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Abstract: 

This study combines three rounds of surveys with remote sensing information to measure long-
term impacts of a program that promoted modern irrigation systems among small and medium 
landholders in the Dominican Republic (PATCA). Specifically, Landsat 7 and Landsat 8 satellite 
images are used to measure the causal effects of the PATCA program on agricultural productivity, 
measured through vegetation indices (NDVI and OSAVI). To this end, 377 plots were analyzed 
(129 treated and 248 controls) for the period from 2011 to 2019. The PATCA program was 
implemented using a randomized control trial (RCT). Hence, this study follows a Difference-in-
Differences (DD) and Event study methodology to capture the program’s effects. The results 
confirmed that program beneficiaries have higher vegetation indices, and therefore experienced 
a higher productivity throughout the post-treatment period. Also, there is some evidence of 
spillover effects to neighboring farmers. Furthermore, the Event Study model shows that 
productivity impacts are obtained in the third year after the adoption takes place. These findings 
suggest that the process of adopting irrigation technologies can be long and complex as it requires 
time to generate productivity impacts. In a more general sense, this study reveals the great 
potential that exists in combining field data with remote sensing information to assess long-term 
impacts of agricultural programs on agricultural productivity. 
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1. Introduction 

The agricultural sector faces the triple challenge of increasing food production to maintain a 

growing population, protecting natural resources and adapting to climate change. To achieve this 

goal, agricultural technologies that aim to foster productivity must be promoted to increase food 

production without expanding the agricultural frontier to areas with high ecological, biological and 

cultural value. To this end, several countries in Latin America and the Caribbean have 

implemented several agricultural policies that aim to increase productivity through technology 

adoption including irrigation, post-harvest technologies, soil conservation technologies, etc. 

(Maffioli et al., 2008; Flores et al., 2014; Gonzalez et al., 2009; Lopez and Salazar, 2017; 

Gonzalez-Flores and Le Pommellec, 2019). 

Modern irrigation is a technological change that has the potential to successfully meets this triple 

challenge. As a result of these technologies, greater production can be obtained while increasing 

water use efficiency and adaptation to climate change. In fact, adoption of modern irrigation 

improves climate change adaptation by reducing farmers' dependence on rainy seasons, allowing 

longer windows for planting, and harvesting.  

An important example in the region is the Program for the Support of Innovation in Agricultural 

Technology II (PATCA for its acronym in Spanish). This program was implemented in the 

Dominican Republic between 2012 and 2015 by the Ministry of Agriculture to promote the use of 

several technologies that included modern irrigation5). The program was implemented using a 

two-stage randomization at the levels of subregions and producers. First, subregions were 

randomly assigned into treatment and second, producers located in selected subregions were 

assigned into treatment. In 2015, an impact evaluation of the program was conducted to 

determine the short-term effects of program participation on productivity for the irrigation and 

 
5 Other technologies included mulching, and-leveling, green-houses, post-harvest management equipment, and 
improved pastures 



improve pastures technologies using two rounds of surveys that provided abundant socio-

economic and productive information (Aramburu et al., 2019). The results show that farmers who 

received improved pastures increased agricultural income while beneficiary farmers who received 

modern irrigation technologies experienced lower value of production during the 2014 agricultural 

cycle. When analyzing the impacts based on the number of exposure intensity (i.e. months using 

the irrigation technology), the authors found evidence of changes in the farmers’ crop portfolios 

suggesting a shift from annual to perennial crops. These findings indicated that the process of 

adoption had not yet resulted into productivity effects due to changes in the production systems. 

Hence, further analysis was needed to understand what appeared to be a long-term process.  

In fact, it is well established in the literature that agricultural technology adoption is a process that 

requires time, capital and knowledge. Hence, to understand this process might require several 

survey rounds to capture the time frame required for productivity impacts to develop and monitor 

farmers’ progress. However, while agricultural household surveys are a rich source of information, 

these are costly and involve complex field logistics limiting the periodicity of data collection 

(USAID, 2019). Then, agricultural surveys depict a picture at a specific moment in time that might 

leaving behind important information needed to understand the complexity of technological 

adoption.  

This paper aims to address this gap, using information from remote sensing technologies to obtain 

a more accurate description of the dynamics behind the irrigation adoption process. Specifically, 

we use satellite imagery to construct vegetation indexes, as a proxy for productivity, that fill out 

the data gaps between different survey rounds collected for the purpose of evaluating the PATCA 

program. For this purpose, we used georeferenced records for 377 plots and 283 farmers to 

estimate vegetation indices using Landsat 7 and 8 satellite images. Next, trend detection (Mann 

Kendal) and continuous change detection (CCDC) models were estimated using these vegetation 

indices to identify trend changes in land coverage. This suggests that farmers altered their 



productive systems. Subsequently, these vegetation indices, calculated for each plot for the 

period between 2011 and 2019, were used to measure the impact of the PATCA program on 

productivity. This was implemented by comparing beneficiary and non-beneficiary plots through 

the Difference-in-Differences and Event Study methodologies. 

