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MIGRATION AND THE DEGREE OF COMMON 
PROPERTY FOR 'A NATURAL RESOURCE 

Abstract 

Migration, along with growth and harvest, is one of 
three fundamental ways a natural resource stock can change. 
Migration across property lines makes the resource common 
property. This study models migration and the degree of 
common property along the continuum from the exclusive access 
of private property through limited access to open access. It 
was found that wildlife travelling under their own power are 
more likely to be common property than resources powered by 
exogenous forces such as the wind .. Pests have a higher degree 
of common property than valuable resources, faster growing 
resources a lower degree, and inexpensively managed resources 
a higher degree. Both exclusive access and open access are 
difficult to reach and most migratory resources will have 
limited access between the two extremes. 

By definition common property has more owners than one. Multiple owners 

may over-exploit the common property and dissipate its scarcity rent. An 

open-access fishery is the textbook example. Other exampies are open-access 

forest and grazing lands. Many natural resources, however, are common 

property but with limited access. Rivers, ·aquifers, oilpools, pollution, 

pests, diseases and wildlife can migrate across fence lines but are access

ible only to local landowners. These landowners may capture some of the rent, 

especially if migration is slow and landowners are few. 

Almost all studies of common property simplify by assuming a highly mobile 

resource and a large number of landowners. An open-access equilibrium is 

compared to the private property equilibrium as if the rent were completely 

dissipated. A study of limited access with partially dissipated rent must 

model migration of the resource and imperfect competition among landowners. 

Migration is one of three fundamental ways a resource stock can change and 

has been extensively studied by hydrologists and mathematical ecologists but 

not by economists. An exception is pollution transport models [l]. Imperfect 

competition for a natural resource has been studied by Cornes and Sandler [3] 

in a static model without migration. 

The purpose of this article is to model the degree of common property on 

the continuum from the exclusive access of private property to open access. 

It emphasizes migration of a resource and briefly discusses imperfect 

competition among a few landowners. 

First a dynamic bioeconomic model is specified to include both migratory 

pests and valuable resources. Next, functional forms for migration from the 

mathematical ecology literature are generalized and adapted to the study of 

common property. The roles of migration and imperfect competition in 

determining the degree of common property are defined. Finally, the model is 

illustrated for different types of natural resources. 
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I. A Dynamic Model 

Wildlife are natural resources which are harvested directly and also 

affect the production of other commodities. Animals can be hunted for food or 

recreation. They may be pests and damage crop and domestic livestock 
production, or they may be desirable species and produce amenities. Hereafter 
the resource will be called wildlife, and the local landowners who exploit 

the wildlife will be called ranchers. Other types of resources are s~ecial 

cases and can be described with an appropriate alteration of terms. 

A rancher manages a proportion of the total wildlife in his neighborhood. 

How much control he can exert depends on the mobility of the wildlife and the 

size of his ranch. He seeks to maximize the value of his initial stock of 

wildlife which equals the net present value of direct benefits from 

harvesting plus indirect benefits of producing livestock and amenities, minus 

the costs of ranching. 

(1) Max 
h 

J e·ot 

0 

where j is the net present value of the ranch; his harvest of wildlife; y is 

yield of livestock and amenities; c is the quantity of inputs; sis the stock 

of wildlife on the ranch; k is the carrying capacity of the ranch; ph' py and 

pc are prices; and o is the interest rate. Each of the neighboring ranchers 

has a similar decision problem. 

The stock of wildlife can change over time. The rate at which wildlife 

reproduce and grow on a ranch with a limited carrying capacity depends on 

intrinsic growth and population density. The rate at which they migrate 

depends on population densities, their mobility and forces such as prevailing 

winds. And the rate at which they are harvested is controlled, of course, by 

the rancher. 

(2) 

. 
where s is the change over time in the stock of wildlife on the ranch; g is 

biological growth; mis the net migration onto the ranch; r is the intrinsic 

growth rate for a ranch with unlimited carrying capacity; Sis 

stock on neighboring ranches; K is the aggregate carrying 

neighboring ranches; and v is the velocity at which wildlife 

the aggregate 

capacity of 

travel under 
their own power or windpower. Migration on to the ranch is influenced by 

stocks on neighboring ranches. Thus migration links decisions of the rancher 

to the decisions of his neighbors. 

Rivers, aquifers and oil pools are special cases of the model with y set 

to zero; pollution, pests and diseases are special cases with ph set to zero; 

and fisheries and forests are special cases with y set to zero but migration 

• 
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defined so that the location of the resource stocks is relative to the 

location of fishing vessels or logging operations and not in relation to 

fixed fence lines. 

The righthand side of equation (2) is the net quantity .of wildlife used, in 

time t. Multiplying the net quantity used by an imputed price gives the total 

• rent paid for the wildlife. This rent is total user-cost. Subtracting total 

user-cost from static profits, which equal total revenue of harvest plus 

total revenue of livestock and amenities minus total costs of inputs, gives a 

dynamic measure of profit at time t. 

