for 
livestock farming, it is possible to analyse adoption rates depending on herd size and common 
technology combinations. Results show that Bavarian livestock farms cannot be described as 
exceedingly digitalized but show interest in investing within the next years in technologies 
such as automatic milking systems, barn cameras or barn robotics. For example, on many dairy 
farms, automatic milking systems are an entry technology that triggers the use of other 
robotic or digital technologies. Herd size, type of housing (tethering vs. loose housing), and 
professionalization (full-time vs. part-time operations) are decisive for the diffusion of 
technologies. However, there is future potential for small-scale agriculture to become more 
digital if a quick return on investment can be achieved for the new technologies or the 
necessity of a technical transformation is reinforced by changing regulatory frameworks. 

Keywords 

Adoption rates, dairy farming, digital technologies, livestock farming, online survey, small-
scale agriculture 

Presenter Profiles 

Andreas Gabriel joined the Institute for Agricultural Engineering and Animal Husbandry in 
2018. With his experience in empirical social research, his work in the Digital Farming Group 
focusses on investigating social acceptance of digital technologies and their adoption in 
agricultural practice. 

Johanna Pfeiffer is a researcher at the Institute for Agricultural Engineering and Animal 
Husbandry, Bavarian State Research Center for Agriculture. Her focus is on the comprehensive 
assessment of digital technologies for dairy farming. In particular, she works on animal 
welfare, social and economic aspects of animal sensors for dairy farming. 
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Introduction 

The adoption of digital livestock farming technologies 

Livestock farmers in mid- and western Europe have access to an increasing number of market-
available applications. A broad range of digital technologies serves both as decision-making 
support tools and to improve more efficient processes in crop and livestock production 
(Paustian & Theuvsen 2017). The share of users of precision agriculture in general in 
developed countries varies widely among countries (Lowenberg-DeBoer & Erickson 2019), and 
sporadic on regional level (Pfeiffer et al. 2021; Schimmelpfennig & Ebel 2016; Llewellyn & 
Ouzman 2014). Adoption rates also vary regionally depending on the prevailing regional 
production intensity and operational structures (Eastwood & Renwick 2020; Gargiulo et al. 
2018).  

Adoption of digital dairy farming technologies is mainly driven by a desire for relief from 
physical labour and for support in herd management, especially in larger herds (Dela Rue et 
al. 2019; Gargiulo et al. 2018). Consequently, there are technologies that serve primarily to 
automate a process as well as technologies that are primarily intended to collect data of 
individual cows (Dela Rue et al. 2019). The milking robot is, however, a good example of a 
simultaneous fulfilment of both purposes. In the case of automatic milking systems, farmers 
are opting for the use of such systems due to increased working time flexibility (Straete et al. 
2017) and accompanying improvements in animal welfare through better monitoring of dairy 
farm operations (Vik et al. 2019; Latvala & Pyykkönen 2005). The number of dairy farms using 
automatic milking systems has increased worldwide over the last two decades (De Koning 
2010). While adoption rates in Finland, UK and Canada were reported to be below 10 %, 
Denmark, Sweden, Iceland, the Netherlands, and Norway had adoption rates of 10 to 30 % 
(Sigurdsson et al. 2019; Vik et al. 2019; Barkema et al. 2015).  

Further studies on the adoption of digital technologies in dairy farming showed a great 
relevance of automation technologies such as automatic drafting and plant and yard washing 
in New Zealand and Australia. The study by Gargiulo et al. (2018) also revealed a significant 
increase in the adoption of digital technologies with increasing herd size in Australia. Data 
capturing technologies such as sensors on the dairy cow for oestrus detection or health 
monitoring have, however, only played a minor role in these countries so far (Dela Rue et al. 
2019, Gargiulo et al. 2018). This can be explained by their low-cost pasture-based farm 
systems, accompanied by large herd sizes (see Dela Rue et al. 2019). Adoption studies 
conducted in the United States (Borchers & Bewley 2015), Switzerland (Groher et al. 2020) 
and Germany (Pfeiffer et al. 2021) showed that data capturing technologies are already 
playing an increasing role in these countries. The surveyed dairy farmers in these countries 
stated that in particular technologies for automated collection of data on the milking process 
(daily milk yield, milk components) and individual animal behaviour and condition (e.g., 
activity and rumination) are in use on their farms.  

Digital technologies in small-scale livestock production 

Small-scale agriculture is a loosely used term and defined differently in different regions of 
the world (Bosc et al. 2013). It is used in multiple respects for smallholder agriculture in 
developing countries with less than two hectares of farmland and directly connected to family 
farming (Graeub et al. 2016). The FAO defines the term as “family and farm business are 
linked, co-evolve, and combine economic, environmental, social, and cultural functions.” (FAO 
2013, p. 2). In Europe, small-scale agriculture is used in a different context as the average EU-
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28 farm size in 2016 was 16.6 ha, although 85 % of farms do not even meet this threshold 
(Eurostat 2019). In Germany, the national average farm size is around 60 ha, whereas farms 
in Bavaria, the south-eastern federal state of Germany, only own 35 ha on average (StMELF, 
2020). Being characterized by smaller structures in contrast to regions especially in the north 
and east of the country, Bavaria has more than 100,000 farms, thus representing almost one 
third of all farms nationwide (StMELF 2020). The small-scale agricultural sector in Bavaria is 
additionally characterized by frequent operation as family farms and comparatively low 
degrees of specialization. 

About two thirds of the farms in Bavaria have at least one other source of income (StMELF 
2020). In addition to the production of agricultural products (e. g., field crops, feeding 
production, animal husbandry), alternative businesses of energy, forestry, services for other 
farmers or municipalities, processing and direct marketing of agricultural products, and agro-
tourism provide additional revenues for 53 % of Bavarian farms (Destatis 2021). Nonetheless, 
animal husbandry remains an important source of income for Bavarian farmers as almost 
three out of four farms in Bavaria operate livestock production, including 27,500 dairy cow 
farmers and around 4,500 pig farmers. The profitability of dairy production in Germany as a 
whole is estimated at around 40,000 Euros per annual work and family work unit (EC, 2021). 
This means that labour profitability is significantly lower than in countries such as Denmark, 
the Netherlands, Italy or Ireland. In terms of income per cow, Germany has the second highest 
income in the EU behind Italy. 

Aim of the study 

A lack of scientific research on adoption rates of digital technologies in dairy farming, 
combined with an existing variation in market-available technologies (see e.g., Stachowicz and 
Umstätter 2020) and farm conditions, highlights the requirement for further in-depth 
adoption studies. However, knowledge about adoption rates of digital livestock and dairy 
farming technologies and farmers’ interest in future investment is of high importance for 
many stakeholders involved in the sector, pointing the scientific community towards 
identifying research needs, providing feedback to the industry on farmers' (future) interest in 
their technologies, and thus supporting farmers on their way to digitalizing their enterprises. 
In general, expectations of stakeholders in the dairy industry are that digitalization will offer 
opportunities for farmers, animals, and the environment through animal-friendly, 
competitive, and sustainable production. For example, the use of automation and sensor 
systems enables farmers to reduce labour requirements and improve management of 
monitoring of herds (Borchers &Bewley, 2016; Eastwood et al., 2012).  

The aim of our study is to determine the adoption rates of digital technologies in livestock and 
dairy farming in the smaller-scale agricultural context of Bavaria. The second aim is to analyse 
the dependence of technology adoption rates on herd size. In order to be able to support the 
digital transformation of agriculture (e.g., through funding, technical consulting, or product 
development), it is also important to determine common combinations of digital technologies 
used in agricultural practice and to identify structural barriers for implementing individual 
technologies. 

Methods and data collection 

An online survey of Bavarian farmers provides database for capturing the current level of use 
of digital technologies on Bavarian farms. Questionnaire structure and content were initially 
compiled based on existing questionnaires of PA adoption farmer surveys from the USA, UK, 
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and Denmark (Erickson et al. 2017; DEFRA 2020, Danmarks Statistik 2018), and adapted to the 
situation of Bavarian agricultural practice. An initial revision of the questionnaire concept was 
carried out with experts from agricultural research, extension, and government agencies. This 
resulted in a preliminary version of the questionnaire, which was carried out in a Germany-
wide pre-test employing a pre-quoted sampling procedure at the end of 2019 (n=591) (Gabriel 
et al. 2021). An extended pre-test was relevant, among other things, to define the terminology 
and classification of specific technologies for farmers. Studies in German-speaking countries 
have shown that terminology has an influence on the understanding of digitalization in 
agriculture (Reissig 2020), and unclear formulations themselves impact the acceptance of 
technologies (Schukat et al. 2019). The resulting findings regarding comprehensibility and 
technical implementation were used to adjust the questionnaire for the main survey in 
Bavaria. The final questionnaire comprised distinct question groups querying initially 
respondents’ socio-demographics and farm structures (firmographics), followed by 
information on their use of and future investment plans for 31 selected digital technologies in 
crop and livestock farming. The structure of question groups and questions was adaptive, 
conditioned by the previously given answers of the respondents. This made it possible to 
design the questionnaire in a compact and user-friendly manner. Farmers who specialize in 
livestock farming or dairy farming, for example, were only confronted with the respective 
technologies during the survey process. 

The entirety of Bavarian farms was accessed via the support and funding platform of the 
Bavarian State Ministry of Food, Agriculture and Forestry (StMELF), which is available online 
to all farmers, as applications for EU agricultural subsidies in Bavaria are submitted exclusively 
via this platform within a fixed period each year. The application period and access to the 
funding application platform in 2020 was possible from mid-March to mid-May (with an 
extension period until mid-June). The link to the survey was prominently displayed in the 
application portal together with introductory information explaining the purpose of the 
questionnaire, so that every applicant had the option to participate in the survey. In addition, 
after submitting the application form, a further reference to the survey was made through a 
pop-up window for each user. The survey link was available throughout the 89 days of the 
funding application period (including the extension period) and was accessible to the target 
population of 103,552 Bavarian applicants in 2020. Additional dissemination of the survey link 
via other media was omitted in order not to bias the probability of access. The use of cookies 
in the survey system (LimeSurvey V3.22, Hamburg, Germany) prevented multiple completion 
of the survey interviews. 

A total of 3,739 participants started the questionnaire, of which 2,458 completed the seven 
consecutive groups of questions. Thus, the dropout rate was 34.3 %, with four out of five of 
the dropouts terminating participation early after the first few questions. The data set of 
complete responses was checked for plausibility (answer consistency) and quality (total 
response time). The final data set of 2,390 complete questionnaires could be used for analysis 
with SPSS Statistics 26 (IBM, Armonk, NY, USA). For the descriptive results illustrated in this 
paper, the total sample was reduced to livestock farmers including all kinds of livestock 
enterprises (dairy, beef, pigs and sows, poultry; n=1,376). Additionally, respondents operating 
dairy farms (n=888) and the subset operating loose housing systems (n = 540) could be 
analysed separately. Farmers’ responses from the first two question groups of the 
questionnaire (1: socio-demographics and firmographics; 2: use of and future investment 
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plans) were used to analyse current technology adoption rates, future investment plans, and 
technology combinations on Bavarian animal husbandry and dairy farms in particular.  

Results 

Sample description 

Bavarian agriculture is still dominated by sole proprietorship (94 %, Destatis 2018), which is 
also reflected in the results of the subsample of livestock farms (Table 1). More significant 
differences can be seen in the ratio of part-time to full-time farms, as the sample contains a 
significantly higher share of full-time farms (64 %) than in official statistics for the total 
agricultural sector in Bavaria (38 %; StMELF 2020).  

The type of operation plays a crucial role on farmers’ motivation to use specific technologies 
(Mittenzwei & Mann 2017). Organic livestock farm managers participated in the survey 
proportionately more often (16 %) than the actual share of organic livestock farms in Bavaria, 
which is significantly below 10 %. Dairy farms in the sample are characterized with larger herds 
than official statistics indicate for the Bavarian average of about 40 cows for dairy production 
(StMELF 2020). In Bavaria, 37 % of dairy farms keep their animals tethered (status of 2020) 
which is also reflected in our sample (share of farms with tethering: 33 %). As use of digital 
technologies on farms operating tethering is limited compared to loose housing farms, 
information on housing type is decisive for the adoption of digital technologies. 

Additionally, socio-demographic characteristics of the surveyed farmers depict the situation 
in the mostly family-run farms (Table 1). The distributions of age classes, gender, and level of 
agricultural education in the sample deviate only slightly from the data of the Bavarian 
statistics on the agricultural sector (Destatis 2018). The sample reveals a typical domination 
of male operators of Bavarian farms with more than 90 %. There are deviating distributions 
between the sample and official statistics regarding the age categories of the farm managers. 
In particular, the two highest age classes (50-59 years; 60 years and older) are much more 
strongly represented in the sample, while the age class from 40 to 49 years is proportionately 
underrepresented. An additional question for farmers older than 49 years about the 
arrangement of their succession reveals that six of ten farms are still confronted with an 
unclear situation. This aspect is of particular importance, as older managers without 
successors tend to resist investments, e. g. in disruptive technologies, and to reduce rather 
than increase production intensity (Huber et al. 2015; Troost & Berger 2016). However, a 
relationship between succession situation and adoption rate of digital farming technologies 
has not yet been demonstrated clearly (Paustian & Theuvsen 2017). 
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Table 1. Survey sample description of livestock farms (n = 1,376) 

 
Variable Category 

Frequencies 
abs.            

 
rel. (%) 

Farmo-
graphics 

Type of 
operation 

Full-time 
Part-time 

   878 
   498 

63.8 
36.2 

Type of 
production 

Conventional 
Organic 

1,133 
   219 

83.8 
16.2 

Legal form of 
company 

Sole proprietorship 
Partnership 
Othersa 

1,222 
   147 
       1 

89.2 
10.7 
  0.1 

Production 
categoriesb 

Beef cattle (avg. 46 animals) 
Dairy cows (avg. 48 animals) 
Fattening pigs (avg. 325 animals) 
Breeding sows (avg. 89 animals) 
Fattening poultry (avg. 3,019 animals) 
Laying hens (avg. 231 animals) 
Others 

    420 
    888 
    190 
      60 
      32 
    231 
    208 

30.5 
64.5 
13.8 
  4.4 
  2.3 
16.8 
15.1 

 Housing type 
(only dairy 
farms; n=888) 

Tethering 
Loose housing 
Others/mixed types 

    291 
    540 
      57 

32.8 
60.8 
  6.4 

Socio-
demo-
graphics 
operator 

Gender Female 
Male 
Diverse 

      95 
 1,276 
        5 

  6.9 
92.7 
  0.4 

Age under 20 years old 
20 - 29 years old 
30 - 39 years old 
40 - 49 years old 
50 - 59 years old 
60 years and older 

        1 
      94 
    256 
    362 
    471 
    192 

<0.1 
  6.8 
18.6 
26.3 
34.2 
14.0 

Farm education 
level 

Skilled worker 
Agricultural master 
Agricultural technician 
University degree (agricultural programs) 
BiLac 

Othersd 

    414 
    323 
      79 
      73 
    177 
    310 

30.1 
23.5 
  5.7 
  5.3 
12.9 
22.5 

Succession 
arrangede 

Not at all or situation unclear 
Yes, succession has been arranged 

    397 
    266 

59.9 
40.1 

a e. g., partnership (legal company); cooperative; public limited company 
b multiple answers possible; percentage of cases 
c BiLa = Bavarian vocational training program for part-time farmers (state-supported; one-year training) 
d Indications: business economist; mechanical engineer; banker; agricultural school; none; etc. 
e answers from participants older than 49 years (n=663) 

 

Technology adoption rates in livestock farming 

For each of the seven queried digital technologies for animal husbandry, respondents were 
asked about their current use and whether they planned to invest in the short term (within 1 
year) or medium term (with next five years). In addition, respondents were asked to indicate 
which of the technologies they use was acquired first and which is currently used most 
intensively on the farm (Table 2).  
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Table 2. Digital technologies in livestock farming and their shares of entry and intensive use 

 Cat.a) in use 
Entry 

technologies 
Most intensively 
used technology 

Digital technologies in animal husbandry  
in % of 

category 
abs. 

in % of 
users 

abs. 
in % of 
users 

Barn cameras 1 17.1 74 31.5 59 25.1 
FMI (e.g., herd management software) 1 16.5 38 16.7 53 23.3 
Behaviour monitoring sensors 1 12.4 21 12.4 38 22.4 
Automatic milking system 3 15.2 72 53.3 121 89.6 
Feed pushing robots 2 7.2 15 19.2 14 17.9 
Slat cleaning robots 2 7.2 12 15.4 13 16.7 
Automatic forage supply 2 3.0 10 30.3 12 36.4 
a) Categories: 1= livestock farming (n=1,376); 2= beef and dairy (n=1,087); 3= only dairy(n=888) 

 

It is apparent that low-cost digital technologies are most popular. Barn cameras have already 
been purchased and used by 17 % and farm management information software for livestock 
farming by more than 16 % of the farms in the sample. These two technologies are followed 
by behaviour monitoring sensors (including e.g., pedometers and rumination sensors) and 
automatic milking systems, which are in use on 12 % and 15 % of dairy farms surveyed, 
respectively. The use of slat cleaning robots, feed pushing robots and automatic feeding 
systems is rather limited at 7 %, and 3 %, which may be attributed to the fact that these 
technologies are comparatively younger and thus have been on the market for a shorter time. 

There are differences between the surveyed digital technologies in terms of whether they are 
the first technology used on a farm. While farm management information systems for 
livestock farming such as herd management software, and behaviour monitoring sensors are 
not the common entry into digitalization, many farmers are getting on board with barn 
cameras and automatic milking systems. The fact that for more than half of automatic milking 
systems adopters, this very high-cost digital technology was the first on their farm shows that 
many farmers are assessing the financing risks and benefits of getting started with 
digitalization. More than half of the farmers using automatic milking systems have adopted 
this very expensive digital investment as their first digital technology on their farm. This fact 
indicates that investment in digital technologies is not purely a financial consideration, but is 
also intended to fulfil the required functional purposes. Studies from Denmark and Holland 
found economic impacts and identified important thresholds with regard to time after 
investment (four years) and number of cows (45) above which automatic milking systems 
become more profitable than conventional milking systems (Hansen et al. 2019, Gazzzarin & 
Nydegger 2014, Floridi et al. 2013). At least the average rate of 48 cows per farm in the 
Bavarian sample seems to account for this as well. 

Impact of herd sizes on adoption rates 

A possible use of digital technologies is relatively limited for farms with tethered housing 
compared to loose housing farms. Consequently, more digital technologies are used on loose 
housing farms than on tie-stall housing farms. This is because structural conditions of stables 
with tethering are not or only partially suitable for many digital technologies (e.g., automatic 
milking system). Furthermore, tethering farms have smaller herds on average, which makes 
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some digital technologies more difficult to implement economically. However, an influence of 
herd size on the adoption rates of digital technologies can also be seen when analysing 
exclusively the farms with loose housing in the sample (Figure 1). The adoption rates of all 
technologies are higher on farms with at least 50 cows compared to farms with less than 50 
cows. Looking at farms with loose housing, farms with less than 50 cows show adoption rates 
of up to 17 % for farm management information systems, while farms with at least 50 cows 
show adoption rates of up to 43 % (behaviour monitoring sensors). 

 

 
Figure 1. Adoption rates of selected digital dairy farming technologies on loose housing dairy 
farms with less (left) and more (right) than 50 dairy cows 

 

The extent to which technology adoption rates depend on herd size of loose housing dairy 
farms surveyed is shown in Figure 2. For the commonly used barn cameras and farm 
management information systems, a steady increase in adoption rate with herd size is 
illustrated. Compared to the other technologies, barn cameras and farm management 
information systems are also applied on small farms (herd size ≤ 20). Although automatic 
milking systems and behaviour monitoring sensors are already in use in herds with ≥ 20 cows, 
a clear increase in their adoption rates is shown at herd sizes between 60 and 70 cows. In the 
case of automatic milking systems, this can be explained by its optimal capacity at this point. 
As behaviour monitoring sensors are often purchased together with an automatic milking 
system, their adoption curve assimilates to that of automatic milking systems. Slat cleaning 
robots show a more pronounced increase in the adoption curve at a herd size of 40 cows, and 
feed pushing robots at a herd size of 50 cows, followed by a steady increase at larger herd 
sizes. In general, there is a clear positive effect of herd size on adoption rates of all digital dairy 
farming technologies analysed. Only the two low-cost solutions, barn cameras and farm 
management information systems, are already adopted on farms with very small herds.  
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Figure 2. Adoption rates of digital dairy farm technologies depending on herd size 

 

Potential short and medium-term technology combinations 

The Bavarian livestock farmers surveyed were also asked about their investment plans within 
one year and within the next five years. Based on these estimates, we can assess the current 
frequency of technology combinations in use as well as at two points in the future. Although 
the future combination frequencies are based solely on farmers' assessments, trends in 
livestock farming can be identified as to what other technologies adopters of commonly used 
technologies are at least thinking about (Figure 3). The figure shows the combinations with 
other technologies if at least 10 % of the users also currently use them. The indicated average 
period of use of the selected digital technologies in livestock farming refers to the time of the 
survey in spring/summer 2020. 

In dairy farms, the use of automatic milking systems stands out as an entry scenario (see also 
Table 2). On the one hand, this cost-intensive technology is very often the farmer’s entry into 
digitalization. On the other hand, it is often followed by other digital technologies for animal 
husbandry. In many cases, adopters of automatic milking systems also use behaviour 
monitoring sensors (80 %), barn cameras (58 %) and farm management information systems 
(57 %). A higher proportion of farmers that already use farm management information 
systems and behaviour monitoring sensors think about investing in cameras if they do not 
already use them anyway. There are high frequencies of multiple combinations with other 
barn robotics such as slat cleaning robots and feed pushing robots. For future development, 
the relevance of compatible systems for the adoption of digital farming technologies is evident 
(Yoon et al. 2020). If compatibility and reliability of the systems are ensured, the sequential 
expansion of digital equipment in livestock production can be accelerated. 
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Figure 3. Current and potential short (within next year) and medium-term (within the next 
5 years) digital technology combinations in livestock farming 

Note: Selection of technologies used by at least 10 % of farmers from the relevant production category 
(n=absolute number of farms; indication of the average time since use of the technology in years) * only dairy 
farms; ** time of survey March-June 2020. 
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Discussion and conclusion 

Conducting a farmer online survey, reliable data on the use of digital technologies on farms in 
Bavaria was collected for the first time. Results reveal that livestock and dairy farming in this 
smaller-scale farming region cannot be described as ‘exceedingly digital’. Digital technologies 
with high adoption rates are low-cost barn cameras and farm management information 
systems, but adoption rates do not exceed 17 %. The figures for the overall livestock farming 
sample also show that digital technologies such as barn robotics are being used more 
frequently, especially in dairy farming. On many dairy farms, automated milking systems are 
an entry technology that trigger the use of other robotics or digital technologies. If the stated 
future planning of systems users in the sample is to be believed, the use of cleaning or feeding 
robots will double on these farms in the coming five years. 

However, digital transformation is still a question of company size and type of operation. More 
than one third of livestock farmers in the sample are part-time farmers. Not operating a farm 
as main occupation lessens motivation, capital access and time to invest in specific 
technologies (Mittenzwei & Mann 2017). In some cases, additional off-farm income might be 
expected to increase capital available to invest and adopt technologies (Schimmelpfennig & 
Ebel, 2016). Detailed information on financial possibilities of Bavarian part-time farmers was 
not included in this survey, but should be considered in future research. In addition, each 
technology is effective for specific optimal herd sizes, some technologies are only interesting 
for the farmers from a specific size. In the case of automatic milking systems, this can be 
explained quite well, as the maximum utilization of the systems and most effective use of 
milking stands is achieved at herd sizes of 60 to 70 animals. If the herd size is below this 
threshold, the digital milking stand is not optimally utilized. If the number of cows is larger, 
considerations must be started for installing a second system. 

Low-cost technologies such as barn cameras and farm management information systems are 
also used more frequently on farms with smaller herd sizes (under 50 animals) than more cost-
intensive technologies such as barn robotics. Economic aspects of profitability and cost-
benefit ratio continue to play a major role in investment decisions (Borchers & Bewley 2015). 
But also, the simplicity and ease of use of a technology are important when deciding whether 
to implement a technology. Especially for farmers of smaller or part-time farms, new 
technologies must be easy to understand and easy to use. Groher et al. (2020) came to similar 
conclusions for the use of digital technologies in Swiss dairy farming, which is quite 
comparable to the situation in Bavaria due to the high number of smaller farms with small 
herd sizes. Easy-to-use technologies and compatible tools integrated into milking technology, 
for example, are also favoured in the neighbouring country, while expensive robotics show 
very little application in Switzerland (with adoption rates between 2 and 6 %).  

Other empirical studies analysing the use of digital technologies in regions or countries with 
large-scale agriculture show a correlation of technology adoption rates with herd sizes (e.g., 
Gargioulo et al. 2018; Eastwood & Renwick 2020). However, these surveys further found only 
minor differences between large and small farms when it comes to a generally positive 
perception of the use of digital technologies and future investment interest by the surveyed 
farmers. There is potential for smaller farms to digitalize more in the future if a quick return 
on investment of the new technologies can be achieved or the necessity of a technical change 
is reinforced externally, e.g., by changing regulatory frameworks for agricultural productions. 
In Bavaria, for example, tethering is still possible, although the political debate about it is 
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intensifying due to growing social pressure. Most of the digital technologies do not work at all 
in tethering or cannot fully develop their application potential. For example, behaviour 
monitoring sensors can be used in tethered housing, but due to a restricted mobility of the 
animals, quality impairments in their alerts (e.g., oestrus, health) must be expected. 
Conversion of farms to other housing types such as loose housing intensifies the need for 
digital solutions and increases the adoption rates of digital technologies in animal husbandry 
and dairy livestock farming. 
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Extended Abstract  

Digital technologies include a wide range of applications such as robots (e.g. for milking or 
hoeing), GPS applications (e.g. driver assistance or precision farming), or sensors (e.g. 
ammonia levels in barns or soil moisture), which serve various purposes. Digital technologies 
can help revolutionise agricultural production and tackle the increasing global challenges (e.g. 
climate change, water pollution, or soil degradation; Walter et al., 2017, Finger et al., 2019, 
Busse et al., 2014). Technology use can further help farmers optimise input allocation and 
thereby contribute to lower costs, increased outputs, and higher resource efficiency (Batte 
and Arnholt, 2003, Shockley et al., 2011). For instance, an increasing use of sensors can 
contribute to a better monitoring of the farm so that inputs such as fertilisers or pesticides 
can be applied according to needs (Walter et al., 2017). The adoption rates for digital 
technologies are well documented in certain states of the United States and Australia. In 
Europe, however, they are not yet as well explored (Paustian and Theuvsen, 2016, Barnes et 
al., 2019, Kutter et al., 2009).  

Previous research revealed that adoption rates for digital technologies in Switzerland, as an 
example of a European country, differed widely across technologies and production branch 
(Groher et al., 2020b, Groher et al., 2020a). As a result, the current study focused on one 
production branch only. Specifically, we looked at outdoor vegetable farming. The agricultural 
area used for vegetable production has increased in Switzerland during the last decade (Zorn, 
2020) and is very resource-intensive, for example in terms of pesticide and fertiliser use. At 
the same time, there is growing societal concern about the negative environmental impacts 
of agriculture, which is reflected for example in several popular initiatives launched in 
Switzerland since 2016, all of them addressing agricultural or food-related topics (Huber and 
Finger, 2019). Digital technologies offer a possible solution for these challenges and may have 
the potential to reduce negative environmental impacts of agricultural production.  

Focusing on outdoor vegetable farming in Switzerland, the present study followed three main 
objectives. First, it aimed to identify the most promising technologies and applications. The 
second aim was to obtain a forecast on the future development of the adoption of digital 
technologies based on the assessments of various experts. The third aim was to identify 
drivers and barriers of technology adoption. To investigate these research questions, we chose 
the Delphi method as an established tool to obtain high quality experts’ responses.  

Most Delphi studies share four main characteristics (Anderhofstadt and Spinler, 2019, von der 
Gracht, 2012, Rowe and Wright, 2001). First, the experts are anonymous and their identity 
remains unknown to the expert panel, thus avoiding that one or few experts dominate the 
consensus process. Second, a series of rounds offers the experts the possibility to adapt their 
statements and reconsider their opinion. Third, experts receive controlled feedback which 
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summarises the results of the previous rounds (Hsu and Sandford, 2007). Finally, as a fourth 
characteristic, feedback is provided to the experts as a statistical group response, usually 
including measures of central tendency (e.g., mean, median).  

Potential experts for the Delphi study were selected across Switzerland based on their 
recognised knowledge of and familiarity with vegetable production and digital technologies in 
agriculture. Additional individuals were contacted based on snowball sampling from the 
approached experts. For the selection, we put a special focus on professional and geographical 
diversity (Mauksch et al., 2020, Häder, 2014). We selected a total of 34 suitable experts and 
in accordance with Busse et al. (2014), organised them into five expert groups. The groups 
were formed based on the experts’ professional background as follows: farmers/contractors, 
input suppliers, intermediates, research, and advisory.   

In Round 1 of the Delphi, open-ended questions were used to collect expert opinions. These 
were transformed into close-ended questions for Round 2, where controlled feedback was 
provided to the experts. Experts were given two weeks to complete the survey, before non-
responders were reminded to participate and given another week to do so. Twenty-six experts 
participated in both rounds, resulting in an overall response rate that was comparably high 
with 76%.   

Based on the experts’ qualitative responses, we identified GPS and RTK technology as, in the 
experts’ view, most promising technologies for outdoor vegetable farming. Next, experts 
mentioned robots and autonomous machines. The popularity of robots is supported by recent 
research from Germany, which found that 22.6% of the surveyed farmers were planning to 
invest in field crop robots within the next five years (Spykman et al., 2021). While robots and 
autonomous machines can bring significant benefits in terms of working hours or physical 
labour reductions, an increased use of robots and autonomous machines, however, creates 
new challenges such as legal and safety issues. For instance, in the European Union, it remains 
unclear who is accountable for damages caused by autonomous robots (Basu et al., 2018).  

In terms of promising applications, weed control and hoeing was a clear favourite with 88% of 
experts choosing it in Round 2. Given the increasing societal and environmental pressure on 
agriculture in Switzerland and around the world, it seems that experts see significant potential 
in technologies concerning weed control and hoeing. These technologies can help lower the 
input use. Similarly, increased data collection and monitoring can help adjust the crop farming 
practices in a way that input allocation is optimised. With that, it is not surprising that the 
second group of technology application which more than half of the expert panel selected was 
data collection and monitoring.   

Next, we assessed experts’ predictions for the four technologies (1) driver assistance systems, 
(2) electronic measurement systems for fertilisation, (3) electronic measurement systems for 
irrigation, and (4) hoeing. The prognoses for adoption were especially promising for irrigation 
and hoeing, possibly because these domains are under significant pressure from current issues 
such as climate change (e.g. droughts) and protection of the environment (e.g. through bans 
on pesticides). Experts in the current study expect the adoption rates in the domains of 
fertilisation, irrigation and hoeing to almost double in the next one or two years. In the next 
10 years, they are expected to grow by four times and more as compared to the level of 2018 
(Groher et al., 2020b). This expected increase will significantly affect the demand in 
technology supply and training and is therefore of interest to educators, researchers and 
technology marketers alike.  
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When asked about drivers of adoption, 88% of the experts in Round 2 chose resource saving 
as most important. Mentioned each by 50% of the experts are better compliance with the 
legal requirements, lower costs or higher revenues and the saving of time or labour. These 
results make it clear that economic aspects play a dominant role as drivers of adoption. 
Promising technologies such as hoeing robots may reduce the input use but the main drivers 
here seem to be of economic nature as well as societal and political pressure. In support of 
this interpretation, one of the experts commented: “from an environmental perspective, 
producers are forced to produce more sustainably”, which also highlights the pressure under 
which vegetable farms are currently operating.  

In terms of possible barriers of technology adoption, it emerged that high costs and the level 
of technology development were the most important aspects mentioned across both Delphi 
rounds. It is well documented in the literature that technology costs are a major barrier to the 
adoption of new technologies (Lawson et al., 2011, Reichardt and Jürgens, 2008). The mention 
of the level of technology development indicates that for some of the users, it may seem too 
early to adopt. A study in Germany revealed that especially large farms were among the early 
adopters and that it required large amounts of time in the initial stage to make the technology 
work (Reichardt and Jürgens, 2008). This process could be accompanied and facilitated by 
advisory services (Lawson et al., 2011). In line with this, experts mentioned the lack of 
knowledge, expertise or training as the third important barrier. Not only does a farmer need 
a certain degree of knowledge in order to operate a technology, but also their seasonal 
workers need to be able to deal with these new challenges. Similarly, farmers need a certain 
degree of affinity for technology to operate digital technologies.   

In conclusion, our study found that economic factors are crucial drivers and barriers of 
technology adoption. Furthermore, increasing the practical relevance emerged as a promising 
measure to assist technology adoption. With that, this research is in line with previous findings 
but adds important insights, which can help tailor policy and training measures aiming to 
increase the adoption of digital technologies. Specifically, experts identified a pronounced 
demand for financial support to overcome the cost barriers. Specific training accompanied by 
advisory support can help build more practical relevance and support farmers in technology 
adoption. The current level of adoption of digital technologies in vegetable farming has a lot 
of potential for growth and experts expect big increases within the next 10 years. Keeping this 
in mind can help improve efforts in training and policy measures to support technology 
adoption. Undoubtedly, changes in climate and the regulatory framework aiming to preserve 
natural resources will further increase the pressure on agriculture. Digital technologies can 
play a key role in mastering these future challenges.    
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Abstract  

The increasing use of ‘agri-tech’ is seen by many as a key solution to the sustainable 
intensification of agriculture globally, bringing benefits to people, production, and the planet. 
As the UK navigates towards new post-Brexit agricultural policies, government funding is 
being provided to assist farmers with the implementation of agricultural technology, support 
which is also being provided in other countries across the world. Yet, the scholarly and popular 
literature continues to struggle with defining what ‘agri-tech’ refers to. Whilst there have been 
attempts to define terms such as ‘agriculture 4.0’, ‘precision agriculture’, and ‘digital 
agriculture’, there remains a lack of understanding of what it means to farmers and what types 
of technologies are most valuable to them. This represents both a gap in the academic 
literature, but also a practical challenge for those policy-makers wishing to know what types 
of agricultural technologies to support. Drawing on work from Science and Technology 
Studies, sociology, and histories of science, particularly ideas centred on ‘innovation delusion’ 
and ‘the shock of the old’, we explore the reality of ‘agri-tech’ down on the farm, inviting 
farmers and innovation brokers to shed light on what it means for them, as well as 
envisioning its future use by the year 2030. We use a mixed methods approach, including 17 
interviews of key innovation brokers in the UK agri-tech ecosystem, social media analysis, as 
well as a survey of UK farmers combined with follow-up interviews. The analysis of these 
methods will be completed before the conference presentation and results will be reported 
then.  
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Abstract 

Meeting the challenges of growing populations, food demand, and climate change will require 
increased production from existing resources with reduced negative side effects. Productivity 
of land, water, and climate has to increase across the board. Precision technologies that tend 
to enhance input use efficiency in various stages of production can play a crucial role in 
meeting these challenges. Agriculture operated under conditions of random weather and 
heterogeneous agro-climatic conditions, and precision technologies have the capacity to 
adjust the selection of inputs, as well as production practices to changing conditions. These 
technologies require monitoring and assessment of situations, design of appropriate 
responses and application. These technologies are knowledge-intensive and improve as 
scientific knowledge grows and technologies improve. The agro-food system is challenged to 
develop these technologies and develop mechanisms to distribute them so they will be 
adopted when appropriate. That may require continuous links between researchers and 
extension and the private sector, and ongoing education of farmers. Thus far, adoption of 
decision technologies has been limited to high-value sectors and the developed world. To 
reach their potential, precision technologies need to be adapted to and adopted in developing 
countries. We will present some examples of successful applications of precision technologies 
and suggest some of the promising directions and polices to implement them in the coming 
decades. 
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Abstract  

Research shows that smaller field size favours biodiversity and it is hypothesized that 
autonomous arable crop equipment would make it possible to farm small fields profitably. To 
test this hypothesis algorithms were developed for machine time over a range of field sizes. 
The Hands Free Hectare (HFH) linear programming model was used to assess the economic 
implications of field sizes. The study considered rectangular fields in the West Midlands from 
1 to 100 ha farmed with tractor sizes of 38 hp, 150 hp and 296 hp. Results showed that field 
times (hours/hectare) were longer for small fields with equipment of all sizes and types, but 
field size had the least impact for small equipment. The results showed that autonomous 
equipment reduces costs on farms with fields of all sizes. If temporary labour is available, 
conventional farms with small fields use the smaller equipment, but the extra hiring increases 
wheat production costs by £30-£40/ton over costs on farms with autonomous equipment. The 
larger 150 hp and 296 hp tractors were not profitable on the farms with small fields.  The 
economic viability of autonomous equipment irrespective of field sizes shows that it could 
facilitate biodiversity gains and environment schemes, such as Environmental land 
management schemes (ELMS) in the United Kingdom and Agri-environment schemes (AES) in 
the European Union and elsewhere.  
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Introduction 

The changes of arable landscape structure are a matter of concern with substantial reduction 
of biodiversity (Firbank et al., 2008; Flick et al., 2012; Lindsay et al., 2013; MacDonald and 
Johnson, 2000; Haines-Younga et al., 2003; Robinson and Sutherland, 2002). In many parts of 
the world, to promote conventional agricultural mechanization, comparatively large 
rectangular fields are encouraged and most of the land consolidation studies around the world 
in the last decades have been motivated by the desire for larger fields (Kienzle et al., 2013; 
Lindsay et al., 2013; Robinson and Sutherland, 2002; Van den Berg et al., 2007). In the United 
Kingdom, field size has increased through removing hedgerows and in field trees to encourage 
increasing use of larger machinery and ensure economics of size (MacDonald and Johnson, 
2000; Pollard et al., 1974; Robinson and Sutherland, 2002). Small fields are largely neglected 
and considered as non-economic for conventional mechanization, for instance, the United 
States abandoned most of the small irregular-shaped fields and the European Union and 
Switzerland treated small fields with subsidized agriculture (Lowenberg-DeBoer et al., 2021). 
Nevertheless, under the umbrella of landscape management, small fields are promoted both 
by the researcher and policymakers in the European Union, United Kingdom, United States 
and Canada to conserve biodiversity (Europe, 2008; Fahrig et al., 2015; Stanners and 
Bourdeau, 1995). Research in  Canada and the United States found increasing biodiversity in 
smaller fields (Fahrig et al., 2015; Flick et al., 2012; Lindsay et al., 2013). Likewise, studies in 
the United Kingdom and Europe, also showed that small fields and a more fragmented 
landscape have higher biodiversity (Europe, 2008; Firbank et al., 2008; Gaba et al., 2010; 
González-Estébanez et al., 2011). Keeping the ongoing debate of arable crop farm size in mind, 
unlike conventional mechanization, the present study hypothesized that autonomous arable 
crop equipment (i.e., autonomous crop robotics) would make it possible to farm small fields 
profitably. 