This study confirms the complementarity between data obtained through remote sensors (i.e. 

remote sensing) and field data. We find that, in general, the beneficiary plots reported higher 

vegetative indices in the post-treatment period compared to the control group. This implies 

healthier crops, with greater vigor and therefore, greater productivity than the control group. 

Additionally, when we look at the dynamics of the vegetation indices over time, the results show 

that the benefits from adopting irrigation technologies are obtained three years after the 

implementation of the technology. However, the coefficients of the subsequent periods are not 

significant, suggesting that control farmers could have catched-up by adopting the technology. In 

addition, the results present some evidence of indirect impacts in neighboring farmers. 

To the best of our knowledge, this would be the first attempt to combine remote sensing 

information with a randomized design to measure the long-term effects of a program that 

promotes modern irrigation technologies in the LAC region. By doing so, we aim to illustrate the 

potential that exists by combining survey data with remote sensing information in order to 

measure and monitor the effectiveness of technological programs. Overall, this study shows how 

remote sensing combined with field data can be a valuable tool to measure the dynamic effects 

of agricultural interventions that seek to promote productivity through technological adoption. 

 

The rest of this paper is organized as follows: Section 2 provides a literature review on the 

utilization of remote sensing and vegetation indices in agriculture followed by a description of the 

PATCA II program in Section 3. Next, Section 4 describes the data cleaning process and the 



construction of vegetation indexes while Section 5 explains the methodologies used for the 

analysis. Finally, Section 6 presents the results and Section 7 provides the main conclusions of 

the paper. 

2. Literature Review  

Over the years, technological advances have been implemented to facilitate the measurement of 

indicators related to agricultural activity. One of the most important refers to remote sensing (RS) 

technologies. According to Martos et al., (2021), the application of RS is indispensable for a highly 

productive and sustainable agriculture. In fact, the authors state that artificial intelligence and 

cloud computing, applied to agricultural remote sensing, is the fifth agricultural revolution. 

Remote sensing can be crucial in decision-making as it combines useful information from multiple 

sources to detect or assess factors that encourage or limit agricultural production, such as 

vegetative vigor, and plants’ nutritional status. Specifically, remote sensing with external sensors, 

such as drones or satellites, can be useful to monitor land and crops over time. These instruments 

allow us to scan crops (Brizuela et al., 2007) and capture different vegetation variables such as 

health, production, phenological stage or nutritional deficit (Melchiori OPet al., 2008), occupying 

a central position in precision agriculture and soil studies (Martos et al., 2021). Likewise, remote 

sensing can be used to measure the spatial variation of productivity, to estimate biomass and 

agricultural yields, and to obtain samples of physical and chemical properties of vegetation in 

complex biophysical environments (Aguilar Rivera, 2015). For instance, yields can be accurately 

predicted by using drones (Maimaitijian et al., (2020); Jian et al., (2020)). 

As mentioned in Martos et al., (2021), first studies on RS were focused on the reflection 

mechanism, absorption, and diffusion of light rays from plant leaves. However, in the last 

decades, the RS technology has been completely revolutionized. Current studies are related to 

designing novel algorithms, improving sensor technology and the incorporation of artificial 



intelligence. The application of these novel technologies has been accompanied by a significant 

boom in academic articles that discuss and compare different aspects of their implementation, 

highlight their various applications, underline some of their limitations and identify some of the 

opportunities in this field (Martos et al., 2021). This paper focused on the latter. Specifically, we 

aim to highlight the opportunity of RS technologies for the monitoring and evaluation of agricultural 

programs. In particular, we aim to highlight the role of satellite imagery as a cost-effective tool to 

complement field data. 

The increasing access to satellite images has created a high number of academic research in the 

field of economics. Donaldson et al. (2016) offer a comprehensive description of the applications 

of satellite images on this social science. Night-time light data have been used as a proxy for 

economic activity (under the assumption that lighting is a normal good) within cities (Harari 2016; 

Storeygard 2016); ethnic homelands (Michalopoulos and Papaioannou 2013, 2014), subnational 

administrative units (Hodler and Raschky 2014), larger uniform grid squares (Henderson, Squires, 

Storeygard, and Weil 2016), among others.  