(3) 

where ~ is dynamic profit 

user-cost of wildlife. ~ is 

at time t and A is the imputed price or marginal 

the current-value Hamiltonian and A is the 

current-value costate. Neither is discounted; both are denominated in dollars 

at time t. Because the costate captures the effect of current decisions on 

the future, maximizing the Hamiltonian in each time period is equivalent to 

maximizing the net present value of the ranch in equation (1) subject to the 

change in the wildlife population in equation (2). 

If functions y, g and mare concave and c is convex, the Hamiltonian is 

concave and the optimum is characterized by first-order conditions with 

respect to harvest, wildlife and marginal user-cost plus an initial condition 

on wildlife and a terminal condition on marginal user-cost. 

a~iaht = 0 - Ph - pcac/aht - At 

-a~;as - ). - 5At - -pyay/ast + t t . 

(4a) 

(4b) 

(4c) a~;aAt - st - g + m - h t ; 0 s 

(4d) s 0 is given 

(4e) 0 

; 0 s t 

pcac/ast - At [ag/ast + am/ast]; 0 s t 

t 

Condition (4a) equates marginal revenue to marginal costs from harvesting 

plus marginal user-cost. If there were open access, the rent due the scarce 

wildlife would be dissipated and the marginal user-cost would be zero. The 

harvesting decision would maximize current profits with no regard for the, 

future. If there were partially limited access, the marginal user-cost would 

be non-zero but less than the full rent due the wildlife. 

Marginal user-cost is defined by condition (4b) which can be rearranged 

into a form somewhat like that of condition (4a). 
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( 4b') O - [pyay/ast - pcac/ast];[s - tt;>.t - ag/ast - am/as~] - ).t . 

The marginal revenue minus the marginal costs with respect to wildlife are 

capitalized by an appropriate discount rate because a change in the stock of 

wildlife affects all future stocks. The marginal user-cost is the present 

value of all these effects. The appropriate discount rate is the interest ~ 

rate less the rate of capital gains, the marginal growth rate and the 

marginal migration rate. Migration can dissipate marginal user-cost in two 

ways. The first is directly through marginal migration, causing the same 

effect as discounting the future too heavily. The second is indirectly 

through changing stocks and altering marginal revenue, marginal costs and 

marginal growth. First-order conditions for each of the neighboring ranches 

are linked through migration and must be solved simultaneously to determine 

stocks on the ranch and stocks on neighboring ranches. 

II. Migration 

Growth and harvest have been studied by Clark [l] and many others but 

migration has not been included in bioeconomic models. In the mathematical 

ecology literature, Skellam [8] was among the first to study migration in 

heterogeneous environments. His work has been supplemented by many authors 

with surveys by Levin [4] and McMurtrie [6] and a text by Nisbet and Gurney 

[7]. The foundation of this lite~ature is a partial differential equation • 

describing migration at a single point in an infinitely large environment. 

Wildlife may move about the environment but movement will not lead to • 

migration if it is aimless and undirected. Nor is directed movement, called 

flux, sufficient for migration. Migration is the change in directed movement. 

This can be explained beginning with wildlife movement per unit of time 
defined as: 

vn . 
' 

where vis wildlife velocity and n is wildlife numbers. Wildlife will move if 

velocity is positive. Movement may not be directed, however
1 

unless it 

changes systematically. 

F/dt - [van/ax + nav/ax] 

where Fis directed movement called flux, dt is a unit of time and x is a 

position in the environment. Wildlife will move aimlessly if they are 

uniformly distributed and their velocity is constant. Conversely, wildlife 

movement is directed with non-zero flux if (a) there is a population 

gradient, or (b) velocity changes. But flux is not migration. Migration is a 

change in the flux over the environment. 

an/at - (aF/ax)/dt - [va 2 n/ax2 + z(av/ax) (an/ax) + na 2 v/ax 2 ] • 

Movement can be directed and flux non-zero without causing migration. 

Linearly distributed wildlife travelling at a constant velocity will move 
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down the population gradient but each animal arriving at position xis 

matched by an animal departing with no net migration. Uniformly distributed 

wildlife travelling at a linearly changing velocity will move down the 

velocity gradient but, again, with no net migration. Wildlife migrate if (a) 

wildlife are nonlinearly distributed, (b) • there are both population and 

velocity gradients, or (c) velocity is nonlinear. With suitable functional 

forms, these three conditions can describe a heterogeneous environment of 

changing population densities, prevailing winds, territorial behavior, 

hunting pressure by man, water holes, and refuges from predators. 

Migration at a point in an infinitely large environment does not fit the 

bioeconomic model of the previous section, however. A point corresponds to 

one unit of carrying capacity whereas a ranch may comprise many uriits. The 
ranch is surrounded by a neighborhood suitable for livestock and the 
neighborhood is part of the total environment occupied by wildlife. If the 
envi-rorunent were infinite) the degree of common property would be 

indistinguishable between small and large ranches. Measured against infinity, 

a ranch of one point would appear the same as a ranch encompassing the entire 

neighborhood. 