Autonomous crop robotics in this study refer to the mechatronic devices which have 
autonomy in operation through predetermined path or itinerary. More specifically, the 
autonomous crop robots are mobile, having decision making capability, and accomplish arable 
farm operations (i.e., drilling, seeding, spraying fertilizer, herbicides, pesticides, and 
harvesting) under the supervision of human, but without the involvement of direct human 
labour and operator (Daum, 2021; Lowenberg-DeBoer et al., 2021; Lowenberg-DeBoer et al., 
2021, 2020).  In this study, autonomous crop robotics, demonstrated at the Hands Free 
Hectare (HFH) project (https://www.handsfreehectare.com/) in Harper Adams University, 
United Kingdom, represent the swarm robotics as the robots incorporate multiple smaller 
equipment’s to accomplish arable farm operations like the larger conventional machine with 
human operator. The autonomous crop robotics of the HFH project are constructed through 
the retrofitting process of the conventional tractors (Lowenberg-DeBoer et al., 2021). The 
autonomous crop robotics are considered as the game changing technology to revolutionise 
precision agriculture and facilitate the 'fourth agricultural revolution' usually termed as 
Agriculture 4.0 (Daum, 2021; Klerkx and Rose, 2020; Lowenberg-DeBoer et al., 2021; 
Lowenberg-DeBoer et al., 2021). Owing to population and economic growth, agricultural 
labour scarcity, technological advancement, increasing requirements of operational efficiency 
and productivity, and mitigating environmental footprint, autonomous crop robotics are 
suggested as a sustainable intensification solution (Duckett et al., 2018; Fountas et al., 2020; 
Future Farm, 2021; Guevara et al., 2020; Lowenberg-DeBoer et al., 2021; Santos sand Kienzle, 
2020). Even though the robotic systems of livestock and protected environment has 

https://www.handsfreehectare.com/


Proceedings of the 4th Symposium on Agri-Tech Economics for Sustainable Futures 27 

developed more rapidly, research in autonomous crop robotics mostly concentrated on the 
technical feasibility (Duckett et al., 2018; Fountas et al., 2020; Lowenberg-DeBoer et al., 2020; 
Shamshiri et al., 2018). Considering the complexity of arable crop field operations, it is 
important to focus on the overall systems analysis (i.e., from drilling to harvesting) and 
understand the economic implications of autonomous crop robotics (Daum, 2021; Fountas et 
al., 2020; Grieve et al., 2019; Lowenberg-DeBoer et al., 2020). Economic implications of 
autonomous crop robotics play a crucial role in attracting investment, guiding adoption 
decisions, and further understanding of environmental and social benefits (Lowenberg-
DeBoer et al., 2021, 2020; Santos and Kienzle, 2020).  

The existing economic studies on autonomous crop robotics focused on one or 
two horticultural crops or rarely on cereals using prototype testing and experimental data 
(Edan et al., 1992; Gaus et al., 2017; McCorkle et al., 2016; Pedersen et al., 2017, 2008, 2006; 
Sørensen et al., 2005). Lack of information on economic parameters and machinery 
specifications act as a bottleneck in economic feasibility assessment because autonomous 
crop robotics are at an early stage of the development and commercialization processes 
(Fountas et al., 2020; Lowenberg-DeBoer et al., 2021; Lowenberg-DeBoer et al., 2021; 
Shockley et al., 2021). Most of the economic studies used partial budgeting where the changes 
of costs and revenues supported by all other constant assumptions are the problem, as the 
analysis is unable to present the real scenarios of economic impacts of crop robotics 
(Lowenberg-DeBoer et al., 2020). To date, four studies considered system analysis 
(Lowenberg-DeBoer et al., 2021; Shockley et al., 2019; Shockley and Dillon, 2018; Sørensen et 
al., 2005). Using Linear Programming (LP) models, the most successful systems analysis was 
performed by Lowenberg-DeBoer et al. (2021) and Shockley et al. (2019).  

In the context of the United States, Shockley et al. (2019) showed that relatively small 
autonomous machines are likely to have economic advantages for medium and small farms. 
The most up to date study by Lowenberg-DeBoer et al. (2021) assessed the economic 
feasibility of swarm robotics from seeding to harvesting operations using on-farm level 
demonstration data of economic parameters and collected equipment time information from 
agricultural engineering textbook of Witney (1988). The study assumed 70% field efficiency 
from drilling to harvesting operations for both autonomous crop robotics and conventional 
equipment sets. They showed that autonomous equipment is technically and economically 
feasible for medium and small sized farms. The study also mentioned that autonomous crop 
robotics diminished the rule of thumb of mechanized agriculture that is “get big or get out”. 
Based on their preliminary analysis, they hypothesized that in the context of the United 
Kingdom, autonomous crop robotics would make it economically feasible to farm small fields. 
Nonetheless, the study did not test that hypothesis because of data deficiency on machine 
times and field efficiency.  

To contribute to this knowledge gap, the objective of the study is to assess the economic 
implications of field sizes for autonomous crop robotics. Using the experience of the HFH 
project, demonstrated at Harper Adams University in the United Kingdom, the study 
developed algorithms to estimate equipment times and field efficiency for different sized 
rectangular fields. The study modified the LP model of Lowenberg-DeBoer et al. (2021) and 
updated the HFH-LP model by incorporating the equipment times and field efficiency 
parameters estimated through the developed algorithms. The modified HFH-LP model will 
facilitate farm management and machinery selection decisions. In addition, the inclusion of 
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field size scenarios will have implications for environmental management and promote the 
ELMS and AES followed by the United Kingdom, European Union, and other countries.  

Methods 

Estimation of field time and field efficiency for different sized rectangular fields 

The study developed algorithms to estimate equipment times (or field times) and field 
efficiency because the existing studies on arable crop machinery performance lack 
information on equipment times subject to field sizes. In this study, field time refers to hours 
required to complete per hectare arable field operation. The study estimated field efficiency 
as the ratio of theoretical field time based on machine design specifications like the estimates 
of theoretical field time to its actual field productivity. The field efficiency was presented in 
percentage. Even though logistics software is well developed in trucking and other 
transportation sectors (Software Advice, 2021), to date, there is no readily available 
commercial software to estimate equipment times. In farm equipment path planning 
literature, field times were sometimes generated as a by-product (Hameed, 2014; Jensen et 
al., 2012; Oksanen and Visala, 2007; Spekken and de Bruin, 2013). The agri-tech economic 
studies often rely on the general estimates of agricultural engineering textbooks like Hunt, 
(2001) and Witney (1988) to have equipment times and field efficiency estimates (see 
Lowenberg-DeBoer et al., 2021).  

However, in conventional mechanization and precision agriculture literature, few studies 
estimated field efficiency (Adamchuk et al., 2011; Bochtis et al., 2010; Buick and White, 1999; 
Peterson et al., 1981; Renoll, 1970, 1969; Grisso et al., 2004; Grisso et al., 2002; Janulevičius 
et al., 2019; Shamshiri et al., 2013; Taylor et al., 2001; Taylor et al., 2002). But prior studies 
treated headlands as non-productive areas ( for details see Bochtis et al., 2010; Gónzalez et 
al., 2007), excluded overlap percentage (for overlap see Lowenberg-DeBoer et al., 2021), 
amalgamating productive field times (i.e., field passes, headlands turning, and headlands 
passes) and non-productive field times (i.e., replenish inputs, refuelling, and blockages), and 
ignoring headlands turning types (for headland types see Han et al., 2019; Jin and Tang, 2010; 
Tu and Tang, 2019). These characteristics are important in the estimation of field times and 
field efficiency. For instance, Lowenberg-DeBoer et al. (2021) assumed overlap as 10% and 
pointed out that future study should consider reduce overlap. It is evident that the precision 
agriculture literature assumed 10% benchmark overlap (Griffin et al., 2005; Lowenberg-
DeBoer, 1999; Ortiz et al., 2013).  A very few studies suggested that future research should 
separately calculate the headlands turning time, and stoppages time (Bochtis et al., 2010; 
Shamshiri et al., 2013; Taylor et al., 2001; Taylor et al., 2002) because productive times and 
non-productive times play a significant role in field efficiency estimation (Bochtis et al., 2010; 
Jensen et al., 2015; Shamshiri et al., 2013; Spekken and de Bruin, 2013).  

Keeping these points in mind, the study developed algorithms to estimate field times and field 
efficiency for autonomous crop robotics and conventional machinery with human operators 
(i.e., 38 hp HFH conventional equipment, 150 hp and 296 hp conventional machine) subject 
to different sized rectangular fields. Using the experience of the HFH demonstration project, 
the algorithms encompassed productive times and non-productive times separately, and 
incorporated the overlap percentage, and headlands turning type (for details see the technical 
note of Al-Amin et al., 2021a). The study assumed that the equipment entered the field from 
the entry side and completed the headlands first. Afterwards the machine made a “flat turn” 
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to start the interior passes (i.e., the longest side of the field). Subsequently followed the “flat 
turn” for interior headland turns (i.e., the shortest side of the field) as shown in Figure 1.  

 

 

Figure 1: Typical field path considered in the algorithms based on the HFH demonstration 
project experience. 

 

The study adopted and modified the flat turning algorithm of Jin and Tang (2010). The HFH 
autonomous equipment (i.e., tractor for drilling and combine for harvesting) followed the “flat 
turn” with skipping two swaths (i.e., during headlands turning the machine skipped two 
swaths nearer and enter in the interior field after skipping those swaths) (for typical “flat turn” 
see Jin and Tang, 2010). The speed of the implement in the interior headlands turning was 
assumed to be one third of the interior field speed. The algorithms were calibrated following 
the experience of the HFH project and the equipment specifications of conventional 
technologies with human operators. Finally, the study assumed that the equipment ends on 
the entry side of the field. The algorithm was developed in an excel spreadsheet to allow for 
use and modification by researchers and students who are not familiar with coding (for details 
of the algorithms see Al-Amin et al. 2021b). 

Modelling the economic implications of field sizes on equipment use 

The study modified  the HFH-LP model to capture the economic implications of field sizes 
based on Lowenberg-DeBoer et al. (2021). The HFH-LP model is a decision-making tool which 
assesses the economic viability of autonomous crop robotics compared to conventional 
machines with human operators. The objective of the model was to maximize gross margin 
(i.e., return over variable costs) subject to primary farm resource constraints. The HFH-LP 
model is a one-year “steady state” model for arable crop farming, where the model assumes 
a monthly time step from January to December. The concept of “steady state” was adopted 
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from the Orinoquia model (for details see Fontanilla-Díaz et al., 2021). Following Boehlje and 
Eidman (1984), the HFH-LP deterministic economic model can be expressed as:  

The objective function: 

𝑀𝑎𝑥 𝜋 = ∑ 𝑐𝑗

𝑛

𝑗=1

𝑋𝑗                                                               … … (1) 

Subject to:  

∑ 𝑎𝑖𝑗

𝑛

𝑗=1

𝑋𝑗  ≤  𝑏𝑖 𝑓𝑜𝑟 𝑖 = 1, … … , 𝑚;                               … … (2) 

𝑋𝑗 ≥ 0 𝑓𝑜𝑟 𝑗 = 1, … … , 𝑛;                                               … … (3) 

 

where, π is the gross margin, 𝑋𝑗 is the level of jth production activities, 𝑐𝑗 is the gross margin 

per unit over fix farm resources (𝑏𝑖) for the jth production activities, 𝑎𝑖𝑗is the amount of ith 

resource required per unit of jth activities, 𝑏𝑖 is the amount of available ith resource. Net 
returns (i.e., total sales revenue minus total costs allied with variable and fixed factors of 
production) of the farm were examined.  

The constraints of the HFH-LP model encompassed land, human labour, equipment times (i.e., 
tractor use time for drilling and spraying, and combine use time for harvesting), and cashflow. 
The land constraint was considered with the lens of field sizes. For instance, the 66 ha farm 
(i.e., representing the smallest average farm in the regions of the United Kingdom and the 
West Midland’s average farm) (DEFRA, 2018a) with 90% tillable area (i.e., 59.4 ha) consisted 
of 59 fields of 1 ha each and 6 fields with 10 ha each. The study used the same principles for 
other farm sizes. To estimate the equipment time constraints, the study initially estimated 
field efficiency through the developed algorithms. In the subsequent stage, using the 
equipment specifications, 10% overlap percentage, and estimated field efficiency, the study 
calculated equipment times (i.e., hr/ha) from drilling to harvesting operations for the 
equipment sets with a reference to 1 ha and 10 ha sized rectangular fields. Finally, the 
equipment times were used to estimate the coefficients of human labour constraint and 
equipment time constraints. For details of the land, human labour, and cash flow constraints 
see Lowenberg-DeBoer et al. (2021). The details of the  equipment time constraints were 
available at the technical notes of  Al-Amin et al. (2021a). The HFH-LP model was coded in the 
General Algebraic Modelling System (GAMS) (https://www.gams.com/), where the data 
exchange (https://www.gams.com/35/docs/UG_DataExchange_Excel.html) option (i.e., 
Microsoft Excel to GAMS) were used considering the future user-friendly implications (for 
details of the GAMS code see Lowenberg-DeBoer et al., 2021). 

Case Study and Data Sources 

The study was conducted based on the experience of the HFH project demonstrated at Harper 
Adams University, Newport, United Kingdom. The HFH-LP model represented the arable 
agricultural grain-oil-seed farm in the West Midlands in the United Kingdom. The land 
constraints were selected following DEFRA (2018a, 2018b) to represent the average farm size 
in the West Midlands, average cereals farm, average cereals farms over 100 ha, and an 
arbitrary larger farm in the United Kingdom (Lowenberg-DeBoer et al., 2021). To calibrate the 

https://www.gams.com/
https://www.gams.com/35/docs/UG_DataExchange_Excel.html
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HFH-LP model, the study used parameters from different sources. The information about 
commodity produced and the costs estimates were collected from the Agricultural Budgeting 
and Costing Book (Agro Business Consultants, 2018) and the Nix Pocketbook (Redman, 2018). 
The study followed the field operation timing of Finchet al. (2014) and Outsider’s Guide 
(1999). The equipment specifications and field specifications were collected from HFH 
demonstration experience (https://www.handsfreehectare.com/), conventional large and 
small machine specifications from John Deere (https://www.deere.co.uk/en/index.html), and 
Arslan et al. (2014) (for details of the data sources see the technical notes of  Al-Amin et al., 
2021a). 

Results 

Effects field sizes on field efficiency and equipment times  

The estimated average field efficiency of the whole cropping cycle for the four equipment sets 
differed substantially between 1 ha and 10 ha fields, but for a given equipment set the field 
efficiency was almost the same for fields of 10 to 100 ha (Figure 2). In this case the whole 
cropping cycle included direct drilling, five spray applications and harvesting. The interesting 
finding of the whole farm field efficiency is that the HFH equipment set (i.e., small 38 hp 
conventional machine with human operator and autonomous crop robotics were considered 
identical) had comparatively higher field efficiency, whereas 150 hp and 296 hp conventional 
equipment sets with human operator were not efficient for small fields. As beyond 10 ha, the 
field efficiency for a given equipment set was similar for all field sizes (i.e., 20 ha, 50 ha, 75 ha, 
and 100 ha), the study endeavoured to focus on the economic implications of 1 ha and 10 ha 
field sizes.  

 

Figure 2: Estimated (weighted average) whole farm field efficiency of HFH equipment 
(assumed same for both HFH small conventional equipment with human operator and 
autonomous swarm robotics), large conventional machine, and small conventional 
technology in different sized rectangular fields. 
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The result of the equipment times depicted that field times (hr/ha) were longer for small 1 ha 
fields operated with equipment of all sizes and types, but field size had the least impact for 
HFH small equipment (Table 1). The extra time required for small 1 ha fields was associated 
with the lumpiness of non-productive times (i.e., replenishing seed and spray materials, and 
refilling fuel), interior headlands turn, and interior field passes. In spraying operations, 
irrespective of autonomous crop robotics and conventional equipment sets, the lower field 
efficiency reflects the reality. For example, the HFH 38 hp sprayer implement covered a 7 m 
wide swath with relatively fast speed (i.e., interior field speed was 5 kph, where the interior 
headland turning speed was 1/3 of the interior field speed), consequently, the input refill (i.e., 
seed and spray materials) became a bigger issue. If the capacity of the sprayer tank and drill 
bin (i.e., for seed) closely matched what was needed for whole rounds, then the field efficiency 
was slightly higher. On the contrary, if the sprayer tank and drill bin capacity did not match 
the requirements of the whole rounds (i.e., a substantial amount remained in the tank or bin, 
but not enough for a whole round) then field efficiency was lower. The study showed that 
small fields required more headlands and interior rounds for non-productive times. In 
addition, the lumpiness associated with the interior headlands turn and interior field passes 
were also a bigger issue for 150 hp and 296 hp conventional equipment sets because small 
fields required manual intervention leading to the conclusions that the comparatively larger 
conventional equipment sets were not suitable for small fields (for details see the developed 
algorithms at  Al-Amin et al., 2021b). 

Economic implications of field sizes on machinery use  

The result of the equipment scenarios showed that return over variable costs were higher for 
small 1 ha fields operated with autonomous crop robotics irrespective of farm types (i.e., 
average farms in the West Midlands, average cereal farms, average cereals farms over 100ha, 
and larger arbitrary farms), whereas larger farm with 10 ha sized fields equipped with 296 hp 
conventional equipment set had a higher gross margin (Table 2). The interesting findings of 
the study are that 1 ha fields were more feasible with autonomous crop robotics, whereas 10 
ha field sizes were similar to the findings of Lowenberg-DeBoer et al. (2021) which supported 
larger conventional equipment for arbitrarily larger fields, if the ownership costs were not 
considered. However, inclusion of ownership costs revealed that net returns to operator 
labour, management, and risk taking were higher for crop robotics, except for the typical 
smallest farms in the West Midlands. The smallest farm with 1 ha and 10 ha sized fields 
operated by autonomous crop robotics and conventional equipment sets produced similar 
gross margins. This may be because the smallest farms operated with four equipment 
scenarios did not face any operator and labour time constraints and as such planted and 
harvested wheat-OSR rotation at optimal times.  

Although irrespective of 1 ha and 10 ha field sizes, the net returns were higher for the smallest 
farms operated with 38 hp HFH conventional equipment, and the smallest conventional 
equipment set required higher operator time than the autonomous crop robotics. The higher 
profit may be because the study did not exclude the operator compensation. In addition, the 
autonomous crop robotics included the investment of retrofitted equipment as the 
autonomous crop robotics were developed through the retrofitting process. It is also evident 
that in arable crop field operations, the smallest 38 hp HFH conventional equipment set 
required higher amounts of human labour and operator time than all other equipment sets. 
More specifically, the small 1 ha fields demanded more human labour and operator time than 
10 ha fields. Nevertheless, throughout the world agricultural labour is difficult to hire. In the 
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context of the United Kingdom, small conventional equipment will not be the feasible solution 
as the country is also facing agricultural labour scarcity. The study assessed economic 
feasibility with an average wage rate of £9.57/hr. However, with the increase in wage rate 
increases, the scenarios may change. There is uncertainty as to whether or not the labour 
could be always hired at this wage rate. 

 

Table 1: Equipment times of the machinery sets for rectangular fields of 1 ha and 10 ha 

Equipment Width of the 
implement (m)** 

Overlap 
percentage** 

Field speed 
(km/hr)** 

Field Efficiency 
(%) *** 

Area/hr hr/ha 

1 ha Rectangular Field 

HFH equipment set (38hp)*: 

Drill 1.5 10% 3.25 73% 0.32 3.12 

Sprayer 7 10% 5 46% 1.45 0.69 

Combine 2 10% 3.25 80% 0.47 2.14 

Larger conventional set (296hp): 

Drill 6 10% 5 24% 0.65 1.54 

Sprayer 36 10% 10 23% 7.45 0.13 

Combine 7.5 10% 3 32% 0.65 1.54 

Small conventional set (150hp): 

Drill 3 10% 5 46% 0.62 1.61 

Sprayer 24 10% 10 32% 6.91 0.14 

Combine 4.5 10% 3 45% 0.55 1.83 

10 ha Rectangular Field 

HFH equipment set (38hp): 

Drill 1.5 10% 3.25 84% 0.37 2.71 

Sprayer 7 10% 5 70% 2.21 0.45 

Combine 2 10% 3.25 92% 0.54 1.86 

Larger conventional set (296hp): 

Drill 6 10% 5 82% 2.21 0.45 

Sprayer 36 10% 10 49% 15.88 0.06 

Combine 7.5 10% 3 82% 1.66 0.60 

Small conventional set (150hp): 

Drill 3 10% 5 83% 1.12 0.89 

Sprayer 24 10% 10 45% 9.72 0.10 

Combine 4.5 10% 3 86% 1.04 0.96 

Note: * HFH equipment sets representing both 38hp conventional machine with human operator and 38hp 
autonomous swarm robotics. **The machine specifications and overlap assumptions were collected from the 
HFH experience and Lowenberg-DeBoer et al. (2021). *** The authors developed algorithms to estimate the field 
efficiency of rectangular fields (for details of the estimation procedures and algorithms see the technical note in 
the supplementary material). 
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Table 2: HFH-LP outcomes on the economic viability of technology choice subject to field sizes. The technology selection scenarios 
encompassed HFH small conventional equipment with human operator and autonomous crop robotics, large conventional machine with 
human operator, and small conventional technology with human operator. 
 

Scenario* Farm 
size 
(ha) 

Field 
size 
(ha) 

Arable 
area 

(ha)** 

Labour hired 
in the farm 

(days) 

Operator time 
required in the 

farm (days) 

Whole farm 
gross margin (£ 

per annum) 

Return to operator labour, 
management and risk taking (£ 

per annum) 

Wheat cost of production with 
allocated operator labour (£ per 

ton) 

Conv 38 hp 66 10 59.4 0 66 47048 15848 160 

Conv 38 hp 66 1 59.4 0 83 47048 15848 171 

Conv 38 hp2 159 10 143.1 41 118 110140 38725 148 

Conv 38 hp2 159 1 143.1 63 138 108452 37037 155 

Conv 38 hp3 284 10 255.6 140 144 191499 69185 138 

Conv 38 hp3 284 1 255.6 191 167 187583 65269 143 

Conv 38 hp4 500 10 450 323 171 330716 127117 130 

Conv 38 hp4 500 1 450 435 194 302777 99178 143 

Conv 38 hp5 500 1 450 450 179 321300 108538 135 

Robot 38 hp 66 10 59.4 0 19 47048 12301 136 

Robot 38 hp 66 1 59.4 0 23 47048 12301 138 

Robot 38 hp 159 10 143.1 0 46 113343 47543 122 

Robot 38 hp 159 1 143.1 0 5 113343 47543 124 

Robot 38 hp2 284 10 255.6 21 61 200782 80535 121 

Robot 38 hp2 284 1 255.6 31 66 200014 79767 122 

Robot 38 hp3 500 10 450 71 73 350879 145800 117 

Robot 38 hp3 500 1 450 88 83 349528 144449 118 

Note: *The superscript with equipment specification under scenario indicates the number of equipment sets. **Based on the experience of HFH demonstration project, the 
study assumed that the arable crop farm was 90% tillable, where remaining 10% were occupied for ecologically focused area such as, lanes, hedgerows, drainage ditches, 
farmstead, etc. 
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Table 2: HFH-LP outcomes on the economic viability of technology choice subject to field sizes (Continued) 

Scenario* Farm 
size 
(ha) 

Field 
size 
(ha) 

Arable 
area 

(ha)** 

Labour hired 
in the farm 

(days) 

Operator time 
required in the 

farm (days) 

Whole farm gross 
margin (£ per 

annum) 

Return to operator labour, 
management and risk 
taking (£ per annum) 

Wheat cost of production 
with allocated operator 

labour (£ per ton) 

Conv 150 hp 66 10 ha 59.4 0 25 47048 -26001 210 

Conv 150 hp 66 1 ha 59.4 0 45 47048 -26001 223 

Conv 150 hp 159 10 ha 143.1 0 60 113343 9242 155 

Conv 150 hp 159 1 ha 143.1 21 87 111668 7567 164 

Conv 150 hp 284 10 ha 255.6 17 90 201096 55257 136 

Conv 150 hp 284 1 ha 217.1 65 99 166931 35360 146 

Conv 150 hp2 284 1 ha 255.6 91 102 195363 -1487 162 

Conv 150 hp 500 10 ha 383.8 58 104 299526 106111 126 

Conv 150 hp2 500 10 ha 450.0 82 107 350053 81080 136 

Conv 150 hp 500 1 ha 213.5 65 99 166931 36718 144 

Conv 150 hp2 500 1 ha 434.3 212 116 327466 64323 140 

Conv 296 hp 66 10 ha 59.4 0 15 47048 -70973 287 

Conv 296 hp 66 1 ha 59.4 0 40 47048 -70973 303 

Conv 296 hp 159 10 ha 143.1 0 35 113343 -35731 183 

Conv 296 hp 159 1 ha 143.1 11 84 112478 -36596 197 

Conv 296 hp 284 10 ha 255.6 0 63 202449 11638 151 

Conv 296 hp 284 1 ha 227.6 53 99 176086 -4317 165 

Conv 296 hp2 284 1 ha 450.0 70 101 197007 -161910 276 

Conv 296 hp 500 10 ha 450.0 24 88 354591 91657 131 

Conv 296 hp 500 1 ha 227.5 53 99 176086 -4317 165 

Conv 296 hp2 500 1 ha 450.0 185 115 341980 -16938 160 

Note: *The superscript with equipment specification under scenario indicates the number of equipment sets. **Based on the experience of HFH demonstration project, the 
study assumed that the arable crop farm was 90% tillable, where remaining 10% were occupied for ecologically focused area such as, lanes, hedgerows, drainage ditches, 
farmstead, etc.
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The wheat costs of production curves revealed that irrespective of field sizes (i.e., 1 ha and 10 
ha) farming with autonomous crop robotics had higher economies of size advantage than the 
farms operated with conventional equipment sets (Figure 3).  

 

 Figure 3: Wheat unit cost of production in pounds per ton with a reference to farm and field 
sizes. The labels on the data points are the size of the tractor used and the number of 
equipment sets.  

 

The key finding is that the study found a substantial effect of field sizes on wheat cost of 
production farmed with conventional equipment sets (i.e., 38 hp; 150 hp, and 296 hp). The 
wheat costs of production showed that 10 ha sized farms equipped with conventional 
equipment sets had comparatively higher economies of size advantage (big squares) than the 
farms without field size in consideration as shown in the “L” shaped upper middle wheat costs 
of production curve (triangles) adopted from Lowenberg-DeBoer et al. (2021). For 1 ha farm 
scenarios, even if the small 1 ha farm is operated with the smallest 38 hp conventional 
equipment set, the costs (small squares) were higher than 10 ha fields with all conventional 
equipment sets. The cost curves were calculated based on the production of profitable farms, 
where the study found that farming with 150 hp and 296 hp conventional equipment sets was 
unprofitable for the two larger farms. The unprofitable farms would not stay in business for 
long. This means that for conventional farms, the wheat cost curve required hiring substantial 
amounts of temporary labour. Farming with autonomous crop robotics had similar costs of 
production for 1 ha (small circle) and 10 ha (big circle) sized fields, where the “L” shaped curve 
(triangular) represents the wheat production cost curve for autonomous crop robotics without 
field size in consideration. 

Discussion 

The contribution of the present study is that the study endeavoured to focus on the economic 
implications of field sizes on arable field crop operations equipped with autonomous crop 
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robotics and conventional machinery with human operators in the context of the UK’s typical 
farms. The results of study have significant implications for farm management and machinery 
selection decisions, agribusiness adopters, and environmental management. The previous 
economic studies on autonomous machinery use missed the implications of field sizes 
(Lowenberg-DeBoer et al., 2021; Shockley et al., 2019), whereas small fields received 
substantial attention in environmental conservation studies to protect biodiversity and 
encourage ELMS and AES (Europe, 2008; Fahrig et al., 2015; Firbank et al., 2008; Flick et al., 
2012). To address the economic implications of field sizes, the study developed algorithms for 
estimating field efficiency and field times of different sized rectangular fields and equipment 
sets. This is the first attempt as prior studies more likely relied on the estimation of field 
efficiency and field time based on Hunt (2001) and Witney (1988). The estimation of the 
agricultural engineering books did not address the variability of equipment sets and field sizes. 
As such, the developed algorithms in this study would have future implications. The study 
ensured flexibility to address field and machine heterogeneity, calculate productive and non-
productive times separately, and incorporated overlap percentage for achieving real farm 
scenarios. In agriculture, there is no readily available software to calculate field times and field 
efficiency. Consequently, the engineers and agri-tech economists can use the algorithms for 
analysing the future technical and economic potentials of arable crop machines.  

The study found that field size had the least impact for the smallest equipment sets compared 
to the large conventional equipment sets with human operators. This means that the smallest 
equipment less likely favours field enlargement which in-turn conserves biodiversity. The 
finding supports the environmental management studies of small fields to conserve 
biodiversity (Fahrig et al., 2015; Gaba et al., 2010; González-Estébanez et al., 2011). The study 
assumed that HFH small 38 hp conventional equipment and autonomous crop robotics were 
identical. Future research should consider other small conventional equipment to address the 
equipment time issue with small fields. To empirically examine the on-field scenarios of field 
biodiversity, future research should incorporate field biodiversity, such as hedgerows, in field 
trees, and wetlands in the algorithms subject to field sizes.  

The findings of the return over variable costs more likely support autonomous crop robotics 
for small 1 ha fields. On the contrary, 10 ha sized fields favoured larger conventional 
equipment for larger arbitrary farms which is consistent with the findings of Lowenberg-
DeBoer et al. (2021). The outcomes from mathematical programming (i.e., net return 
scenarios with all the equipment sets) showed that autonomous crop robotics were the most 
feasible solution to profitably operate all the arable crop farms, except for the smallest farms 
in the West Midlands (Table 2). For the smallest farm, HFH conventional 38 hp equipment was 
the profitable choice. However, this smallest farm demanded substantial amounts of 
temporary labour and operator time. As agricultural labour is difficult to hire and the world is 
facing scarcity of agricultural labour, conventional 38 hp equipment would become 
economically infeasible even on the smallest farm. Autonomous crop robotics could be 
considered as a sustainable solution for arable field crop operation with the increasing scarcity 
of agricultural labour. The experience of the HFH demonstration project showed that 
autonomous equipment still required hired labour and operator time for supervision, being 
10% human supervision and 100% for hauling grain during peak harvesting time in July, 
August, and September. To make the autonomous crop robotics more economical and solve 
the problem of labour scarcity, the autonomous arable farms should endeavour to gear up the 
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technological innovation and come up with autonomous (i.e., self-driving) equipment for 
public roads.  

The findings of wheat costs of production also contribute to the economies of size literature. 
In agricultural production economics studies, the cost curves are typically used to analyse the 
economic-return-to scale of agricultural enterprises, spreading the fixed costs, and labour 
reducing technologies (Debertin, 2012; Duffy, 2009). To avoid the misuse of economies of 
scale (i.e., must follow the proportionate change in all input categories), based on the usual 
scenarios of agricultural farming, studies concentrated on economies of size (i.e., input 
categories do not change proportionately) (Debertin, 2012; Duffy, 2009; Hallam, 2017; 
Lowenberg-DeBoer et al., 2021; Miller et al., 1981). It is evident that agricultural production 
economic studies typically form the "L" shaped cost curve because the agricultural enterprises 
rarely showed diseconomies of size (i.e., increases production costs with increased 
production) (Debertin, 2012; Duffy, 2009). In the context of the United Kingdom, even though 
Lowenberg-DeBoer et al. (2021) investigated the economies of size of wheat costs of 
production, nevertheless, question remains on the implications of field sizes on the costs 
structure of arable field crop operations equipped with autonomous crop robotics and 
conventional equipment sets. The study found substantial effect of field sizes on wheat cost 
of production farmed with conventional equipment sets. This indicates that conventional 
equipment sets were unprofitable for larger farms and the smallest farms required substantial 
amounts of labour which is not a feasible option in the context of the United Kingdom. The 
autonomous crop robotics had the advantage of economies of size compared to conventional 
equipment sets irrespective of field sizes. This means that fields operated with autonomous 
crop robotics would be the possible solution from both an economic and environmental point 
of view. The advantage of small fields for enhancing biodiversity is already known for the 
United Kingdom, United States, Europe, and Canada. Therefore, the present study 
hypothesized a nexus between field sizes, autonomous crop robotics, and biodiversity 
enhancement which needs empirical investigation.  

However, despite having significant contributions in farm management, agri-tech economics, 
and environmental management literature, the study had some limitations in the 
development of algorithms and existing economic modelling scenarios. The algorithms still 
need some manual intervention for interior headlands turning and interior field passes in the 
case of relatively small fields. For instance, if the field is too small relative to the size of the 
equipment, the algorithm breaks down and manual entries are needed. The algorithms also 
assumed zero blockages that should be extended based on field experience. The study fails to 
address the impacts of different field shapes which demands attention. In terms of economic 
model scenarios, the study only considered four equipment sets and there may be other 
equipment sizes (i.e., 50 hp, 60 hp, and 70 hp) that fit the given circumstance better, especially 
for small 1 ha fields. Future research could incorporate various field sizes of less than 10 ha 
because the field efficiency was similar for the larger fields. In addition, future endeavours 
should consider the economic implications of autonomous crop robotics on biodiversity 
enhancement and mitigation of environmental degradation. 

Conclusions 

Arable farms with small fields are promoted to conserve biodiversity and support the AES and 
ELMS followed by the European Union, United Kingdom, and other countries elsewhere. 
However, agri-tech economic studies on autonomous arable crop equipment’s (i.e., 
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autonomous crop robotics) have previously failed to address the implications of field sizes. To 
contribute to the scientific knowledge, the study hypothesized that autonomous crop robotics 
would make it possible to farm small fields profitably. To test the hypothesis, using the 
experience of the HFH project demonstrated at Harper Adams University in the United 
Kingdom, the study developed algorithms to calculate equipment times for different sized 
rectangular fields. The economic implications of field sizes were assessed with the modified 
HFH-LP model. Equipment time results reveal that small 1 ha fields required longer time for 
all equipment sets. The extra time was associated with the lumpiness of non-productive times 
(i.e., replenishing seed and spray materials, and refilling fuel), interior headland turns, and 
interior field passes. The results of the HFH-LP model show that irrespective of field sizes, the 
autonomous crop robotics were the most profitable solution for all arable crop farms, except 
for the smallest farms in the West Midlands. The smallest (i.e., 66ha) farm was profitable with 
38 hp HFH conventional equipment, but the farm required more temporary labour and 
operator time. Given existing agricultural labour scarcity, even the small conventional 
equipment will not be the sustainable solution. The autonomous crop robotics will be the 
probable solution for arable crop farming because the autonomous crop robotics had the 
advantage of economies of size compared to conventional equipment sets irrespective of field 
sizes. The cost advantage even in small fields indicates that autonomous crop robotics ensured 
both the economic and environmental goals of arable farming. 
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Abstract  

Reducing negative environmental impacts (nitrogen losses, pesticide use, etc.) is one of the 
biggest challenges for agricultural production. Precision agriculture technologies are expected 
to help reduce these negative environmental impacts by providing timely, detailed and site-
specific production information. However, the uptake of such technologies is still relatively 
low, especially in small-scale farming systems that are common in Switzerland. With 
our analysis, we aim to gain new insights into farmers' decision making regarding the adoption 
of more environmentally friendly technologies such as variable rate nitrogen (VRN) 
fertilization. We use a discrete choice experiment to elicit preferences and determine the 
willingness to accept as well as the willingness to pay for such technologies among Swiss 
arable farms. Based on a literature review and focus group discussion, we selected the 
following choice attributes for our analysis: 1) additional profit margins/additional costs, 2) 
ownership of the technology, 3) reduction in nitrogen use, 4) uncertainty about the actual 
impact of the technology on yields, and 5) technical support. The online survey was conducted 
in spring 2021 among 424 Swiss farmers in the cantons of Solothurn and Bern. The preliminary 
results show that the adoption rate of VRN is still below 10% among Swiss farmers. 
Furthermore, our results show that the potential of nitrogen reduction in particular has a big 
impact on both the willingness to adopt such technologies. Findings from our survey can help 
to better understand farmers' adoption decisions and factors that influence them and, based 
on that, support the design of effective policies to increase the adoption of such technologies 
that promote climate-smart agriculture.  
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Introduction  

Reducing the negative environmental impacts of agriculture has been and still is a major 
challenge for agricultural production. Precision farming technologies are expected to help 
reduce such negative environmental impacts (nitrogen losses, pesticide use, etc.) by providing 
timely, detailed and site-specific production information (Schimmelpfennig and Ebel, 2016, 
pp. 97-115). Precision farming is also seen as a potential starting point to reduce the climate 
footprint of agriculture and contribute to climate-smart agriculture (e.g., Roy, 2020, pp. 199-
220). However, adoption rates of such technologies are still relatively low, especially in small-
scale farming systems (Finger et al., 2019, pp. 313-335; Lowenberg-DeBoer and Erickson, 
2019, pp. 7-20; Groher et al. 2020, 1327-1350). Adopting optimal site-specific nitrogen 
management is a complex decision for the farmer and several studies found that a variety of 
socioeconomic factors play a role in the adoption process (Aubert, Schroeder and Grimaudo., 
2012, pp. 510-520; Barnes et al., 2019, pp. 66-74; Tey and Bindal, 2012, pp. 713-730). 
However, most studies examining adoption of these technologies have been conducted in 
large-scale farming systems, and there is little research on adoption of precision farming 
technologies in small-scale, family-based farming systems. In this work, we aim to help fill 
these gaps and improve understanding of farmer decision making regarding adoption of more 
environmentally friendly technologies such as variable rate nitrogen fertilization on small-
scale farms. We intend to determine farmers' willingness to accept (WTA) as well as their 
willingness to pay (WTP) for such technologies, the factors determining it and how differently 
designed policies may influence adoption decisions.  