Also, climate data collected through sparce weather stations has been combined with remotely 

sourced readings to estimate measures of interest in a more accurate manner. Kudamatsu et al. 

(2016) match weather data from RS to the DHS surveys in all 28 African countries to investigate 

the extent to which infant mortality in Africa is related to weather variation. Satellite imagery has 

also been used in several studies to estimate the impacts of flooding (Guiteras, Jina, and Mobarak 

2015) and cyclones (Yang 2008; Hsiang and Jina 2014), as well as an innovative source of 

variation to predict colonial settlement patterns using wind speed and direction (Feyrer and 

Sacerdote 2009). 

More specifically, Donaldson et al. (2016) highlight the great number of applications of satellite 

data in agriculture. For example, using satellite data, Duflo and Pande (2007) estimate the effects 

of dams in India, which are used for both irrigation and hydropower. The authors argue that dams’ 



locations determined their effectivity. In fact, dams are more likely to be efficient when they are 

built in locations in which the course of a river is neither too shallow nor steep. For this purpose, 

they identified the locations using a digital elevation model. Also, Foster and Rosenzweig (2003) 

combined satellite data with village-level survey data to investigate forest cover changes in India. 

They find that forest growth was likely caused by an increase in the demand for forest products. 

Another application of RS in agricultural economics has been for estimation of production 

possibility frontiers. Agronomic models such as GAEZ use the characteristics of the location (from 

a remotely digital elevation model) and crop as modeling inputs. This enables researchers to 

predict the yield for a given crop in a specific location. Costinot et al. (2016) use that method to 

predict global agricultural production possibility frontier. Then, they use pixel-by-pixel changes to 

complement a general equilibrium model of world agricultural trade to estimate that climate 

change can be expected to reduce global agricultural output by one-sixth. Other studies that used 

GAEZ models are Nunn and Quian (2011), who study the impact of the discovery of the potato in 

the New World on European living standards; and Alesina et al. (2013), who argue that today’s 

gender roles are determined by traditional agricultural practices such as the use of the plough. 

An additional functionality from remote sensing technologies in agriculture is the estimation of 

vegetation indices through satellite images to determine crops health dynamics over time (Isla 

and López, 2005; Militino et al., 2020; Naito et al., 2017; Selvaraj et al., 2020). The most widely 

used index is the Normalized Difference Vegetation Index (NDVI). In general, the relationship 

between NDVI values and plant health is directly proportional, which implies that a higher NDVI 

value is related to better plant health (Chuvieco, 1991). One of the main advantages of using 

vegetation indexes is that these can be used to analyze specific crops (Moriondo et al., 2007) or 

to analyze several crops using a homogenous measure (Groten, 2007; Genovese et al., 2001). 

The literature provides several examples through which vegetation indices are used to measure 

productivity. For instance, Selvaraj et al., (2020), calculate vegetation indices over time to 



estimate the growth dynamics of cassava and to measure crop yields in Colombia. Also, Wang, 

et al., (2002) found a strong relationship between the NDVI index and forest tree productivity 

variables, the latter measured using field surveys collected in the Great Plains in the United 

States. In the case of Carrilla et al., (2013) they use the Enhanced Vegetation Index (EVI) and 

the tree ring width as measures to estimate changes in plant productivity in high-altitude 

ecosystems in northern Argentina and southeastern Bolivia. Similarly, Gamon et al. (2013) study 

the relationship between early snowmelt and vegetation productivity in the Arctic region. They use 

the NDVI index as an indicator of phenology and vegetation productivity to find that early snowmelt 

is not related to increased productivity, although it is related to precipitation levels and soil 

moisture. However, as stated by Donaldson et al. (2016), one downside of using vegetation 

indexes as a proxy for agricultural productivity is that remote sensors capture greenness increase, 

which may include the growth of other non-agricultural plants which are not relevant when 

measuring agricultural productivity. To avoid this issue, NDVI data can be combined with land-

use classification that identifies cropland or with field surveys. An example of that is Farmaha et 

al., (2016) who made some improvements in the measure of remotely sensed yield 

measurements.  

Furthermore, using vegetation indexes has allowed to identify correlations between productivity 

and variables such as poverty. For example, Sedda et al., (2015) construct vegetation indices to 

analyze the correlation between poverty, undernourishment, and vegetation level in West Africa. 

They found an inverse relationship between poverty and the NDVI index, implying that areas with 

lower vegetation index, and therefore, lower agricultural productivity, face higher levels of poverty. 