A large ranch has not been modeled in the literature but a finite 

environment has been modeled by two approaches (McMurtrie, p.18 [6]). Either 

wildlife are assumed to travel uniformly around 

if they go beyond fixed boundaries or wildlife 

a habitat but die immediately 

slow as they travel up a 

gradual incline from favorable to less favorable habitat. The model to be 

derived combines elements of both these approaches. Boundaries are fixed to 

allow comparison with the size of the ranch but the boundaries, themselves, 

slow the velocity of approaching wildlife. The finite environment is 

heterogeneous, causing slower migration onto larger ranches. 

The model of migration can be summarized by a theorem and its corollary. 

THEOREM 1: For a large ranch in a finite environment, wildlife will 

migrate under their own power or under wind power according to: 

The term in square brackets is average migration at a point in an infinite 

environment. Variance of wildlife movement, o 2 , multiplies terms for the 

second derivative of wildlife numbers, ~3 +~ •. The distance wildlife travel 

on a prevailing wind, w, multiplies a term for the first derivative of 

wildlife numbers, ~,- Average migration at a point is scaled up by k, the 

size of the ranch, and modified by 2Z(pk), the probability that mobile 

wildlife at the edge of the ranch will not reach a boundary of the 

environment minus the probability they will hit a boundary. In an infinite 

environment, wildlife would never hit a boundary and 2Z would converge to 

unity. In a finite· environment, 2Z falls toward zero as the size of the ranch 
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increases. Wildlife migrate onto the ranch if the size of the ranch is less 

than the size of the environment and (a) wildlife are nonlinearly 

distributed, or (b) a wind combines with a population gradient parallel to 

the wind. A population gradient perpendicular to the wind does not affect 

migration. Territorial behavior, hunting pressure by man, water holes and 

refuges from predators would make the variance of wildlife movement a 

function instead of a constant and add a third reason for migration. 

COROLLARY 1: The three parameters for the distribution of wildlife numbers 

can be observed by i:hree censuses .. Migration becomes: 

m(s,Sr,si,k,K,a2 ,w) - 2z[pk]{a•[[sr + s.2)/K - st/k]41r/[K + k] 

+ w[sr - s.2]3,rl.S/4[(K + k)l.S - kl.S]}k 

The three censuses are for total stock on the ranch, s, total stock upwind 

to right of the ranch, Sr' and total stock downwind to the left, Si. Wildlife 

will migrate onto the ranch if it ~s smaller than the environment and (a) 

wildlife are more densely populated on neighboring ranches or (b) wildlife 

are concentrated upwind. This form for migration will be incorporated into 

the bioeconomic model. 

PROOF: A .sketch of the proof follows. A detailed proof is in the Appendix. 

The ranch and neighborhood are shown in Figure 1. Each point on· the x-y 

plane is one unit of carrying capacity. The small circle cent.ered at the 

origin of the x-y plane represents the ranch of radius pk and area k; the 

larger concentric circle represents the neighborhood of radius pK and area 

k + K. Not shown is the size of the environment which is larger yet of radius 

p • The number of wildlife at each point, n(x,y,t) is the vertical distance 
"' to the sloping and convex surface above. Total wildlife on the ranch and over 

the neighborhood are sands+ S. The x-axis is parallel to the prevailing 
' wind and O is the angle from the wind of a line through the origin. A point 

on the line can be expressed in either Cartesian coordinates (x,y), or polar 

coordinates (p,O) where x - pcosO, y - psin0 and pis a radius. Often in the 

literature only flux in the x-direction is considered. Nisbet and Gurney 

(1982, p.132) consider both the x- and y-directions. In Figure 1, the 

direction can be at .any angle but flux must be either toward or away from the 

origin. 

Flux of wildlife from right to left past point (p,0) along a line through 

the origin equals the numbers of wildlife on the right multiplied by the 

probabilities they will move to the left minus the numbers on the left 

multiplied by the probabilities they will move to the right. 

,I 

• 
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n(Y,y,t) 

y 

Figure 1. Distribution of Wildlife Numbers 

where pr and P;, are radii to the right and left of p; </>- is the probability 

wildlife will travel ~ither from right to left or from left to right; dis 

the distance wildlife must travel on their own_ legs; pr - P;, is the total 

distance travelled; and w is the distance travelled on the wind. The double 

integral evaluates wildlife movement from all points on the right to each 

point on the left. 

Figure 2 ,graphs probabil;ties of moving distances to the right or left. 