Methods  

To address this research gap, we use an online survey with a discrete choice experiment 
approach. This method provides an opportunity to assess the economic value of VRN use in 
different policy contexts. Using a discrete choice experiment approach allows us to measure 
both participants' willingness to accept as well as willingness to pay for such technologies. To 
explore farmers' willingness to accept (WTA), or willingness to pay (WTP), for VRN, we use a 
split sample design. Thereby, we vary the amount of additional profit margins obtained 
through higher yields, label premiums, or subsidies for one group (WTA) and the additional 
cost of the technology for the other (WTP). The other attributes identified in a literature 
review and focus group discussion are: 1) Ownership of the technology, i.e., the farmer invests 
in the technology himself, along with other farmers, or uses the services through a contractor. 
2) Potential to increase nitrogen use efficiency and thus reduce loss of nitrogen to the 
environment (Walter et al. 2017, pp. 6148-6150; Wang et al. 2019, pp. 877-882). 3) 
Uncertainties regarding the actual impact of the technology on yields and recyclability also 
need to be considered, as this may influence farmers' decisions. 4) Support in case of technical 
difficulties, as this can also be important for the farmer. Furthermore, we used additional 
questions to elicit socioeconomic and behavioural characteristics of the participants such as 
risk preferences, self-efficacy, and environmental awareness to explain the underlying 
heterogeneity in willingness to accept or pay. The choice experiment was conducted online in 
spring 2021 with Swiss arable farmers in the cantons of Solothurn and Bern.  

Results  

We sent the survey to all (N=4850) crop farmers in the cantons of Bern and Solothurn in 
Switzerland. We received a total of 424 complete responses. More specifically, 216 completed 
questionnaires in the WTA group and 208 in the WTP group, which results in a response rate 
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of 8.74%1. Preliminary results show that the application rate of VRN is still very low. Only 19 
of the participants (4.48%) stated, that they use VRN on their farm. 24 (5.66%) of the farmers 
indicated, that they already tested VRN on their farm. and that farmers are 
rather sceptical about the economic viability of VRN. Furthermore, it is shown that especially 
the reduction potential of nitrogen use has a high positive influence on the farmers' 
willingness to accept and pay for such technologies. The availability and reliability of the 
technology are other important drivers for adoption. A reduction in uncertainty about the 
impact of the technology, i.e., an increase in the rate where the technology 
actually provides the expected positive benefit (reduction in nitrogen or increase in 
yields) increases the willingness to accept and pay for the technology. Farmers are 
also sceptical of additional subsidies and prefer to see direct economic benefits, either 
through reductions in nitrogen use or higher yields from using the technology.  

Discussion  

By conducting a discrete choice experiment, we contribute to a better understanding of 
adoption decisions of farmers in smallholder systems regarding greener technologies. 
Identifying the main drivers influencing the adoption decision can support the design of 
efficient policies to increase the adoption of such technologies. The reduction potential of 
nitrogen seems to play a significant role in the acceptance of VRN. Furthermore, behavioral 
aspects play an important role in the application decisions of farmers when it comes to 
sustainable production technologies (Dessart, Barreiro-Hurlé and van Bavel., 2019, pp. 417-
471). Therefore, green nudges might be an approach to trigger farmers adoption of more 
sustainable technologies like VRN. Reliability and service provision is key to foster farmers VRT 
adoption and thus shall be clearly communicated. The high cost of VRN adoption is a major 
barrier for many farmers in small-scale systems. Therefore, it is important to take steps to 
reduce costs for individual farmers, for example, through the use of a contractor. In addition, 
it is important that the technology effectively increases production efficiency by increasing 
yields or reducing nitrogen inputs.  
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Extended abstract 

Intensive soil tillage with heavy machinery may often create soil compaction followed by yield 
reductions. As opposed to conventional cultivation with Random Traffic Farming (RTF), a 
solution to reduce soil compaction could be the application of fixed tracks using RTK-GPS 
guidance systems (Real Time Kinematic Global Positioning System), also known as Controlled 
Traffic Farming (CTF). A study among European farmers shows that farmers are concerned 
about heavy machinery and the induced soil compaction on their fields. Several farmers 
indicate that an important motive to use CTF are to reduce soil structure damage and to 
improve profits on their farms. Nonetheless, a further adoption seems to be constrained by 
high costs of modifying existing machinery, cost of RTK systems as well as lack of compatibility 
between different systems from different manufacturers. In addition, some farmers indicate 
that lack of evidence on benefits are reasons for a low adoption (Thomsen et al., 2018). The 
objective of this study is to assess the changes in cost and benefits from using CTF compared 
with RTF in arable farming on two experimental fields with spring barley in Denmark. Findings 
shows that CTF is profitable under certain conditions compared with RTF. The use of large 
agricultural equipment seems to be critical, as it reduces the negative impact of compaction, 
while the size of the field only play a minor role in regard to the saving potential of CTF. 
Secondly, if the axle widths of the tractors and the harvester are not identical, it decreases the 
economic potential of CTF significantly.   

Method  

This study sets up two scenarios to compare the impact and changes in cost and benefits of 
implementing CTF systems with RTF as the reference system. In this way, we apply a partial 
budgeting approach that focuses only on the changes in cost and benefits when shifting from 
RTF to CTF systems. Changes in crop yields rely on data from three experimental spring barley 
fields in Denmark. The field experiments were designed with plots that were not compacted 
and other plots that were fully compacted from different wheel loads (track by track) (see 
Pedersen & Pedersen, 2013; Schjønning et al., 2016). In addition to this, we provide a number 
of technical and economic assumptions about axel and working width and wheel load that 
enable an analysis of the costs and benefits at the farm level. By setting up a number of 
elaborated assumptions and scenarios, it is possible to assess the cost and benefits of applying 
CTF compared to RTF when growing spring barley in Denmark. Based on these assumptions, 
two scenarios were hypothesized, one representing a farm with a small working width and the 
other farm with a larger working width of equipment. The two scenarios are denoted 6-24 and 
9-36, which relates to the working width (meters) of each scenario. 



Proceedings of the 4th Symposium on Agri-Tech Economics for Sustainable Futures 50 

Conclusion 

This study shows that CTF could be profitable compared to RTF on large scale farms (400 ha) 
with spring barley in Denmark. The main benefits are related to reduced soil compaction. Less 
compaction leads to increased yields of between 3 and 6 % compared to RTF. Two properties 
of the farm scenarios delineate the significance of this result. The most important property is 
the existing working widths of machinery on the farm, where larger working width means less 
tracks and thereby decreasing the area affected by compaction. The second most important 
property of the farm is to what extent the axle widths of the existing machines are 
harmonized. If they are not, CTF is only profitable on farms with wide working widths (e.g. 9 
and 36 meter). It was also demonstrated that field size and field shape has limited influence 
on the net benefits of CTF. In a scenario of which the farm size and equipment can be 
attributed to most large Danish farms, we find a net return of 24.2-27.2 € ha-1y-1.  In summary, 
findings from this study shows that CTF is profitable under certain conditions compared to 
RTF. The use of wide agricultural equipment seems to be critical, as it reduces the compaction 
effects, while the size of the field only play a minor role in regard to the saving potential of 
CTF. Secondly, if the axle widths of the tractors and the harvester are not identical, it decreases 
the economic potential of CTF significantly. 
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Abstract 

A methodology is introduced that combines data from on-farm precision experimentation 
(OFPE) with remotely sensed vegetative index (VI) data to derive site-specific economically 
optimal side-dressing N rates (EONRs). An OFPE was conducted on a central Illinois field in the 
2019 corn growing season; the trial design targeted six side-dressing N rates ranging from 0 
and 177 kg ha-1 on field plots, and yields were recorded at harvest using a standard GPS-linked 
yield monitor. NDRE values were calculated from Sentinel-2 satellite imagery during the V10 
to V12 corn growth stages of the experiment’s crop. After partitioning the field by NDRE 
quartile, economically N side-dressing rates were calculated after estimating each quartile’s 
yield response function. Consistent with agronomic expectations, results showed that the 
parts of the field with lower NDRE values had higher yield; but the impact of increasing NDRE 
levels on the side-dressing rate’s marginal product and EONR was not monotonic. Simulations 
predicted that compared to the side-dressing strategy the farmer would have implemented if 
not participating in the OFPE, net revenues could have been increased by $54 ha-1 by using 
the methodology presented, suggesting high potential value of combining OFPE and VI data. 
A key advantage of the proposed methodology is that the data’s inference space is the field 
to be managed. Further study is needed to improve the featured methodology. 
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Introduction 

Mid-season nitrogen (N) side-dressing offers two potential informational benefits over 
management strategies that apply N earlier in the crop growth season: more flexibility in 
responding to post-planting weather variability and better synchronization of N supply with 
the crop’s nutrient uptake capacities (Silva et al. 2005; Rutan and Steinke 2018). Also, since N 
is side-dressed after crop emergence, remote imagery of the crop canopy, such as can be 
summarized with vegetative indices (VIs) of reflectance, provides additional information 
about plant chemical content that may prove useful for subsequent N management (Raun et 
al. 2002; Inman et al. 2007; Tilling et al. 2007; Shanahan et al. 2008; Hunt Jr et al. 2011; Shaver 
et al. 2011; Montealegre et al. 2019). But important questions remain about how remote 
imagery can be used to improve side-dressing management. Numerous studies have found 
significant correlation between VIs and crop N status but have offered no concrete 
explanations of the management implications (Magney et al. 2017; K. Wang et al. 2019). Other 
studies have combined data generated in geographically and temporally in separate small-
plot or strip trials to draw inferences about how VIs might be used to improve N management 
in other places and times (Lukina et al. 2001; P. Scharf et al. 2002, 2009; Tubaña et al. 2008; 
Holland and Schepers 2010). Because the relationships between VIs and economically optimal 
input management can change with growing conditions, drawing such inferences may be 
problematic. The many studies that combine data from small-plot experiments run in different 
locations have found relationships between VIs and economically optimal side-dressing 
strategies that may work well with their data set “on average,” while working poorly in the 
experiments’ individual locations, not to mention in other fields outside the experiments. 
Morris et al. (2018, p.19) recognized on-going research challenges when they stated, 
“Reflectance sensing is a recent technology, … and there remains substantial disagreement 
about how to translate reflectance values to N rates. … More study comparing different 
interpretations is needed to determine which interpretations work best in which 
environments.” 

The objective of the reported research is to answer Morris et al.’s call above by demonstrating 
how data from an on-farm precision experiments (OFPE) can be combined with VI data to 
inform mid-season site-specific N side-dressing management on the same field upon which 
the experiment was run. The methodology allows the geographic inference space of the 
experiment to be the very field to be managed site-specifically, and so may provide 
advantages over methods that expand the inference spaces of data from small-plot trials to 
other fields in other places. The OFPE provided 2019 side-dressing and yield data from a field 
in Effingham County, Illinois. Data used to calculate a map of the field’s Normalized Difference 
Red Edge (NDRE) index values came from the Sentinel-2 satellite while the corn was in its V10 
to V12 growth stages. The hierarchical generalized additive model (HGAM) approach was 
taken to estimate the yield response function. Results indicated that while increasing NDRE 
monotonically increased yield (total product), its impact on the marginal product of the N side-
dressing rate, and therefore on the economically optimal nitrogen rate (EONR) was not 
monotonic. 

Conceptual Framework 

Equation (1) represents how yield at a site i responds to the N side-dressing rate and other 
factors: 

𝑦𝑖 = 𝑓(𝑁𝑖
𝑠𝑑 , 𝑁𝑖

𝑡 , 𝑁𝑖
𝑠, c𝑖 , z𝑝𝑜𝑠𝑡).  (1) 
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In (1), 𝑦𝑖 denotes corn yield at site i, 𝑁𝑖
𝑠𝑑  is the N side-dressing rate; c𝑖  is a multi-element 

vector with site characteristics that vary spatially within a field but not much temporally, such 
as soil sand content and elevation and z𝑝𝑜𝑠𝑡 is a multi-element vector of the weather events 
that occur after side-dressing, which vary temporally but not much spatially within the field. 
Yield also depends on 𝑁𝑖

𝑡 and 𝑁𝑖
𝑠 which are plant tissue N content and soil N content at a time 

right before side-dressing. 

Assume that either (1) the decision maker has an estimate, 𝑓, of the functional form of 𝑓 and 
that the in-soil N content, plant tissue N content, characteristics and post-side-dress weather 

of 𝑓 take on values of 𝑁‾𝑖
𝑠, �̂�𝑖

𝑐, and z‾𝑝𝑜𝑠𝑡, and therefore they can solve for an estimate of the 

reduced function form 𝑓(𝑁𝑖
𝑠𝑑 , 𝑁𝑖

𝑡) ≡ 𝑓(𝑁𝑖
𝑠𝑑 , 𝑁𝐼

𝑡 , 𝑁‾𝑖
𝑠 , c𝑖‾ , z𝑖‾

𝑝𝑜𝑠𝑡), or (2) that the producer simply 

has the estimated function 𝑓(𝑁𝑖
𝑠𝑑 , 𝑁𝑖

𝑡). Then (s)he could solve the profit maximization 
problem in (2): 

max
𝑁𝑖

𝑠𝑑
  𝑃𝑐𝑓(𝑁𝑖

𝑠𝑑 , 𝑁𝑖
𝑡) − 𝑃𝑁𝑁𝑖

𝑠𝑑 ,  (2) 

where 𝑃𝑐  and 𝑃𝑁 are the prices of the crop and nitrogen fertilizer. 

It is assumed that site 𝑖’s vegetive index value 𝑉𝐼𝑖 provides information that can be used to 

estimate 𝑁𝑖
𝑡, the N content of plant tissue at that site. Let �̂�𝑡 denote a function or algorithm 

used to make that estimation. With this estimate, the producer’s profit maximization problem 
becomes 

max
𝑁𝑖

𝑠𝑑
  𝑃𝑐𝑓(𝑁𝑖

𝑠𝑑 , �̂�𝑖
𝑡(𝑉𝐼𝑖)) − 𝑃𝑁𝑁𝑖

𝑠𝑑 ,  (3) 

The focus of the present report is on the value of having the estimates 𝑓 and a vegetative 
index map (i.e., a value of VI for each site 𝑖). Since the Sentinel-2 satellite images are free to 
the public, the cost of acquiring NDRE data is assumed to be zero. The first-order condition 
in (4) can be used to solve for an estimate the optimal side-dressing rate: 

 𝑃𝑐 ⋅
𝜕𝑓(𝑁𝑖

𝑠𝑑 , �̂�𝑖
𝑡(𝑉𝑖))

𝜕𝑁𝑖
𝑠𝑑 = 𝑃𝑁  (4) 

Figure 1 illustrates the concepts that estimated economically optimal N rates are different on 

site 1 and site 2 (�̂�1
𝑠𝑑∗ ≠ �̂�2

𝑠𝑑∗), both because the site’s characteristics differ (c1 ≠ c2), and 
because different vegetative index values lead to different estimates of crop N content: 

�̂�𝑡(𝑉𝐼1) ≠ �̂�𝑡(𝑉𝐼2). 

 

Figure 1: Estimated economically optimal side-dressing N rates, given estimates of the yield 
response function and of the vegetative index values 
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Methods 

Data 

In 2019, the Data Intensive Farm Management project (DIFM, (Bullock et al. 2019)) conducted 
an on-farm experiment on a 31.22 ha Effingham County, Illinois field, which generated data 
on corn yield response to nitrogen fertilizer application rates. The participating farmer planted 
corn on May 16th, 2019, and harvested on October 19th, 2019 using a CaseLH 8240 combine 
with a 12-row corn head. He applied an N base of 135 kg ha-1 uniformly across the field. Figure 
2 shows that the experimental N side-dressing rates ranged of from 0 to 177kg ha-1. Data from 
9-meter buffer zone around the perimeter of the field was excluded from the experiment. The 
interior of the field was partitioned into twenty-two 8.8m-wide strips, each containing 
approximately 85 subplots, which were treated as units of observation. As a result, the trial 
was partitioned into 1867 subplots with an average size of 0.0167 ha. Urea ammonium nitrate 
(UAN, 32% N) was applied as the side-dressing N to the soil surface on July 16th, 2019 by DMI 
anhydrous applicators. The field’s 2019 growing season’s minimum and maximum 
temperatures of 14.9∘C and 26.6∘C were close to the 1999-2019 averages; its 855mm 
precipitation was higher than the 611mm 1999 to 2019 average. Figure 2 shows each subplot’s 
mean as-applied side-dressing rate and yield. 

 

Figure 2: As-applied side-dressing N map (left) and yield level map (right). 

 

The Normalized Difference Red Edge index (NDRE) (Barnes et al. 2000; Rodriguez et al. 2006) 
is a vegetation index related to the red edge reflectance obtained from multispectral image 
sensors. NDRE is calculated as: 

𝑁𝐷𝑅𝐸 = (𝑅𝑁𝐼𝑅  −  𝑅𝑅𝐸𝐷 𝐸𝐷𝐺𝐸) / (𝑅𝑁𝐼𝑅  +  𝑅𝑅𝐸𝐷 𝐸𝐷𝐺𝐸),  (5) 

where 𝑅𝑁𝐼𝑅 and 𝑅𝑅𝐸𝐷 𝐸𝐷𝐺𝐸 refer to near-infrared bands (790 nm) and red-edge bands (720 
nm), respectively. The R package, sen2r (Ranghetti et al. 2020), was used to acquire 10-m 
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resolution NDRE images from the European Copernicus Program’s Sentinel-2 satellite 
(Sentinel 2015). The participating farmer planted on May 17th. At the field’s latitude, corn 
reaches the V10-V12 growth stages around eight hundred growing-degree days after planting 
(Lee and others 2011). The NDRE data mapped in Figure 3 were taken from June 30th, 2019 
images, based availability from Sentinel-2. Growth stages were verified using the Midwestern 
Regional Climate Center’s decision support tool (U2U@MRCC, n.d.). Table 1 presents 
summary statistics of the yield, NDRE, side-dressing (N), electro-conductivity (ECS), elevation 
(DEM), and slope levels. 

 

Figure 3: NDRE values observed on June 30th, 2019. 

 

Table 1: Summary Statistics 

  Yield N1 NDRE2 ECS DEM Slope 

mean 12967.03 104.94 0.29 29.55 625.73 0.04 
SD 2001.09 36.88 0.06 5.47 2.76 0.01 
Min 4877.22 0.00 0.14 16.09 620.91 0.03 
Max 17650.45 177.21 0.47 53.65 631.94 0.10 
1N is the side-dressing nitrogen rate (kg ha-1) applied on July 16th, 2019 
2NDRE was observed on June 30th, 2019 

 

Methods 

The hierarchical generalized additive model (HGAM) (Pedersen et al. 2019) was used to 
estimate the differential impact of side-dressing N rate on yield by the observed NDRE values. 
HGAM is a type of Generalized Additive Model (Wood et al. 2017), where the quantitative 
relationships of the dependent variable and independent variables can be estimated by group 
under the GAM framework. HGAM imposes no functional forms between the dependent 
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variable and independent variables; rather, the method lets the data determine the nature of 
those relationships independent of assumptions about functional form. The entire sample was 
partitioned by NDRE quartile, and HGAM was applied to estimate yield response specific to 
each of the NDRE groups. The statistical model was, 

𝑦𝑖 = 𝑓(𝑁𝑖
𝑠𝑑) + 𝑓𝑧(𝑁𝑖

𝑠𝑑) +  𝑔(𝐸𝐶𝑆𝑖) + 𝑘(𝐷𝐸𝑀𝑖) + ℎ(𝑆𝑙𝑜𝑝𝑒) + 𝑚(𝑋𝑖 ∗ 𝑌𝑖), (6) 

where the dependent variable 𝑦𝑖 is yield, and the covariates are site-specific nitrogen side-

dressing rate (𝑁𝑖
𝑠𝑑), shallow soil electrical conductivity (𝐸𝐶𝑆𝑖), elevation (𝐷𝐸𝑀𝑖), slope 

(𝑆𝑙𝑜𝑝𝑒𝑖), and geographical controls for longitudinal and latitudinal spacial changes (𝑋𝑖 and 𝑌𝑖). 
Among HGAM models introduced in Pedersen et al. (2019), the model used falls under the GI 

model category, where there is a single common smoother for the impact of 𝑁𝑖
𝑠𝑑  on yield 

(𝑓(𝑁𝑖
𝑠𝑑)) and group-level smoothers may have differing orders of wiggliness (𝑓𝑧(𝑁𝑖

𝑠𝑑)). This 

model allows for flexible estimation of group-specific yield responses to 𝑁𝑖
𝑠𝑑 . The impacts of 

other covariates were also estimated semi-parametrically without assuming particular 
functional forms, but were not differentiated by NDRE. Finally, including 𝑚(𝑋𝑖, 𝑌𝑖) removed 
spatially correlated unobserved factors from the error term (Gardner et al. 2021). The model 
was estimated using the mgcv package (Meinshausen and Bühlmann 2010) in R (R Core Team 
2020). 

The EONR for each group was found as the solution to the problem of applying side-dressing 
at the rate maximizing net revenues: 

�̂�𝑖
∗ ≡ max

𝑁𝑖
𝑠𝑑

  𝑃𝑐𝑓(𝑁𝑖
𝑠𝑑 , 𝑁𝑖

𝑡) − 𝑃𝑁𝑁𝑖
𝑠𝑑 ,  (7) 

The inflation-adjusted average historical corn price in Illinois of 𝑃𝑐  = 0.157 kg-1 and an N price 
of 𝑃𝑁 = 0.88 kg-1 were assumed. Optimal side-dressing rates were bounded by the 
experiment’s maximum and minimum targeted rates. 

Results 

As individual coefficients from non-parametric regressions are in themselves not meaningful. 
Figure 4 illustrates the results of the HGAM estimations of the by-NDRE-quartile yield 
response curves, and shows that increases in NDRE raise but do not necessarily flatten the 
yield response curves. In economics terms, marginal product is the amount of output gained 
by increasing one unit of input, which can be reflected on the slope of the yield response 
curve. Figure 4 shows that increasing NDRE raises the total product of N but does not affect 
the marginal product of N in a consistent direction. That raising the NDRE level raises the total 
product is consistent with agronomic expectations and not surprising; higher NDRE values 
reflect increased N content in plant tissue. However, (4) implies that if the objective of N 
application management is to maximize the field’s profit, not yield, it is the NDRE’s effect on 
the marginal product that determines optimal side-dressing rates. The estimated 

economically optimal side-dressing rates were �̂�1
∗ = 142, �̂�2

∗ = 133, �̂�3
∗ = 146, �̂�4

∗ = 125 kg ha-

1, as shown in Figure 5. Since the impact of raising NDRE does not consistently flatten or 
steepen the yield response curve, it does not change the EONR in a consistent direction; for 
example, the EONR in the first NDRE quantile is greater than in the second, but less than in 
the third, then again greater than in the fourth. 
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Figure 4: Predicted yield response functions by NDRE quartile, and 95% confidence intervals 
of their positions 

 

Figure 5: Predicted yield response functions and EONRs at each NDRE quartile 

 

Figure 6 maps the experiment’s site-specific estimated EONR levels, and shows that EONRs 
varied across the field, but not dramatically, from about 125 kg ha-1 to 146 kg ha-1. This 
variance provided some opportunity to increase N-use efficiency using NDRE-based site-
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specific N side-dressing strategies. Table 2 reports an estimated economically optimal uniform 
side-dressing rate of 137.18 kg ha-1, which implies a total of 4283 kg applied to the field, an 
estimated yield of 13390 kg ha-1 and estimated net revenues of $1981.52 ha-1. Table 2 also 
reports that under the economically optimal site-specific management plan shown in Figure 
6, total side-dressing applied on the field would be 4256 kg (for an average of 136.35 kg ha-1), 
and lead to a yield of 13414 kg ha-1 and net revenues of $1986.05 ha-1. Therefore, the model 
estimated that switching from the economically optimal uniform side-dressing plan to the 
economically optimal site-specific plan would have increased net revenues by $4.53 ha-1 and 
$141.43 over the entire field, and reduced the side-dressed N application by 0.83 kg ha-1, for 
a total of 27 pounds on the entire field. These results are not dramatic, and reflect the relative 
spatial homogeneity of field characteristics on this “flat and black” central Illinois field. While 
the profit advantage of economically optimal site-specific side-dressing management over 
economically optimal uniform side-dressing management was relatively small, the value 
provided to the farmer by the information generated in the field trial and the NDRE readings 
was significant, with the economically optimal site-specific side-dress strategy generating net 
revenues of $1986.05 ha-1, which were $54.85 ha-1 higher than the $1931.20 ha-1 resulting 
from the farmer’s usual strategy of applying 115 kg ha-1 of side-dressed N uniformly on the 
field. This value comes from three sources: the VRT technology as compared to the URT 
technology, the information from the field trial, and the information from the NDRE data. 
Given the information from the field trial and NDRE data, the value of the VRT was $4.53 ha-

1, which implies that the value of the information provided by the OFPE and the NDRE data 
was $54.85 - $4.53 = $50.32 ha-1. 

 

Figure 6: Optimal side-dressing N rate by subplots in the experiment in 2019 
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Table 2: Yield levels and net revenues under different N side-dressing strategies 

N application method N rate (kg ha-1) Estimated revenue (kg ha-1) Estimated yield (kg ha-1) 
farmer chosen rate 114.75 1,931.20 12,944 
site-specific N rate 136.35 1,986.05 13,414 
uniform N rate 137.18 1,981.52 13,390 

 

Discussion and Limitations 

Much work remains to discover how sensor-based VIs can be used profitably to inform N side-
dressing management. Many studies (e.g., Wang at al. (2019); Magney et al. (2017)) have 
simply confirmed correlation between VIs and crop N status but have not made the jump from 
there to develop VI-based site-specific side-dressing recommendations. Other studies (e.g., P. 
Scharf et al. (2002); P. C. Scharf and Lory (2009)) have generated data from small-plot N 
fertilizer field trials in multiple locations, then estimated a yield-response function and an 
economically optimal uniform side-dressing rate for each experiment. They then paired each 
experiment’s EONR thus derived with an average VI measurement for the experiment, and 
examined whether the (VI, EONR) pairs from the experiments showed a general relationship 
between VI and EONR. The results of these studies are interesting, but not necessarily 
informative for the purpose of within-field site-specific side-dressing recommendations. This 
research took a step further to develop site-specific side-dressing recommendations for that 
same field. 

The participating farmer applied a base N rate of 134 kg ha-1 uniformly on the experiment’s 
field. Different application rates of base fertilizer would have changed NDRE readings, and 
possibly changed them differently in different parts of the field, which would have changed 
the NDRE quartiles, and so the results of this study. The experiment was conducted under 
2019 weather conditions only. Other crop growing conditions would have affected corn yield 
response to N, and so the results reported here. During the 2019 corn growing season, 
precipitation was slightly higher than the twenty-year average and temperatures were very 
close to average. Differences in weed and pest presences and soil content could also affect 
our results; for example, increased weed presence might have increased the NDRE values and 
so reduced the recommended optimal N side-dressing rates. Optimal N side-dressing rates 
could also be influenced by field management practices such as planting date and choice of 
hybrid. Conducting similar experiments over multiple years would allow weather variables to 
be brought into the modelling framework presented. 

Previous studies have provided evidence of the potential of using corn colours from the V6 to 
V9 growth stages for in-season N recommendations (P. Scharf et al. 2002; P. C. Scharf and Lory 
2009; X. Wang et al. 2021). P. Scharf et al. (2002) pointed out that V6 is the earliest stage that 
crop N needs can be reflected by plant colours. Unfortunately, in the research just reported 
crop colours observed at a 10m satellite image resolution were insufficiently varied until V10 
to V12 to be of use for side-dress management (Figure 7). For real-world side-dressing 
management, having to wait until V10-V12 to observe VIs and make N application decisions 
might require very time-intensive analysis right while the corn is growing too tall for 
conventional side-dressing equipment, possibly requiring the increased expense of equipment 
that could negotiate side-dressing the taller plants. 
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Figure 7: NDRE values observed on June 20th, 2019 

 

Conclusion 

Much work has discussed improving the in-season N management. The research reported 
here built on the previous work and took the methodology a step further, combining a field’s 
VI data with data from a whole-field on-farm precision experiment to develop site-specific 
side-dressing recommendations for that same field. The combination of the VI and OFPE data 
is novel, and provides information not obtainable from small plot trials but necessary for 
improved site-specific side-dressing management of an individual field. 

As future studies, it would be fruitful to explore the economics of alternative approaches to 
obtain VI information for side-dressing (e.g., unmanned aerial vehicles). Such studies should 
not just focus on how accurate the VI information is, but also need to consider its cost and 
examine the trade-off between the cost of information and the value of information. 
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Abstract  

The promise of economic, social and environmental gain from digital transformation remains 
unrealised. Slow uptake of digital technologies and limited embrace of digital transformation 
at firm and industry level is attributed to incentive structures. These are in turn influenced by 
investors’ capacities to generate and retain value from digital technologies. A framework of 4 
food industry domains is used to analyse specific innovations in the Australian farm and food 
industry. Innovations’ impact, often thought of as disruptive, appear to be primarily 
cumulative. Where the analysis can identify value created and value accumulated, there is 
evidence of strong retention of value by incumbent economic actors. This is true for 
private, public and multiple-stakeholder entities in the food industry. Discussion centres on 
mechanisms by which value is accumulated, and the extent to which these can be offset by 
policy, the form of innovation, or knowledge management mechanisms.     
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Introduction  

Substantial gains from digital agriculture have been widely anticipated. The World 
Bank (2021) estimates the value of food systems (US$8Tn in revenue plus US$6Tn in natural 
capital consumption). This means that even a 10% improvement in adoption through value-
adding and efficiency gains would represent over US$1Tn each year. This value can be created 
at multiple locations within food systems. The Australian food and agricultural 
industry was addressed in similar terms by Perrett et al. (2017), with gains specifically 
associated with information exchange along supply chains.  

Adoption however remains slow (Trendov et al., 2019): relative to other industry; at farm 
level relative to other supply chain stages; and in absolute terms across farm sectors. Digital 
transformation, as a broader process, is also slow in arriving in the agricultural 
industries. Commentary on this slow, and evidently disappointing, pace of change centres 
on the lack of a value proposition: farmers and others in the supply chain do not foresee a 
return on the necessary investment (Rojo-Gimeno et al., 2019) or lack the decision tools 
required for digitally-empowered business models (Leonard et al., 2017).   

The extent of value generated, and its allocation amongst stakeholders, constitute investment 
incentives familiar to analysts of food system innovation. We argue that a specific 
understanding of these incentives in the context of food industry digital transformation is 
required by both the investor and the interested analyst and policy advocate. Referring to 
value acquisition, Schumpeter distinguished between disruptive and cumulative models. 
Much commentary on digital transformation focuses on gain associated with disruption, but 
we argue that in the food supply chain and the food industry more broadly, accumulation 
seems likely to be prevailing process. Notwithstanding projected changes in service and 
support industries, food industry investment in digital technology tends toward enhancing 
aspects of productivity and efficiency, and satisfying demand (Klerkx et al., 2019). New 
products and new processes play a rather smaller innovation role than do marketing and 
organization and the mobilization of various forms of network (Janssen et al., 2017). In such 
an industry, incumbency then proffers advantages when value is to be acquired from 
technological change.   

Australia’s case is of global interest due to its exposure to global value chains 
(Greenville, 2019), vertical orientation (Lammers et al., 2018), and stakeholder 
communication across the public-private divide (Janssen et al., 2017). Using 
specific examples, we explain how these changes occur and what they mean for broader 
transformations within the Australian food system.   

Methods  

We rationalise this argument by addressing two processes: value creation as a consequence 
of digital transformation; and value accumulation at various points in the supply chain. A 
recent contribution by Cook et al. (2021) identifies four domains of the food 
industry within which digital technology can create value. These are:    

• production  

• market  

• capitals  

• governance  

http://about:blank/
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In a series of examples of agricultural digital transformations, this framework is used to 
identify the value generated and its allocation along the supply chain. We examine specific 
digital innovations, and these are either generated by incumbents or incorporated into their 
business model. We identify value creation and accumulation for these cases and discuss its 
influence throughout the supply chain and in accordance with industry structure (Pavitt, 
1984).  

Results  

Results suggest that incumbents do accumulate value, in many cases regardless of the identity 
of the value creator and the nature of value creation (Table 1). Innovations tend to focus on 
existing products and processes, handled along existing supply chains which are dominated 
by incumbents. There is interaction with the food industry domains [not shown in this 
abstract], to the extent that many incumbents are strongly vertically co-ordinated and so 
control value allocation: this reflects Australian conditions but conforms with Pavitt (1984). 

 

  Table 1: Examples of Value creation and Value accumulation. 

Example  Value creation  Value accumulation  

Chemical Suppliers Australia 
(CSBP), a commercial input 
supplier  

Technology lowers 
production costs  

Efficiency gains across existing 
product lines  

CBH, a very large grain co-
operative in Western 
Australia  

Targeting demand niches by 
using technology to enhance 
logistics   

Effective control of value 
creation.   

John Deere, a global 
machinery supplier  

A technology-enabled 
product  

Protected IP and compatibility 
within platforms  

Syngenta, a global input and 
service provider  

A technology-enabled 
product  

Protected IP and facilitated 
delivery of a premium product  

Grain Research Development 
Corporation (GRDC), an 
industry-owned Australian 
research organisation partially 
supported by taxpayer funds   

Research output delivered as 
a public good, specifically on 
the actual and potential uses 
of technologies  

Continued industry and 
taxpayer funding  

Public and private Australian 
meat industry partners 
using Dual Energy X-Ray 
Absorptiometry (DEXA) in 
carcass cutting  

Technology optimizes carcass 
cuts’ value    

Processors reduce costs due to 
livestock volumes, as supply 
increases due to enhanced 
quality incentives.  
Branded product  

  

Discussion  

Australian industrial structures in the food sector facilitate value capture for various reasons, 
and this influences the environment for the adoption of digital technologies and overall digital 
transformation. Rather than disruption and change, accumulation and incumbency dominate. 
We discuss long term effects on high level policy and development goals.   

Disruption is seen to play a role where incumbents fail to move rapidly enough to exploit the 
potential gain. To date, this has not occurred to any great extent and seems unlikely to occur 
if value cannot be identified or captured. The incentive structure extends to public-private 
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partnerships and industry bodies. We discuss implications for start-ups and for technology 
policy.  

Digital transformation of the system occurs when digital technology enables major 
changes, often through several changes connected within the system. Vertically co-ordinated 
systems across several of the identified domains ensure that incumbents retain the gains from 
such change. We discuss these incentives for several forms of digital innovation.  
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Abstract 

The apple industry is one of the major drivers of the New Zealand horticulture economy. 
Shortages of skilled labour, particularly for harvesting are a challenge for the continued 
growth of the industry. This has required the industry to consider the use of available 
alternatives  namely  platform  harvesting  system  to  deal  with  labour  shortages.  This  study 
analyses the investment decision in utilising a platform harvesting system for harvesting fresh 
market apples under various varietal, orchard type, and size scenarios. The model is focused 
on revenues and costs of inputs including platforms and manual labour, to estimate the net 
present value and internal rate of return for a hypothetical two-dimensional orchard. Results 
suggest that fruit value and yield are the key drivers for utilising platform harvesting systems. 
Platforms  are  less  profitable  in  single-varietal  orchards  compared  to  bi-varietal  orchards 
planted  with  relatively  low  value  and  yielding  varieties.  Utilising platforms reduced  manual 
labour required by an average of 7% across varieties and orchard sizes compared to manual 
harvesting.  

Keywords  

Platforms,  labour, bio-economic  model, net present  value  (NPV),  internal  rate  of return 
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Introduction 

The New Zealand apple industry relies mainly on manual labour, particularly for pruning and 
harvesting.  However,  the  availability of  labour  at  the  time  of  harvesting  is  a  potential 
constraint  to  the  industry  and  its  growth.  With a short  harvesting  period,  apples  must  
be harvested quickly, and any unharvested apples are wasted. As a consequence, the inability 
to harvest within the harvest period could jeopardise the profitability and competitiveness of 
the industry. Temporary immigration labour programs, such as the Recognised Seasonal 
Employer program have  been  used  by  New  Zealand  apple  growers;  however,  dealing  
with  labour shortage  remains  a  challenge  for  the  industry.  As  a  result,  labour  shortages  
have  led  the industry  participants  to  consider  alternatives.  Several  robotic  technologies  
more  suited  to producing  apples  for  the  fresh  market,  have  been  developed  and  trialled  
around  the  world but  are  not  yet  commercially  available.  This  has  led  apple  growers  to  
consider  platform harvesting systems as available alternative to reduce the dependency on 
harvesting labour.  