Likewise, Johnson and Brown (2014) found a positive correlation between nutrition and NDVI, in 

areas with a high levels NDVI dispersion in West Africa. However, in other areas, such as in 

Ghana, large portions of vegetation are associated with higher risk of child mortality. This is mainly 



because these areas are located on the edge of urban settlements where populations face more 

vulnerable conditions (Weeks et al., 2012). 

Vegetation indices calculated through satellite imagery have also been used to identify areas with 

greater or lesser access to irrigation. In this sense, Magidi et al., (2021), use the Sentinel 2 and 

Landsat 8 satellites to construct the NDVI index. They aim to differentiate between irrigated and 

dry land areas of smallholders in South Africa, using a machine learning model for classification. 

With these outcomes, the authors were able to identify differentiated water use patterns between 

farmers with and without irrigation technology. 

The application of RS technology in the literature of impact evaluation of agricultural programs 

has been more limited. One example is Jayachandran et al. (2016) who used bespoke satellite 

images (instead of public images) to measure the impact on deforestation of a payment-for-

ecosystem services program in Indonesia. To our knowledge, in the case of Latin America, nor 

impact evaluations of randomized agricultural projects have used satellite images to measure the 

program’s effects on productivity.  

Overall, the literature presents a broad arrangement of studies that implemented different 

applications of RS data in agriculture.  However, little research has been done to portray the 

potential of using RS data on the impact evaluation literature of agricultural projects.  This paper 

aims to contribute to the literature by combining data from satellite images with plot-level survey 

data to calculate vegetation indexes in order to measure the causal effects of an irrigation program 

in agricultural productivity.   

3. PATCA: (Support Program for the Competitive Agrifood Transition) 

The Dominican Republic is a country in the Caribbean located at 18 ° 28′35 ″ N 69 ° 53′36 ″ W 

(Figure 3). It has an area of 48,442 km2 that contains 32 provinces and is surrounded by the 

Atlantic Ocean except to the west, where it borders with Haiti. Its climatic conditions are typical of 



countries near the tropics with abundant rains and temperatures between 25 and 35 C. The rainy 

season runs from April to November, but May, August and September are the most humid months. 

The driest part of the country is found in the northwest, where it can experience up to six months 

without any precipitation. 

The PATCA program was implemented in The Dominican Republic from 2012 to 2014. It aimed 

to improve agricultural productivity and income of beneficiary farmers by promoting the adoption 

of agricultural technologies. Following a national registration process where farmers identify the 

technology of their choice and provided proof of the eligibility, a random group of smallholder 

farmers were selected to receive a non-reimbursable voucher that financed up to 60% of the total 

cost of the agricultural technology selected by the farmer (Aramburú et al., 2019).  

The randomization process was implemented in two stages. The first stage randomly assigned 

geographical subzones to treatment and control groups. The second stage randomly selected a 

group of beneficiary farmers within the group of beneficiary subzones. This process divided the 

universe of registered farmers into three groups: pure control group (i.e. farmers located in the 

control subzones), direct beneficiaries (i.e. beneficiary farmers located in treated subzones) and 

contaminated counterfactual (i.e. non beneficiary farmers located in control subzones). In 

addition, the date of entry to the program was also randomized among the beneficiary subzones. 

This allowed us to assure comparability between PATCA beneficiaries and the pure control group 

to conduct an experimental impact assessment. Moreover, comparing contaminated 

counterfactual with the pure control group allow us to measure spillover effects.  In this study we 

will focus only on the sample of beneficiary farmers who received modern irrigation technologies 

with their corresponding control group. 

Overall, the program targeted producers who meet the following eligibility criteria: (i) be a citizen 

of the Dominican Republic with a valid identification card (cedula); (ii) have legal proof of land 

tenure; (iii) have agricultural or livestock production as the main economic activity; (iv) be a 



smallholder farmer; and (v) present evidence of the ability to cover the remaining cost of the 

technology. Beneficiaries were randomized among farmers who met these requirements and 

participated in the registration process. Subsequently, due to budgetary constraints during the 

implementation phase, the program`s geographical scope was limited to only two regions: North 

and Southwest. By May of 2014, a total of 487 farmers had received the technology, 340 received 

improved pastures and 147 received irrigation. 

As part of the assessment strategy, three rounds of agricultural surveys were conducted: a 

baseline in 2011, a first follow-up survey in 2014, and a final survey in 2019. These surveys 

contained detailed information on agricultural and livestock production, land allocation, inputs use, 

household socio-economic characteristics, income sources, food security, social capital, 

migration, among others. Also, in 2011, georeferenced information was collected for each of the 

plots of the beneficiary and control farmers. Overall, a total of 435 of the georeferenced plots (314 

producers), that requested irrigation technology were followed over time. Finally, after cleaning 

data for outliers and missing information (to be described in Section 3), our analysis will focus on 

377 parcels (248 treated and 129 control)  from 282 smallholder farmers. Figure 1 shows the 

georeferenced points for the beneficiary and control plots to be analyzed.  