Distances are standardized by deviation u,. The distribution is symmetric and 

applies to wildlife travelling under their own power or on the wind in a -

finite environment of diameter 2p . Territorial behavior, hunting pressure, 
IC 

water holes_ or wildlife refuges will alter wildlife velocity by shifting 

deviation u-. A larger deviation incr~ases the chances wildlife will travel 

·1onger distances. Except for hunting pressure, these shifts to u have been 

included in models of infinite environments (McMurtrie [ 6]) . Shifts .to fI .in a 

finite -environment are more complex and not fundamental to the study of 

common prope~ty. Therefore, u will be assumed constant. 

Flux at a point will be approximated to first:-order by Taylor expansions . 

Wild1ife numbers are expanded around point (p, 9) . 
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-21'11/o o (1'11-1')/o 

Figure 2. Probabilities of Travelling Distances Left and Right from a 

Point 

n(pr,o,t) n(p,o,t) + [Pr - p]an/8p + o((Pr p) 2
) 

n[p1,o,t] = n[p,o,t] - [P - P,e]an/ap + o((P - P,e) 2
) 

where O(•) are second-order and higher terms. Probabilities are expanded 

. around distances with no wind, d(pr - ,e
1

,0,0). 

P,e,w,o]] = ¢(d(pr - p1 ,o,o)) + w(a¢/ad) (ad/aw) + o(w2
); 

p1 ,w,1r-o)) - ¢(d(pr - p 1 ,o,1r-o)) + w(a¢/ad) (ad/aw) + o(w2
) 

The expansions for distances can be simplified. Figure 3 shows distances 

on the x-y plane. Wildlife must travel as if their destination was distance w 

upwind from their actual destination. By the law of cosines, the distances 

wildlife must travel on their legs are: 

d[pr - p1 ,w,o] = [[Pr - P,e) 2 + w2 
- 2(pr - P,e)w coso]

0 ·5; 

d (Pr - p ,e , w, ,r- 0] = [(Pr - p ,e) 2 + w2 
- 2 (Pr - p ,e) w cos ( ,r- O)] O · 

5 
. 

Both distances equal pr - P,e when evaluated with w set to zero. Derivatives 

evaluated with w set to zero are: 

- cos 8; • 
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y 

1---.-1 
>. 

ca,9 ,,, 
(l"r,8 / ' 

rr-e 

Figure 3. Distances Travelled in a Prevailing Wind 

If aided by a wind, wildlife must travel under their own power approximately 

w cosO less than total distance, p - p, . If hindered by a wind, wildlife 
. r "' 
must travel approximately w cosO farther. 

Substitute the expansions into flux and simplify. 

The first term corresponds to van/ax dt in the introductory explanation of 

flux and the second term to nav/ax dt. Thus the first double integral defines 

wildlife velocity unaffected by wind. The second double integral defines the 

change in velocity due to wind. Velocity will be seen to equal a variance 

weighted by a cumulative probability. In an infinite environment, the 

cwnulative probability converges to 0.5 but in a finite environment an 

explicit probability must be assumed. Distances are sampled over a large 

environment and will tend toward a normal distribution. 

dt.·; 

where the mean distance is zero and the variance is u 2 • 

Substitute probabilities into the first double integral for velocity. 

Evaluate the inner integral and change the remaining variable of integration 

to standard normal variable z. 
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vdt Zo 2 dt; 

where 

I(p~-p)/o -z 2 /2 -0.5 
e (2,r) dz -

0 

Thus velocity is the variance weighted by cumulative probability Z which 

equals the difference between the two shaded areas under the standard normal 
' curve of Figure 2. Doubling the shaded areas for the symmetric distribution 

gives the total probabilities of travelling either short or long distances. 

The area between is the total probability of travelling intermediate 

distances. Wildlife travelling short, long or intermediate distances will hit 

a boundary never, always or half the time. Consequently, the first shaded 

area plus one-half the middle area represents the probability of not reaching 

a boundary. One-half the middle area plus the second shaded area represents 

the probability of hitting a boundary. The difference between the 

probabilities of not reaching and hitting a boundary is 2Z. It is greatest at 

the center of the environment and zero at a boundary. It is less for a large 

variance making it impossible for wildlife in a small environment to travel 

at more than a moderate velocity. 

Differentiate probability and substitute into the second double integral 

for the change due to wind. Evaluate. 

av/aw dt - -2Zw cosB dt . 

Because wind both assists travel from the right and hinders travel from the 

left, its effect on flux from right to left is doubled. The effect of wind is 

greatest at the center and least at a boundary of the environment. 

Flux becomes, approximately, 

(6) 

Flux along an infinite line, in brackets, is weighted by the cumulative 

probability to give flux along a finite line. 

Migration is the change in flux per unit of time. To show this, note that 

flux from right to left past point (p,0) also equals the increase over time 

in the numbers of wildlife at all points to the left. 

If p was larger, length would be added on the left and flux would change as 

wildlife on the added length changed. 

• 
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Differentiating (6), the change in numbers over time is migration at a point, 

not considering wildlife growth and harvest. 