Methods 

A bio-economic model was developed to assess the investment decision to utilise a platform 
harvesting  system  for  single-varietal  and  multi-varietal  orchards  of  various  orchard  sizes, 
taking  into  account  varietal  characteristics  including  fruit  yield,  value,  harvesting  window,  
purchasing and operating costs for platforms, and the cost for establishing an orchard with a 
tree  structure  suitable  for  platform  harvesting.  In the  model,  harvesting  costs  consisted  
of using  either  platforms  or  manual  harvesting, taking  into  account  the  harvest  speed  
and efficiency of platform systems (picking team). Given the harvesting window, not all areas 
could be harvested by platform  and  thus,  the  use  of  manual  harvesting  for  areas  
unharvested  by platforms was also considered. 

Results 

Manually  harvesting  10  ha  of  single-varietal  orchard  planted  with  varieties  Envy,  Jazz  
and Royal Gala, produced NPVs of $8.0, $1.5 and $1.7 million, respectively over a 20-year 
period. To harvest 10 ha of single-varietal orchard by platforms, taking into account fruit yield, 
size, harvesting speed and efficiency of pickers on platforms, required five platforms for Envy, 
and four for each of Jazz and Royal Gala, and produced NPVs of $7.4 million, $846,794, and 
$1.0 million, respectively. Harvesting 10 ha of a multi-varietal orchard planted with Envy, Jazz, 
and Royal Gala with equal orchard size proportions, required two platforms and returned an 
NPV of $3.5 million. 

Discussion 

This research aimed to evaluate returns from an investment in platform harvesting systems 
based  on  single-varietal and  multi-varietal  orchard  models  compared  to manual  
harvesting. Results from the single-varietal orchard model indicate that number of platforms 
vary across varieties  given  varietal  characteristics  and  fruit  density  per  tree.  Varietal  value  
and  yield determine  which  variety  harvested  by  platforms  generates  the  highest  profit.  
For  relatively lower value and lower yield varieties, platforms are less profitable in a single-
varietal orchard. In a multi-varietal orchard, a relatively high value and high yield variety such 
as Envy, is crucial to compensate the costs incurred from harvesting other varieties by 
platforms. Thus, growers producing  relatively  high  value  and  high  yield  varieties  are  more  
likely  to  use  platform harvesting  systems.  Otherwise,  investing  in  platform  harvesting  
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systems  could  be  more suitable for larger growers who are financially stable but have trouble 
supplying their required labour.  

Given robotic apple harvesters are still in the commercial trial stage, potential adopters can 
opt for platform harvesting system given it fits within the same orchard architecture as robots 
and can reduce the current reliance on manual labour, not only for harvest, but also pre-
harvest tasks. In addition, it can create a different demographic of labour as less fit or new 
workers are able to harvest more apples, while it may improve the efficiency of workers and 
make it physically less demanding, considering health and safety measures, and still generate 
a net return comparable to the case of using a manual harvesting system. It should be noted 
that platforms can either be a final or an interim step depending on various factors such as 
the final cost, labour availability and grower’s decision. As an interim solution, it will allow 
potential adopters to gradually adapt new production strategies suitable for platform 
harvesting such as tree maintenance practices (e.g. pruning), which will also be applicable to 
robot harvesting. Therefore, when robotic harvest technology becomes commercially 
available, growers can have an easier and smoother transition to complete automation. 
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Abstract  

There has been a huge increase in the number of innovative technologies available to support 
agricultural practices and over past few years, from satellite monitoring of crop growth to the 
precision application of pesticides and precision irrigation. There is evidence that adoption 
of agri-tech can lead to improved production and more environmentally friendly 
farming approaches, however, uptake has been low in some sectors. An evidence-based 
online course was developed that aimed to bring together evidence from published 
literature, agri-tech companies and farmers to present ideas on how arable farmers could 
integrate agri-tech into their own farming context. We describe the learners’ engagement 
with the course and discuss how this approach could lead to increased adoption of agri-
tech solutions, which ultimately can lead to enhanced environmental sustainability of farming 
systems.  
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Introduction  

Sustainable intensification of arable farming systems can be supported through the adoption 
of smart, innovative, precision technologies to enhance food production that have 
reduced environmental impacts (Balafoutis et al., 2017). Arable farmers can choose to adopt 
a wide range of innovations including precision instruments in agricultural machinery, sensors, 
monitors, integration of earth observation data and mobile decision support apps. Integrated 
use of these technologies has the potential to enhance both the efficiency and effectiveness 
of agricultural systems and food production across the EU and help farmers to develop more 
sustainable systems (Walter et al., 2017). However, uptake of these technologies 
by arable farmers has been limited, therefore we developed a Massive Open Online Course 
(MOOC) on the FutureLearn platform to provide farmers with evidence-based information 
that outlines the benefits and challenges of adopting new technologies and allows them to 
evaluate their use within EU arable farming systems.  

Methods  

The course was developed, with funding from EIT Food, by a consortium of partners 
from two Universities in collaboration with a large and two small-scale (start-up) industry 
partners. The course is illustrated with case studies in different contexts and explores practical 
mechanisms and frameworks that farmers can utilise to future-scan for new technologies, 
explore ways to overcome any challenges to adoption, evaluate the potential of agri-tech to 
enhance production within their own farming context while meeting environmental and social 
responsibilities. The course is delivered in a social learning environment which provides a 
forum for discussion, supported by academic mentors, and allows learners to consider ways 
to educate and inform consumers about the sustainable farming practices used to produce 
their food.   

The course is structured around a conceptual ecosystem for data-driven agricultural 
applications (Paraforos et al., 2016). Learners explore the concepts of innovation and 
sustainability and are introduced to precision techniques and how these can contribute to the 
sustainability of food production by balancing economic, social and environmental aspects.  

In order to explore the impact of this course, we analysed the comments and discussion 
points made by learners. We performed a thematic analysis of the topics discussed by learners 
and, in particular, examined their thoughts on the potential use of these technologies to 
enhance environmental sustainability of farming systems. We also consulted the start-up 
industry partners involved to investigate whether engagement in educational projects had 
any impact on the uptake of their technologies with farmers.   

Results and Discussion  

The MOOC opened for registration in late 2020 and has had over 1,000 learners in the first 12 
months. The comments left on the course helped us identify that approximately one third 
of the learners were farmers; mainly smallholder farmers or those just starting out in farming. 
Comments from various farmers on the course from around the world have illustrated 
that agri-tech adoption is increasing. The use of an action plan within the course proved to 
be a useful tool to get farmers to think about what agri-tech they could use, and the course 
provided time and space to explore some options. For example, one farmer who owns a small 
arable farm stated, “This has certainly made me think and has given me plenty of discussion 
topics for meetings with my farmer contacts”. Farmers do not have access or the time to delve 
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into the scientific literature therefore setting up course in “chunks” and summarising the 
literature provided them with concise, evidence-based insights.  

The impact on the industry partners of developing this educational course has been beneficial 
and they reported that adoption rates are increasing. It is difficult to attribute an effect of this 
course on adoption as there are many parallel activities, but the industry partners all reported 
benefiting from the knowledge exchange and business development opportunities that grew 
from the collaboration.  
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Abstract 

There is a growing concern in many developing countries of sub-Saharan Africa on the harmful 
effects of synthetic herbicide usage on the agro-ecology as well as food crop production. 
Therefore, this study focused on analysing the factors that influence the adoption of Bio-
herbicide Technology as an alternative to the chemical herbicides used by rural farmers in the 
North-Eastern region of Nigeria. Multi-stage random sampling technique was used to select 
330 small-holder farmers in the study area using structured questionnaires. The data obtained 
were analysed using Probit Regression Model. The results of Probit Regression identified the 
farmers age, educational status, farm-size, access to extension services, farming experience 
and membership in cooperative society as the factors which influenced adoption of the Bio-
herbicide Technology by farmers in the study area. It was recommended that awareness 
campaign on the new Bio-herbicide Technology among farmers in the area should be 
intensified. The farmers access to education and extension services should be improved to 
enhance adoption of Bio-herbicides technology which will impact significantly on the food 
production in the area. Also, farmers should be encouraged to be part of cooperative societies 
as a way to improving the adoption of Bio-herbicides for increased productivity.  
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Introduction 

The need for sustainable food production and elimination of perennial hunger occasioned by 
the insurgency in the North-eastern states of Nigeria top the priority of Government 
programmes and policies. However, if activities that have the tendency of causing land 
degradation and environmental hazards are not properly addressed; many laudable efforts of 
the Government would not yield the expected results. Adebayo (2014) opined that the 
agricultural sector of the Nigerian economy, which provides about 70% of rural employment, 
cannot be treated with levity. Wrong use of synthetic herbicides is one of the major activities 
that have a potential threat on the environment and agricultural land. The multiplier effects 
of increasing use of chemical herbicides, which include land degradation, depletion of 
essential soil-microbes, loss of nutrients, erosion and deposition of toxic elements in the soil 
etc., pose great danger to the efforts at improving food sufficiency in Nigeria, especially the 
North-Eastern States that have been severally ravaged by insurgent activities and communal 
crisis.  

Many researchers have raised concern on the damaging impacts of chemical herbicides on the 
environment and human life (Govinda, 2014; James et al., 2017; Sanzidur and Chidiebere, 
2017). According to Govinda (2014) pesticide residues cause nutrient imbalance and reduction 
in the quality of agricultural products. World Bank (2006) reported that an estimated 1–5 
million farm workers suffer from pesticide poisoning every year, and at least 20,000 die 
annually from exposure, mostly in developing countries. The potential of chemical herbicide 
released into the environment causing harm is measured largely in terms of its toxicity and 
persistence.  Majekodunmi (2014) reported that environmental pollution affects farmlands 
and water supply, and erodes the people’s sources of livelihood, which in turn makes them 
susceptible to violence resulting from disputes on farmlands. This violence is manifested in 
form of insurgency leading to low farm productivity and subsequently contributing to food 
insecurity especially in the North-Eastern parts of Nigeria. Haggblade et al. (2007) observed 
that agricultural production which is critical to poverty reduction, has been stifled due to 
impacts of soil degradation with resultant negative influence on the livelihood of rural 
communities. Mercy and Anthony (2017) further stressed that environmental degradation 
factors such as climate change effects e.g. shrinking of Lake Chad, erosion, flooding, desert 
encroachment etc. are increasingly aiding the fast deterioration of the agriculture production 
resources.  

James et al (2017) stressed that weed management is essential for agricultural production and 
management of landscapes. They further observed that proper weed management will play 
an important role in determining whether we meet future food production requirements. 
Hence, awareness on bio-herbicides as alternative to chemical herbicides become inevitable 
to ensure good weed management and preservation of the environment. Ojo (2016) stated 
that there has been alarming rate of low level of information and awareness on the dangers 
associated with the use of pesticides among Nigerian farmers. Mass-production of microbes 
applied as bio-herbicides to suppress weeds is a promising method of weed control (James et 
al., 2017). Bio-Herbicide technology provides excellent alternative to the current adverse 
effects inherent in the application of chemical herbicides with a bid to enhancing 
environment-friendly agro-ecology and sustainable food production in the North eastern 
Nigeria. The already negative pressure on the region due to several insurgent activities 
coupled with increasing effects of land degradation such as desert encroachment, erosion, 
flood etc. necessitates a research to creating awareness and adoption of technology that 
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provides ways of addressing these critical challenges that affect food productivity in the North-
Easter region of Nigeria.  

Improvement in agricultural technologies through researches and the capacities of end users 
to adopt and utilise these technologies are critical in boosting agricultural productivity in 
developing countries (Mapila, 2011). The adoption of modern agricultural technologies has 
been shown to be influenced by some factors. Mamudu et al. (2012) identified age as an 
important factor that influences the probability of adoption of new technologies because it is 
said to be a primary latent characteristic in adoption decisions. Furthermore, farm size 
significantly affects the adoption of different agricultural innovations and technologies by 
rural farmers in developing countries (Daku, 2001; Doss and Morris, 2001).  A study by Gabre-
Madhin and Haggblade (2001) showed that large commercial farmers adopted new high-
yielding maize varieties more rapidly than smallholders. Furthermore, Caswell (2001) 
identified education as an important factor that create a favourable mental attitude for the 
adoption of new agricultural technologies. The influence of farmer’s education on the 
adoption of new technologies was corroborated by Mamudu et al. (2012) in their study of 
Adoption of Modern Agricultural Production Technologies by Farm Households in Ghana. The 
harmful effects of synthetic herbicide usage on the agro-ecology as well as food crop 
production cannot be over-emphasized. This has necessitated the increased researches on 
finding alternative methods of weed management towards sustainable agricultural 
production. Therefore, this study is focused on analysing the factors that influence the 
adoption of Bio-herbicides by farmers for sustainable food production in the North-east, 
Nigeria. 

Methodology 

The Study Area 

The study will be carried out in Adamawa State, Borno State and Yobe State which are all 
located within the North East, Nigeria. These three States have suffered from insurgent 
activities recently especially by Boko-Haram and Fulani-herders-men/Farmers clashes. 
Adamawa State is located at the northern part of Nigeria. It shares with Taraba State in the 
south and west with Gombe State in North-West and Borno Statee to the North. The State has 
an international boundary with Cameroun Republic along its eastern side. It lies between 
latitude 70 and 110 north, and longitude 110 and 140 East Adamawa State has a land area of 
about 38,714 km2 and a population of 2,974,114. The people of Adamawa State are 
predominately peasant farmers, though few are cattle herdsmen. The capital of Adamawa 
State is located in Yola. Adamawa State, like other Northern State of Nigeria, has ever 
recorded a high incidence of poverty and land degradation. The state is notably agrarian 
environment with farmers growing cereal crops such as maize, guinea corn, cowpea, 
groundnuts, millet etc. animal husbandry is also predominant in Adamawa State mostly 
among the Fulani dwellers. The Northern States, which are substantially rural and having less 
exposure to education, experiences more poverty than other parts of the country. A third of 
Nigeria’s poor are concentrated in the Northern States (Federal Office of Statistics, 1996). 
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Figure 1: Map showing the Study Area. 

 

Sampling Technique 

Primary data for this study were collected through the use of structured questionnaires. The 
questionnaires were distributed by enumerators using multi-stage sampling survey for the 
study. The first stage involved random sampling of three Local Government Areas each from 
Adamawa State, Borno State and Yobe State within the North-Eastern region of Nigeria. 
Second stage involved the random sampling of four wards from each of the 9 Local 
Government Areas sampled in the three selected States. Thus, a sum of 36 Wards were 
randomly sampled and ten (10) farmers were selected from each of the Wards to give a total 
sample size of three hundred and sixty (360). At the end of the survey, three hundred and 
thirty (330) properly filled questionnaires were returned and used for the analysis. 

Analytical Framework 

Probit Regression Model was used to evaluate the determinants of adoption of the Bio-
herbicide technology among farmers in the area. Probit Regression model has been widely 
employed by many researchers to evaluate the functional association among the probability 
of adoption and its determining variables (Daku, 2001; Caswell, 2001; Mamudu et al., 2012).  

The probit model assumes variable Yi as binary with only two possible outcomes (1 for 
adoption and 0 for non-adoption). It also considers a vector of explanatory variables xi which 
explains Yi.  

The empirical specification of the probit model for the study is given as follows:  

Yi = 𝛽0 + ∑0
𝑛=1 𝛽n Xni + ui 

where Xi represents a vector of explanatory variables, ui is a random disturbance term, n is 
the total sample size, and β is a vector of unknown parameters to be estimated by the method 
of maximum likelihood.  
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Hence, Yi = Adoption of Bio-Herbicides = (1 if rice farmer adopted, 0 otherwise); X1 =Age; X2 
= Marital status; (1 if  farmer is married, 0 otherwise); Gender (1 for Male farmer, 0 otherwise); 
X3 = Household Size; X4 = Education; X5 = Farm Size;  X6 = Farming Experience; X7= Access to 
Extension Services (1 for Access to Extension Services, 0 otherwise);  X8 = Access to credit; (1 
if farmer had access to credit, 0 otherwise); X9 = Membership of Cooperative Society (1 if 
farmer belong to Cooperative Society, 0 otherwise).  

Results and Discussion 

Determinants of Adoption of Bio-herbicide Technology by Farmers in the Area 

The results of the probit regression analysis revealed that the factors which influenced the 
adoption of Bio-herbicide technology among the farmers in the North-Eastern Region of 
Nigeria include the age of the farmers, educational status, farm size, their access to Extension 
Services, farming experience and their membership in Cooperative Societies. The findings 
showed that age of the farmers, educational status, farm size and their access to Extension 
Services were identified as having statistically significant influence on the adoption of the Bio-
herbicide Technology by the farmers in the study area at 1% level of significance. In addition, 
at 5% significant level, farming experience and their membership in one Cooperative Society 
or the other also influence the farmers’ decision in adopting the new technology.  

Age of the farmers was identified from the result of the study as an important determinant of 
adoption of the Bio-herbicide technology in the area. This result supports the similar report 
by Mamudu et al. (2012) that age of farmers is an important factor that influences the 
probability of adoption of new technologies because it is said to be a primary latent 
characteristic in adoption decisions. The study further showed that the level of farmer’s 
education plays major role in determining the attitude of the farmers towards adopting the 
Bio-herbicide technology. The result indicates a statistically significant relationship between 
the farmers’ education and the adoption of Bio-herbicide technology. This report corroborates 
the findings of Caswell (2001) who identified education as an important factor that create a 
favourable mental attitude for the adoption of new agricultural technologies. Moreover, the 
size of the farmland used by the farmers was also shown to have a positive and significant 
influence on the adoption of the new technology. This implies that farmers with larger farm 
sizes were ready to adopt the technology more than those with smaller plots. Generally, 
commercial farmers have greater capacity to take risks than peasant and subsistent farmers. 
The result agrees with the report of Gabre-Madhin and Haggblade (2001) who showed that 
large commercial farmers adopted new high-yielding maize varieties more rapidly than 
smallholders. Another factor identified in the study as influencing the adoption of Bio-
herbicide technology in the area is the access to extension services by the farmers. The result 
revealed that there is a positive and significant relationship between the access to Extension 
Services by the farmers and the adoption of the Bio-herbicide technology. It implies that the 
more access the farmers have to Extension Services, the better the attitude towards adopting 
the Bio-herbicide technology in the study area. Moreover, the study revealed farming 
experience as another important factor that determined the adoption of Bio-herbicide 
Technology by the farmers in the area. The result showed that the more the years of their 
experience in farming, the higher the probability of adoption the new technology. Also, their 
membership of cooperative societies was identified as a significant factor which influence the 
decision of the farmers towards adopting the Bio-herbicide Technology. Consequently, the 
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formation of cooperative societies provides an added advantage to the farmers in taking 
corporate decision on issues that would improve their productivity.   

 

Table 1: Determinants of the Adoption of Bio-Herbicides by Farmers in the Study Area 

Variable                                         Coefficient Standard Error Z-Statistic P-Value 

Age -0.201857 0.042283 -4.773945 0.0000 * 
Marital Status -0.166895 0.109739 -1.520831 0.1283 
Household Size -0.007683 0.083502 -0.092008 0.9267 
Education Level 2.366165 0.840941 2.813712 0.0049 * 
Farm Size 2.998871 0.960444 3.122379 0.0018 * 
Farming Experience 0.760099 0.358506 2.120184 0.0340 ** 
Extension Service 2.858395 0.607396 4.705984 0.0000 * 
Access to Credit 0.131725 0.243569 0.540812 0.5886 
Membership of 
Cooperatives 

1.376817 0.633800 2.172322 0.0298 ** 

McFadden R-squared 0.743352    
Sum squared residue 16.59865    
 Log likelihood -57.47980    

Source: Field Survey, 2021. * Significant at 1%; ** Significant at 5%;  

Conclusion and Recommendation 

The study had shown the various factors that have significant effects on the readiness of the 
farmers in the study area to adopt the Bio-herbicide technology as alternative method for 
weed control instead of using the mostly harmful synthetic chemical herbicides. The 
determinants of the farmers’ adoption of the new technology according to the results of the 
study include age of the farmers, educational status, farm size, their access to Extension 
Services, farming experience and their membership in Cooperative Societies. 

Therefore, it is recommended that awareness campaign on the new Bio-herbicide Technology 
among farmers in the area should be intensified. Furthermore, the farmers’ access to formal 
education should be improved, especially through adult literacy programme as this will 
positively influence their adoption of new technology thereby enhancing their productivity. 
Moreover, the need to raise the farmers’ access to Extension Services should also be stressed 
as it has been shown as a critical factor which influences the rate of the adoption of new 
technology by the farmers. Also, the need for the farmers to be part of cooperative societies 
in their farming communities should be emphasized. This will encourage useful all-inclusive 
decision with concerted efforts towards increased food production in the area.   
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Abstract  

Background: Indoor farming systems in this context refers to soilless crop in controlled 
environment in greenhouses using sunlight or sunlight supplemented by artificial light or other 
indoor facilities using artificial lighting only (including containers). Three common growing 
systems are hydroponic, aeroponic and aquaponic. Crops grown in indoor vertical farming 
systems typically include microgreens, herbs and leafy greens. The global indoor farming 
technology market is estimated at $14.5 billion in 2020 and is projected to grow at a 
compound annual growth rate of 9.4%, to reach $24.8 billion by 2026 (Research and 
Markets.com). However, in addition to the widely recognised challenges of high costs of 
production, consumers’ perception and acceptance of produce grown in such an 
unconventional way has been seen as a pre-condition for the success of indoor farming 
commercialisation.  

Methods: This study aims to explore key factors affecting consumers’ willingness to buy 
produce grown in indoor farming system based on 202 responses obtained in April/May 2021 
via an online questionnaire survey. Structural equation modelling with AMOS was used to 
establish the influencing factors. It should be noted that this is a convenience sample and may 
not be representative of the total UK consumer profile.   

Results: The study found that previous knowledge, positive attitudes towards indoor farming 
systems, consumers’ perceived characteristics of produce grown this way significantly 
influence consumers’ willingness and likelihood to buy indoor farmed produce. Pricing at 
similar level as conventionally grown produce was the most important predictor of 
consumers’ intention to buy.  The findings highlight the importance of raising awareness of 
indoor farming technologies amongst general consumers, communicating the key attributes 
and sustainable benefits of produce grown indoor and reducing production costs in 
commercialisation of the system. 

Keywords  

Indoor farming, controlled environment agriculture, consumer behaviour, willingness to buy, 
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Abstract 

Weather is a pivotal factor for crop production as it is highly volatile and can hardly be 
controlled by farm management practices. Since there is a tendency towards increased 
weather extremes in the future, understanding the weather-related yield factors becomes 
increasingly important not only for yield prediction, but also for the design of insurance 
products that mitigate financial losses for farmers, but suffer from considerable basis risk. In 
this study, an artificial neural network is set up and calibrated to a rich set of farm-level yield 
data in Germany covering the period from 2003 to 2018. A nonlinear regression model, which 
uses rainfall, temperature, and soil moisture as explanatory variables for yield deviations, 
serves as a benchmark. The empirical application reveals that the gain in forecasting precision 
by using machine learning techniques compared with traditional estimation approaches is 
substantial and that the use of regionalized models and disaggregated high-resolution 
weather data improve the performance of artificial neural networks. 
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Introduction 

Understanding yield variability is essential for agricultural risk management at the sectoral as 
well as farm level. Crop yields depend on a variety of factors including soil and weather 
conditions, fertilizer, and pest control. Among these factors, weather is pivotal because, in 
contrast to other production factors, it is highly volatile and can hardly be controlled by farm 
management practices. Extreme weather events lead to harvest failures and thus threaten 
food security all over the world (Wheeler and Braun, 2013). Since there is a tendency towards 
increased weather extremes in the future, understanding the weather-related yield factors 
will become increasingly important not only for yield prediction, but also for the design of 
insurance products that mitigate financial losses for farmers. Indeed, weather-based 
insurance products, such as index insurance and weather derivatives, have been propagated 
as a promising alternative to classical crop insurance (Barnett and Mahul, 2007). Elabed et al. 
(2013) and Jensen, Mude and Barrett (2018) find that the uptake of weather index insurance 
products depends to a great extent on the inherent basis risk, i.e., the discrepancy between 
the insurant’s losses and the indemnity payment which is derived from the weather index 
(Elabed et al., 2013; Woodard and Garcia, 2008). This discrepancy can evolve from weather 
differences between the insurant’s location and the reference station of the weather index 
(geographical basis risk, see for example Ritter, Mußhoff and Odening (2014)) or an imperfect 
correlation between crop yields and the weather index (production basis risk or design risk). 
The relationship between weather and crop yield, however, is complex and brings challenges 
to the design of appropriate weather indices for various reasons. Firstly, several weather 
variables must be considered simultaneously, particularly precipitation and temperature. 
Secondly, these variables interact in a highly nonlinear way (Schlenker and Roberts, 2009). 
Finally, not only the aggregated level but also the temporal distribution of weather variables 
affects crop yields (Musshoff, Odening and Xu, 2011).  

Two general approaches have been used for modelling the weather-yield nexus. The first is 
crop growth models that rest on biological and physical relations and simulate the dynamics 
of water, nitrogen, carbon, and other yield determinants in a specific soil context considering 
phenological stages and plant requirements (e.g. Asseng, 2004). The second approach consists 
of statistical methods, particularly regressions models, which have been employed to estimate 
crop yields as a function of weather variables (see Section 2 for a detailed literature review). 
These methods are mainly data driven and do not strive for an identification of causal 
relations. In this paper, we focus on statistical approaches, as they are most common in the 
context of weather insurance. Musshoff, Odening and Xu (2011) show that a trade-off exists 
between the regression model’s simplicity and the yield variation that cannot be explained by 
weather variables, i.e. basis risk. Several directions have been suggested to improve the fit of 
statistical yield models, including nonlinear regression or quantile regression (Conradt, Finger 
and Bokusheva, 2015). More recently, machine learning techniques have been applied to yield 
modelling (e.g. Khaki and Wang, 2019). The strength of this approach compared with 
traditional statistical methods arises from its flexibility in capturing complex functional 
relations and its capability of handling large data sets. This is particularly useful because it 
allows the consideration of weather variables with high temporal resolution, such as daily 
precipitation and temperature. 

Against this backdrop, the objective of our paper is to explore the potential of machine 
learning for estimating the relationship between crop yield and weather conditions on a farm 
level and to use it as a tool for reducing basis risk in index insurance applications. More 
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specifically, we want to investigate three hypotheses: First, we conjecture that machine 
learning allows a better fit to yield data compared with traditional regression models due to 
its flexibility. Second, we hypothesize that disaggregated weather data contain more 
information compared with aggregated weather variables, which allow for improving the 
estimation of crop yields. Third, we expect that the definition of small and homogeneous 
production regions eases the design of tailored weather indices and thus reduces the level of 
basis risk. We test these hypotheses for a large set of farm-level yields. Our data set contains 
68,944 observations for winter wheat and 14,624 observations for rapeseed and in total 
covers many production regions in Germany over an observation period of 16 years. The use 
of individual farm yields avoids the underestimation of yield volatility that arises from the use 
of aggregated data, such as county yields (Popp, Rudstrom and Manning, 2005). To answer 
the aforementioned research questions, we specify an Artificial Neural Networks (ANN) and 
measure its performance relative to a nonlinear regression model (Hypothesis 1). Firstly, we 
focus on Germany as a whole and investigate the model performance for different aggregation 
levels of weather data, namely using monthly and daily weather data (Hypothesis 2). 
Subsequently, we repeat the analysis for selected homogeneous soil-climate regions within 
Germany (Hypothesis 3). We trace estimation errors back to particular time periods and 
regions. Moreover, we distinguish the viewpoint of insurers and the insured when analysing 
deviations between actual and predicted farm yields. 

The remainder of this paper is structured as follows: Section 2 provides a literature review of 
standard statistical as well as machine learning approaches to estimate the weather-yield 
relationship; Section 3 presents details on the neural network applied in this study and 
introduces a regression model that is used as a benchmark; Section 4 contains the empirical 
application to German farm-level data; and Section 5 concludes with implications for the 
design of weather index insurance.  

Literature Review 

The estimation of the weather-yield relation by means of statistical approaches has a long 
tradition. Teigen and Thomas (1995) studied the relationships for US state-level yield for the 
period 1950–1994 and find that weather can explain 90 % of yield variation in most cases. This 
high percentage, however, can mostly be traced back to the time trend and not to the weather 
variables themselves (Vedenov and Barnett, 2004). For the application of weather derivatives 
to agriculture, Turvey (2001) estimates the linear dependency of county yields of corn, 
soybean, and hay on cumulative rainfall and cumulated degree days in Oxford County, 
Ontario, for the period 1935–1996, with a best fit 𝑅2of 0.33. Also, in the context of weather 
derivatives, Vedenov and Barnett (2004) apply more complex non-linear models to estimate 
the relation between U.S. district-level yields in 1972–2001 and temperature and 
precipitation. With data-driven combinations of the weather variables and derived indices, 
they achieve an 𝑅2 between 35 % and 87 %. Vroege et al. (2021) assess the potential of 
drought risk management with soil moisture data from satellites and weather stations for 89 
farms in Eastern Germany. They applied quantile regression and found that the risk exposure 
of farmers could be reduced significantly with new insurance products based on soil moisture. 
Besides weather risk management, another purpose of the statistical modelling of the yield-
weather relationship is the prediction of climate change impacts. Seminal papers in this 
context are Schlenker and Roberts (2006, 2009), who combine a county-level data set for U.S. 
maize yield with daily temperature observations and observe non-linear weather effects on 
yields; and Schlenker and Lobell (2010), who apply different specifications of the weather 
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variables (linear, quadratic, and piece-wise linear) and find robust negative effects of climate 
change on agriculture in Africa. At the country-level, Lobell, Schlenker and Costa-Roberts 
(2011) regress yield outcomes on linear and squared monthly temperature and precipitation. 
It turns out that the largest share of the explained variation comes from the country-specific 
intercepts and the quadratic time trend rather than the weather variables. To detect 
spatiotemporal patterns in the yield-weather relation, Trnka et al. (2016) used data for ten 
countries and two regions in Europe over the period 1901–2012 for wheat and barley. In 
addition to the classical weather variables, they applied drought indicators, frost days, 
potential evapotranspiration, and water vapor pressure deficit, and achieved adjusted 𝑅2 for 
wheat of between 0.00 and 0.71, and a normalized RMSE between 65 % and 130 % also when 
looking at subperiods. Nevertheless, they found an increasing influence of climatic variables 
in the more recent years. Bucheli, Dalhaus and Finger (2021) apply different weather indexes 
on a farm level yield data set in Eastern Germany and show that a tailored farm-specific 
drought index leads to the greatest reduction of basis risk and that no single universally best 
underlying drought index exists. 

All of these studies show how difficult it is to explain the yield-weather relation using classical 
statistical approaches. Hence, a lot of hope is put in the use of machine learning and the 
increased computational power, which allows a more sophisticated analysis of the 
relationships. Van Klompenburg, Kassahun and Catal (2020) conducted a systematic literature 
review and identified 50 studies since 2008 that used machine learning for crop yield 
modelling. Explanatory variables are mostly related to weather, but also other features such 
as field management or nutrients. For example, Matsumara et al. (2015) predicted the maize 
yield in Chilin province, China, based on weather variables and fertilizer usage, using a multi-
layer perceptron with one hidden layer and compared the results with those of a linear 
regression model. The artificial neural network clearly outperformed the linear regression 
model, and the predictive performance could mainly be traced back to fertiliser use and not 
to weather variables. Jeong et al. (2016) applied random forests to global wheat yield grid 
data from 2000, U.S. county-level maize grain yield 1984–2013, and potato tuber and maize 
silage yield data from over 1,000 points in the Northeastern U.S. in selected years. They 
achieved an RMSE between 6 % and 14 %, which clearly outperformed a multiple regression 
model (RMSE between 14 % and 49 %). Also, with random forests, Everingham et al. (2016) 
aimed to predict regional sugarcane yields at Tully, Australia, at different time points up to a 
year before harvest to optimise fertiliser usage. The shorter the forecast horizon, the more 
important variables such as rainfall and temperature range became, and up to 79 % of the 
variability can be explained. Using a semiparametric version of a deep neural network, Crane-
Droesch (2018) model county-level yield in the U.S. Midwest from 1979 to 2016 using daily 
weather variables such as precipitation, temperature, humidity, wind speed, and radiation. It 
turns out that while the semiparametric model performs the best (with the largest effect being 
a time variable), the fully nonparametric neural network performed much worse than OLS 
regression. In a crop modelling challenge, Khaki and Wang (2019), as one of the winning 
teams, achieved an RMSE of 12 % with a deep neural network when predicting the yield 
performance of maize hybrids at over 2,000 locations in the U.S. They find considerable effects 
of solar radiation, temperature, and precipitation. Some studies also use remote sensing data 
and derived indices such as the Normalized Difference Vegetation Index (NDVI) or Enhanced 
Vegetation Index (EVI) (Fernandes, Ebecken and Esquerdo, 2017; Johnson et al., 2016; e.g. 
Pantazi et al., 2016; Sun et al., 2019; Wolanin et al., 2020).  
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Applications of machine learning methods for the estimation of the yield-weather relation in 
Germany, however, are rare. Paudel et al. (2021) designed a workflow for large-scale crop 
yield forecasting at different steps between planting and harvesting and applied it to the 
Netherlands, Germany, and France. For all of Germany, they achieved a normalized RMSE of 
between 7 % and 17 % at the end of season, which is much larger than the corresponding 
values from predictions by the European Commission’s MARS Crop Yield Forecasting System 
(MCYFS). At the county-level, Webber et al. (2020) combine support vector machines and 
process-based modelling using data on weather, soil, and crop phenology to explain yield 
failures. Their model, however, was not able to capture the losses in 2018, an exceptionally 
dry year in Central Europe (Toreti et al., 2019). 

It can be concluded that the use of machine learning in crop yield forecasting has continuously 
gained more attention in recent years and that it has the potential to reduce basis risk. 
However, until now, it is still not clear what kind of data and what geographical aggregation 
form of the region is beneficial for the use of machine learning. 

Methods 

This study aims to explore the weather-yield relationship with different models. Even though 
weather is only one of the factors explaining yield deviations, the application of weather data 
for estimating yield variation is advantageous in comparison to other farm related 
information, especially when it comes to developing risk management tools such as index-
based insurances. First, weather data are available at a high-resolution and independent from 
farmers' specific participation in the data collection process. Therefore, with weather data in 
general, it is possible to provide a continuous data stream. Another major advantage is the 
fast availability of weather data. This is especially important if it comes to an ad-hoc projection 
of the current expected yield. Other data such as fertiliser use, genomic information, used 
capital and labour as considered in Albers, Gornott and Hüttel (2017) or Khaki and Wang 
(2019), cannot be used for this purpose due to its lagged availability. Finally, weather data are 
reported by independent weather services and cannot be influenced by the insurance holder 
or provider. To reduce the influence of non-weather-related factors in our yield data, we do 
not consider in this study the yield itself, but rather the deviation of the yield from the farm 
yield average. By subtracting the farm-specific mean, constant location, or farmer-specific 
factors influencing the yield are removed to reduce the risk of omitted variable.  

For a realistic insurance application, an out-of-sample evaluation is essential. Therefore, we 
split the data into three subsets: training data, validation data, and test data. The training data 
set is used to adjust the weights and to train the models. The validation set is used to evaluate 
the different settings of the models and to choose the optimal hyperparameters. In the end, 
the out-of-sample performance of the model is evaluated based on the test set. For a more 
realistic scenario, the split is not done randomly but by complete years. Even if this split is not 
necessary for the regression model, we apply this process to ensure comparability across the 
models. To guarantee the independence of the data sets, the aforementioned farm yield 
averages are calculated based only on the training data. 

Different measures are applied in this study to assess the performance of the models and their 
potential to reduce the basis risk of an index insurance. The main tool is the root mean squared 
error (RMSE), which can be used to assess the average deviation between predicted and 
observed values. This measure, however, is an absolute value. Thus, a comparison across 
different regions and crop types is only possible to a limited extent due to the different yield 
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levels. Because of this, we use the normalized root mean squared error (nRMSE) as a second 
measure. This puts the RMSE in relation to the respective average yield level in the region. A 
drawback of both indicators is that overestimates as well as underestimates are weighted 
equally, although they have different implications for both the insurance holder and insurance 
provider. Hence, the level of basis risk is not reflected properly. From the perspective of an 
insurance holder such as a farmer, basis risk is defined as the probability of having a loss but 
not receiving compensation: 𝑃(no indemnity | loss) (Elabed et al., 2013). This is the case 
when a negative value is observed, but a positive value is predicted. From the perspective of 
an insurance provider, however, the opposite is considered as basis risk: an indemnity 
payment despite no actual loss, 𝑃(indemnity | no loss). This is the case if a negative value is 
predicted, but a positive value is observed. Please note that this definition of basis risk only 
focuses on the presence, but not on the severity. Complementing the RMSE and the nRMSE, 
we use both categories of basis risk (of the insurance holder and the insurance provider) as 
additional metrics in the model comparison and evaluate the shares of misclassified 
observations as realizations of the related basis risk. By studying different ways of exploiting 
and aggregating the weather data, we focus on production basis risk or design risk. 