 

 

 

 

 

 

 



Figure 1. Beneficiary and Control Plots 

 

4. Data Description  

4.1 Satellite Image Data Cleaning Process 

To obtain plot information using satellite images, some previous steps were considered to verify 

the suitability of the georeferenced points. We provide a detailed description of the process in this 

section. 

The first step is to verify data to avoid erroneous cases. Correction of geographic data consists 

of visual verification to avoid poorly georeferenced points, such as those found on roads, 

buildings, trees or field corners as shown in Figure 2 (green dots). 

 



Figure. 2: Description of point correction and creation of buffer and / or polygons 

 

After verifying the GPS points of the 435 geo-referenced plots, we found that 100 points were 

correctly georeferenced (22.99% of the total) (i.e. yellow dots in Figure 2) while   247 points (65%) 

had to be manually corrected as they were located on roads, houses, or trees near the plots. This 

correction was based on information collected in the field surveys (i.e. crop type, plot size, etc.). 

Further, a 70 meters buffer was drawn to create a polygon for each parcel (i.e., red polygons in 

Figure 2). However, we detected that 83 of the polygons (23%) contained trees, buildings or roads 

that could affect the measurement of the vegetation indices. These areas are identified as 

disturbed areas. Finally, 58 points (13.33%) corresponded to plots with an area of less than 1 

hectare of land and were discarded since they did not allow for an adequate extraction of 

characteristics (i.e., points without buffer or polygons in Figure 2). Overall, the final database 



contains 377 points or plots to be analyzed (Table 1). From these points, 129 plots correspond to 

PATCA beneficiaries, and 248 plots correspond to the control group (Table 2). 

Corrections could have been avoided if GPS coordinates had been collected carefully, following 

an established protocol. Specifically, it is important that GPS points are collected in the middle of 

the plot to avoid manual corrections. If possible, to improve precision, it is recommended to collect 

GPS location pertaining to all the corners of the parcel.   

Table 1: Points correction 

Type of correction  N points  Percentage  
Sum N 

points 

Optimal conditions  100 22.99 112 

 

Review based on the type of 

crop  

12 2.76 12 

 

Moved  
181 41.61 293 

 

Disturbed areas  
15 3.45 308 

 

It was moved and it was in 

disturbed areas  

69 15.86 377 

 

Areas of less than 1 Ha 

(discarded from the 

analysis) 

58 13.33 435 

 

 

Table 2: Final Sample 

 

 

 

 

The next step corresponds to the Landsat image processing. This consist of downloading and 

correcting images, cloud masking, and finally creating vegetation indices. Figure 3 describes the 

process. 

PATCA N plots / points  Percentage 

0 248 65.78 

 

1 
129 34.21 

 

Total 
377 100.00 



Figure 3: Workflow 

 

 

 

 

 

 

 

4.1.1. Landsat images 2011-2019 

The Landsat program is a series of Earth-observing satellites, jointly managed by the USGS and 

NASA, that provides the longest continuous space-based record of Earth’s land in existence. The 

first satellite called Landsat 1 was launched on July 23, 1972. To date, there were eight Landsat 

missions but only the Landsat 7 and 8 missions are currently operative. Unfortunately, due to a 

failure presented by the Landsat 7 sensor, since 2002, the Scan Line Corrector (SLC) satellite 

images started to be generated. This failure causes a data loss of at least 22% in all captured 

images. The two satellites have a spatial and temporal resolution of 30 meters and 16 days, 

respectively (USGS, 2011). 

For this study, Landsat images were collected for the years from 2011 to 20196, with a total of 5 

images that captured all the georeferenced points (Figure 4). To allow for interpretation, each 

image must comply with less than 30% of cover clouds (USGS, 2016). Overall, 882 Landsat 

images were collected from all Landsat satellites (7/8), with 23.8% of the images gathered from 

 
6 Landsat images of pre-collection 1 for 2 path / 3 row (path 7 / row 46-48 and path 8 / row 46,47; Fig. 5) 



Landsat 7 (210) and 76.2% from Landsat 8 (672) as shown in Figure 7. This is because  Landsat 

7 satellite was only available from 2011 to 2012, while Landsat 8 was available from 2013 to 2019. 

The average number of images was 73.5 per year for each georeferenced point (Figure 4). 