(7) an/at 2[az/ap] [(02;2)(an/ap) + nw coss] 

+ 2z[[o2 ;2) (a 2 n/ap 2
) + w cosO (an/ap)J 

To apply equation (7) the distribution of wildlife must be estimated. A 

quadrative functional form will estimate up to second derivatives. 

Only the intercept need be positive but if all coefficients are positive, the 

distribution of wildlife slopes down and to the left and is convex as in 

Figure 1. The coefficients are functions of time and will change with 

migration. 

The ranch is not just a point on a line, however. Wildlife can migrate 

onto the ranch past every point on its circumference. Migration toward the 

center of the ranch past one point on the circumference will increase 

wildlife numbers along the radius of the ranch. Total migration onto the 

ranch equals the sum of migration onto all of its radii . 

Substitute in'equations (7) and (8) and integrate to obtain THEOREM 1. 

Integrate over the distribution of wildlife numbers to find total stocks. 

s r 

JPok fo21r pn [ dOdp ~ k~ 0 + k 2 ~ 3 + 

J
PK J,r/2 

pn dOdp 
Pk -,r/2 

IPK I3
1r/Z [ [ ) 1 5 1 SJ 1 5 S £ ~ pn dOdp - K~ 0 /2 - K + k . - k · ~, 2/3,r ' 

Pk ,r/2 

Solve for ~3 +~.by adding Sr and S£ to get total stock on 

ranches, dividing by K to get average density, also dividing 

neighboring 

st by k and 

subtracting to get the difference in average densities, and rearranging. 
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'1 3 + '1 4 ~ [(sr + s.e)/K - st/k] 41r/[K + k) 

Solve for 'Ii by subtracting S,e from Sr and rearranging. 

Finally, substitute into migration to obtain COROLLARY 1. 

III. The Degree of Common Property 

One rancher could have exclusive access to wildlife. Many ranchers could 

have open,access•. But more likely, a few ranchers will have limited access to 

wildlife and the degree of common property will be 'between the two extremes. 

Wildlife with legs can be common property whether or not they actually 

migrate. It is enough they potentially could migrate because an increase in 

stock would reduce migration. 

8m/8st ~ -2Za 2 41r/[K + k] . 

Negative marginal migration causes marginal user-cost in equation (4b') to be 

too sma-lI. The effect is less on a larger ranch because the magnitude of 

marginal migration declines. 

82m/8stapk 

where the size of the neighborhood, K + k, is constant. Except in an infinite 

environment, the change in cumulative probability is negative and the change 

in marginal migration positive. Therefore, marginal migration increases 

toward zero and decreases in magnitude. 

To reach exclusive access, the ranch must become large enough to encompass 

the entire· environment traversed by wildlife. If the neighborhood suitable 

for ranching is smaller than the environment, wildlife can travel beyond the 

boundaries of the neighborhood. Even the largest possible ranch could not 

gain 

large 

large 

well. 

exclusive access. At the other extreme, open access may seldom occur. A 

variance is not enough because the chance of hitting a boundary is also 

and cumulative probability small. The environment must be large as 

Nor is this result specific to the normal distribution in Figure 2. For 

open access, wildlife must travel unpredictably in a very large environment. 

Wildlffe travelling on the wind are common property only if they migrate. 

Marginal migration does not depend on the wind and marginal user-cost is 

affected only indirectly by changes in the stock on the ranch. 

Non~cooperative, Nash behavior was assumed in deriving marginal migration, 

but other types of behavior are possibl.e [3]. A rancher must conjecture about 

the variations to wildlife stock by his neighbors in reaction to his own 

variations. 

= 

• 

• 
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8m/ast - 2z{a 2 [(dsr/ds + dS,e/ds]/K - l/k]41r/[K + K] 

+ w[dsr/ds - dS,e/ds]31r
1

·
5
;4[[K + k]l.S 

where dSr/ds and dS,e/ds are conjectural variations. A rancher who does not 

cooperate with his neighbors would have zero conjectural variations. But 

suppose wildlife were uniformly distributed over the neighborhood and each 

rancher were convinced his neighbors would react to maintain a uniform 

distribution. Cooperative conjectural variations would be 

(dSr + dS,e)/K - ds/k; dSr - dS,e 

Both migration and marginal migration would be zero and the common property 

problem would be eliminated. 

This cooperative approach is sometimes advocated as a "land stewardship" 

policy. Cooperative equilibrium would be unstable unless each rancher could 

monitor the actions of his neighbors and credibly threaten to retaliate 

against exploitive actions. Cooperative management of wildlife migrating on 

their own legs might be possible, but not of wildlife migrating on the wind. 

Downwind ranchers have no credible threat against upwind ranchers. 

In the illustrations to follow, noncooperative behavior is assumed. The 

degree of common property among ranchers is measured by the proportion of 

rent dissipated. The proportion dissipated equals one minus the proportion 

captured and the proportion captured is the actual marginal user-cost divided 

by the hypothetical marginal user-cost of privately-owned wildlife . 