Regression Model 

Our regression model, which serves as a benchmark for the neural network model, is a 
multiple regression model. As the dependent variable for both the regression model and the 
ANN, we use the previously described deviation of the yield from the farm yield average in the 
training data measured in dt/ha. Following Vedenov and Barnett (2004) and Vroege et al. 
(2021), we use the average temperature, total precipitation, and average soil moisture as 
independent variables. All weather variables are calculated as monthly values for April, May, 
and June, which represent the growing period for winter wheat and rapeseed. As in Vedenov 
and Barnett (2004), we additionally apply squares and same-month interactions of these 
variables to allow for a non-linear relation. The regression model can be defined as follows: 

𝚫𝒚𝒊𝒕 = 𝜷𝟎 + ∑ 𝛽1𝑘𝑇𝑘𝑖𝑡 + 𝛽2𝑘𝑃𝑘𝑖𝑡 + 𝛽3𝑘𝑀𝑘𝑖𝑡 + 𝛽4𝑘𝑇𝑘𝑖𝑡
2 + 𝛽5𝑘𝑃𝑘𝑖𝑡

2 + 𝛽6𝑘𝑀𝑘𝑖𝑡
2

𝑘=April, May, June

+ 𝜷𝟕𝒌𝑻𝒌𝒊𝒕𝑷𝒌𝒊𝒕 + 𝜷𝟖𝒌𝑻𝒌𝒊𝒕𝑴𝒌𝒊𝒕 + 𝜷𝟗𝒌𝑷𝒌𝒊𝒕𝑴𝒌𝒊𝒕 + 𝜷𝟏𝟎𝒌𝑻𝒌𝒊𝒕𝑷𝒌𝒊𝒕𝑴𝒌𝒊𝒕 + 𝝐𝒊𝒕 

(1) 

 

where Δ𝑦𝑖𝑡 denotes the yield deviation for farm 𝑖  in year 𝑡 and 𝑇𝑘𝑖𝑡, 𝑃𝑘𝑖𝑡, and 𝑀𝑘𝑖𝑡 the values 
of the weather variables temperature, precipitation, and soil moisture, respectively, at farm 𝑖 
in month 𝑘 (April, May, June) of year 𝑡. The 𝛽s denote the coefficients to be estimated and 𝜖𝑖𝑡 
the error term. To estimate the model parameters, we use the ordinary least square (OLS) 
method. 

Artificial Neural Network 

Second, we apply an artificial neural network (ANN) to estimate the weather-yield relationship 
based on the same dependent variable as in the regression model ANNs with at least two 
hidden layers are able to recreate any form of mathematical model, which is in line with the 
non-linear relationship between weather and crop yields (Sharma, Sharma and Athaiya, 2020). 
In this study, we use an ANN with one input layer, two hidden layers, and one output layer. 
Since we are facing a regression problem, we have one neuron in the output layer. The used 
layers are all fully connected layers, which means that all neurons in the previous layer are 
connected to all neurons in the latter one. While setting up and training an ANN, 
hyperparameter tuning is essential. In our study, we develop an ANN of two hidden layers and 
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perform grid search on a search space (Table A1) with Tune as platform (Liaw et al., 2018) for 
hyperparameter tuning. The application of grid search, as opposed to other methods such as 
random search, allows us to use a reproducible approach of hyperparameter tuning. This is 
important since we apply different machine learning models with a separate grid search for 
each model. To decide for the best setting of hyperparameters, the lowest RMSE on the 
validation set is used. This is also known as cross validation. The search space for the grid 
search included learning rate, batch size, and the number of neurons per hidden layer as 
hyperparameters. For training the model, we use stochastic gradient descent and the Adam 
optimizer (Kingma and Ba, 2014). To account for the non-linear relationship between weather 
and crop yields, we opt in line with Sharma, Sharma and Athaiya (2020) for a non-linear 
activation function and use the ReLU function (rectifier linear unit) 𝑔(𝑥) = max (0, 𝑥). The 
activation function is used for all neurons in the layers except for the output layer. The ANN 
was implemented in Python using the PyTorch library and trained on a Linux engine (Paszke 
et al., 2019). Before training the ANN, the input variables were normalized. With this it was 
tried to counteract overfitting and to enhance the performance of the model (Ioffe and 
Szegedy, 2015). This also accounts for the different dimension in the input variables. 

Empirical Application 

Study Region and Data 

In the empirical application, we use annual yield data for winter wheat and rapeseed of 
German farms. Germany is a convenient study region for the effects of drought on yield since 
only 2.7 % of the agricultural area in Germany is irrigated (Schimmelpfennig, Anter and 
Heidecke, 2018). Moreover, the conditions of farmland vary largely across Germany, which 
allow us to study the effect of different spatial aggregation levels (Hypothesis 3). Germany is 
subdivided into 50 regions with comparable soil and weather conditions, so-called soil-
climate-regions (SCRs), by the chambers of agriculture of the federal states and the Federal 
Biological Research Centre for Agriculture and Forestry. A clustering procedure was used to 
combine municipalities with similar characteristics in terms of soil quality, temperature, and 
precipitation into larger areas, which have relatively homogeneous conditions for agricultural 
production (Roßberg et al., 2007). In addition to Germany as a whole, we will later estimate 
regionalized models for five selected SCRs. 

Our data set consists of annual winter wheat yields from 4,309 farms and annual rapeseed 
yields from 914 farms in 2003–2018, measured in deciton/hectare (dt/ha). In total, the data 
set consists of 68,944 observations for winter wheat yields and 14,624 observations for 
rapeseed yield. The data were provided by a financial accounting firm and an insurance 
company who collected the data via a farm survey about planting areas and harvest quantity 
for various crops. The farms are spread across Germany with a higher density in Southern 
Germany. Their exact locations have been deleted for confidentiality reasons, but the 
municipalities in which they are located are available in the data set. To correct for outliers 
from inaccuracies in the data collecting process, we identify farms within the 1st percentile 
and the 99th percentile of yearly yield per hectare in the years from 2003–2018 and delete 
those farms from the data set. This is done for Germany and the SCRs individually. For both 
crops, the complete data sets are split by years into training data (2003–2012), validation data 
(2013–2015), and testing data (2016–2018). 

In line with our research aim and Hypothesis 3, we first use the entire data set (Germany) and 
then turn to regionalized models for the three SCRs with the largest number of farms in our 
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data set (SCR South 1, SCR South 2, and SCR South 3) as well as one SCR in north-western 
Germany (SCR Northwest) and one in eastern Germany (SCR East).  Figure 1 shows the location 
of these SCRs. The descriptive statistics for the cleaned yield dataset for all of Germany and 
the selected SCRs are depicted in Table 1.  

 

Figure 1: Soil-climate-regions (SCR) considered in this study 

Table 1: Descriptive statistics of the yield data (dt/ha) for whole Germany and the 
considered soil-climate-regions (SCRs) 

 # farms # obs. Mean  St. Dev.  Min.  25 % 50 % 75 % Max. 

Winter wheat          
   Germany 3,344 53,504 74.20 13.57 26.59 65.86 75.09 83.02 113.58 
   SCR South 1 373 5,968 67.57 14.27 21.54 59.48 69.65 78.21 101.69 
   SCR South 2 482 7,712 73.96 12.17 32.21 66.84 74.99 81.21 114.25 
   SCR South 3 394 6,304 77.64 12.06 31,26 71.11 78.84 85.00 113.44 
   SCR 
Northwest 

97 1,552 80.11 12.83 37.65 72.63 80.28 89.01 136.16 

   SCR East 7 112 79.33 13.50 51.48 70.19 79.91 89.84 106.81 

Rapeseed          
   Germany 698 11,168 37.79 8.71 10.44 32.72 38.47 43.49 63.59 
   SCR South 1 72 1,152 35.95 9.58 10.66 30.91 37.35 42.27 63.27 
   SCR South 2 104 1,664 37.67 8.77 10.67 32.48 38.44 43.72 63.30 
   SCR South 3 64 1,024 40.82 8.36 10.48 36.15 41.48 46.21 62.50 
   SCR 
Northwest 

26 416 40.56 6.96 12.79 36.57 40.60 45.02 62.00 

   SCR East 6 96 40.90 10.95 11.17 34.45 42.55 49.98 62.47 

Note: Due to the separate outlier removals in all data sets, minima/maxima of the SCRs can be smaller/larger 
than the ones for Germany. 
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The five considered SCRs comprise about 40 % of all farms in the dataset, but the number of 
farms per SCR varies largely with a minimum of less than ten farms for SCR East, which was 
included to obtain a larger regional variation. The average winter wheat yield is 74.20 dt/ha 
for all farms and varies between 67.57 dt/ha (SCR South 1) and 80.11 dt/ha (SCR Northwest) 
for the selected SCRs. Naturally, the average yield of rapeseed is 37.79 dt/ha lower than the 
average yield for winter wheat and there is a smaller range among the SCRs. 

Weather data are provided by the Climate Data Center of Deutscher Wetterdienst (DWD) and 
contain information on daily precipitation, daily temperature, and daily soil moisture spanning 
the same period as the yield data (2003–2018). This detailed information allows us to feed the 
ANN with daily or monthly data and hence to study the effect of different temporal 
aggregation levels according to Hypothesis 2. Daily temperature is an average of 24-hourly 
values and is measured in Celsius two meters above the surface. The amount of precipitation 
is measured in mm. Soil moisture data are estimated by the water balanced model AMBAV 
(agrometeorological model to calculate the current evaporation) (Löpmeier, 1994). Since we 
do not know the exact locations of the farms, we connect the yield data with the weather data 
via the respective municipality. The DWD interpolates temperature and precipitation data 
coming from around 300 weather stations to a 1 km x 1 km grid based on the interpolation 
method by Frei (2014). Descriptive statistics for the monthly aggregated weather variables 
(April–June) for Germany and the selected SCRs are depicted in Figure 2. It can be observed 
for Germany that the conditions in 2018 were more extreme compared to 2016 and 2017. 
While the temperature was generally higher in 2018, median soil moisture and precipitation 
were lower. This development is also reflected in the selected SCRs. 

 

Figure 2: Monthly weather values for all farm locations (Germany) as well as for selected 
soil-climate-regions (SCRs) 



Proceedings of the 4th Symposium on Agri-Tech Economics for Sustainable Futures 92 

Results 

First, we consider the models for all of Germany before moving to the regionalized models. A 
separate grid search was performed for each model. While in some models only marginal 
improvements could be achieved, performance could be increased by about 40 % in other 
models through grid search. The best performing hyperparameter configurations are shown 
in Table A2. All ANNs in this study are trained with 100 iterations each and during the training 
process no overfitting occurred.  

Addressing our first hypothesis, we first examine errors for the regression models and the 
ANN models for Germany as a whole and then examine the basis risk of these models. Table 
2 depicts the RMSE and nRMSE for models using all farms in the data set (Germany) for the 
two different crop types. For winter wheat, the regression model achieves an RMSE for the 
testing data of 13.06 dt/ha. Compared to an average yield of 74.20 dt/ha during the entire 
study period, this error appears quite substantial (17.6 %). Even for the training data, the 
RMSE of the regression model is substantial (10.23 dt/ha or 13.8 %), which demonstrates that 
the regression model cannot explain a large share of the yield deviations. This finding is also 
reflected by an R2 of 0.172. The daily and monthly ANN models perform better in-sample with 
an RMSE of 7.99 dt/ha (10.8 %) and 8.37 dt/ha (11.3 %) on the training set, respectively. 
However, this superiority does not hold for the test data, as the neural network with monthly 
data has a higher RMSE (14.44 dt/ha) than the benchmark model. The use of daily weather 
variables, however, reduces the RMSE to 12.38 dt/ha (16.7 %), so that it seems beneficial not 
to aggregate the data. Evaluating the performance of the models for the five SCRs separately 
reveals that the ANN with monthly data performs the worst in all southern SCRs whereas it 
outperforms the regression model in SCR East and SCR Northwest (Table 2). The ANN with 
daily data constantly performs the best, even though only with small differences in some 
cases. Comparing these results with other applications of machine learning models, e.g.,  Khaki 
and Wang (2019), a similar level of the RMSE (14.96 dt/ha) in the out-of-sample data can be 
observed.  

For rapeseed, the regression model performs worse than the machine learning models. The 
RMSE of the test set reduces from 9.02 dt/ha for the regression model to 7.89 dt/ha for the 
ANN with daily data. Compared to the average yield of 37.79 dt/ha, these errors remain 
substantial (23.86% and 20.9% for the regression model and ANN with daily data, respectively) 
and are even larger compared to the nRMSE for winter wheat. Evaluating the performance of 
the models for the selected SCRs shows a similar picture: Except for SCR South 1 and SCR South 
2 – where the RMSE remains more or less constant across models – the use of the ANN with 
daily data improves the results. 

These first results support Hypothesis 1 that the ANN is in general better performing in 
comparison to the regression model. The results also support Hypothesis 2 that the use of 
non-aggregated data is in general beneficial.  
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Table 2: RMSE and nRMSE for regression and ANN models based on all farms, evaluated for 
whole Germany and the five selected SCRs 

  Winter Wheat Rapeseed 

 Data set 
Regression 

Model 
ANN  

Monthly Data 
ANN  

Daily Data 
Regression 

Model 
ANN  

Monthly Data 
ANN  

Daily Data 

Germany 

Training 10.23 13.8 % 7.99 10.8 % 8.37 11.3 % 6.98 18.47% 8.57 16.2 % 6.07 16.1 % 

Validation 12.21 16.5 % 12.77 17.2 % 12.18 16.4 % 9.13 24.15% 8.94 21.5 % 9.62 25.5 % 

Testing 13.06 17.6 % 14.44 19.5 % 12.38 16.7 % 9.02 23.86% 8.62 22.2 % 7.89 20.9 % 

SCR East Testing 16.00 20.2 % 14.96 18.9 % 14.72 18.6 % 9.68 23.7 % 7.84 19.1 % 7.62 18.6 % 

SCR Northwest Testing 13.95 17.4 % 12.75 15.9 % 12.40 15.5 % 9.05 22.3 % 8.28 20.4 % 7.45 18.4 % 

SCR South 1 Testing 13.35 19.8 % 14.24 21.1 % 12.44 18.4 % 9.01 25.0 % 8.86 24.6 % 9.00 25.0 % 

SCR South 2 Testing 13.15 17.8 % 15.58 21.1 % 12.59 17.0 % 7.83 20.7 % 7.67 20.3 % 7.80 20.7 % 

SCR South 3 Testing 12.43 16.0 % 14.98 19.3 % 12.42 16.0 % 8.13 19.9 % 8.39 20.5 % 7.53 18.4 % 

 

To further explore the spatial variation of the forecasting power of the ANN, the RMSE of the 
daily model is depicted at the municipality level for both crops in Figure 3. The maps reflect 
the unequal distribution of the farms over Germany, their concentration in the south and 
northwest of Germany, and the lower number of farms with rapeseed. The RMSE shows a 
large range from 0.3 dt/ha to 37.2 dt/ha for winter wheat and from 1.1 dt/ha to 21.1 dt/ha for 
rapeseed. It seems that there are clusters with a lower RMSE and isolated municipalities with 
a very high RMSE. This spread of the results underlines the conclusion that the model is not 
performing equally across the regions. It shows large heterogeneity in model performance, 
which could be due to the unequal representation of the regions in the model. This finding 
supports our research aim to investigate whether more homogeneous regions can improve 
the model and thus reduce risk and improve the performance of the model. 

Figure 3: RMSE for test years per municipality for ANN based on daily data 

 

To further investigate these errors, we take a closer look at the residual plots of the models 
for Germany (Figure 4). The variance of the predicted values is lower for the ANN, especially 
for the ANN with daily data, compared to the regression models. Table 3 depicts the share of 
observations with positive predicted but negative observed yield deviations (a disadvantage 
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for the insurance holder) and the share of observations with negative predicted but positive 
observed yield deviations (a disadvantage for the insurance provider). These observations can 
be interpreted as realizations of the basis risk for the insurance holder and the insurance 
provider, respectively. The minimal share of misclassifications for the insurance holder is 
achieved by the ANN with monthly data for winter wheat (19.4 %) and the ANN with daily data 
for rapeseed (18.1 %). This supports our first hypothesis that using ANNs can improve the 
estimation of the weather-yield nexus.  

Performance differences between years can be seen in both Figure 4 and Table 3. For the 
regression models, Figure 4 shows a clear separation of the years into layers. This is also 
confirmed by the results in Table 3, where most incorrect classifications disadvantageous to 
the insurance holder can be traced back to observations from 2018. In 2017, there is a small 
share of observations with no payout despite an observed loss that can be identified across 
the models and crop types (between 0 % and 12.6 %). Thus, for this year the share of 
misclassifications disadvantageous to the insurance holder is lowest. However, at the same 
time the insurance provider faces the largest share of misclassifications in 2017 (between 37.8 
% and 71.1 % across models and crop types). These results demonstrate the expected 
asymmetric distribution of the basis risk between the insurance holder and insurance 
provider, which could not be seen from the (n)RMSE. 

Figure 4: Residual plots for winter wheat and rapeseed for Germany 
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Table 3: Share of observations with (no indemnity | loss) disadvantaging the insurance 
holder (H) and (indemnity | no loss) disadvantaging the insurance provider (P) for winter 
wheat and rapeseed for Germany 

 
Winter Wheat Rapeseed 

Year Regression 
Model 

ANN Monthly 
Data 

ANN Daily Data Regression 
Model 

ANN Monthly 
Data 

ANN Daily Data 

 
H P H P H P H P H P H P 

2016 21.9% 22.8% 31.5% 6.6% 22.2% 28.2% 13.5% 28.2% 25.8% 19.8% 14.1% 37.8% 

2017 0.0% 71.1% 1.2% 68.4% 12.6% 37.8% 0.0% 51.9% 7.5% 46.5% 7.2% 44.7% 

2018 42.0% 0.6% 25.8% 19.5% 42.0% 0.9% 68.4% 0.9% 30.0% 13.8% 32.7% 14.1% 

Overall 21.3% 31.6% 19.4% 31.6% 25.6% 22.3% 27.3% 27.0% 21.1% 26.7% 18.1% 32.3% 

 

To investigate Hypothesis 3 that more homogenous regions can improve the performance of 
the models, we will split the data into subsets using the aforementioned SCRs and estimate 
separate models for each SCR. Moreover, we examine the temporal differences in the 
performance of the regionalized models. Due to the greater availability of yield data, we focus 
on winter wheat.  

The results for the SCR-specific models in Table 4 strongly differ between the three southern 
SCRs and the other two SCRs. Regarding the regression model, the southern SCRs have an 
nRMSE for the test data between 15.8 % and 19.3 %. This is close to the results of the model 
that has been specified for the entire data set (cf. Table 2). The ANN with monthly data does 
not change the performance substantially, but the ANN with daily data is able to reduce the 
nRMSE up to 14.5 %. The latter outperforms the model based on all farms with an nRMSE 
between 16.0 % and 18.4 %. 

On the other hand, the results for SCR East and SCR Northwest show a different picture. The 
nRMSE for the regression model increases to 35.4 % (SCR Northwest) and 49 % (SCR East) and 
for the ANN with monthly data it increases to 20.8 % and 22.3 %, respectively. These errors 
are much larger compared to those based on one model for all farms (between +1.9 and 
+28.80 percentage points). Only the ANN with daily data shows comparable results, with a 
clear decrease in the nRMSE for SCR East (–3.6 pp.) and a slight increase for SCR Northwest 
(+1.0 pp.). It turns out that estimating SCR-specific models can substantially worsen the results 
whereas only the NN with daily data seems to have a robust performance. By using daily 
weather data, the ANN has far more parameters that can be trained compared to the ANN 
with monthly data. Thus, the ANN with daily data can better capture certain weather events. 
A substantial difference between the southern SCRs and the other two is the number of farms 
and hence the number of observations in the data set. The southern SCRs include between 
373 and 482 farms whereas the other two consist only of 97 (SCR Northwest) or even 7 farms 
(SCR East). Given the size of the data sets, the results may lead to the conclusion that the ANN 
can reduce the error by using individual models for homogeneous sub-regions (supporting 
Hypothesis 3), but that these regions must contain enough observations to benefit from these 
similarities.  
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Table 4: nRMSE of Winter Wheat for five SCR-specific regression and ANN models 

 Data set Regression Model ANN Monthly Data ANN Daily Data 

SCR East 

Training 16.3 % 9.5 % 10.2 % 

Validation 47.7 % 13.5 % 16.7 % 

Testing 49.0 % 22.3 % 15.3 % 

SCR Northwest 

Training 12.9 % 10.2 % 11.2 % 

Validation 21.8 % 18.5 % 13.8 % 

Testing 35.4 % 20.8 % 16.5 % 

SCR South 1 

Training 18.9 % 11.6 % 11.2 % 

Validation 21.2 % 14.3 % 14.9 % 

Testing 19.3 % 19.1 % 15.9 % 

SCR South 2 

Training 14.1 % 10.5 % 10.3 % 

Validation 16.2 % 15.5 % 14.6 % 

Testing 16.8 % 17.6 % 16.2 % 

SCR South 3 

Training 12.6 % 10.1 % 9.8 % 

Validation 16.6 % 16.1 % 13.2 % 

Testing 15.8 % 15.7 % 14.5 % 

 

To examine the model performance over time and the influence of the drought year 2018, we 
compare the nRMSE for each year separately for one model for all farms (Germany) and the 
five SCR-specific regionalized models (Figure 5). The nRMSE for the regression model is 
particularly high in SCR East and SCR Northwest in 2018. From the monthly weather values in 
Figure 2, however, it cannot be concluded that 2018 was an exceptional year only in these 
regions, so that the exact reason for the high nRMSE remains unclear. The performance of the 
ANN based on monthly data also differs between the three years although with a smaller 
range. The ANN with daily data does not only lead to the smallest nRMSE, but its performance 
also varies little between the three years, demonstrating its robustness. 
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Figure 5: nRMSE by year for winter wheat of the testing set for one model for all farms 
(Germany) and SCR-specific regionalized models 

 

Figure 6 depicts the share of misclassifications disadvantageous to the insurance holder and 
insurance provider for the regionalized models. There are two main observations. First, the 
total share of misclassifications is lowest for the ANN with daily data, which again seems to be 
more robust compared to the other models. Second, the share of misclassifications is rarely 
fairly distributed between the insurance holder and insurance provider – in many cases, just 
one side is affected. Which side is affected depends not only on the year, but also on the 
selected model. Compared to the results from one model for all of Germany (Table 3), it can 
be seen that the very high level of misclassifications disadvantageous to the insurance 
provider in 2017 could be reduced by using the regionalized ANN with daily data.  
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Figure 6: Share of misclassified observations with (no indemnity | loss) and (indemnity | 

no loss) for winter wheat for SCR-specific models 

Conclusions 

In this paper, we explore the potential of using machine learning techniques for improving the 
estimation of weather-induced yield losses. We specify an ANN and calibrate it to a rich set of 
farm-level yield data in Germany covering the period from 2003 to 2018. A nonlinear 
regression model, which uses rainfall, temperature, and soil moisture as explanatory variables 
for yield deviations, serves as a benchmark. Our empirical application reveals that the gain in 
estimation precision by using machine learning techniques compared with traditional 
estimation approaches is quite substantial.  This improvement of model fit can be traced back 
to two sources: the flexibility inherent to ANN and the use of daily weather data instead of 
monthly weather data. In contrast to the common expectation that yield models can be better 
fitted to smaller, homogeneous regions, we find that the use of regionalized models is only 
beneficial if a sufficient sample size is available. From an insurance perspective, however, it is 
noteworthy that even for the best fitting ANN, the level of the nRMSE amounts to 14.5%. This 
shows that a considerable part of yield variability at the farm level cannot be captured by 
statistical methods which solely use “big weather data.” 

Our findings have important implications for the design of weather-index based insurance 
because they document that a rather high level of basis risk remains if insurance products are 
based on an estimation of the weather-yield relationship. This suggests the use of other 
indices, such as area yields, as an underlying index for index-based insurance. Our results, 
however, should be considered as a first attempt to tap the full potential of machine learning 
in this context. Future research should use models with flexible model structures, e.g., 
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convolutional neural networks or locally connected layers, to better estimate the 
meteorological factors affecting yields. Moreover, considering basis risk explicitly in the 
objective function of the ANN could further improve the design of weather indices for yield 
insurance. Finally, we propose the application of neural networks with high-resolution data to 
other crops and regions to generalize the findings of our study.  
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Abstract  

Malawi’s agricultural economy comprises of the smallholder subsector on communal land, 
and the leasehold and freehold estate subsectors. Large farms and estates use modern inputs 
more frequently, than the smallholder farmers. Jayne, (2016) reported the ratio of cultivated 
land area to total land holding size declines as farm size increases.  This paper highlights an 
overview of farm mechanization and the potential role for robots in Malawi.  We focus on the 
Central Pivot System which was introduced to Malawi a couple of years ago. Farm 
mechanization often follows various stages, starting from the use of mechanical power for 
power-intensive operations that require little control to increased use of mechanically 
powered technologies, and finally to automation of production. Past state-led mechanization 
in Africa often failed due to insufficient understanding of the nature of demand for 
mechanization technologies among farmers and insufficient knowledge of private-sector 
functions. Irrigation development in Malawi is guided by the Irrigation policy and the Irrigation 
Act. We review literature and present case studies (Illovo Sugar and Thandwe Irrigation), 
performance and cost benefit analysis of central pivot irrigation system in Malawi. This is done 
in order to demonstrate its the potential for adoption among various categories of 
farmers. Three inventors with ties to agriculture were inducted into the National Inventors 
Hall of Fame. Frank Zybach, the inventor of center-pivot irrigation system, and Sylvia 
Blankenship and Edward Sisler, who co-invented 1-MCP for fruit, vegetable and flower 
freshness, were all honoured for their pioneering achievements in the agriculture 
industry. Zybach began developing a self-propelled irrigation system after observing another 
farmer irrigate crops by using a tractor to systematically tow a long pipe, outfitted with 
sprinklers, across the field. By 1947, Zybach’s system featured two sections of pipes on skids, 
suspended by cables from two towers. By 1949, the device included five towers with pipes 
running on wheels and could irrigate 40 acres. Zybach then added water valves for siphoning 
pressurized water from the main pipe to drive the wheels and maintain tower alignment. Later 
in 1952, Zybach was granted a patent on a larger irrigation system with a 600-foot boom that 
could water a 135-acre circle (all but the corners of a standard 160-acre section of land). In 
1954, Valley Manufacturing, a small manufacturer of farm equipment, acquired the patent 
rights from Zybach, and its engineers improved the machine’s efficiency and dependability. 
Today, the Omaha-based company, since renamed Valmont Industries Inc., is a global leader 
for center-pivot systems and other agricultural products. We focus on various aspects of the 
central pivot system and application in Malawi. We conclude and make recommendations on 
policy environment, regulatory framework, characteristics of the technology, and other 
attributes that can assist in wider adoption.  
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Abstract  

Henna (Lawsonia inermis L.), is a perennial shrub dominating the agro-ecosystem of Pali 
district of Rajasthan, India, which is priced for its leaves which have natural dying properties. 
From ancient times, Henna has been employed as a cosmetic dye for hair, skin and nails and 
it has acquired a particular significance in Islamic culture. It is dryland shrub which can tolerate 
extreme dry and high temperature conditions and survives well on problematic soils with high 
pH and saline water where other crops cannot be grown. The development of Henna 
cultivation and processing in Pali, Rajasthan, is a blend of indigenous knowledge and people's 
innovations. Presently Henna cultivation in the region is under 40,000 hectares which is the 
largest area under this crop at single location and it is purely rainfed with no use of fertilizers 
or pesticides. In this crop generally, no fertilizers and plant protection measures are used and 
a single leaf cutting is taken every year under the rainfed conditions and two cuttings where 
water is available. Under rainfed conditions for a dense planting the dried leaf yield in the first 
year is about 250 kg ha-1 while over the second, third and fourth years the yield normally 
ranges from 500 to 2,500 kg ha-1. The crop starts generating returns from its second year 
onwards, which continues for 20 years while incurring only maintenance costs in the form of 
hoeing, weeding and harvesting. By following these measures, on average they produce 15-
20 quintal dry Henna leaves ha-1 from their barren fields. The financial analysis indicated that 
Henna farming due to its high quality at Pali is a profitable and attractive option for farmers 
livelihoods. Sustainable income from Henna benefits the farmers of the district as it can 
tolerate high salinity, drought and incidences of pest and diseases.  
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Introduction 

Henna (Lawsonia inermis L.), is a plantation crop native to tropical and subtropical regions of 
Africa, Asia, and Australia and is found in arid and semi-arid zones. From its leaves a red-
orange dye agent is extracted which has an affinity for bonding with proteins, and thus is used 
to dye human body parts (skin, hair, fingernails), as well as leather, silk and wool. Its leaves 
contain the reddish orange dye named lawsone that has been used since biblical times as a 
cosmetic dye. It also served as a textile dye until the advent of fast synthetic dyes. Further, 
many Ayurvedic and Unani medicines are based on the curative properties of Henna leaves 
and other plant parts. Preferring hot climates for growth, it is indigenous to the area between 
the Islamic Republic of Iran and northern India (Green, 1995), North Africa, the Arabian 
Peninsula, the Middle East and South Asia (Cartwright-Jones, 2006). Rao et al. (2005) reported 
that Henna grows best in tropical savannah and tropical arid zones, in latitudes between 150 
and 250 N and S, and produces the highest dye content in temperatures between 350 and 
450oC. It does not thrive where minimum temperatures are below 11°C and temperatures 
below 5°C will kill the Henna plant (Khandelwal, 2002). It can also occupy frost-free 
Mediterranean scrub zones, although it does not develop maximum dye content without high 
summer heat. The optimal soil temperatures range for germination is 25–30oC. It likes saline 
soils and the maximum lawsone content develops under dry and harsh conditions of the arid 
zone (Rao et al., 2005). Henna is a very delicate and perishable commodity. Henna leaf loses 
its freshness after 1 day, so it needs some extra care to store for long periods. Due to the lack 
of storage facilities, farmers sometimes face problems with unsold leaves (Ahmed et al., 
2008). Rajasthan, India leads the world in Henna production with 40,000 hectares cultivated 
and its production largely confined to Sojat (95%) in the Pali district. Statistical data indicates 
that in 1955, India produced 2800 tonnes of Henna with Rajasthan contributing only 5 per 
cent share in the total production, but in 2018-19 Rajasthan dominated with 90% share. 
Presently the Pali district of Rajasthan is the most heavily cultivated Henna production area in 
India, with over 250 Henna processors operating in Sojat City alone. Henna is commercially 
cultivated in Western India, Pakistan, Morocco, Yemen, Iran, Sudan and Libya.  

Methods 

The field work for this research was undertaken by ICAR-CAZRI, Krishi Vigyan Kendra, Pali 
located at 24.75o to 26.48o N and 72.78o to 74.30o E in state of Rajasthan during rabi season 
from 2016-17 to 2019-20 (4 years) in the farmers’ fields of ten adopted villages of Pali district 
in the Arid Zone of Rajasthan. For the study two blocks, Sojat and Marwar junction, were 
selected as these are the main areas where Henna is grown on a commercial scale. In the 
initial phase a primary survey was carried out in these blocks to ascertain the important socio-
economic parameters of the study area and to select the respondents for detailed study. The 
selected villages (five each) from two blocks were visited frequently and interviews were 
conducted using a structured questionnaire; group discussions were held with key informants 
in the villages, including local leaders and public representatives. After this preliminary survey, 
socio-economic parameters of potential value for the study were chosen and checked by 
further discussion with the key informants. From a total of 400 farmers cultivating Henna 100 
were selected randomly for the study following a sampling intensity of 25%. A semi-structured 
questionnaire was developed for face-to-face interviewing of the farmers and it was further 
supplemented by direct observation of the Henna farms. Questions were included to assess 
the land allocated for cultivation of Henna, propagation materials, silvicultural techniques, 
contribution to the household economy, and problems faced in Henna farming. Data were 
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collected from the study was further subjected to statistical analysis and utilized to generate 
information on different aspects of Henna farming. 

Results 

Analysis of data indicated that Henna farmers have major portion of their land (73%) under 
Henna cultivation besides this 15% farmers left their land fallow and take only kharif season 
legumes under rainfed conditions (Table 1). Only 12% of farmers who have assured irrigation 
facilities with good quality water take cereals during winter season with a part of land covered 
under vegetable cultivation. In addition to Henna, cropping pattern includes cereals (wheat, 
pearl millet, sorghum, etc.), oilseeds (sesame and rape-mustard), and cash crops 
(cucurbitaceous vegetables, fennel, etc.).  

 

Table 1: Basic socio-demographic features of the respondents 

Parameter Component/Range Frequency 

Age group 21-30 9 
 31-40- 25 
 41-50 45 
 >50 21 

Literacy Illiterate 24 
 primary 18 
 Middle  23 
 Metric and above 35 

Size of land holdings Marginal(< 1 Ha) 35 
 Small(1-2 ha) 44 
 Medium(2-10 Ha) 12 
 Large (>10 Ha) 9 

Farming situation Rainfed 91 
 Irrigated 9 

Land utilization pattern Rainfed Henna as sole crop 73 
 Rainfed arid legumes 15 
 Rainfed legumes with irrigated cereals and vegetables 12 

Farming experience 1-10 year 16 
 11-25 years 31 
 25 and above 53 

Major occupation Farming 62 
 labour 32 
 Job/Business 6 

Annual Income >INR 60,000 62 
 INR 60,000-1,000,00 22 
 >INR 1,00,000 16 

 

The results of present study conducted revealed that the majority, 45.0% of Henna plant 
growers belonged to age group of 41-50 years, 25.0% of growers belonged to age group of 31-
40 years, 9.0% of growers belonged to age group of 21-30 years and above, while 21.0% of 
growers belonged to age group of 50 years and above. Literacy status and the educational 
level of selected growers were analysed and found that 24.0% of Henna plant growers were 
illiterate, 18.0% having a primary level of education, 23.0% Henna plant growers were middle 
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education and 35.0% having metric and above level of education in the study area. The 
farming experience of selected farmers were analysed and found that 31.0% Henna plant 
growers have 11-25 years farming experience followed by 16.0% having 1 to 10 years’ 
experience, and the remaining 53.0% of Henna plant growers having 21 or more years of 
Henna farming experience. In this study 62.0% of Henna plant growers were engaged in 
farming, 32.0% were engaged in labour, 6.0% were engaged in a job/business such as shop 
keeping, government or private employment in the study area. 91% of Henna plant growers 
depend on rains for their Henna crop and only 9% used open well water for supplementary 
irrigation. Almost all the members of respondents’ families (82%) were involved in Henna 
production. Collection of planting materials, nursery raising and preparation of planting sites 
and sale of Henna leaves are carried out by males only, while other cultural operations such 
as weeding, hoeing, harvesting and most of post-harvest operations are mainly performed by 
females and children. The farmers hire labourers for harvesting of Henna leaves which is a 
time-specific job and it is one of the major expenses in Henna cultivation. Management of 
established Henna plantation thus involves operations like one or two hoeing and weeding, 
harvesting, drying, threshing and filling of bags on the threshing floor. However, these are 
linked with rainfall and carried out by all the cultivators at the same time. Consequently, there 
is a shortfall of skilled labourers and the competition for hiring labourers among the cultivators 
raises labour charges to a great extent. At the time of harvesting the labour charges go up to 
Rs. 1500-2000 per labour unit per day as compared to normal rate of Rs 400-600. In this 
situation large farmers (having more capital to invest) are able to carry out operations in time, 
but the medium farmers are constrained and consequently operations are delayed causing 
losses in the form of low overall production and productivity. Small farmers generally do not 
hire labour and only family labour is used.  

The present study also assessed the factors responsible for profitability, economic viability 
and dominance of Henna cultivation in Pali district (Table 2). Henna cultivation has been found 
to be a financially viable based on net present value, internal rate of return and benefit cost 
ratio for farmers. Profitability of mehndi farmers assessed based on the intensity of inputs 
used. In this study 42% farmers have low input; 35% farmers have medium input and 23% of 
farmers have high or use recommended inputs in Henna cultivation.  

 

Table 2. Establishment cost of Henna in Pali district of Rajasthan 

Cost components 
Low input 

farmer Rs ha-1 
Medium input 
farmer Rs ha-1 

High input 
farmer Rs ha-1 

1. Field preparation 3900 4440 5100 

2. Labour cost 11400 11700 13400 
3. Cost of materials and inputs 4704 11120 15848 
4. Interest on working capital, Risk 
margin and managerial cost 

2496 4620 6532 

A. Total variable cost (1-4) 22500 31,880 40,880 
B. Total fixed cost 2000 2000 2000 

Total establishment cost (A+B) 24,500 33,880 42,880 
Subsequent years maintenance cost 
(After 3 years) 4th Year 

8,000 12,000 22,000 
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Productivity and profitability of the farm depends on the intensity of inputs used by Henna 
farmers. The initial establishment cost of cultivation of Henna varied from Rs. 24500 ha-1 with 
low input farmers to Rs. 42880 ha-1 with high input farmers and Rs. 33880 ha-1 with medium 
input farmers. In the subsequent year maintenance and inputs cost is varied due to the 
intensity of inputs used by farmers and varied from Rs 11930 to 18530 ha-1. Similar to the cost 
of cultivation, gross returns, net returns and benefit cost ratio (BCR) also varied for Henna 
farmers. High input farmers achieved average gross returns of Rs. 90000 ha-1 followed by 
medium input farmers at Rs. 67500 ha-1 and low input farmers at Rs. 46800 ha-1 after 3 or 4 
years and onwards. High input farmers achieved average net returns of Rs. 71470 ha-1 
followed by medium inputs farmers at Rs. 52570 ha-1 and low input farmers at Rs. 34870 ha-1 
after the deduction of total cultivation costs after 3 years. This trend follows the same pattern 
after the 3rd year and net returns show a positive trend (Figure 2). Similar to the aforesaid 
economic parameters the BCR of Henna farmers varies with the highest BCR of 4.86 for high 
input farmers, 4.52 for medium input farmers and 3.92 for low input farmers. 