Previous studies suggest that at least 10-12 images per year are necessary to generate a reliable 

trend. Once the Landsat images were compiled, they were pre-processed with the geometric and 

atmospheric corrections for each image (Chuvieco, 1991). Clouds and cloud shadows were 

removed using the CFMask (C Mask Function) algorithm (Foga et al., 2017). 

Figure 4: Images for the study area 

 

 

 

 

 

 

 

 

 

4.1.2. Atmospheric corrections 

A total of 1080 images were obtained from the Landsat satellites (7/8) for the area of analysis 

during the 9 years of the study. Next, an image radiometric correction was conducted (Figure 5), 

followed by the cloud masking process (Figure 6) 

 



Figure 5: A) Uncorrected Landsat image B) Corrected Landsat image 

 

 

 

 

 

Fig. 6: A) Image with clouds. B) Image with cloud masking 

 

 

 

 

 

 

 

 

 

 

 

 

As a result of the corrections made due to reflectance and cloudiness, a total of 882 images 

were available for the 9 years of analysis, which are divided into 210 Landsat 7 ETM+ images, 

and 672 Landsat 8 OLI images (Figure 7). Finally, using the corrected and cloud-free images we 

constructed vegetation indices for each polygon which allowed us to plot and analyze time 

trends. 

 

 



Figure 7: Landsat Images per Year 

 

4.1.3. Vegetation indices 

Biophysical and biochemical information of the plants are necessary to monitor the nutritional 

status and vigor of vegetation. This information provides photosynthetic capacity indicators, which 

are useful information in order to estimate the plant’s health. 

Vegetation experiences photosynthesis processes, which contain pigments called photosystems 

with chlorophyll content. Chlorophyll feeds on electromagnetic energy, especially wavelengths 

that are displayed in the blue and red band of the spectrum (Taiz and Zeiger, 2002). For this 

reason, we observe that most of the vegetation is green when reflecting this spectral band. 

Multispectral data (satellite images) can determine these biophysical and biochemical variables, 

using and developing statistical models known as spectral indices. The spectral indices capture 

vegetation development and aim to determine the reflectivity variations in the plants using 

combinations between different spectral bands, avoiding the use of destructive and invasive 

methods (Gomez Escobar, 2015). 

In fact, vegetation indices are the result of the addition, division, subtraction, or multiplication of 

spectral values. These are quantitative measurements based on the spectral response to obtain 

physical parameters of a crop such as biomass or chlorophyll. The Normalized Difference 



Vegetation Index (NDVI) is one of the most used indices in most plant analysis studies, which 

allows to identify the change in green biomass, chlorophyll content and water stress (Murillo et 

al., 2013). In addition to the NDVI, literature has registered different indices for the detection of 

specific biophysical aspects and the characterization of the plant structure. Thus, for each 

georeferenced point (i.e. each plot), two vegetation indices were calculated: the Normalized 

Difference Vegetation Index (NDVI) and the Optimized Soil Adjusted Vegetation Index (OSAVI). 

We monitor them over time from 2011 to 2019. 

NDVI 

The Normalized Difference Vegetation Index, also known as NDVI, is a vegetation index that is 

widely used to estimate the quantity, quality and development of vegetation based on the 

measurement of the radiation intensity of certain bands of the electromagnetic spectrum that 

vegetation emits or reflects (Chuvieco, 2008). This indicator is estimated as follows: 

𝑁𝐷𝑉𝐼 =  
𝑁𝐼𝑅 − 𝑅𝐸𝐷

𝑁𝐼𝑅 + 𝑅𝐸𝐷
 

Where: NIR is the near-infrared band and RED is the red band for satellites. 

The NDVI is commonly used to estimate plant health status, predict agricultural production, and 

monitor droughts and areas in the process of desertification. In addition, NDVI has been 

incorporated into agricultural applications (such as crop monitoring) to facilitate crop exploration 

and provide precision measures for application of fertilizer and irrigation. 

OSAVI 

Optimized Soil Adjusted Vegetation Index (OSAVI) shows a slight variation with respect to the 

traditional NDVI to avoid distortions in the analysis when vegetation is on bare soil. The OSAVI 

index is rather adapted to studies of vegetation analysis in early growth stages or sparse 

vegetation. In general, OSAVI can be an appropriate alternative for areas with low plant density 



and where the soil surface exposure is relevant (Huete et al., 1992; Rondeaux et al., 1996). This 

indicator is estimated as follows: 

𝑂𝑆𝐴𝑉𝐼 = (
𝑁𝐼𝑅 − 𝑅𝐸𝐷

𝑁𝐼𝑅 + 𝑅𝐸𝐷 + 𝐿
) ∗ (1 + 𝐿) 

 

Where: NIR is the near-infrared band and RED is the red band for satellites. In this case, the L 

factor is an adjustment factor for reducing soil presence through values between 0 (for areas with 

high plant density) and 1 (for areas with low plant density). Rondeaux et al., (1996) explained 

more thorough the criteria for vegetation density and the value to choose, 0.16 is the L value 

suggested by the authors being the value used in this study. 