IV. Illustrations 

Migration in the equation of COROLLARY 1 causes economies of scale. 

Illustrations are clearest if yield of livestock, quantities of inputs and 

growth 

(9a) 

(9b) 

(9c) 

of wildlife are scale-neutral 

y a[l - ,Bst/k]k; 

c [st/kJ--rht; 

g r [1 - st/k]st; 

of livestock in equation 

functions of population densities. 

(9a) has Yield 

carrying 

between 

capacity 

wildlife 

equal to er. Yield declines as 

a maximum yield 

the degree of 

per unit of 

competition 

and livestock goes from no competition, with ,8 equal to 

zero, to complete_ competition, with ,8 equal to one. Inputs in equation (9b) 

decrease with population density, where elasticity -y is greater than or equal 

to one. Growth of wildlife in equation (9c) is, described by a logistic, 

function. 

No migration 

Nonmigratory wildlife with exclusive access are the benchmark in 

determining the degree of common property for migratory wildlife with limited 
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access. Table 1 contains model parameters for a hypothetical species, 

crocodiles, which have some value for harvesting but are predominantly 

predators. In a steady-state, harvest equals growth. Multiplying by prices 

gives steady-state revenue from harvest of crocodiles, revenues from yield of 

livestock and costs of inputs. These are graphed versus crocodile population 

in Figure 4. The two ranch sizes demonstrate the scale neutrality of the 

growth, yield and cost functions. 

Table 1. Model Parameters for Crocodiles 

Parametert Value 

Ph 15 

Py 5 

Pc 50 

5 0.05 

a 20 

/J 0.95 

-y 1.25 

r 0.75 

u2 0 

w 0 

K+k 9000 

K, 10000 

tph: harvest price; py: livestock yield price; 

o: interest rate; a: maximum livestock yield; 

p : input price; 
C 

{J: percent competition with 

livestock/100; -y: input elasticity; r: intrinsic growth rate; 

u2 : variance of travel; w: wind distance; K + k: carrying capacity of 

neighborhood; 1<,; carrying capacity of environment. 

Solving optimality conditions (4a), (4b) and (4c) with s and 1 set to 
1 zero gives a steady-state of 0.30 crocodiles per unit of carrying capacity 

for all ranch sizes. Crocodiles are managed at a low density because they are 

pests with a negative marginal user-cost of -$209.40/unit of stock. An open 

access pest would be managed at the other extreme with a density of 1, a 

1. The first-order conditions are solved by General INterative Optimizer 
(GINO) (Liebman et al, 1986). 

' 
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marginal user-cost of zero" and total revenue fr.om livestock yield minus 

total cost of inputs as small as possible in Figure 4. 

Another nonmigra~ory species, koalas, are predominantly valuable and 

compete little against livestock with price ph of 150 and parameter µ of 

0.05. The exclusive access steady-state is 0.67 koalas per unit of carrying 

capacity. Koalas are managed at a high density because they are valuable with 

a positive marginal user-cost of $67.47/unit of stock. A valuable open-access 

species would be managed at a density of only 0.42 with a marginal user-cost 

of zero and total revenue of, harvest equal to the total cost of inputs. 2 

$ ('l'ho11s1111d:-) 
,10 -~----

-JO 

II 200 .. JOO !WU 

C1·ocodilcs 

UOIJ 1000 1200 

Figure 4. T9tal Revenues and Costs for Carrying-Capacities of 

500 and 1000 

Density-dependent migration 

Even if wildlife do not actually migrate, potential migration causes 

economies of scale. To demonstrate, consider two mobile species, dingoes and 

2. Total revenue equal to total cost is sometimes quoted as the rule for 
open-access. It is not a general rule, however, but follows from assuming 
marginal cost of inputs is constant with respect to_harvest. If marginal 
cost of inputs is constant, inputs receive no rent and total revenue 
equals total cost once user-cost is dissipated. But if marginal cost 
increases with harvest, inputs receive rent and total revenue exceeds 
total costs, even in open access. Zero marginal user-cost with no rent to 
the resource is the general rule for open access. 
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kangaroos. Assume both are .uniformly distributed over the neighborhood so 

there is no actual migration. Dingoes are pests like crocodiles, kangaroos 

are valuable like koalas but both have a standard deviation of travel equal 

to the radius ·of the environment, 56.42. Figures 5 and 6 compare the 

population densities and marginal user-costs among species. Immobile 

crocodiles and koalas are managed the same on all sized ranches. Dingoes are 

under-controlled yet even the smallest ranch captures some of the marginal 

user-cost. No ranch captures all the marginal user-cost. Similarly, kangaroos 

are over-exploited, particularly on small ranches. The marginal user-cost is 

never completely dissipated nor captured. 