 

Figure 2: Cost of cultivation and returns from 3rd year onwards 

 

Discussion 

The financial analysis indicated that Henna farming, due to its high quality at Pali, is a 
profitable and attractive option for supporting rural livelihoods. Even for small and medium 
farmers, the net return from Henna leaf sales is satisfactory at the individual grower level and 
contributes a large share to annual household income. Pulse crops is not cultivated over a 
significant area in either season (rabi/kharif) due to high salinity and poor soils with very low 
organic carbon content. Secondly the major pulse crops in the area (moong bean and moth 
bean) cultivated in kharif season is now dominated by Henna farming (Chand et al., 2002). The 
results of present study concluded that most of the Henna farmers are mature farmers of 
more than 40 years of age due to migration of the younger generation towards cities in search 
of jobs and other opportunities. Similarly, the majority of the farmers have low levels of 
education as the educated youth are not interested in agriculture due to its lower income 
compared to other avenues. The study area within the arid zone where water quality is very 
poor and soils are saline. Due to this reason most of the Henna cultivation in the area is rainfed 
with minimal irrigated Henna. In this study most farmers used low input or medium input 
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systems and very few farmers used high or recommended inputs for Henna cultivation. This is 
supported by the fact that the majority of the area under Henna cultivation is on degraded 
land and it is not very suitable for growing other crops. Under these conditions’ farmers are 
happy with what they are getting without any or minimum investment. Only resource rich 
farmers use the recommended inputs for Henna cultivation. The main promoting factor in 
growth of its area is that it requires only one-time planting and during later years only two 
operations are required (Kavia and Verma, 2001). This corresponds with the suggestion of 
Cartwright Jones (2006), who advocated the harvesting of Henna within a month of new 
growth or when the leaves begin to turn yellow. In another study in Bangladesh, the farmers 
were found to harvest Henna leaves twice in the first year and four times in successive years 
(Chowdhury et al., 2009).  

There is no major threat or damage to the crop from grazing animals and thus no fencing and 
after care is needed. It looks like `planting once and harvesting for whole life', only with cost 
of intercultural and harvesting operations. The initial establishment cost of cultivation of 
Henna varied from Rs. 24500 ha-1 to Rs. 42880 ha-1 due mainly to the high cost of labour and 
use of manure, compost, insecticides and weedicides to maintain soil fertility and control 
termites and weeds. This is in accordance with the results of Chand et al. (2002) who stated 
the cost of cultivation of Henna varied from Rs.15707 (small farmers) to Rs.16532 ha-1 in Pali 
district of Rajasthan.  

With regard to returns there is an increasing trend in net returns from the 4th year as the fixed 
costs cease and only maintenance cost are involved. Also, Henna grower farmers achieved 
higher BCR’s compared to other arable crops grown farmers in the study area during kharif 
season as described by Singh and Gupta (1998). The high BCR is mainly due to near zero cost 
of maintenance after establishment and getting good crop yields if rains are sufficient. 
Secondly, due to increasing interest towards Henna art, use of Henna in herbal products and 
tattoos, the demand in national and international markets is very high. The results are also in 
conformity to the study of Noonari (2015) who found that Henna growers in Pakistan on 
average earned Rs.54406 per acre net income, with Rs.121600.00 of gross income and 
Rs.67194.00 of total expenditure in the Tharoshah district of Naushahero Feroze Sindh. The 
financial analysis made by Chowdhury et al 2009 also indicated that Henna farming is a 
profitable and attractive option for rural livelihoods. Existing cultivation, processing and trade 
practices in Sojat, India are a unique blend of the farmers' innovations, development of 
marketing procedures and refinement of processing methods. Today more than 250 industrial 
units engaged in Henna processing are located in and around Sojat, providing employment to 
rural masses during lean periods and becoming an important revenue earning enterprise 
(Sukla et al., 2012). These factors also indicate a positive trend towards Henna as the land 
dynamics is diverting from other enterprises towards Henna cultivation. 
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Abstract 

Long criticized, pluriactivity is now perceived as an alternative agricultural strategy and it is 
becoming a subject of support policies in certain territories. But having an off-farm 
professional activity can generate significant work overload and organisational problems that 
might be complicated to manage in the long term. This study focuses on pluriactivity as a 
dynamic strategy that evolves over time due to family circumstances and job opportunities. 
We differentiate the initial project of pluriactivity and the strategies farmers use in order to 
manage overwork. We use an original qualitative approach and 28 interviews of pluriactive 
farmers in “Nord Pas de Calais” (NPdC), region located in northern France. We find that even 
if the main motivations of pluriactivity are patrimonial and economic, the initial projects of 
pluriactivity vary a lot, for some farmers pluriactivity is a patrimonial investment or passion 
for farming project but for others pluriactivity is intended to be a short-run strategy until the 
farms gets bigger and more profitable. Then farmers develop different strategies that lead to 
develop the farm or they reduce farm activities because they cannot give more time to the 
farm. 
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Introduction 

The agricultural sector has experienced several crises in recent years that challenge the 
conventional production model and encourage farmers to develop new strategies. One of 
them is to work outside the farm. In fact, pluriactivity is an old agricultural strategy but little 
appreciated by the agricultural world and by the research community which for a long time- 
thought that working outside the farm was a marginal-short-run strategy. Nevertheless, 
pluriactivity presents a set of advantages at the territorial and individual levels. In some 
respects, this strategy responds to the new requirements of multifunctionality of agriculture, 
including land use and social networking. Often synonymous with part-time salaried 
employment, pluriactivity can support local development by favouring the reception of new 
urban populations with specific needs (sport, cultural activities ...) and thus meet the new 
objectives of the agricultural policies that aim to boost rural space by creating jobs. Some 
territories have integrated the economic and social cohesion benefits of pluriactivity and set 
up new policies to support this strategy (Tallon and Tonneau, 2012). For farmers, pluriactivity 
can compensate for low farm incomes and financial uncertainty of farmers’ families due to 
farm income volatility and can even play a structural role by facilitating investments on the 
farm (Glauden and al., 2006, Butault and al. 1999). Finally, it can therefore provide an 
interesting economic answer to new farmers who are more sensitive to "comfort of life" and 
for whom farm’s income volatility is an impediment to installation (Simon, 2013) 

On the other hand, having an off-farm job might be hard to handle and can generate 
significant work overload and organisational constraints which are difficult to maintain over 
the long term (Coy and Filson, 1996, Keating, 1987). Therefore, can pluriactivity be a long run 
strategy or is it just a step in the life trajectories of farmers? According to us, these questions 
have been studied very little, whereas they are important for evaluating this strategy and its 
ability to constitute a sustainable alternative to the dominant agricultural model. Indeed, 
many studies have worked on pluriactivity and found that most of the time pluriactivity is a 
permanent path (Bertlett, 1986) but it does not mean that most of pluriactive farmers wanted 
to be and stay pluriactive when they set up in agriculture. In a recent study, we found that for 
most of the pluriactivity farmers, pluriactivity was a second choice since they would have been 
full time farmers if the farm had been big enough and profitable. How did a farmer become a 
permanent pluriactive farmer? Is the farm organisation specific? Does the off-farm job require 
to be flexible? 

In this work, we are interesting on pluriactivity as a dynamic strategy. We define a dynamic 
typology that consider both farmer’s initial motivations and current organisation of 
pluriactivity in order to study farmer’s strategies that lead to a permanent pluriactivity. We 
use an original qualitative survey with 28 semi-structured interviews of pluriactive farmers in 
NPdC region that allows exploring farmers life trajectories and expectations about 
pluriactivity. After presenting our survey and our methodology, we present our results about 
initial projects of pluriactivity and type of pluriactivity and trajectories to permanent 
pluriactivity. To conclude we discuss our results. 

Methods 

The “Nord Pas de Calais-(NPdC)” region which is the target of this study, is a French region 
(called “Hauts de France” since 2014) located in the extreme north, bordering Belgium. 
Agriculture is important and occupies two-thirds of the territory: in 2010, the utilised 
agricultural area (UAA) represents more than 66% of the area of the region. Agriculture 
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remains highly diversified: field crops, livestock (Avesnois and Boulonnais dairy), vegetable 
culture (in particular near cities) (Agreste, 2015). Pluriactivity is an old phenomenon that tends 
to develop, but so far, there is still a lack of empirical data and studies on pluriactive farmers 
in NPdC. In this paper, our interest is particularly concerned with duration of pluriactivity, we 
analyse pluriactivity as a dynamic and responsive strategy whose motivations and 
expectations can change over time. We study farmers’ pluriactivity because we want to focus 
on pluriactivity as a (new) professional strategy and a famer is considered pluriactive if he has 
a job outside the farm1.  

Many studies have worked on the durability of the agricultural pluriactivity and found that 
most of the time pluriactivity is a permanent path (Bertlett, 1986) but it does not mean that 
farmers wanted to be part time at first. Recently (Ceriani & Djouak, 2018), we have studied 
more than 60 pluriactive farmers’ interviews (It was a pilot study which will serve as a 
preliminary step for a larger study and which will include more than 300 pluriactive farmers) 
and have found that most of them wanted to be only a farmer when the set up but the farm 
was not profitable enough. Therefore, for some farmers pluriactivity was intended to be 
transitory and in support of a gradual installation but life constraints or job opportunities have 
impacted their motivations and expectations. Some studied before us, also noticed that the 
“intend” of the operator is an important factor that should be used to discriminate the 
“potential continuing part-time farmers” to the “potential full-time farmers” (Mage, 1976). To 
introduce the dynamic process of pluriactivity, we define a typology that differentiate initial 
motivations and expectations of part time farming and the strategies that have been 
developed by farmers and that can lead to a permanent pluriactivity.   

First, we define four initial pluriactivity projects that depend on farmer’s motivations and 
professional situation at the time they set up in agriculture. Like Bartlett (1986) and Mage 
(1976) before, we consider short-run projects since farmers can use the off-farm job to invest 
in the farm and become a full-time farmer or to survive and maintain the farm when it has 
financial issues. On the other hand, some pluriactive projects are intended to last either 
because farmers clearly have strong patrimonial motivations and never really intended to 
become a full-time farmer or to indulge an agricultural passion. Table 1 displays more details 
about our typology for the initial pluriactivity project. 

Regardless of the initial motivations and projects of pluriactivity, combining two activities 
generates an additional workload even when the other job is a source of well-being and 
personal fulfilment. According to Wilkening (1981), the same number of hours spent in an off-
farm job will be more stressful for the farmer since it will represent "wasted hours" for his real 
job as a farmer. The same observation is made by Keating (1987) who highlights a feeling of 
competition between the off-farm employment and agricultural activity. Mc Coy and Filson 
(1996) go further by highlighting the fact that pluriactivity impacts the quality of the time 
spent by the pluriactive farmer with his family but also his own free time. 

To last, pluriactive farmers have to develop strategies in order to reduce time constraints and 
organisational issues. More specifically, we believe that pluriactivity might become a 
permanent stage or not by different path that should be analysed. We will pay a particular 
attention to organisational strategies since exercising an off-farm professional activity can 

                                                      

1 This definition does not include activities of diversification which, being an extension of agricultural activity, 
does not open up to another status. 
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generate significant work overload and organisational constraints. These difficulties of 
pluriactivity are variable, directly related to the farm characteristics and the type of off-farm 
job but they can be a source of stress and dissatisfaction (Coy and Filson, 1996, Keating, 1987) 
and can reduce the durability of this strategy. Indeed, some farmers will develop strategies to 
maintain the pluriactivity and to make it more comfortable and others will try to leave this 
situation.  

Table 1: Initial pluriactivity project 

Setting up ad farmer: Farmers already have a job when setting up. They keep the off-farm job in order 
to finance investments in the farm such as acquire new lands or create new productions, in order to 
increase farm’s revenue. Pluriactivity motivation is essentially economic and it is intended to be 
transitory because in the long term, farmers want to be 100% on his farm (what Mage (1976) calls 
the "aspiring type"). 

Survival: This situation is a necessity, farm is the main activity and farmers have to take another job 
because farm has financial issues and cannot meet the needs of the farmer and his family. Those 
farmers do not want to be pluriactive but it is the only way to continue and save the farm. 
("transitional part time farmer" for Barlett (1986)).  

Patrimonial investment: Farmers already have a full-time job outside the farm, they want to keep it 
because it is important to them economically but also socially and have no intention to leave it. The 
main motivation for pluriactivity is the maintenance of the family heritage. Pluriactivity is supposed 
to last. ("Investors" for Barlett (1986)). 

Passion: the main motivation is passion for land and farm activities. Farmers already have a full-time 
job that is important, for revenue but also for open mindness. Farmers would have been only on the 
farm when they set up but farm revenues are not sufficient. They set up in agriculture to live their 
dream and keep the family farm and maybe one day they will quit the off-farm job in order to be full 
time farmers. ( "Hobby farmers" for Mage,1976) 

 

We assume that farmer’s strategies can be analysed regarding two factors: (i) farm 
investments and prospects (ii) pluriactivity organisation and farm workforce. In particular, 
we will pay attention to farm projects (the will to develop new productions or to find new 
lands...) and we will differentiate farmers who still invest on the farm to increase profitability 
and farmers whose farm engagement tend to decrease. For the organisation of pluriactivity, 
we analyse organisational constraints related to pluriactivity according to the regular needs 
of the farm in labour force and the resources available in labour (employee, volunteer ...). 
However, since agricultural activities have to deal with exceptional constraints such as bad 
weather, livestock surveillance, we also investigate the way off-farm job flexibility might be 
important for farmer satisfaction and farm sustainability. Table 2 gives a description of the 
different strategies. 
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Table 2: Pluriactivity strategies 

Development strategy: Farmers works on the farm regularly and farm activities tend to become more 
important for farmers. Farmers have been working to develop farm activities and they continue to 
invest in the farm and farm revenues tend to increase. The off-farm job is secondary and the farm 
has not been arranged or adapted to the off-farm job. Pluriactivity is not well organised and tend to 
be tough for farmers.   

Farm disengagement strategy: Farmers works on the farm regularly and does most of the duties 
themselves. The off-farm job is not flexible so farmers cannot develop the farm. They do not invest 
anymore in the farm and farm activities tend to become less important for farmers when the off-farm 
job gets more important. Farm has financial issues and. Farmers accept their situation to save the 
family farm. They intend to keep the off-farm job because it is the only way to maintain the farm and 
because it provides a constant revenue. 

Responsive strategy: Farmers works on the farm regularly and does most of the duties themselves 
but pluriactivity has been organised in a way to avoid time constraints and organizational issues. 
The farm uses salaried labour force when needed to do one part of the duties or the off-farm job is 
compatible with the work farm obligations. Farmers still develop and invest in the farm. Moreover, 
pluriactivity is meaningful and has social and economic advantages.  

Managerial strategy: Pluriactivity is well organized and most of farm duties are done by salaries. 
Pluriactive farmers do not feel pluriactivity is restrictive since they do not have to be on the farm 
every day. Farm revenues are sufficient to pay bills at least.   

 

The semi-directive aspect of the interviews gives the collected data a strong qualitative 
identity. Indeed, we used open questions in order to give more voice to farmers and to obtain 
a deeper understanding of farmers’ initial motivations, the way they perceived their current 
situation and their future expectations. On particular, semi-directive interviews allow a 
dynamic perspective since farmers can contextualize their motivations and plans with the 
family farm history and their professional career. Finally, we have selected 28 pluriactive 
farmers who have a wide variety of personal and professional situations so even if field crop 
farms are common in the region, we also selected farmers with farms in livestock or mixed 
farming. To analyse pluriactivity trajectories we need pluriactivive farmers with experienced 
that is why we have primarily surveyed farmers who have been pluriactive for a long time but 
we also interviewed some recent pluriactive farmers.  Table 3 gives a summary description of 
these 28 farmers. 

Interviews lasted from 1h to 1h30m were recorded. They started with some questions 
concerning farmers (age when setting up in agriculture, education level, family situation ...) 
and farms (UAA, legal status, production ...). Secondly, we asked farmers to tell us about their 
installation in agriculture and their personal/professional trajectory. Then, we asked the 
farmers to explain in more detail their pluriactivity, the initial and current motivations as well 
as the advantages and disadvantages of this double life, the way they considered the future 
and how their pluriactivity is perceived by agricultural sector. At the end of the interview, 
some questions relating to the financial situation of the farm and the work force were asked. 
The richness of the collected answers is a precious material which, according to us, makes it 
possible to study qualitatively the satisfaction of the pluriactive farmers and the factors which 
influence it.   
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Table 3: Description of interviewed pluriactive farmers 

Farmer Description 

A1 
Female 

Farmer in PLFC2 and farm management advisor, field crop farm of 68 ha, 38 years old, installed for 12 years, 
married with 3 young children 

A2 
Male 

Farmer in PLFC and sales executive, field crop farm of 62 ha, 37 years old, installed for 5 years, married with 
2 young children 

A3 
Male 

Individual farmer and mechanical workshop manager, crop-livestock farm of 41 ha, 40 years old, installed for 
5 years, married without children 

A4 
Male 

Individual farmer and employee in a battery factory, field crop farm of 42 ha, 52 years old, installed for 18 
years, married with 2 children over 20. 

A5 
Male 

Individual farmer and trader in cattle cooperative, cattle breeding on 35 ha, 36 years old, installed for 8 years, 
married with 2 young children 

A6 
Male 

Individual farmer and gardens-parks manager, crop-livestock farm of 20 ha, 45 years old, installed for 15 years, 
single, 3 children from 5 to 18 years old. 

A7 
Female 

Individual farmer and an agricultural advisor, field crop farm of 80 ha, 40 years old, installed for 1 year, 
married with 2 children of 12 and 18 years old. 

A8 
Male 

Individual farmer and hospital employee, field crop farm of 24 ha, 48 years old, installed for 17 years, married 
with 2 children of 13 and 16 years old. 

A9 
Male 

Individual farmer and agricultural union director, field crop farm of 57 ha, 41 years old, installed for 14 years, 
married with 2 children of 13 and 16 years old. 

A10 
Female 

Individual farmer and specialized educator, horse breeding on 10 ha, 34 years old, installed for 6 years, 
married with 1 children of 5 years old. 

A11 
Male 

Individual farmer and manager of a transport company, field crop farm of 50 ha, 52 years old, installed for 22 
years, married with 2 children over 20 

A12 
Male 

Individual farmer and works in the construction industry, crop-livestock farm of 52 ha, 60 years old, installed 
for 21 years, married with 2 children over 20 

A13 
Male 

Individual farmer and machine operator, field crop farm of 31 ha, 35 years old, installed for 8 years, married 
with 2 children of 5 and 8 years old.  

A14 
Male 

Individual farmer and employee in a battery factory, field crop farm of 42 ha, 52 years old, installed for 18 
years, married with 2 children over 20. 

A15 
Male 

Individual farmer and electromecanician, field crop farm of 98 ha, 35 years old, installed for 5 years, single 
with 2 young children 

A16 
Male 

Individual farmer and gardens-parks manager, field crop farm of 25 ha, 40 years old, installed for 16 years, 
single, no child. 

A17 
Male 

Individual farmer and teacher, field crop farm of 67 ha, 54 years old, installed for 20 years, married with 3 
children between 16 and 26 years old. 

A18 
Female 

Individual farmer and worker in industry, cattle farming of 18 cows, farm of 10 ha, 38 years old, installed for 
16 years, married with 3 children of 9 and 13 years old. 

A19 
Male 

Individual farmer and worker in a medical institute, field crop farm of 36 ha, 60 years old, installed for 35 
years, single with 3 children between 1è and 31 years old. 

A20 
Male 

Individual farmer and CUMA manager, field crop farm of 75 ha, 34 years old, installed for 6 years, married 
with 2 children of 2 and 4 years old. 

A21 
Male 

Individual farmer and computer scientist, field crop farm of 65 ha, 44 years old, installed for18 years, married 
with 2 children over 20 

A22 
Male 

Individual farmer and teacher, field crop farm of 140 ha, 36 years old, installed for 8 years, married with 2 
children between 3 and 6 

A23 
Male 

Individual farmer and farmer employees, field crop farm of 57 ha, 42 years old, installed for 22 years, married 
with 2 children of 14 and 10 years old.  

A24 
Male 

Individual farmer and industrial contract manager, field crop farm of 36 ha, 36 years old, installed for 4 years, 
married without children 

A25 
Male 

Individual farmer and teacher, crop-livestock farm of 140 ha, 40years old, installed for 18 years, married 
without 5 children between 13 and 17 

A26 
Male 

Individual farmer and teacher, crop-livestock farm of 20 ha, 33 years old, installed for 13 years, single without 
3  

A27 
Male 

Individual farmer and manager in Chamber of Agricultural, field crop farm of 40 ha, 45 years old, installed for 
12 year, married with 2 children of 14 and 17 years old. 

A28 
Male 

Individual farmer and executive manager, field crop farm of 15 ha, 48 years old, installed for 18 years, married 
with 3 children of 18 and 22 years old. 

                                                      
2 Private limited farming company 
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Finally, a thematic approach was used to analyse the collected data because it allows to 
focuses on examining themes within data. Moreover, thematic analysis is useful because it 
allows to go beyond simply counting words or phrases in the text, as in “content analysis” 
approach, and to explore explicit and implicit meanings within the data. It is finally important 
to specify that a certain redundancy of the transcribed speeches was observed when 
approaching 30 farmers questioned, which can be interpreted by the effect of a form of a data 
saturation relating to the various encountered situations. 

Results 

First, we dipslay the results about the initial motivations and projects of pluriactivity and then 
we analyse farmer’s strategies.  

Initial projects 

We asked farmers about the reasons for which they decided to become pluriactive at first 
(Figure 1) and if they wanted to be pluriactive when they settled up. Like Barlett (1986), we 
find that the main motivation is economic, but we have to differentiate farmers who use the 
off-farm job to increase the household revenue or to reduce the risk and those who use it to 
invest on the farm or to pay debts. Almost all the farmers we interviewed took over the family 
farm, which implies patrimonial motivations even if its weight differs among farmers.  

 

Figure 1: Pluriactivity initial motivation 

 

Over 28 farmers, 21 clearly admit that they would have been 100% on the farm when they 
settled up in agriculture if farm’s revenue would have been sufficient (Figure 2). So, 75% of 
the pluriactive farmers we interviewed did not want to be or did not want to stay pluriactive 
at first but it doesn’t mean that all tried to develop the farm and make it more profitable. In 
any event, it is an important result because it means that for many pluriactive farmers 
pluriactivity was not the optimal choice. It is not contradictory to previous studies that found 
that pluriactivity was a permanent way since pluriactivity motivations and aims might change 
over time. 
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Figure 2: Willing to be only a farmer when set up 

Eventually, when we apply our initial typology to the 28 interviewed farmers using motivations 
and projects at the time they set up in agriculture, we get the distribution described in table 
4. We observe that among the 28 farmers 16 knew if they wanted to stay pluriactive or not, 
for the others pluriactivity duration was more uncertain. Indeed, 6 farmers had a patrimonial 
project and never intended to become a full-time farmer. Those farmers have strong 
patrimonial motivations and if most of them wanted to become a farmer, work in the family 
farm, they never intended to be 100% on the farm. They consider agriculture as a secondary 
or complementary activity while the off-farm job plays an important role, financially but also 
for personal identity " (speaking of agriculture) it is secondary because my off- farm job is 
really important in my professional life" (individual A7). For these farmers, pluriactivity has 
indeed imposed itself, the only way to preserve the family farm, perpetuate a family tradition, 
a work undertaken long time ago by parents, grandparents... but also the only possibility to 
leave their passion for agriculture.". It is only in a family project ... [...] it is the result of the 
work of generations before us but it is true that if there had not been children behind we did 
not necessarily need it ... we would not necessarily have taken the step "(individual A7) 

Table 4: Initial project typology 

Survival (7) 
A11, A12, A16, A19, A21, A25, A26 

Setting up (8) 
A3, A5, A6, A10, A14, A15; A17, A22  

Patrimonial (6) 
A1, A7, A8, A9, A13, A27 

Passion (7) 
A2, A4, A18, A20, A23, A24, A28 

 

Among the 28 farmers, only 8 wanted to use pluriactivity as a transitory project in order to 
develop the farm and make it more profitable. 7 farmers did not really know if their 
pluriactivity was going to last, they were passionate by agriculture and they wanted to become 
a farmer at least a part time one. These farmers all grew up in an agricultural environment, 
mostly settling in a family setting and as a multi-worker. According to them the financial 
situation of their farm was not bad when they set up but the farm was not big enough to leave 
the off-farm job and be only a farmer. Moreover, the other job was important for them, 
economically and socially, that is why they decided to combine two activities. Pluriactivity was 
a positive choice : "Yes, it was a desire to be pluriactive, in fact I did not see myself a full-time 
farmer ... I had a real love and interest in farming, but at the same time I had the desire to 
have a salaried activity, physically to be on the move, to be able to travel a little bit .... so 
farming seemed a little too sedentary to me actually "replied - as an example - one of the 
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farmers multi-active respondents belonging to this category when we asked the question 
about their desire to be multi-active at installation.  

A dynamic strategy 

Pluriactivity motivations and expectations tend to change over time depending of family 
context and job opportunities. The use of semi-structured interviews allows to contextualize 
farmers’ motivations and plans by integrating them into farmers’ family and professional 
history. First, we display some results regarding the way farmers consider their pluriactivity in 
the following years. Then, we analyse the organization of pluriactivity, including work on the 
farm, the advantages and disadvantages of pluriactivity felt by the farmer as well as farm 
investments and prospects in order to classify the different strategies farmers have been 
using.  

When we ask farmers about their future and if they want to stay pluriactive (Figure 4), 12 
farmers seem to be quite confident and say they want to stay pluriactive. They put forward 
their off-farm job and will never drop it, for them stopping pluriactivity means giving up the 
farm and with-it part of their passion and family history. On the contrary, 8 farmers do not 
want to stay pluriactive and think about leaving the off-farm job and 2 farmers want to stop 
agriculture.  

 

Figure 4: Keep on pluriactivity? 

 

7 farmers do not really know and for 6 of them the future of their pluriactivity will depend on 
the farm profitability and farm opportunities. Those farmers seem to be willing to leave their 
off-farm job one day to become “just a farmer” because the work overload will be too hard so 
that they will have to make a choice, which often means stop the off-farm job, if the farm is 
profitable. "I like it. Satisfied, yes. After that, I'm not saying it's easy every day. Some days 
when you have to run, you have to run. That's why I put it into perspective. Today, I'm young, 
it's okay. Maybe in ten years from now, I will not be willing to run like this anymore. There is, I 
think, an evolution over time, with age, that will make priorities elsewhere. Pluriactivity works 
great for a while, but not forever I don't see myself multiactive until I'm 65." (individual A22) 

Development strategy 

Some farmers are in a proactive strategy, they are using pluriactivity to develop the farm in 
order to be able to quit the other job one day soon. For them, farming is the most important 
activity and the other job is a good way to develop the farm or a specific activity on the farm 
such.  They would leave the other job and live entirely from farm income if it was possible but 
for the moment farm’s income is not sufficient. For them, the profitability of the farm is not a 
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current issue but one day the farm will have to be profitable and they all intend to leave their 
jobs to devote themselves to agriculture. Those farmers are more likely to use the other job 
to invest in the farm in order to create new agricultural activities or to improve the farm. This 
is the case for individual A4 who was leaving the other job at the time of the interview. This 
farmer was really satisfied of his pluriactivity because he was convinced that the other job 
provided lots of things to his agricultural activity and personal life but time constraints and 
organisational problems make his pluriactivity impossible to continue. Some of them have 
already totally transformed the family farm and made their own organisation such as 
individual A24 who says that thanks to the other job she is able to develop the agricultural 
activity, take some risks without pressure or such as individual A25 who stopped producing 
milk in order to take an off-farm job and develop a direct selling activity until it is profitable. 
"Anyway, we are much more confident in what we do. There are choices.... I knew I wanted to 
do organic vegetables, but it was really unknown, I had no idea how to do it, I even complicated 
things by working with the old varieties of wheat, by working in short circuit, etc. …With 
respect to the agricultural profession, the other profession allows me to take more risks in my 
agricultural activity if necessary" (individual A24). Farmers who belong to this type of 
pluriactivty are quite satisfied with their plutriactivity because it allowed them to settle up in 
agriculture in better conditions, with less risk and in particular the other job and the financial 
security give them the opportunity to develop the farm. 

Farm disengagement strategy 

For some farmers we observe that pluriactivity has not been organised at first and the off-
farm job is a full time and does not benefit from flexibility. The farm financial situation is not 
good enough to employ extra work, so the only way to maintain de farm unless farmer’s 
absenteeism due to the other job is to use reduce farm activities and devote more time to the 
off-farm job. In this category, we can differentiate two types of farmers (i) the happy one who 
want to keep on being pluriactive. Those farmers seem quite satisfied of their pluriactivity 
because eventually they have found a solution to reduce time constraints and maintain the 
family farm. The other job enables to increase revenues and it reduces the risk but they finally 
find that it enables social contacts and open-mindedness. But for other farmers who have a 
lot of work on the farm, pluriactivity is still complicated to manage and the other job leads to 
overwork and stress. These farmers put forward tight schedule, weeks that sometimes exceed 
60 hours of work and leave little time for leisure, family and for rest. Like other studies, we 
note that there is some frustration among these farmers when they are not present on the 
farm so that the off-farm job that is not complementary happens to be in competition with 
their farm activity (Keating, 1987). For some farmers, time spent outside the farm may even 
be perceived as lost time for the "real" job of farming (Wilkening, 1981). "What is difficult for 
me is to accept the day when it's nice to be locked up or to accept because an animal is not 
good or maybe I'll find her dead at night is this difficulty to say: all in all, I would be there, I 
would manage to cure it or I would be at home I would be able to cut wheat because it is nice 
"(individual A3). Indeed, some farmers are quite unsatisfied of their pluriactivity and they 
might quit agriculture one day because the farm’s financial situation is bad but for most of 
them and others so difficult that he feels he isn’t good enough and doesn’t belong to the 
“agriculture world” so he sincerely thinks about leaving agriculture. These pluriactive farmers 
were often forced to keep the off-farm job because farm incomes were (at the time of the 
farm takeover) and still are insufficient. All these farmers therefore put forward a financial 
motivation that sometimes seems to be the only reason for pluriactivity which partly explains 
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their dissatisfaction: "I use my income from job of educator to invest in the farm" (individual 
A10). Their dissatisfaction is often mixed with anger towards an economic and political context 
for which they cannot do anything but which has a huge impact on their remuneration for 
agricultural work. "I have the feeling of always working and not receiving much in return, 
telling myself that if I was bad, it's true that it would be normal for me not to succeed, but here 
I do my very best” (individual A3) 

Managerial strategy  

5 farmers have developed a managerial strategy and have regular employees who manage a 
large part of the farm work, almost independently. This organisation of the farm makes the 
farmer appear as "a manager" who delegates a part of the work to one (or more) trusted 
person, the family of course but also employees. "Today it is the employee who does all the 
work ... for the anecdote I address him with the courtesy “vous” because he is my employee 
but he knew me from my childhood ... I do not need to see him every day, there must also be 
trust and he agrees to be autonomous "(individual A1).  An essential element of this 
"managerial" organisation of pluriactivity seems to be related to the ability to adjust the off-
farm work schedule in order to free up time to be present on the farm. The flexibility of the 
other job and the choice of an agricultural production with less time constraints reduce the 
stress related to absences on the farm and mitigate the workload by limiting the "double 
days". This "managerial" governance combined with an optimal organisation of the time spent 
on the farm allows them to consider the future of their pluriactivity with greater serenity. 
Indeed, they all want to stay pluriactive. In addition, when they do not have an employee, 
their parents or spouse might keep an eye on the farm. "I can easily arrange things with my 
employee. I avail myself in winter for stand-by duties that I compensate in the summer at the 
time of the harvest. So there are no worries .... my tractors return in October in the buildings 
and leave in February for fertilizers. I have six months, I can disconnect the batteries 
"(individual A8). Most of those farmers became pluriactive in order to keep the family farm so 
they are proud to have kept the family farm despite their other job “I managed to set up a 
system that allows me to get my own farm, to manage the farm without constraints, so I am 
very happy with what I did "(A9).  

Responsive strategy 

Most of the farmers have adapted the farm to their pluriactivity but they keep on investing in 
the farm and they still develop farm activities and have projects. Some of them have changed 
farm organisation or production in in order to reduce time constraints as individual A4 who 
has oriented his agricultural activity towards an automated production which requires little 
work force and if necessary this farmer uses occasional supports. Others have an agricultural 
production that requires lots of work force and presence on the farm but the off-farm job is 
flexible so they can free up time when needed like individual A5 who is a cattle farmer, and 
clearly indicates that the workload is important and that he has "big time constraints" but 
thanks to the flexibility of his other job he can manage the farm, for the moment at least.  

For most of them, the other job is qualified and they like it and they are convinced that their 
agricultural activity improves their off-farm-work efficiency because it provides 
entrepreneurial and business skills and for some of them being a farmer enhances networks 
and gives them a better legitimacy in their work.  “(about the farming activity) As part of my 
job, it brings me a lot of things, both professionally, also socially, somewhere, because I am in 
contact with other farmers, social networks that are different. I have contacts with my fellow 
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farmers as part of my CUMA, with the new owners. There are many circles of exchange that 
are, in my opinion, positive, that I would not have if I were only an employee of the Chamber 
of Agriculture” (Individual A27).  

They are still engaged in the farm and continue to invest and create new activities such as 
direct sales. These farmers have a positive image of the farmer’s work: famers get their own 
business, which give them independency and a freedom of satisfaction. Farmers have multiple 
functions and diverse skills: “A farmer is a business leader, (he decides). I am a farmer, a 
business leader who takes into account different dimensions: technical dimension, economic 
dimension and then environmental dimension” (A20). They think that pluriactivity gives them 
the possibility to be in « both worlds », it opens their mind. Some farmers are convinced that 
their agricultural activity improves their off-farm-work efficiency because it provides 
entrepreneurial and business skills and for some of them being a farmer enhances networks 
and gives them a better legitimacy in their work.  “(about the farming activity) As part of my 
job, it brings me a lot of things, both professionally, also socially, somewhere, because I am in 
contact with other farmers, social networks that are different. I have contacts with my fellow 
farmers as part of my CUMA, with the new owners. There are many circles of exchange that 
are, in my opinion, positive, that I would not have if I were only an employee of the Chamber 
of Agriculture” (Individual A27). As individual A25 who has created a direct selling activity and 
uses the off-farm job to improve his skills and bring in new consumers to his business. "Being 
multi-active reinforces the development of my direct sales workshop of Angus.... my job of 
teacher is open-mindedness, it is openness to technique, training, meetings that I can make, it 
helps the development of my direct sales clientele, it's really complementary” (Individual A25) 

They seem satisfied about their situation and want to continue. They see lots of advantages 
for having two jobs. Financial incentives and profitability do not seem to be a main condition 
for going on with the farm but they do not want to finance the farm with their other activity. 
However, it does not mean that they do not invest themselves on the farm. In fact, those 
farmers seem to be more confident in the future and in their capacities, and most of them are 
in a proactive entrepreneurial logic: they maintain the family patrimony, remaining open on 
possible evolutions of their farm and their career and without being limited to the technical 
conceptions, or cultural and legal aspects of the profession (Lagarde, 2006). “On the heritage 
side, I am very proud of me. I have carried out two activities and maintained this farm that 
may be passed down to my children. I am also very proud somewhere to maintain an 
agricultural fabric ….” A27. But even when pluriactivity seems to be pleasant, many farmers 
put forward the overload work and time constraints "The disadvantages (of pluriactivity) are 
double organization, double stress.  We combine two different professions and therefore two 
different stresses. We also have different deadlines. (Individual A26). Indeed, most of those 
would to be willing to leave their off-farm job to become someday “just a farmer”. They admit 
that one day the work overload will be too hard so that they will have to make a choice, which 
often means stop the off-farm job, if the farm is profitable. "I like it. Satisfied, yes. After that, 
I'm not saying it's easy every day. Some days when you have to run, you have to run. That's 
why I put it into perspective. Today, I'm young, it's okay. Maybe in ten years from now, I will 
not be willing to run like this anymore. There is, I think, an evolution over time, with age, that 
will make priorities elsewhere. Pluriactivity works great for a while, but not forever I don't see 
myself multiactive until I'm 65." (Individual A22) 
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Discussion 

Our results seem to indicate that satisfaction and sustainability of pluriactivity are closely 
linked to the expectations of pluriactivity and its origins, but organisational constraints and 
work overload are also very present. In addition, it appears that pluriactivity is more 
sustainable when the farm has been designed and organised in order to complement the other 
activity and to reduce time constraints. In particular, the presence of regular or even 
permanent labour force appears highly discriminating in terms of sustainability because it 
allows farmers to be less present on the farm which limits not only the workload but especially 
the "competition" between jobs, generating stress (Keating, 1987). The "partial" presence of 
the farmer on the farm which is compensated by a non-family labour force necessarily raises 
the question of the identity of the pluriactive farmer, his managerial skills and his position as 
executive director (Legagneux and Salvagnac, 2017). Indeed, the farmers we interviewed 
consider themselves farmers-entrepreneurs, they often have investment projects, or even 
expansion plans, but their vision of the job is different from that of their parents and 
grandparents. This new way of being a farmer can be related to the increase of the use of 
salaries on farms since the 2000s (Legagneux and Salvagnac, 2017) and the restructuration of 
work and work organization within farm (Harff and Lamarche, 1998). 