4.2. Descriptive Statistics 

To provide a better understanding of the context, table 3 presents the socio-economic and 

productive characteristics of the 282 farmers and their 377 plots, for the baseline year (2011). 

The surveyed farmers are, on average, 53 years old, 10% are female, and have 8 years of 

education on average. Also, the average household is composed by 3.9 members. Comparing 

the characteristics of farmers between treatment and control, not statistically significant 

differences were found between these groups in 2011.  

The second part of the table presents the characteristics of the plots. On average, the analyzed 

plots area is 5.3 hectares, with an average production value of 2,224 USD per hectare. The 

vegetation index (NDVI), which ranges from 0 to 1, was on average equal to 0.58, with a minimum 

value of 0.34 and a maximum of 0.83. Comparing control and treated groups at the baseline, we 

observe no significant differences between the vegetation index of both groups, although some 

significant differences are observed in terms of the plot area and value of production. 



Table 3: Descriptive characteristics of producers and plots 

 

Likewise, Table 4 presents the distribution of the plots (points) analyzed in this study, at the 

provincial level. Most of the parcels are located in the province of Azua (17%), followed by the 

province of Puerto Plata (15%), Dajabón (14%) and Santiago Rodríguez (11%). Another group of 

parcels are located in the province of San Juan, Independencia, Santiago and Espaillat (9%, 7%, 

6% and 5%, respectively). Lastly, the rest of the plots are distributed among the provinces of Elias 

Piña, La Vega, Monte Cristi, Peravia, Hermanas Mirabal, Valverde and Monseñor Nouel. In 

general, the plots are widely distributed across the country. 

  
General Control Treatment Diff 

Variable   N Mean Min Max N Mean N Mean   

Producer characteristics (2011) 
        

Age 
 

282 53.28 23 90 182 52.80 100 54.16 -1.36 

   
(12.92) 

       
Gender 

 
282 0.90 0 1 182 0.91 100 0.88 0.03 

   
(0.29) 

       
N household members 282 3.98 1 10 182 3.99 100 3.96 0.03 

   
(1.82) 

       
Years of education 282 8.22 0 18 182 8.04 100 8.54 -0.50 

   
(5.25) 

       
Illiteracy (0.1) 282 0.09 0 1 182 0.10 100 0.07 0.03 

   
(0.29) 

       

           
Plot characteristics (2011) 

        
NDVI 

 
377 0.58 0.34 0.83 248 0.58 129 0.59 -0.01 

   
(0.08) 

       
OSAVI  377 0.40 0.25 0.56 248 0.40 129 0.40 0.01 

           

Plot area 377 5.28 0.31 88.03 248 5.94 129 4.01 1.93** 

   
(8.24) 

       
Production value USD / has 377 2224.44 0 21113 248 1965.71 129 2721.8 -756.11** 

   
(3201.41) 

       
Notes: Description of the producers and plots characteristics during the period in absence of treatment (2011). Standard deviations in 

parentheses. 



Table 4: Distribution of plots by province 

Province N % 

Azua 65 17.24 

Dajabon 52 13.79 

Elias Pina 8 2.12 

Espaillat 22 5.84 

Independencia 30 7.96 

La Vega 9 2.39 

Monte Cristi 7 1.86 

Peravia 6 1.59 

Puerto Plata 60 15.92 

Hermanas Mirabal 4 1.06 

San Juan 34 9.02 

Santiago 23 6.1 

Santiago Rodriguez 43 11.41 

Valverde 12 3.18 

Monseñor Nouel 2 0.53 

Total 377 100 

 

5. Methodology 

In this section, we describe the methodology applied to detect changes in land use trends as well 

as the methodology to measure the causal impact of the program, using the estimated vegetation 

indices as proxy variables for productivity. 

 

5.1 Methodologies applied for detecting trends and breaking points in land coverage. 

The following is a description of the Mann Kendall and CCDC methods for determining trends and 

detecting breaking points in vegetation indices. 