Slof:k / uuiL nf Carr,Yilll! Cap:icily 
I _____ .,___ - --· ---------- --- ---- --

0.2 -

l _.,_ Crocutliltis 

,'!z- Ko,1lns 

--j- llillgtl('fl 

-U- Ka111:arom; 

o _...1,_1_....1_1---1. ·-I___L-C--L_jl--'--1- [._ l··--.1 --1-· .I. 
I I 000 2000 :mun ,l{HJO uooo GOOO 7(}{)0 IIIHHI mmo 

Currying Capacity of Hauch 

Figure 5. Population Densities 

In Figure 7, the proportion of marginal user-cost dissipated measures the 

degree of common property. For density-dependent migration the degree of 

common property is greatest on small ranches but never reaches one .. Both the 

environment and the variance would have to increase by a factor of 10 until 

the smallest ranch was 1/100,000 of the environment before 98 percent of the 

marginal user-cost of dingoes would be dissipated. Neither does the degree of 

common property go to zero. The largest ranch encompassing the entire 

neighborhood but only 9/10 of the environment still dissipates 8 percent of 

the marginal user-cost of kangaroos. 

• 
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$ / uuil. of Carrying Cnpacil.y 
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Figure 6. Marginal User-costs 

fl . 

·◊-v--◊--◊-◊-<>--0---0-◊-0--◊-cO-<>--◊-<>-v--◊-< > 

-0.:.! 

- U • Brumbir.1< -X- l.ucusl.s --()- lluuks 

-(J.-1 _J-·+-~+-~-1 
I IOUU 21100 :moo ,JOIJ(J f1UOO 0000 7000 UlJOO !JUllll 

Carryin~ Capaeil._y of Ranch 

Figure 7. Degree of Common Property 
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' Dingoes have a higher 

pests damage livestock yields 

degree of common property than kangaroos because 

and amplify the effect that marginal migration 

has on marginal user-cost in equation (4b'). Figure 7 compares two other 

pests, rabbits and· brumbies, to dingoes. Rabbits are faster growing at rater 

of 1.00 and brumbies are less 

Curiously, rapid growth decreases 

P.opulations are 

important than 

indeed greater but 

marginal growth. 

expensively controlled with price Pc of 10. 

the degree of common property. Rabbit 

marginal migration becomes relatively less 

Curiously, again, inexpensive control 

increases the degree of common property. Brumbie populations are smaller but 

marginal migration frustrates more extensive control efforts. 

Wind-driven migration 

Figure 7 also shows the degree of common property for two wind-driven 

species, locusts and ducks. Locusts are pests. Ducks are valuable. Both are 

carried on a wind which travels the radius of the environment, 56.42, per 

unit of time. The population gradient in the direction of the wind is assumed 

constant at 0.001 because both locusts and ducks migrate seasonally. 

Migration is exogenous to the ranch and the degree of common property is 

independent of ranch size. Locusts are costly with, a significant degree of 

common property, but ducks are beneficial with a negative degree. The rancher 

actually captures more rent from migrating ducks than he would otherwise. 

. 

• 

Endogenous migration with a changing population gradient over time will 0 

reach a steady-state of uniformly distributed wildlife with no gradient, no 

wind-driven migration and 

will adjust more quickly to 

a zero degree of common property. A larger 

the steady-state but, in the long-run, the 

of the ranch is unimpo_rtant for wind-driven migration. 

V. Conclusions 

ranch 

size 

Migration, along with growth and harvest, is one of three fundamental ways 

in which a wildlife population can change. Migration across fence lines 

attenuates the right of a rancher to exclude others from the wildlife and is 

a root cause of common property. Yet migration has seldom been incorporated 

into bioeconomic models or studies of common property. 

Migration at a point in an infinite environment has been modeled 

extensively in the mathematical ecology literature. But a bioeconomic model 

must superimpose a pattern of land ownership. In this study, migration was 

derived for various sized ranches in a finite neighborhood under the two 

basic modes of power: wildlife travelling on their own legs and wildlife 

powered by an exogenous force such as the wind. 

It was found that wildlife travelling under their own power are common 

property, even if they do not actually migrate. Their potential to enter or 

leave a ranch restricts a rancher's ability to control them as pests or 

conserve them as valuable wildlife. As a general rule, pests have a higher 

degree of common property than valuable wildlife; faster growing wildlife 

• 



y 

i 

• 

20 

have a lower degree of common property; and inexpensively controlled wildlife 

have a higher degree. 

Wildlife travelling under wind power are common property only if they 

actually migrate. For seasonal migration across a large environment, the 

degree of common property is independent of ranch size. Pests have a higher 

degree of common property, as before, but valuable wildlife have a negative 

degree. A rancher receives "manna from heaven" and captures more rent than if 

wildlif~ did not migrate. For non-;easonal migration under wind power, a 

uniformly distributed population with no migration and a zero degree of 

common ~roperty will eventually be reached. Larger ranches may adjust more 

quic~ly but in the long run the size of the ranch is unimportant. 