Hiring of permanent employee(s) also raises the question of financial profitability of the farm. 
During our interviews, many farmers expressed the will to get an employee on the farm, but 
they cannot afford it. Indeed, pluriactive farmers who employ someone on the farm are the 
only ones to consider that the financial situation of their exploitation is good. Finally, 
unsatisfied farmers are often in a precarious financial situation, leading them to increase their 
working hours in the hope of getting back on their feet. Unfortunately, they rarely see their 
efforts rewarded and it follows a negative spiral: a bad financial situation requiring them to 
work more which causes a lot of stress, fatigue and psychological tension and with, 
unfortunately results, in general, far from their expectations which can even be a real brake 
for family transmission. 

Conclusion 

They can be called "slashers", professionals doing several activities at once, trades 
interspersed with a slash: computer scientist / baker, photographer / craftsman ... etc. and 
the agricultural world is not immune to this way of life that is increasingly present in society. 
Based on this observation, we conducted a qualitative study on agricultural pluriactivity in 
NPdC and in particular on the satisfaction and sustainability of such a strategy. Our results 
seem to indicate that the durability of pluriactivity is closely linked to the expectations of this 
strategy and to the role of farmer. In addition, satisfied farmers often have patrimonial and 
social motivations and the off-farm job seems to have a strong identity role. However, these 
farmers also consider themselves as farmers-entrepreneurs whose functions are varied and 
qualified. The flexibility of the off-farm job and the good organisation of the farm around the 
pluriactivity contribute to the success of this strategy. However, the durability of the 
pluriactivity also depends on the possibility of hiring regular or even permanent workforce 
which will guarantee serenity for the farmer. But the possibility to get regular employees 
depends on the financial situation of the farm, which then appears as an important condition 
for the success of pluriactivity in the long run. At the end of this work, a number of factors 
related to the satisfaction and sustainability of pluriactivity were highlighted. Among these 
factors, the financial situation, the organisation of the farm and in particular the presence of 
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labour and the flexibility of the other job are issues of pluriactivity on which public actors can 
position themselves. However, it’s important to remember that during this study we were 
interested in a restricted geographical area (part of the north of France) and a future extension 
(this is planned soon) of this area as well as an enrichment of the database of farmers 
interviewed will improve the validity of the current study. Therefore, a reflection on the 
support of pluriactive farmers is necessary to integrate the particularities related to their dual 
profession: time management, lack of manpower in the short and long run, organisational 
difficulties. This consideration is important because it would improve the pluriactive farmer’s 
situation and make this strategy more sustainable and more attractive for young farmers who 
want to combine activities while reducing financial constraints and risk.  
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Extended Abstract  

Olive oil is probably the most characteristic product of the Mediterranean and is considered 
to be the healthiest edible fat deriving from vegetable origins. With a steady upward trend in 
the demand for olive oil globally due to its health benefits and the fact that the EU accounts 
for 69% of the world’s olive oil production (European Commission, 2020), it is interesting to 
see how principal olive oil markets interact in such a dynamic environment. The most 
important markets for olive oil are Spain, Italy and Greece, and in recent years Portugal and 
France have also increased their production for olive oil, even though they are still falling 
behind.   

Several policies have been undertaken on behalf of the European Commission aiming to 
integrate national markets. Thus, the Single Market established in 1993, encouraged the free 
movement of people, goods, and capital (Borchert & Reineke, 2007). Although policies have 
been undertaken to empower competition, there is evidence that the prices for same 
products in neighbouring countries differ (Emmanouilides & Fousekis, 2012). Therefore, price 
relations between different markets and/or actors across the supply chain have gained 
considerable attention by policy makers and researchers (Conforti, 2004). This is because the 
intensity and pattern of price transmission reflect the degree of market integration or market 
segmentation respectively (Fackler & Goodwin, 2001). In highly integrated markets, a shock 
in one market will cause a shock to the other due to price dependence (Meyer & von Cramon-
Taubadel, 2004). Thus, price transmission is a prerequisite for markets to achieve economic 
efficiency and to maximise benefits from spatial arbitrage (Serra et al, 2006).   

The majority of existing research focus on agricultural commodities consumed and produced 
mainly in Northern European countries. To the best of knowledge, a very limited number of 
studies has analysed price relations regarding olive oil within the Mediterranean countries. 
To find evidence of price mechanisms related to the olive oil markets, a systematic mapping 
process was performed. The search was expanded on vegetable edible oils to reduce the 
likelihood of missing any evidence relating to the topic of interest.   

This study was based on a systematic search of past research relating to price transmission in 
edible oil markets worldwide, published after 1993.  The database search was conducted on 
the following databases: AgEcon, CAB abstracts, CABI, Emerald, Food Science Source, 
ProQuest, Science Direct, Scopus, Web of Science, Wiley Online and World Bank, based on set 
inclusion and exclusion criteria. This search resulted in 8019 
documents and 107 more documents were identified through other online sources such as 
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Google Scholar. During the first stage, screening of Title-Abstract-Keyword was 
conducted, where 185 articles progressed to full-text eligibility. Only 34 articles met the 
inclusion criteria and were included for qualitative analysis. 29 of the articles studied price 
transmission in edible oil markets and 5 investigated both price transmission and volatility. All 
the included studies were analysed in detail and were categorised based on the type of price 
transmission they studied. 10 studies analysed vertical price transmission, 10 focused on 
spatial price transmission and the final 14 examined horizontal price transmission. The most 
studied types of edible oils were palm oil, soybean oil and rapeseed oil. This may be due to 
the fact that these are some of the most commonly used vegetable oils that are used for 
biofuels, and a total of 15 articles studied price transmission in relation to energy markets 
specifically (Yu et al, 2006; Campiche et al, 2007; Busse and Ihle, 2009; Rifin, 2009; Busse et al, 
2010; Peri and Baldi, 2010; Busse et al, 2012; Hassouneh et al, 2012; Nakajima, 2012; Thomas 
et al, 2013; Serra and Zilberman, 2013; Vacha et al, 2013; Bergmann et al, 2016; Salami and 
Haron, 2018; Mohantya and Mishra, 2020). Noteworthy is the fact that only 2 of the included 
studies examined price transmission in Mediterranean olive oil markets (Fousekis and 
Klonaris, 2002; Emmanouilides et al, 2014).  

The findings show that the frequency of data used in the articles depends on the type of price 
transmission studied. In vertical price transmission the most utilized frequency of data was 
weekly data, for spatial price transmission monthly data, and for horizontal price transmission 
daily data. Even though the frequency of data differs based on the form of price transmission, 
it is found that the most employed empirical models were Johansen cointegration analysis 
and VECM.  

Testing for asymmetries is one of the main focus topics of these studies, where 56% of the 
articles test for asymmetries and 44% do not account for them. The results regarding the 
presence of asymmetries are mixed and depend on the type of edible oil and the type of price 
transmission. Market power appears to be the most common cause of asymmetries regardless 
of the type of edible oil or price transmission. Some other important causes of asymmetries 
appear in relation to the type of price transmission, such as stock-holding behaviours, 
transaction costs and lack of competitive market conditions, for vertical, spatial, and 
horizontal price transmission, respectively.   

The results of the systematic mapping process indicate that there is a gap in the literature for 
studies that examine price transmission in olive oil markets, therefore further research is 
suggested to investigate price relationships in major EU olive oil markets.  
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Abstract  

The paper addresses environmental impact of using pallets and compares the performance of 
plastic and wooden pallets regarding to carbon footprint and waste, they produce. Common 
wisdom has it, that wooden pallets are environmentally friendly. Plastic pallets, due to the 
material they are being made of, are regarded to be a potential source of pollution in land, 
air, and water.  We have gathered, evaluated, extracted and/or calculated data showing how 
much CO2, and solid waste is generated due to specific wooden and plastic pallet operations. 
The Life Cycle Assessment method has been used, with primary data extracted from our own 
studies and experience or taken from reputable sources we quote in our work.   
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Introduction 

Pallets are common assets in the range of logistic tools, applied to maintain efficiency in 
storage and transportation of goods. They are used across all industries, and all means of 
transportation. Pallets made of wood have prevailed in the market. They are standardized, 
easy to manufacture, common to use and swap, and - until recently - relatively cheap. Timber 
has been regarded as environmentally friendly material obtained from seemingly 
inexhaustible source: trees growing without any limitations in our forests. Common wisdom 
has it, that wooden pallets withdrawn from operations, can be burned, or can rot without 
adversely affecting nature.  

Plastic (and metal) pallets have also been used for quite some decades by now, though on 
smaller scale than their wooden counterparts. They vary in construction and performance 
characteristics. Generally, they have been regarded as more durable and simultaneously more 
expensive than wooden ones.  Manufacturing plastic pallets requires relatively high 
investment in moulding machines and high material costs of oil and/or gas-derived plastic 
granulate. Public opinion is not in favour of plastics, accusing it to be the source of pollution 
in land, air, and water.  Pictures of plastic items floating on ocean surface, or black smoke 
coming from plastic incineration, we can find in the media are all too common, not to be 
addressed, unless we agree that sustained development, and the need to care for 
environment are just empty phrases.  

We have come across common judgements of plastic goods adversely affecting our 
environment, based on opinions with often limited if any data to back them. We, instead, 
wanted to check and present data, refraining from expressing our opinion, let alone a firm 
judgement, ready to accept critics and corrections to the method we applied and results we 
have achieved. Should the results stand the critics and appear generally correct, we would be 
glad to proceed and participate in implementing advantages of plastic pallets, reflected by the 
outcome of our research.   

Our intention has been to gather, check, extract and/or calculate data showing how much 
CO2, and solid waste is generated due to specific wooden and plastic pallet production and 
operations. We have been relaying on our personal experience and research, as well as 
literature available. We accept that others' experiences may be different; all are welcomed to 
test our model with their own scenarios and compare results. 

Methods 

Pallets are “made to work” - facilitate storing and transporting of goods. Our goal is to provide 
a transparent account of the environmental impact of making, using, and wasting different 
pallets, along their lifetime, in relation to the work they have done. Sourcing raw materials, 
manufacturing elements, assembling pallets, working with them, and finally disposing of 
them, requires energy, and generates emissions and waste.  Ultimately, we want to compare 
total CO2 emissions and solid waste generated by pallets, against the number of trips 
completed with their use. 
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Our model is based upon LCA3 approach. We have cumulated the energy needed to source 
materials and the energy to assemble/mould a Ready to Use (R2U) object – the pallet. All 
energy in the MAKE process has been treated as electrical energy and denominated in kWh. 
Generating electricity produces carbon dioxide: 0.7733 kg CO2 / 1 kWh (data for Poland). The 
CO2 emissions of the USE phase are function of pallet weight, distance driven and fuel (diesel 
oil) consumption. WASTE is seen in two dimensions: CO2 emissions deriving from material 
decomposition, and solid waste, both in kg.; they make up for the whole waste.  

Model 

Figure 2.1 

The MAKE phase yields a Ready to Use pallet (R2U). A 
pallet will be assigned the R2U status, following one of 
the processes: manufacturing from original/virgin 
materials or elements, repairing - using both new 
and/or recovered elements, and remanufacturing - 
using materials from previously used, recycled items. 

Each of these processes may require different inputs 
and result in specific waste generated volumes. When 
R2U state is observed, action: INTRODUCE is executed, 
and pallets are made available for the Use phase. 

The USE phase embraces all activities that pallets have 
been made for. Pallet life cycle and their “productivity” 
vary, depending, among others, upon the way they are 

being used. For the Reference Service Life (RSL), a synthetic measure of pallet productivity, 
durability, and longevity, we have adopted the average number of trips (issues) executed 
within pallet’s lifetime. The USE phase CO2 emissions volumes are a function of pallet weight, 
distance driven and fuel (diesel oil) consumption. Different conditions and pallet type could 
produce different RSL levels. A pallet that cannot be used due to technical reasons is regarded 
as defected - DFC. When DFC state occurs, action WITHDRAW is executed. DFC pallets, 
withdrawn from use are redirected to repair, or to remanufacture, or to waste. 

The WASTE phase embrace: recycling - resulting with materials that would be applied in 
industries other than pallet manufacturing, incineration – burning for heat and/or energy 
production, landfilling – using time and space for wasted product/material to biodegrade.  

Scope 

Pallet choice 

Pallets, we find in the market, vary substantially. Materials used, the construction concept, 
load capacity, current condition, etc. determine if and where we can use them safely. Many 
of them are used only once. Some are earmarked for light weights only. We limit our interest 
to returnable pallets, used in the FMCG and Retail Goods industries.  These require relatively 

                                                      

3 Life cycle assessment or LCA (also known as life cycle analysis) is a methodology for assessing environmental 
impacts associated with all the stages of the life cycle of a commercial product, process, or service. For instance, in the case 
of a manufactured product, environmental impacts are assessed from raw material extraction and processing (cradle), 
through the product's manufacture, distribution and use, to the recycling or final disposal of the materials composing it 
(grave)- http//:www.wikipedia.org; [access: 01/07/2021] 
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high weight capacity, and robust pallets, that can stand multiple handling operations with 
different goods bestowed on the way from a Manufacturer to a Sales Point, which may be 
hundreds of kilometres away, along the supply chain system.  Saving precious warehouse 
space, palletized goods are stored in high racks. Low quality, low capacity, and one-way pallets 
are out of scope of our study.   

Pallet circulation 

Palletized goods are sent from Manufacturer to Distribution Centre and ultimately delivered 
to Sales Point. It is common for Manufacturer and Distribution Centre to keep goods in high 
storage racks, demanding adequate capacity and quality from pallets used. Various types of 
vehicles are used for transport and distribution; however, our model is based on commonly 
used transport unit: a truck tractor and 13.6 m trailer, that can carry 33 pallets with 
approximately 24.000 kg load, stowed 2.60 m high. This type of vehicle offers favourable ratio 
of fuel consumption to carried load weight. We assume this transport unit consumes, as per 
100 km, 21 litres of fuel - empty, plus 0.4 litres - for every ton of load carried. Considering the 
maximum authorized vehicle weight4, we assume an average single pallet load as 800 kg, 
carried from a Manufacturer’s location to a Distribution Centre - a 100 km drive, and from a 
Distribution Centre, further to a Sales Point - another 100 km. One full working cycle consists 
of a pallet loaded and carried 200 km, then empty returned same 200 km back. While real life 
scenarios may vary, the proportions of energy (fuel) consumption for transportation of 
wooden and plastic pallets, remain. Using discrete measure of 100 km may be helpful to make 
individual calculations. We assume that burning 1 litre of diesel fuel generates 2.64 kg CO2 
emissions5. Apart from the transport itself, no other activities e.g., using forklift /crane, 
generating emission, have been taken into consideration in the model. 

Data 

Data, concerning the energy needed for production of materials, have been estimated using 
Inventory of Carbon & Energy (ICE) Version 2.06 - for lumber and steel wire (nails), Eco-profiles 
of the European Plastic Industry7 - for polypropylene. 

The emissions due to electric energy production and diesel oil combustion were adopted from 
PARP (Poland) conversion tables8. 

Data, concerning manufacturing of plastic pallets studied, road transport fuel consumption, 
used in the model, are based on hands on experience. Data concerning Reference Service Life 
of pallets are mainly based on experience; we have chosen high values for wooden, and low 
values for plastic pallets.  

                                                      

4 European COUNCIL DIRECTIVE 96/53/EC 

5 Polska Agencja Rozwoju Przedsiębiorczości, https://www.parp.gov.pl/storage/grants/documents/103/Wytyczne-dotyczce-
konwersji---emisje-gazw-cieplarnianych_20200225.pdf 

6 Hammond, G.P; Jones, C.I. (2011) Embodied energy and carbon in construction materials. Geoff Hammond & Craig Jones 
Sustainable Energy Research Team (SERT) Department of Mechanical Engineering University of Bath, UK (2011) 

7 Eco-profiles of the European Plastic Industry, Polypropylene (PP), 11, (2005) 

8 Polska Agencja Rozwoju Przedsiębiorczości, https://www.parp.gov.pl/storage/grants/documents/103/Wytyczne-dotyczce-
konwersji---emisje-gazw-cieplarnianych_20200225.pdf 
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Pallets surveyed 

We surveyed two specific 1200 x 800 mm pallet models: wooden – EPAL EUR-1, and plastic – 
AGP-S. Both models can be used for storing loads in high racks and fulfil foodstuff transport 
requirements: wooden pallet - for a limited time, and plastic pallet - for life. Other differences, 
existing between the two models, are not directly relevant for the study.  

Wooden Pallets 

MAKE 

EPAL9 EUR-1 wooden pallets are made of wooden boards and blocks, joint with steel nails. The 
weight of the EPAL EUR-1 pallet is stated at approximately 25 kg10. We assume the material 
input at 25 kg of kiln dried softwood lumber (e.g., pine) and 0.38 kg of steel nails per pallet. 
Each material carries energy, and emissions deriving from processes prior to arriving at the 
pallet assembly point: wood 7MJ/kg, nails 30 MJ/kg. We assume the energy input of 0.7 kWh 
for the assembly process11 and 4 kWh for heat treatment per pallet, which is to initially protect 
it against pests and fungi, according to International Phytosanitary Measure IPSM-1512. We do 
not take eventual paint, anti-pest chemical agents, clips, inhouse transport, nor transport to 
the first user, etc., in our model, into account.  

USE 

EUR-1 type wooden pallets are commonly used in Europe13 being sold with the goods, 
exchanged within the so called “open” pool systems (white pallets), or close pool systems 
(colour pallets)14. Reference Service Life (RSL) – number of work cycles before withdrawal 
from usage – vary case by case. Calculations based on pallet stock count, number of trips 
covered, and numbered of pallets acquired to substitute for those withdrawn from 
operations, at a given time, show that a wooden pallet, used intensively in FMCG and Retail 
Goods distribution sector, e.g., within supermarket networks, lasts 5 - 8 trips. These findings 
correspond to some data found in literature. The fuel used and CO2 emission per EUR-1 EPAL 
pallet, due to transport for the distance of 100 km has been calculated respectively: 0.045354 
l. and 0.119733 kg CO2. 

                                                      

9 EPAL - THE EUROPEAN PALLET ASSOCIATION - founded in 1991, EPAL has focused on developing and safeguarding l open 
pooling system for load carriers (wooden pallets) worldwide. 

10 The EN-13698 presents the weight of wooden elements at 21,9 kg, however e.g., EPAL, CHEP, IPP, that manufacture and 
use compatible pallets, state 25 kg as an approximate weight in their product descriptions. Our experience confirms 25 kg 
to be correct for pallets “out of the manufacturing process”, due to low moisture level. Otherwise, they may weight 
substantially more.  

11 Deviatkin, I; Hortanainen, M. (2020) Carbon Footprint of an EUR-sized wooden and plastic pallet. E3S Web of Conferences 
158, 03001 (2020) 

12 IPSM-15 https://www.ippc.int/en/core-activities/standards-setting/explanatory-documents-international-standards-
phytosanitary-measures/ 

13EPAL alone claims over 600 million pallets in use https://www.epal-pallets.org/eu-
en/news/news/details/article/production-of-epal-pallets-at-a-high-level-in-2019-again.  

14 CHEP, IPP, etc. pallet providers on rental basis 
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Repair 

It is commonly understood that wooden pallets can be repaired, increasing RSL value, before 
final withdrawal. Deviatkin 15, assumed 20 trips in total and 2 repairs per wooden pallet before 
final withdrawal, at the end-of-life. This might be true in some cases but cannot be considered 
as average for the market. According to EPAL, in 2020, for over 600 million pallets that had 
been in use, 97.5 million new pallets had been introduced, and 26.2 million repaired pallets 
reintroduced into the system16. No more than 5% of the total number of pallets in the EPAL 
system were subject to repair. Should we count for 10 pallet trips before the need of first 
repair, and additional 5 trips afterwards (no “space” left for the second repair to occur) the 
RSL of an average wooden pallet would be up by 0.25 trip. Remake process does not apply. 

The question could be asked whether it is possible to increase the number of wooden pallets 
repaired and by how much. As simple as the pallet construction may look like, it should be 
assembled with a high degree of precision and consistency, using strictly defined materials, of 
size and quality. The holes in boards and blocks of disassembled pallets remain. You would 
not hammer nails into or close to these holes, understanding that the pallet might be used at 
high racks with a load of close to 1000 kilograms on the top.   

Taking above into consideration, we assume wooden pallet RSL for 10 trips in our model 
before being withdrawn from service.  We disregard repairs.  

WASTE 

Should we assume that the number of pallets used in trade as constant, all new pallets 
introduced compensate for the pallets withdrawn permanently form operations. In case of 
EPAL it can be therefore approximately 100 million pallets withdrawn from the system in 2020. 
There are three methods of dealing with withdrawn wooden pallets:  

• incinerate – that some claim to be a welcomed process of “recovering energy” 17,  

• mulch and use as live-stock bedding or soil fertilizer,  

• landfill.  

All these scenarios lead to CO2 emission due to energy applied for “forced” process of 
dismantling, segregating, mulching, and transporting of wasted pallets, and “natural” process 
of wood decomposition resulting with biogenic carbon. Wood decomposition varies in time: 
burning takes minutes, decomposition of mulched wood can last months, decomposition of 
wooden elements left to rot, may last years. Whatever scenario we chose, 1 kg of wood upon 
complete decomposition will release 1,65 – 1,80 kg CO2

18 . Disregarding energy costs and 
carbon emissions of different methods of pallet disassembling and waste treatment, we take 

                                                      

15 Deviatkin, I; Hortanainen, M. (2020) Carbon Footprint of an EUR-sized wooden and plastic pallet. E3S Web of Conferences 
158, 03001 (2020) 

16 EPAL-PALLETS,  https://www.epal-pallets.org/eu-en/news/news/details/article/epal-pallet-production-increases-despite-
covid-19-pandemic 

17 Carrano, A.L; Thorn, B.K; Woltag, H. (2014) Characterizing the Carbon Footprint of Wood Pallet Logistics. Forest Products 
Journal 64(7):232-241 

18Carbon storage using Tibber, https://www.accoya.com/app/uploads/2020/04/Carbon-Storage-Using-Timber-Products.pdf 
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into our model the amount of 1.7 kg CO2 emission per every kg of wasted pallet wood -
biogenic carbon, and weight of nails - solid waste.  

Plastic Pallets 

MAKE 

AGP-S plastic pallets are made of polypropylene (PP). Prime Energy Demand for PP is 
estimated at 73 MJ/kg19.  Each pallet weights 11.7 kg; weights and dimensions are consistent.  
AGP-S pallets are rackable and nestable. The pallet production line has been based upon 
YIZUMI UN 2300 DP moulding machine, consuming 2.5 kWh of energy per single pallet 
manufacturing process. Polypropylene PP is fully recyclable and reusable in consecutive 
injection cycles, maintaining strength and durability of the products made20.  

Each AGP-S pallet is identified with unique code, beneficial when pallets are in the use and 
ultimately, when they are withdrawn from operations, preventing uncontrollable landfill 
which happens all to often in case of unidentified objects no more needed. 

USE 

Plastic pallets in general are noticeably more durable and long-lasting then their wooden 
counterparts21. They can be cleaned and disinfected, yet another advantage. AGP-S pallets 
maintain these features alike. Basing on tests and proven record, we assume AGP-S pallet RSL 
at 80 trips in our model.  The fuel used and CO2 emission per AGP-S pallet, due to transport 
for the distance of 100 km has been calculated respectively: 0.030255 l. diesel and 0.079872kg 
CO2.  

Remake 

We assume that due to adopted model of operations, and EU “plastic tax”22 regulations, the 
risk of intentional landfill is minimalized, and 100% of initial material used for constructing 
pallets is returned by the users, back for remanufacturing. 

After withdrawal from service, pallets and their parts are fragmented with Hammerman HR 
1000 crusher using 1 kWh energy per pallet. To compensate for potential quality loss up to 
20% of virgin material is added to the batch of recycled plastic. As the recycled plastic comes 
only from original AGP pallets, process efficiency and product quality are maintained. 
Remaking a pallet ultimately requires 3.5 kWh energy and 2.34 kg of virgin PP. Repair process 
does not apply. 

WASTE 

Unlike wooden pallets, 100% of the material from withdrawn plastic pallets can be reused in 
consecutive remanufacturing processes. Polypropylene is virtually non-biodegradable, does 
not easily come in chemical reaction with the environment, should not and needs not to be 

                                                      

19 Eco-profiles of the European Plastic Industry, Polypropylene (PP), page 11, 2005. 

20 Kloziński, A; Jakubowska, P. (2009) Chosen Properties of Multiple Recycled PP/PS Blend Mechanika, Wydawnictwo 
Politechniki Krakowskiej, 2009. 

21 It’s not uncommon for a plastic pallet to serve 100-200 trips before withdrawal.  
22 COUNCIL DECISION (EU, Euratom) 2020/2053 of 14 December 2020 on the system of own resources of the European Union 
and repealing Decision 2014/335/EU, Euratom 
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landfilled or incinerated. In our model, excessive 20% of recycled material is used for 
manufacturing items other than AGP-S pallets.  

Results 

Life Cycle Inventory 

According to our study a single EUR-1 wooden pallet production process, “from cradle to 
gate”, generates 43.67 kg CO2, while AGP-S plastic pallet manufacturing is responsible for 
186.33 kg CO2. Should we use each pallet one-time, plastic pallet would add to environmental 
burden over four times as much as wooden counterpart.  

Table 4.1: 

 

 

Replacing withdrawn pallets  

Remaking and replacing plastic pallet generate 39.59 kg CO2. Our assumption is that wooden 
pallet replacement is always done with a new item. Wooden pallet replacement generates 
slightly higher carbon footprint than its plastic counterpart.   

Table 4.1.1: 
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Polypropylene recycling process seems not to adversely affect its mechanical characteristics. 
Khademi, F. et al23 conclude “…using a higher percentage of recycled material will not have a 
significant effect on the mechanical properties of polypropylene. This finding is the main 
contribution of this research because of its potential benefit to plastic industries and to the 
environment. That means, to reduce costs, more recycled material can therefore be used 
without a significant reduction in material performance….”. 

Reference Service Life and CO2 emissions in transport 

Due to the weight difference in favour of plastic pallet, it generates some 30% less CO2 
emissions than wooden pallet. Regarding the design the material used, AGP-S plastic pallet 
can cover 8 times more trips – RSL = 80 trips, than wooden pallet – RSL = 10 trips. 

Table 4.1.2: 

 

 

Life Cycle Assessment 

Functional Unit: 1000 trips/1 pallet 

Calculating the use of a single wooden and single plastic pallet in a process to cover 1000 trips, 
replacing any of them, when Reference Service Life is completed, shows the need to replace 
wooden pallets 99 times, and plastic pallet 12 times. CO2 emission in transport alone is 30% 
lower, when using plastic pallets. Cumulating emissions due to transport and replacements, 
plastic pallets generate 80% less carbon footprint, than when wooden pallets are used.  

 

Figure. 4.2.1: Cumulated kg CO2 emissions related to number of trips 

 

                                                      

23 Khademi, F; Ma, Y; Ayranci, C; Choi, K; Duke, K. (2016) Effects of Recycling on the Mechanical Behavior of Polypropylene at 
Room Temperature Through Statistical Analysis Method POLYM. ENG. SCI., 00:000–000, 2016. VC 2016 Society of Plastics 
Engineers 
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Table 4.2.1:  

 

 

Adding CO2 emissions due to wood decomposition on the top, we find plastic pallet operations 
generating 10% carbon impact comparing scenario when wooden pallet is used. As for solid 
waste, 37.62 kg of nails fall into wooden pallet account, and 26.91 kg of Polypropylene PP 
recycled is to debit plastic pallet account. Both can be reused, however recovering, and 
reusing nails seems to be more problematic, than reusing plastic scrap. 

Functional Unit: 15,000,000 trips / 500,000 pallets – 1 year 

Real life scenarios require a significant number of pallets allowing to serve wide stream of 
supplies, starting from “day one”. Creating a pool of half a million plastic pallets generates, 
naturally, far more CO2 emissions, than the respective pool of wooden pallets. However, 
comparing the total emission of CO2 already at the end of the “year one” shows, that using 
plastic pallet should lead to limiting CO2 emissions by 13% in comparison to wooden pallets. 
No solid waste, while replacing wooden pallets would find us with 380 tons of nails to be 
recycled, provided they are not scattered around. 
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Table 4.3: 

 

 

Discussion 

Functional Unit: 15,000,000 trips / 500,000 pallets / years 1-10 

With the exception of initial fabrication, the incremental value of each use and renewal 
parameter is significantly higher for wooden pallets. It’s already the first year-end showing 
environmental advantage of using plastic pallets against wooden pallets. 
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Figure 5.1: Wooden pallets CO2 and solid waste (metric tons – cumulative 10 years) 

 

 

Figure 5.2: Plastic pallets CO2 and solid waste (metric tons – cumulative 10 years) 

 

In 10 years accumulated CO2 emissions with wooden pallets will exceed the emissions created 
by plastic pallets operations by 6 times. 
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Figure 5.3: Wooden and plastic pallets CO2 emission compared (metric tons – cumulative 
10 years). 

In year 10, the gap between single transport CO2 emissions when we compare plastic and 
wooden pallets would have reached 85%.  

 

Figure 5.4: Total calculated emission per trip (kg CO2) wooden and plastic pallet comparison 
(10 years)  

 

Conclusions  

Plastic pallets have already proven their performance: durability and longevity, when used in 
the market. Our study shows, that quite contrary to common feeling, they may be a welcomed 
alternative to wooden pallets in terms of environment as well. Substantially lower carbon 
footprint and no solid waste generated in comparison to wooden pallets, should at least rise 
interest and boost research as to wider implementation of plastic pallets.  Study shows that 
multiple use, both the items and material they are being made of, is the key factor in reducing 
the burden on the environment. The impact of initial production is an important element of 
the LCA; however, all other elements must be considered as well. Finally, we seem to have far 
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too much “plastics” available, more than we would have wished for, and not that many trees 
left to cut and take away from our forests. 

As mentioned above, we see the results of our work, and the way we share it, as our 
contribution to paving further activity, which we hope could be agreed upon, aiming at limiting 
CO2 emissions, and limiting deforestation, due to replacing wood (scarce resource) , with 
plastic (recycle “waste” in excess, as for now, into raw material). This is the direction of further 
research and practical implementation of plastic pallets into existing supply chains.  
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Abstract 

Autonomous equipment for crop production is on the brink of commercialization in the United 
States but federal, state, and local policies could affect commercial viability and hinder 
adoption.  While there are no federal policies on autonomous farm equipment in the United 
States, precedent has been set at the state level by the current restrictions in 
California.  Under California code, the operator must monitor and supervise the tractor and 
surrounding workers at all times, and the autonomous equipment cannot exceed two miles 
per hour.  While California’s code was developed for worker safety under the technology 
available at the time, sensor technology, intelligent controls, safety measures, advanced 
guidance systems, and artificial intelligence have rapidly advanced.  This presentation will 
illustrate the farm-level impact of both a speed restriction and on-site supervisory regulation 
on the economic viability of autonomous equipment for a U.S. corn and soybean farm.    

Presenters profile 

Dr. Shockley is an Associate Extension Professor and Farm Management Specialist within the 
Department of Agricultural Economics at the University of Kentucky.  His areas of expertise 
include the economics of precision agriculture technologies, post-harvest management, 
machinery management, the economics of soil quality, and poultry economics.  His research 
on the economics of precision agriculture and robots spans the past 15 years publishing his 
work in renown precision agriculture journals and presenting results nationally and 
internationally, while educating producers around the U.S. on the proper techniques for 
evaluating the profitability of precision agriculture technologies.    
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Abstract 

“Precision conservation” (PC) describes the application of precision farming technologies to 
achieve environmental benefits from perennial conservation areas within crop fields. Recent 
research highlights environmental benefits from incorporating strips of native plants into 
agricultural fields. Native plant strips planted along topographic contours have reduced soil 
erosion and nutrient loss to waterways in Iowa, USA, leading to a creation of an official U.S. 
agricultural conservation practice for prairie strips. 

Precision conservation potentially offers farmers lower opportunity cost than strips of native 
plants, because the conserved areas need not run linearly across a field. New guidance 
systems enable farmers to practice PC at lower costs than in past by devoting low-profit areas 
to conservation in perennial, native plants.  New sensing and modelling technologies enable 
public agencies to make spatially explicit estimates of environmental benefits at lower cost 
than previously. The emerging feasibility of PC challenges traditional agricultural conservation 
policy based on whole-field management.  Several important questions face policy designers 
who wish to enable precision conservation 

Presenter Profile 

Scott Swinton is a University Distinguished Professor at Michigan State University in the 
Department of Agricultural, Food, and Resource Economics. His research examines agriculture 
as a managed ecosystem, focusing on decision analysis for enhanced ecosystem services. He 
concentrates on problems involving crop, pest, pollination, and nutrient management; 
precision agriculture; resource conservation; and bioenergy production. Throughout his 
career, Scott has worked on multidisciplinary teams (mostly with biologists) seeking ways to 
make agriculture more sustainable via improved technology, information, and incentives. His 
research has been cited over 11,000 times (Google Scholar). Scott currently teaches 
undergraduate managerial economics and graduate research design & writing.  

Scott is a past president of the Agricultural and Applied Economics Association (AAEA), which 
AAEA named him a Fellow in 2020. He served as Case Study Editor of Review of Agricultural 
Economics, as well as associate editor of the American Journal of Agricultural Economics, 
Precision Agriculture, Frontiers in Ecology and the Environment, and Journal of Production 
Agriculture, and as a member of three panels of the National Academies of Science, 
Engineering, and Medicine. Scott received Michigan State University’s William J. Beal 
Outstanding Faculty Award in 2015 and was named an Aldo Leopold Leadership Fellow 
through Stanford University in 2008.  He holds degrees in Economics and Political Science (BA, 
Swarthmore) and Agricultural and Applied Economics (MS, Cornell; PhD, Minnesota). 
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Digital nutrient management decision support and 
environmental footprints of maize intensification: A 

Randomized evaluation from Nigeria  

Oyakhilomen Oyinbo 
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Abstract  

Agricultural intensification associated with increased use of external inputs, such as inorganic 
fertilizer is widely considered relevant to improving farm income and welfare of smallholder 
farmers in Sub-Saharan Africa. The emphasis on increased use of inorganic fertilizer will likely 
be associated with increased greenhouse gas emissions, especially nitrous oxide, as with the 
Asian Green Revolution. Yet, traditional agricultural extension systems typically provide 
generalized ‘blanket’ fertilizer recommendations that are not tailored to the plot-specific 
growing conditions of individual farmers, which could lead to negative environmental 
externalities. Within this context, a digital nutrient management decision support tool 
‘Nutrient Expert’ has been co-developed in Nigeria to enable the extension system to 
transition from provision of generalized to plot-specific fertilizer recommendations. Using a 
three-year randomized controlled trial in northern Nigeria, this paper analyses the impact of 
farmers’ access to site-specific nutrient management recommendations, provided through 
the Nutrient Expert tool on environmental sustainability of maize intensification. The primary 
outcome of interest is global warming potential (greenhouse gas emission per unit maize 
yield), measured using the Intergovernmental Panel on Climate Change Tier 1 method. 
The preliminary results show that the provision of tailored recommendations to the 
treatment group led to a reduction in global warming potential compared with the control 
group, who were exposed to blanket recommendations. However, the observed effect size is 
small, and the effect is not statistically significant at the conventional significance levels. A 
plausible reason could be due to the on average, low fertilizer application rates 
in the study area compared with the often cited over application of fertilizer in most parts of 
Asia. Overall, this paper finds weak evidence of the causal effects of farmer-tailored nutrient 
management extension advice on mitigating the environmental impacts of fertilizer 
intensification under farmers’ conditions and management in maize-based farming systems 
of northern Nigeria.   

Keywords  

Extension advice, environmental sustainability, fertilizer recommendations, greenhouse gas 
emissions, Nutrient Expert, randomized controlled trial.   

Presenter Profile  

Oyakhilomen Oyinbo is an agricultural and development economist affiliated with the 
Department of Agricultural Economics, Ahmadu Bello University, Nigeria. His research 
focuses on the economics of agricultural development, with a particular focus on agricultural 
technology adoption under imperfect markets, digital agriculture, sustainable 
agricultural intensification, risk management and household resilience to shocks.  
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Introduction  

Agricultural intensification associated with increased use of external inputs, such as inorganic 
fertilizer is widely considered relevant to improving farm income and reducing rural poverty 
and food insecurity in Sub-Saharan Africa (SSA). The emphasis on increased use of external 
inputs, such as inorganic fertilizer will likely be associated with increased greenhouse gas 
(GHG) emissions, especially nitrous oxide, as with the Asian Green Revolution (Graham et al., 
2017; Albanito et al., 2017). This is expected as Nitrogen-based fertilizer application accounts 
for the largest share of N20 emission from agricultural production (Venterea et al., 2012; 
Gerber et al., 2016). Yet, traditional agricultural extension systems in SSA typically provide 
generalized or ‘blanket’ fertilizer recommendations that are not tailored to the plot-specific 
growing conditions of individual farmers, which could lead to negative environmental 
externalities (Xu et al., 2009; Shehu et al., 2018; Theriault et al., 2018; Burke et al., 2019). A 
potential intervention for plot-specific fertilizer use is site-specific nutrient management 
(SSNM). This entails 4Rs of nutrient management, which includes the right fertilizer 
application rate, the right fertilizer source, the right application time, and the right application 
method, and allows adjusting fertilizer application based on crop-, plot- and season-specific 
conditions (Pampolino et al., 2012; Johnston and Bruulsema, 2014; Singh, 2019).   

In light of the rapid advancement in digital technologies, decision support tools (DSTs) are 
increasingly considered to allow better tailored extension services. Within this context, 
a digital nutrient management extension tool for maize ‘Nutrient Expert’ has been co-
developed in Nigeria to enable the extension system to transition from provision of 
generalized to SSNM-based fertilizer recommendations. Yet, little is known about the 
effectiveness of such farmer-tailored nutrient management extension advice on mitigating 
the environmental impacts of input intensification in maize-based farming systems in SSA. To 
my knowledge, there is limited empirical studies that relate relaxing information constraints 
via extension interventions to environmental impacts of agricultural intensification. In 
addition, the few previous studies that have attempted to show the potential of SSNM in 
reducing environmental externalities of input intensification are agronomic studies under 
researcher-managed trials and mainly from Asia (Dobermann et al., 2002; Pampolino et al., 
2007; Xu et al., 2014; Sapkota et al., 2014; Banayo et al., 2018). This may not reflect real-world 
farm settings, where conditions are quite different, and farmers have full control over their 
resource allocations and management decisions (Barrett et al., 2004; Duflo et al., 2008; 
Beaman et al., 2013; Vandercasteelen et al., 2018; Jayne et al., 2019; Macours, 2019).   

In this paper, I analyse the impact of farmers’ access to site-specific nutrient management 
recommendations, provided through an ICT-enabled tool ‘Nutrient Expert’ on environmental 
sustainability of maize intensification. The paper contributes to different strands of literature, 
including the literature on digital agricultural extension, environmental dimension of 
sustainable intensification, soil fertility management and randomized evaluations in SSA.  

Methods  

I use a three-year clustered randomized controlled trial (RCT) to cleanly identify the causal 
effects of DST-enabled site-specific nutrient management on global warming potential 
associated with input intensification. The RCT includes two treatment groups of farmers who 
are exposed to SSNM information interventions, the first group (T1) without and the 
second group (T2) with additional information on variability of expected investment returns, 
and a control group (C) of farmers who do not receive an SSNM information 
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intervention. Specifically, T1 were exposed to SSNM information including a site-specific 
fertilizer application rate to obtain a target yield, optimal fertilizer management practices 
(sources, timing, placement), the rationale behind the recommendations and a detailed 
explanation on how to implement them as well as the expected return from uptake of the 
recommendations. The latter is a naïve estimate based on the prevailing maize market price 
at the time of providing the information, before planting. This is akin to most agronomic 
recommendations and to the uncertainty farmers face due to the time lag between planting 
decisions and outcomes at harvest time. Farmers in T2 were exposed to the same information 
as T1 farmers but received additional information on the variability of expected returns. This 
is a more robust estimate based on the 25th, 50th and 75th percentiles of the distribution of 
the monthly real maize price during post-harvest months over the last eight years in the 
research area. The SSNM extension interventions were provided to farmers using the Nutrient 
Expert tool prior to planting in the 2017 and 2018 farming seasons (April to May) by public 
extension agents.  

I use panel datasets from a three-period panel survey known as Agronomy Panel Survey, 
which was implemented across Nigeria, Ethiopia and Tanzania by the Taking Maize Agronomy 
to Scale in Africa (TAMASA) project. The panel survey was conducted in three states in 
northern Nigeria (Figure 1) as part of the randomized controlled trial. The baseline survey was 
conducted in 2016 before the introduction of DST-enabled SSNM intervention and two follow-
up surveys in 2017 and 2018, after a first and second DST-enabled SSNM intervention. The 
surveys were conducted during the maize harvest season (September to October). The 
questionnaire includes general household information, production data and detailed 
agronomic data for the focal plot, and community-level information on prices and access to 
institutions and services. At baseline, data were collected from the full sample of 792 
households while this dropped to 788 and 786 households in the first and second follow-up 
rounds. This implies a very low attrition of 0.5% and 0.8% in the first and second follow-up 
rounds respectively. The data were collected by means of digital data collection using the 
Open Data Kit (ODK) software on tablets.   

I use difference-in-difference (DiD) and analysis of covariance (ANCOVA) specifications in 
equations (1) and (2), respectively to estimate the intent-to-treat (ITT) effect. 
While DiD accounts for possible imbalances in pre-treatment outcomes and time-invariant 
unobserved heterogeneity not controlled for by randomization, ANCOVA can improve 
statistical power when outcomes of interest have low autocorrelation (McKenzie, 2012).  

 
yijt=β0+β1T1iJt+β2T2iJt+β3Postt+β4T1iJt∗Postt+β5T2iJt∗Postt+β6XiJ(t−1)+εijt yijt=𝛽0+𝛽1T1iJt+𝛽2T2iJt+𝛽3P

ostt+𝛽4T1iJt∗Postt+𝛽5T2iJt∗Postt+𝛽6XiJ(t−1)+𝜀ijt       (1)  

 

yijt=β0+β1T1iJt+β2T2iJt+yij(t−1)+β6XiJ(t−1)+εijt yijt=𝛽0+𝛽1T1iJt+𝛽2T2iJt+yij(t−1)+𝛽6XiJ(t−1)+𝜀ijt  (2)  

 

where yijtyijt is the global warming potential (GWP) for focal plot of household ii in village jj 

at year tt (Scaled GHG emissions – GHG emissions per unit maize yield in carbon dioxide 
equivalents), T1iJtT1iJt and T2iJtT2iJt are binary indicators for farmers in treatment one and 
two respectively, the coefficients of interest that captures the effects of treatment one and 

treatment two interventions are β4𝛽4 and β5𝛽5 in equation (1) and β1𝛽1 and β2𝛽2 in 

equation (2) respectively, PosttPostt is an indicator equalling zero for observations in the 

baseline year and one for observations in the follow-up round, XiJXiJ is a vector of baseline 
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control variables, yij(t−1)yij(t−1) is the lagged value of the dependent variable, εijt𝜀ijt is a 
random error term clustered at the village level to account for both the cluster design and 
heteroscedasticity, β0𝛽0 is the average value of the outcomes of interest for the control 
group at the baseline. The measurement of GWP associated with N20 emissions was carried 
out using the Intergovernmental Panel on Climate Change (IPCC) Tier 1 method (IPCC, 2019). 
It considers the direct emission of N20 from fertilizer application and the indirect emission 
form volatilization, leaching and run-off as well as the carbon dioxide emissions in the 
production of fertilizer.  

Preliminary Results  

The results of the summary statistics of household and plot characteristics of the sampled 
farmers show that across the treatment groups, the farmers are on average 44 years old, have 
about 5 years of formal schooling and 19 years of maize farming experience. They live in 
households with an average of about 9 members, 3 ha of farmland and 2 tropical livestock 
units.  Also, about 39% of the farmers have access to extension, 23% have access to farm input 
credit and 31% belong to a farmer association. For plot-level characteristics, the size of the 
maize focal plot of farmers is on average 0.9 ha, majority (98%) of the plots is owned by the 
farmers and the plots are on average, 15 minutes walking distance from the homestead. Most 
(97%) of the plots are cultivated with inorganic fertilizer, 29% with improved maize seeds, 78% 
with organic manure and the plots produce an average yield of around 2 tons ha-1.   

The results of summary statistics on fertilizer use and yields at the baseline show that across 
the treatment arms, the majority (95%) of farmers apply nutrients rates below the 
recommended rates (95% of farmers in treatment one and 91% of farmers in treatment two). 
In general, there is low nutrient application rates, pronounced nutrient and yield gaps despite 
the long history of fertilizer use in the research area. This suggests that improving maize yield 
and closing the yield gap will require an improved nutrient application especially for farmers 
with sub-optimal application among other yield-limiting biophysical and socioeconomic 
factors that needs to be addressed.  

The preliminary results of the ITT effects of farmers’ exposure to SSNM information show that 
the provision of SSNM recommendations to the treatment group led to a reduction in GHG 
emissions per unit maize yield compared with the control group, who were exposed to blanket 
fertilizer recommendations. However, the observed effect size is small, and the effect is not 
statistically significant at the conventional significance levels. While the 
few agronomic studies in Asian contexts (Dobermann et al., 2002; Pampolino et al., 2007; Xu 
et al., 2014; Sapkota et al., 2014; Banayo et al., 2018) that have attempted to show the 
potential of SSNM in reducing environmental externalities of input intensification under 
researcher-managed trials report substantial effects, this paper does not lend strong credence 
to the agronomic studies. A plausible reason could be due to the on average, low fertilizer 
application rates in the study area compared with the often cited over application of fertilizer 
in most parts of Asia. Overall, this paper finds weak evidence of the causal effects of farmer-
tailored nutrient management extension advice on mitigating the environmental impacts 
of fertilizer intensification under farmers’ conditions and management in maize-based 
farming systems of northern Nigeria. In addition, the findings of this paper suggest that while 
the use of SSNM recommendations can contribute marginally to promoting sustainable 
intensification through efficient fertilizer use, the GHG emissions-reducing effects of SSNM 
are likely to be substantial with increased use of fertilizer among smallholder 
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farmers in the study area. More rigorous empirical research may help to test whether and to 
what extent digital advisory support for farmers can reduce negative environmental 
externalities associated with input intensification in other developing country context.   
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Abstract  

The European Commission's Farm-to-Fork Strategy aims to halve the use and risk of chemical 
pesticides and to further develop and expand organic farming by 2030. Digital technologies 
can help reduce conflicts of interest between ecological sustainability and productivity. As part 
of the ‘Networking and Transfer Project on Digitalisation in Agriculture ("DigiLand")’, funded 
by the German Federal Ministry of Food and Agriculture, various applications of digital 
technologies are being subjected to a technology assessment. Thus, ecological and economic 
potentials can be estimated and prerequisites for implementation on commercial farms can 
be identified. The use case "precise, individual plant-specific weed management" is examined 
in more detail below.  

As the technologies for precise weed management are still largely at the prototype stage, valid 
information from practical agricultural application is lacking. Therefore, an iterative process 
of expert interviews, literature research, economic model calculations and a workshop for 
validation and collection of additional information was used for the analyses. The main 
focus of the analyses was targeted at sugar beet, as this was expected to have the greatest 
economic potential due to the high herbicide costs. In addition, mechanical technologies that 
are more suitable for organic farming were investigated. Due to the different time window 
and the lower herbicide costs for weed management oilseed rape was also included for 
comparison. Further, as oilseed rape is of less importance for organic farming, we 
therefore completed the analysis for chemical technologies only.   

For the chemical methods of precise weed management, an average herbicide saving 
potential of 50 to 70% per pass was determined. In sugar beet, the cost of weed management 
can be reduced by between 42 and 77 € ha-1 compared to the current standard practice (four 
herbicide applications, total process cost 355 € ha-1). With winter oilseed rape, on the other 
hand, the cost of precise weed management is at a similar level as the standard practice. In 
the context of chemical methods, possible yield advantages thanks to (partial) avoidance of 
herbicide damage to the crop were also discussed. From this a greater economic advantage 
might arise than from the herbicide savings. However, this has yet to be confirmed in further 
research.   

For the mechanical methods of precise weed management, a cost advantage of 1,146 € to 
1,348 € ha-1 compared to standard practice (total process cost 2,521 € ha-1) was 
determined, because of saving 70% of the input of manual weeding. Therefore, the use of 
precise, individual plant-specific weed management methods in organic farming can provide 
a considerable economic advantage. This is not yet the case, at least to this extent, for the 
chemical methods in conventional agriculture.  
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For a broader implementation of precise weed management in agricultural practice, it is 
necessary that the still very new technologies become more efficient, reliable, and cost-
effective. For example, when using field robots, a considerable amount of time is currently 
still required for troubleshooting. In addition to these fundamental prerequisites, it also 
became clear in the discussions and workshops that there is still no clear legal framework for 
some technologies (e.g. field robots). For the chemical methods of precise weed 
management, it is also important that suitable foliar-active herbicides continue to be available 
in the future.  

The implementation of precise weed management technologies in other crops is limited not 
only by economics but also by technological limitations. For example, precise weed control in 
cereals was considered by the experts to remain technically difficult to implement in the 
future. Overall, however, it appears that the use of digital technologies in weed management 
can contribute to achieving the goals of the Farm-to-Fork Strategy through herbicide savings 
and cost reduction potential (the latter especially in organic farming).  
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Abstract  

The purpose of the article is to show how new technology can be use in the Environmental 
sector. Nowadays, everything that is ecological attracts more and more attention. This is due 
to developing environmental awareness. In this way, we have ecological cities, ecological 
food, ecological cars, green technologies are being developed, as well as ecological 
investments. The ecology boom began a few years ago. Since then, it has accelerated every 
year. It can be noticed by the fact that the issue of environmental protection, which has 
become one of the foundations of modern civilization, is not subject to discussion. It is logical, 
after all, we all want to live on an Earth that will provide good living conditions. Blockchain is 
the shared database technology that underlies Bitcoin and Ethereum and is expected to 
be ground breaking for many industries in the decade to come. It is already used in banking 
and payments, but most people don't realize that the same technology can be used to solve 
the major environmental problems we face on our planet today. If adopted globally, it could 
even help halt or reverse climate change. As persistent, tamper-resistant databases that are 
shared by a community without a centralized owner, they are of particular interest for 
environmental reasons. They enable the tracking and verification of transactions and 
interactions without a centralized authority. This can significantly increase the transparency, 
efficiency and accountability of environmental projects.  
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Abstract  

Background: Agriculture is a significant contributor to greenhouse gas emissions in the UK. 
Therefore, numerous studies have assessed the factors motivating farmers to introduce 
environmental practices. However, the determinants of farmers’ decisions to reduce carbon 
emissions in line with the new net-zero goal are not well-understood. 

Methods: This study aimed to explore factors affecting UK farmers’ adoption of carbon 
emissions reduction practices using a mixed method approach based on 101 online survey 
responses. The survey questionnaire included a combination of closed and open-ended 
questions. Three additional in-depth interviews were conducted. No responses were obtained 
from farmers in NI. The respondents were from all farming sectors with majority being cereal 
growers and lowland livestock farmers. Factors explored include a range of motivating factors, 
perceived barriers to adoption of carbon emission reduction practices, farmers perceived 
behavioural control and farmers innovativeness. Attributes of farm and farmer such as 
location, farm type, farm size, age, and level of education 

Results: Multiple linear regression analysis shows that 31.5% of farmer’s adoption of carbon 
emissions reduction practices can be explained by five factors, which are farm size, financial 
incentives, farmers innovativeness, farmers perceived behavioural control and crop farming 
only. Further cluster analysis showed a typology of four categories of farmers with Early 
Adopters and Late Majorities reporting more actions in reducing carbon emissions than 
innovators, and Laggards taking fewest or no actions at all. Larger farmers and crop farmers 
are more likely to take more actions than animal and mixed farmers. Those who take less or 
no actions in reducing carbon emissions in farms were more likely to believe that there is not 
much farmers can do. Qualitative data analysis suggests that more accessible information and 
knowledge transfer should be provided to unlock the potential of achieving Net Zero target 
by 2050.   
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Introduction 

Climate change is one of the most prominent international crises, attracting the attention of 
global academic researchers, governments, and the wider population. The leading cause of 
climate change is the increasing concentration of carbon emissions (Abeydeera, Mesthrige 
and Samarasinghalage, 2019). Global emissions have increased 135%, from 14 billion tonnes 
in 1971 to 33 billion tonnes in 2017. The UK is responsible for 1.1% of emissions, making them 
the 16th largest contributor (OECD, 2020).  

In the UK, agriculture accounts for 10% of carbon emissions, 70% of nitrous oxide emissions, 
50% of methane emissions, and 1% of carbon dioxide emissions (DEFRA, 2020). Pressure has 
mounted on all industries to reduce carbon emissions. In particular, the Climate Change Act 
2008 (2050 Target Amendment) Order 2019 made the target of net-zero carbon emissions by 
2050 legally binding. Agriculture is uniquely placed to be part of the solution, as both an 
emissions source and a sink. There are several practices farmers can implement to reduce 
emissions, but adoption varies.  

It was not until 2008, that the CCA made UK emission reduction targets law. The legislation 
binds the UK Government to reduce greenhouse gas (GHG) emissions by 80% by 2050 and to 
support adaptation to achieve this. It established the Committee on Climate Change (CCC) and 
the Adaptation Sub-Committee, to advise industries on adaptation, mitigation strategies and 
formulate ‘carbon budgets’ (Lorenzoni and Benson, 2014). In May 2019, the CCC 
recommended amending the CCA (2008) target to 100% reduction by 2050, now known as 
net-zero. From 27th June 2019, the Climate Change Act 2008 (2050 Target Amendment) Order 
2019 introduced this new legally binding target. 

The agricultural sector report focuses on non-CO2 abatement, with an emphasis on the 
potential for innovative or novel measures (Barnes et al., 2019) . It suggests methods to reduce 
nitrate and methane emissions and analyses the cost-effectiveness of the suggested 
measures. The CCC (2019) reported that one-fifth of agricultural land must change to 
alternative land uses, afforestation, biomass production, and peatland restoration, to achieve 
emission reduction targets. The report notes ‘the voluntary approach pursued so far for 
agriculture is not delivering reductions in emissions’.  

In 2012, the Government established The Greenhouse Gas Action Plan (GHGAP) to deliver a 
reduction in agricultural-associated emissions. Reviewed in 2016, the GHGAP remains the 
main framework in place. It consists of ten performance indicators, including overarching 
indicators such as farmer ‘attitude and knowledge’ and sector-specific indicators such as 
‘manufactured fertiliser application on cereals’. A key indicator is mitigation method uptake, 
a reliable guide to whether farmers are being effectively motivated to reduce emissions. The 
2016 Review confirms the Government’s preferred method to motivate farmers’ uptake 
remains the voluntary GHGAP. 

Literature review 

Environmental land management schemes 

The most recent government action aimed at motivating farmers to reduce carbon emissions 
is the Environmental Land Management Scheme (ELMS). ELMS will pay farmers for managing 
their land in a way that delivers against key 25 Year Environment Plan goals and particularly 
supports the delivery of the net-zero target (DEFRA, 2020). 
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DEFRA is undertaking Phase 1 in a programme of tests and trials. So far, 42 trials are active, 
focussing on areas such as payments, advice delivery, and collaboration. A national pilot is 
expected by the end of 2021, with the scheme officially launching in 2024. A three-tier model 
is currently proposed. Tier 1 focuses on actions many farmers can take to improve 
environmental sustainability (for example, cover crops or wildflower margins), with an 
emphasis on practices that are most effective when delivered at scale. Tier 2 focuses on local 
priorities and relies on collaboration between local land managers. Tier 3 focuses on 
landscape-scale projects recognising that projects such as woodland creation, peatland 
restoration, and management of carbon-rich habitats are critical to achieving the ambitious 
net-zero target (DEFRA, 2020).  

In 2020, the CCC raised concerns about ELMS with DEFRA. They agreed tiers 2 and 3 have 
potential to drive systemic change, and tier 3, in particular, could deliver carbon mitigation 
benefits through its focus on landscape-scale change. However, they noted that DEFRA has 
not explained how ELMS will sit within the wider suite of climate policies, including the current 
Environment Bill, the 25 Year Environment Plan and various policies for afforestation and 
peatland restoration, or how these different strategies worked together to support the 
Government’s climate change goals.  

A survey by the Country Land and Business Association (CLA) and Strutt & Parker, investigated 
farmers’ concerns about ELMS. Over 50% reported they had already taken action to reduce 
GHG emissions. Four out of five said they are likely or very likely to join ELMS when it is 
launched in 2024.  

However, apprehensions were raised about payments, with 76% concerned they will be 
insufficient (Bracken, Bulkeley and Maynard, 2014). The Rural Payments Agency currently pays 
farmers £86 per acre under the Basic Payment Scheme. DEFRA is yet to confirm if ELMS will 
be more or less generous (Vigani et al., 2021). NFU (2019) cited productive farming as a key 
pillar to achieving net-zero. Farming more efficiently reduces emissions, and produces other 
carbon-reducing benefits, by ensuring fewer inputs to achieve the same production levels. 
DEFRA (2020) committed to providing grants for investment in equipment and infrastructure 
to drive improved productivity. The grants are due to open in 2021 and will be similar to the 
current Countryside Productivity Scheme.  

Nevertheless, it is uncertain whether the ELMS scheme will motivate farmers to reduce their 
carbon emissions. Uptake of previous environmental schemes may be a good indicator. 
Studies have revealed that a complex combination of personal, business and external factors 
influence farmers’ willingness and ability to participate in agri-environmental 
schemes(Gasson, R. and Potter, 1988).  Lobley and Potter (1998) studied participants in 
Environmental Sensitive Areas (ESA) and Countryside Stewardship (CS) schemes in the 
southeast of England. This revealed ESA participants were predominantly motivated by 
financial gain, whereas those in CS were primarily motivated by conservation. Questioning the 
sustainability of schemes with financial incentives to engage otherwise disinterested farmers, 
suggesting that, while a short-term gain may be achieved, long term this may not be enough 
to continue good environmental practice (Lobley and Potter, 1998). These studies are limited 
in their usefulness due to their age, as farmers’ motivations might have changed over time. 
However, they are still a helpful indication as to the general attitudes towards the uptake of 
good environmental practices, which is quite likely to translate to farmers’ motivations today. 
More recent studies,(Wilson and Hart, 2001; Rosemarie Siebert, Mark Toogood, 2006), 
confirm Lobley and Potter’s (1998) findings that economic considerations have been the main 
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factors influencing participation in government environmental schemes. Jones et al. (2013) 
found that adoption of carbon emission reduction practices varied depending on the advice 
and support given to farmers, and there is a need for flexible policies to enable farmers to 
select measures best suited to their holdings (Jones et al., 2013). Policies that provide help 
accessing financial support are considered beneficial to improving farm practice(Deressa et 
al., 2009).  

Farmer attitudes and knowledge 

May (2019) found that a farmer’s knowledge of the interaction between their business and 
the environment positively affected motivations to adopt beneficial environmental practices. 
These motivations could be reinforced if the investment made a reasonable return, but this 
was not the dominant motivation (May, 2019). In contradiction, Hornsey and Harris (2016) 
concluded climate change beliefs were marginally related to people’s motivations to adopt 
new practices. This was supported by Lane et al. (2019) finding that although farmers were 
concerned about emissions, they experienced other pressures such as profitability, labour and 
regulations, which were more significant in their decision-making. Acceptance of knowledge 
increase if shared through farmer-to-farmer groups and the research is not only scientific but 
also based on experience (Burbi, Baines and Conway, 2016). Morris, Mills and Crawford (2000) 
confirmed this finding when stating that, while mass media is relevant to awareness creation, 
personal contact and demonstration are critical to action, with the best advocates for 
environmental schemes being farmers themselves. 

Studies have suggested that farmers who were more willing to take risks, explore new ideas 
and adopt innovations were more likely to adopt new environmental sustainability practices 
(May, 2019). Rogers (2010) ‘diffusion of innovations theory’ categorised farmers into adopter 
categories: innovators, early adopters, early majority, late majority, and laggards. Moerkerken 
et al. (2020) found farmers’ attitudes to innovation to be the strongest predictor for the 
uptake of climate change mitigation technologies. Farmers classified as innovators were more 
likely to be motivated to take up climate-friendly practices than farmers in the late majority 
and laggards categories, even if they had little knowledge about climate change. Moerkerken 
et al. (2019) found energy-saving measures were likely to be adopted by majority farmers but 
more complex renewable energy measures were more likely to be adopted by innovators and 
early adopters, with only innovators most likely to adopt complex non-CO2 measures. 
Moreover, Barnes and Toma (2012) and Diederen et al. (2003) also concluded innovator 
farmers were more likely to be motivated to adopt carbon reduction methods. However, Niles 
and Mueller (2016) found that farmers who had climate change mitigation practices in place, 
and as a result were classed as innovators, were less likely to adopt further measures in the 
future. 

DEFRA (2019b) measured farmer awareness of emissions, and intentions to change practice, 
as key indicators of mitigation method uptake. The survey results showed 13% of farmers felt 
it ‘very important’ to consider GHGs when making decisions relating to their farm, and a 
further 42% considered it ‘fairly important’. However, 38% placed little or no importance on 
considering GHGs in their decision-making. Franks and Hadingham (2012) reported 38% of UK 
farmers believe climate change is already having an impact on their land, and 57% expect it to 
have an impact in the next 10 years. DEFRA (2019b) reported 61% of farmers were taking 
actions to reduce emissions. This is an increase from Franks and Hadingham’s (2012) earlier 
data, which revealed 47% of farmers, had taken some action to reduce future climate change. 
When asked about their main motivations 84% of respondents believed it is ‘good business 
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practice’. Other strong motivating factors were the environment (71%), profitability (55%), 
and regulatory reasons (41%), whilst meeting market demands was only 19%. 

The Theory of planned behaviour (TPB) has been widely used to understand human behaviour. 
It  assumes that human behaviour originates from individuals’ intentions to perform a specific 
behaviour (Ajzen, 1991). The TPB hypothesis is that intention is determined by three central 
psychological constructs: attitude, subjective norm and perceived behavioural control. In this 
study, the intention of a farmer is defined as the intention to adopt carbon emission reduction 
practices. The TPB has been used to explore behaviours in other related agricultural issues, 
like intension to diversify,   pesticide handling and to perform agri-environmental measures 
(van Dijk et al., 2016; Senger, Borges and Machado, 2017; Bagheri et al., 2019). 

Methods 

In order to explore what factors affect UK farmers’ adoption of carbon emission reduction 
practices, data were collected using a mixed-method approach involving semi structured in-
depth interviews and online questionnaire survey with both closed and open questions. 

Purposive but convenient sampling based on pre-determined criteria (to represent crops, 
animals and mixed farms) was applied to recruit study participants of the semi-structured 
interviews. Each interview lasted approx. 30 minutes. The interview participants are from 
different regions and different enterprises. Two interviewees are farm owners while the third 
one is a farm manager employed by a farming company. All interviews were recorded and 
fully transcribed. Thematic coding was used to explore participants’ perspectives on barriers 
and attitudes to reducing carbon emissions. The thematic analysis showed three key barriers 
and four motivators to reducing carbon emissions in farms. These were used to inform the 
questionnaire design. 

For the questionnaire-based survey, a snowballing technique using social media platforms 
such as Twitter and Facebook was used to distribute the questionnaire survey link. This 
method may be biased towards young farmers, which is not representative of the general 
farmer population with an average age of 60 (DEFRA, 2017). 

The survey questionnaire’s design was partly informed by the results of the thematic analysis 
of the interviews and partly informed by the literature reviewed.  The questionnaire included 
items about relevant socio-demographic information, farmer’s innovativeness, and carbon 
emission reduction practices adopted by farmers and influencing factors. Socio-demographic 
information included farmer’s age, level of education, farm size, farm location and farming 
sector. Farmer’s innovativeness was measured with the typology of innovation adoption 
(Rogers, 2010).  

Carbon emission reduction behaviour was measured by the mean score of the summation of 
the applicable actions with binary answers as listed below:  

• Increasing use of clover in grassland 

• Improving nitrogen fertiliser application accuracy (e.g. using a fertiliser 
recommendation system, regularly checking and calibrating fertiliser spreaders) 

• Increasing use of legumes in arable rotation  

• Improving energy efficiency (reducing fuel use, producing own energy) 

• Recycling of waste materials from the farm (e.g. tyres, plastic) 
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• Improving nitrogen feed efficiency, livestock diets (e.g. using ration formulation 
programme)  

• Improving efficiency in manure and slurry management and application (e.g. covering 
stores) 

• Other measures (e.g. planting hedgerows and trees on farm and no tillage) 

Influencing factors includes attitudes towards carbon emission reduction by farmers, 
perceived behavioural control, perceived barriers to implementation, and key motivators.  

Attitudes (Mean score) 

• Own concern for environment (5-point scale) 

• I consider it good business practice to reduce carbon emission (5-point scale) 

• Importance of carbon emissions in decisions (5-point scale) 

Neutralisation – denial of responsibility (MEAN SCORE)  

• I don't believe there is much farmers can do to reduce carbon emission (binary) 

• I have already done all I can to reduce carbon emission (binary) 

• I don't believe my farm produces much emissions (binary) 

Perceived behavioural control  

• I am not sure what to do to reduce carbon emission (binary) 

Motivators to reduce carbon emission 

• To improve farm profitability (5-point scale) 

• To meet market demand (5-point scale) 

Multiple linear regression analysis was performed in order to determine which factors 
affected farmers’ decisions to adopt carbon emission reduction practices. Moreover, cluster 
analysis identified the typology of the farmers and their motivations for implementing carbon 
emission  

Results 

Socio-demographic characteristics of the respondents 

In total 101 valid responses to the online survey were collected. No responses were from the 
Northern Ireland. The majority of the respondents were based in England (79.2%). 48% of the 
respondents reported a farm size of 200 + hectares, which is bigger that the average farm size 
in England (87 ha) (DEFRA, 2021). Most participants (36%) are aged 18-30 years. Moreover, 
46% have a degree (e.g. BSc, BA) with only two without qualifications. The respondents are 
from all farming sectors with 27.7% of the farms are crop only, 41.6% are animals only, and 
30.7% of the farms have mixed farm activities involving both crops and animals. Majority are 
cereal growers (n = 54 of which 15 cereal) and lowland livestock farmers (n=49, of which18 
were lowland livestock only).  
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Table 1: Socio-demographic attributes of the respondents 

Age group 
Frequency Percent 

Valid 
Percent 

Cumulative 
Percent 

18-30 36 35.6 35.6 35.6 

31-50 26 25.7 25.7 61.4 

51-65 30 29.7 29.7 91.1 

65+ 9 8.9 8.9 100.0 

Total 101 100.0 100.0  

Education level     

No Qualifications 2 2.0 2.0 2.0 

GCSEs or equivalent 7 6.9 6.9 8.9 

BTEC or Diploma 16 15.8 15.8 24.8 

A levels or equivalent 23 22.8 22.8 47.5 

Degree (e.g. BSc, BA) 46 45.5 45.5 93.1 

Higher degree (e.g. MA, PhD) 7 6.9 6.9 100.0 

Total 101 100.0 100.0  

Farm size     

<20 ha 10 9.9 9.9 9.9 

20-50 ha 13 12.9 12.9 22.8 

51-200 ha 30 29.7 29.7 52.5 

200 ha + 48 47.5 47.5 100.0 

Total 101 100.0 100.0  

Farming sector     

Crops only 28 27.7 27.7 27.7 

Animals only  42 41.6 41.6 69.3 

Mixed 31 30.7 30.7 100.0 

Total 101 100.0 100.0  

Location     

South-East England  29 28.7 28.7 28.7 

South-West England  12 11.9 11.9 40.6 

East Midlands  8 7.9 7.9 48.5 

West Midlands  14 13.9 13.9 62.4 

North of England  17 16.8 16.8 79.2 

Wales 9 8.9 8.9 88.1 

Scotland 12 11.9 11.9 100.0 

Total 101 100.0 100.0  

 

Dependent variable: Farmers carbon emission reduction practices 

Table 2 shows the responses to the carbon emission reduction practices. Three practices are 
not applicable to crop only farmers whilst one is not applicable to animal only farms. Three 
generic practices were reported by more farmers with the highest uptake reported being 
recycling of waste materials from the farm (n=70). The lowest up take of activities are 
improving livestock diets (n=25) and improving manure and slurry management and 
application (n=28).  
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Table 2: Carbon emission reduction activities practiced by farmers 

 Carbon emission reduction activities Yes No Not applicable 

  
n Valid % n Valid % n 

% of 
total 

Increasing use of clover in grassland 51 68.00% 24 32.00% 26 25.74% 

Improving livestock diets (e.g. using ration formulation 
programme) 

25 34.25% 48 65.75% 28 27.72% 

Improving efficiency in manure and slurry management 
and application (e.g. covering stores) 

28 38.36% 45 61.64% 28 27.72% 

Increasing use of legumes in arable rotation 29 49.15% 30 50.85% 42 41.58% 

Improving nitrogen fertiliser application accuracy (e.g. 
using a fertiliser recommendation system, regularly 
checking and calibrating fertiliser spreaders) 

57 56.44% 44 43.56%   

Improving energy efficiency (reducing fuel use, 
producing own energy) 

65 64.36% 36 35.64%   

Recycling of waste materials from the farm (e.g. tyres, 
plastic) 

70 69.31% 31 30.69%   

To calculate the score for dependent variable of carbon emission reduction behaviour, the 
mean score of applicable items was used. The mean value of this calculated behaviour variable 
is 0.5655 (n=101, min = 0.00 and max. = 1.00, Std deviation= 0.27813).  

Independent variables 

Reliability of multi-item measures were tested. Table 3 reports the reliability (where 
applicable) and descriptives of the independent variables. Two items were removed from 
“denial of responsibility”. One factor test (Harman) was conducted. The first factor accounted 
for 32.9% of the total variance indicating that common method bias was low.  

Table 3. Descriptive statistics for the independent variables 

 N mean min max SD 

Attitude (Cronbach’s Alpha = .732) 

• Own concern for environment  

• I consider it good business practice to reduce carbon 
emission  

• Importance of carbon emissions in business decisions 

100 3.38 1 5 1.04 

Business motivator  

• Financial incentives  

• To improve profitability (removed) 

• To meet market demand (removed) 
 

101 4.11 1 5 1.019 

Denial of responsibility – 

• I don't believe there is much farmers can do to reduce 
carbon emission.  

• I don’t believe my farm produces much emissions 
(removed) 

• I have already done all I can to reduce carbon emission 
(removed) 

100 .20 0 1 .40 

PBC - I am not sure what to do to reduce carbon emissions 101 .35 0 1 .478 
Innovativeness (stages of innovation adoption) 101 3.1 1 4 .889 
Farm size 101 3.15 1 4 .994 



Proceedings of the 4th Symposium on Agri-Tech Economics for Sustainable Futures 163 

What explains the difference in farmers’ carbon emission reduction behaviour  

Multiple linear regression was carried to find out what might explain the differences in 
farmers’ behaviour in reducing carbon emissions on farm. Table 4 presents the test results.  

Table 4. Regression model summary and coefficients 

 
Standardized 

(Beta) 
t Sig. 

(Constant)  -2.155 0.034 

Attitude 0.177 1.858 0.066 
Denial - I don't believe there is much farmers can 
do  -0.219 -2.263 0.026 

Financial incentive to reduce emissions 0.289 3.248 0.002 

Farm size 0.256 2.82 0.006 

Innovativeness 0.222 2.367 0.020 

R = 0.556, R Square = 0.309, Sig. < 0.001    

 

The regression showed five significant determinant factors: underlying belief about carbon 
emissions reduction, financial incentives, farm size and the farmer’s innovativeness all 
positively influence the carbon emission reduction adoption whilst denial of responsibility has 
significant negative influence on adoption (p = 0.026).  Financial incentive has the strongest 
influence of all (Beta = 0.289, p = 0.002). Together, the factors explain 30.9% of the differences 
in adoption behaviour by farmers.  

Farmers’ self-reported innovativeness was found to be a significant determinant factor. This 
was confirmed by the interviews. Thematic coding revealed interviewee 2 as an innovator. 
They had undertaken the most innovative measures, including two wind turbines, a hydro-
generation scheme, solar panels and participation in a Climate Change Focus Farm Scheme. 
This supports Moerkerken et al. (2019) findings that only the most innovative groups are likely 
to adopt complex renewable energy measures and non-CO2 measures. Interviewee 1 was 
classed in the majority category due to their cautiousness and cynicism of certain practices. 
However, they were recycling and improving fuel use, reinforcing the suggestion that these 
actions can be easily adopted regardless of farming enterprise (DEFRA, 2019b). Interviewee 3 
have numerous plans to improve their farming practices, but were waiting to calculate a 
carbon basis before undertaking actions, placing them in the early-adopter category. Attitudes 
as an influencing factor was also confirmed by the interview results. All interviewees said they 
felt a moral responsibility to reduce carbon emissions but stated further knowledge and 
actions were needed before net-zero could be achieved.  

Interviewees repeatedly chose the economic factors ‘lack of incentive’ and ‘too expensive’ as 
barriers to reducing emissions. This strengthens the pattern identified throughout the results 
that economic factors are influential, supporting Siedenburg et al. (2012), Swann and 
Richards’ (2016) conclusions that financial incentives are required to motivate farmers and 
overcome barriers. 
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Discussion and Conclusions 

The research aimed to understand what motivates farmers to reduce carbon emissions in line 
with the new net-zero target. From the results and literature, it was clear numerous factors 
influenced motivations. This study suggests economic factors are a significant motivation for 
reducing carbon emissions, however it also showed that between farmers different typologies 
can be identified that will respond differently to this motivation. The results showed that 
innovators are the least motivated by financial incentives. They also tend to be the larger 
farmers and their main enterprise is crop growing. Those who take less or no actions in 
reducing carbon emissions in farms were more likely to believe that there is not much farmers 
can do, this group was identified as passive resistors. Where they do not actively resist to 
actions to reduce carbon emissions nor are motivated by financial incentives, this group 
consist of the smaller farmers. When comparing attitude groups, it was shown that less 
innovative farmers (those more resistant to change) were more influenced by regulation. To 
achieve the net-zero target, a combination of factors to incentivise all farming groups is 
essential. For example, environmental incentive schemes will motivate the innovative 
farmers, whereas more unwilling farmers can be encouraged to reduce carbon emissions 
through stronger regulation. Qualitative data analysis suggests that more accessible 
information and knowledge transfer should be provided to unlock the potential of achieving 
Net Zero target by 2050.  
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Abstract 

The stock of agricultural land can be viewed as natural capital that provides a flow of goods 
and services that benefit people. Changes in this stock of natural capital have implications for 
the long-term sustainable development of the agriculture sector. This study estimates a 
natural capital account for agricultural land in Quebec over twenty years. The natural capital 
account includes a physical inventory of the agricultural land and a valuation of this asset.  
Geospatial technologies were used to estimate the physical inventory of agricultural land in 
Quebec. The physical inventory was based on land cover, land use, and land capability 
information which provided the attributes of the asset. A spatial hedonic price model was 
estimated that provided implicit prices of the attributes that were included in the physical 
inventory. A well-defined and estimated natural capital account can assist public policy by (1) 
providing a better understanding of the evolution of the current level of the capital stock and 
(2) provide input into resource management. 
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