Finally, migration can convey economies of scale to larger ranches with 

lower degrees of common property on the continuum from open through limited 

to exclusive access. Open-access can occur only for wildlife travelling 

unpredictably in a very large environment. Even the textbook example of a 

fishery may not meet these conditions. A fisherman using a vessel equipped 

with sonar eliminates unpredictability and should capture rent from -the 

fishery. Certainly a rancher will capture a significant portion of rent from 

wildlife. Nor can exclusive access be achieved if the environment is bigger 
' than the neighborhood. The owner of all fishing vessels on the ocean or all 

land in the vicinity of a'national park could not capture all the rent. 

In conclusion, common property is a key feature of natural resource 

management. Migration 

modeling migration by 

policies are based on 

is the root cause. Bioeconomic studies have avoided 

comparing open with exclusive access. Government 

this c_omparison. But the degree of common property 

the two extremes and bioeconomic models and almost always lies between 

policies should begin to include migration . 
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Appendix 

Detailed Derivation of Migration 

For explanation of the mathematical symbols and the interpretation of 

equations, please refeF to section II "Migration". Equations with at symbol. 

are from the text. Begin with the definition of flux. 

Taylor expand numbers and probability. 

t p~,w,e]] = ql(d(pr - pl'o,e]] + w(aq1/ad) (ad/aw) + o(w2);, 

p2 ,w,ir-9]] - ql[d(pr - P.e,0,1r-9]] + w[aq\/ad] [ad/aw] + o(w2) 

Define distance. 

t d(pr - p 2 ,w,o] "'. [(Pr - P.e)2 + w2 - 2(pr -

t d(pr p2 ,w,ir-8] - [(Pr - P.e)2 + w2 - 2(pr 

Evaluate distance and its derivative at zero. 

d[pr - p2 ,o,e] - pr - p2 ; 

d(pr P.e,0,ir-8] - Pr - P.e

[a/aw]d[pr - P1,w,o] lw=O 

P.e]w coso] 0·5
; 

- P.e]w cos[ir-o)]
0

·
5

. 

o.s[(pr-p.£)
2 

+ w2, - 2(pr-p1)w coso]-O.S[2w - 2[pr-p1]cos8]w=O 

= - [pr-P1]-l[pr·P1] cos8 

t ad[pr - p2,o,9]/aw - - cos8 . 
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(a;aw)a(pr - p1 ,w,~-o] 'w-o 

- o.s[(pr-p.e]
2 

+ w2 -2[pr-P,e]w cos[,r-o)]-O.S[2w-2(pr-P,e)w cos[rr-o)]w-O 

[pr-P,e]-
1

[[pr-p,e] cos[rr-8) 

- - cos,r cos8 + sin,r sin8 

Substitute into the expansion of probability. 

,i1(a(pr-P,e] ,w,o) - ,i\[pr-P.e] - w cos8 8,i\/8[pr-p.e] + o(w2
) 

,i1(a(pr-P.e) ,w,1r-o) - ,i1(pr-P.e) + w cos8 a,i11a[pr-P.e] + o(w2) 

Substitute expansions into flux. 

- n f~P J:" 2w cos8 a,i11a[pr - P.e)aprdP,e + 0(,) 2 + o(•]• 
IC 

' 

• 
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Define probability as normaJ. 

t 
-(p -p )2/2a2 , 

) [ 
r ,P, 0.5] 

- p ,P,. = e /a(21r) dt . 

Evaluate the first double integral from flux. 

dt JP -a[e-(p1<-p,P,)2/2a2 -

-p K, 

[ J
(p -p)/a 

dt a 2 K. 

2pK./a 

[ J
(p -p)/a 

dt a 2 K. 

0 

-z 2 /2 -0 5 
e (2,r) · dz -

t vdt = Za 2 dt. 

Differentiate probability. 

-z 2 ;2· 

-0.5 
( 2,r) 

-0.5 
( 2,r) 

dt . 
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Evaluate the second double integral from flux. 

t 8v/8w dt -2Zw cosO dt. 

Simplify flux. 

t 

Differentiate to get migration at a point. 

t 

Define the wildlife distribution. 

Define migration onto the ranch. 

t 
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Differentiate the wiidlife distribution. 

Substitute into migration within fluxes, F(pk,8) and F(p,8), and integrate .. 

Odd powers of cos8 and sin8 are.zero. 

t 

Integrate stocks on the ranch. 

t Jpk J2" 
O O pn d8dp 

t 
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Integrate the stocks to the right of the ranch. 

Integrate stocks to the left of the ranch. 

t 

Solve for q3 + q 4 • 

or 

-t 
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Solve for '1 1 . 

or 

t '11 

Finally, substitute 'la+ '1• and 'll into migration. 

t 2z(pk){a2 [[sr + s1);K - st/k]41r/[K + k] 

+ w[sr - s1]3,.1.5;4[[K + k)l.S - kl.S]}k . 

,. 