Mann-Kendall 



The Mann-Kendall trend test is one of the most common methods in the literature, and it is mainly 

applied to detect an increasing or decreasing trend in a particular data set. The test is based on 

the standard deviation (S). Specifically, each pair of observed values yi, yj (i> j) of the analyzed 

variable (i.e. vegetation indices) is inspected to find when yi> yj or yi <yj. If the number of positive 

pairs is P, and the number of the type of negative pairs is M, then S is defined as S = P - M. For 

n> 10, a Z statistic that follows the standard normal distribution can be defined, with null 

hypothesis of H0 = there is no trend and the alternative that is H1 = there is a trend with a certain 

significance degree. Then Z is defined as: 

𝑍 =  

{
 
 
 

 
 
 
𝑆 − 1

𝜎𝑠
                  𝑖𝑓 𝑆 > 0

0                          𝑖𝑓 𝑆 =  0

𝑆 + 1

𝜎𝑠
                  𝑖𝑓 𝑆 < 0

 

 

𝜎𝑠 = √
𝑛(𝑛 − 1)(2𝑛 + 5)
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(Abdul Aziz and Burn, 2006; Kahya and Kalayci, 2004; van Belle and Hughes, 1984; Yue 

et al., 2002). 

Continuous Change Detection and Classification (CCDC)  

The algorithm for continuous change detection and classification (CCDC) is also adequate for 

detecting a high number of land cover changes, as new images are collected, and land cover 

maps are provided for any given time. A two-step algorithm is used to mask clouds, cloud 

shadows, and to eliminate "noisy" observations. CCDC uses a harmonic time series model with 

components of seasonality, trends, breaking points of surface reflectance, and brightness 



temperature. The time series model is dynamically updated with new observations. Due to 

differences in spectral response for various types of land cover changes, the CCDC algorithm 

uses a threshold derived from the seven Landsat bands. When the difference between the 

observed and predicted images exceeds a threshold for three consecutive times, a pixel is 

identified as a land use change (Zhu and Woodcock, 2014).  

5.2 Methodology to estimate the program effects on productivity. 

As stated above, the main objective of this study is to identify the effect of PATCA (focused on 

irrigation technologies) on agricultural productivity, using vegetation indices as proxy variables. 

To measure the general effects of the program throughout the post-treatment period when all 

beneficiaries received the technology, a Difference-in-Differences model is applied as follows: 

Equation #1 

                Yit = α + γPostt + δ(Post × Patca)it + βi + βt + εit 

Where the dependent variable 𝑌𝑖𝑡  represents the vegetation indices (i.e. NDVI index and OSAVI 

index); 𝑃𝑜𝑠𝑡𝑡 is a dummy variable that takes a value of  1 in all the post-treatment periods (periods 

after the year of 2014, when all beneficiaries have received the technology), and 0 for pre-

treatment periods (i.e. 2011-2014); 𝑃𝑎𝑡𝑐𝑎𝑖𝑡, a dummy variable that takes the value of 1 for plots 

that belong to beneficiary farmers; (𝑃𝑜𝑠𝑡 × 𝑃𝑎𝑡𝑐𝑎)𝑖𝑡  is an interaction variable; 𝛽𝑖 is a vector of 

fixed effects to control for  time invariant characteristics at the plot level; 𝛽𝑡 annual fixed effects to 

control for annual events/national policies that equally affect all parcels (i.e. economic growth, 

fiscal policies, trade policies, etc.); and 𝜀𝑖𝑡 , is the error term.  

To capture the dynamic nature associated to the process of technological adoption, we exploited 

a methodology known as Event-study, following Miller et al., (2019). For this purpose, we estimate 

the following equation: 



Equation #2 

                           𝑌𝑖𝑡 = 𝑃𝑎𝑡𝑐𝑎𝑖  × ∑ 𝛽𝑦

7

𝑦=−3
𝑦≠−1

𝐼 (𝑡 − 𝑡𝑖
∗ = 𝑦) + 𝛽𝑖 + 𝛽𝑡 + 𝜀𝑖𝑡 

The dependent variable, 𝑌𝑖𝑡, refers to the vegetation indices. However, in this case, the interaction 

term differs from the one presented in Equation #1. Specifically, the indicator variable 

𝐼(𝑡 − 𝑡𝑖
∗ = 𝑦) measures the relative time to the year when the technology was implemented (ti

∗ ) 

in plot i for all treated plots and takes a value of 0 in all periods for non-treated plots. In other 

words, 𝐼 is an indicator variable that captures the time elapsed since the technology is applied. 

Notice that all the farmers had implemented the technology by 2014, however, some received it 

in 2012 and others in 2013. Hence, this indicator allows us to capture the intensity of the treatment 

by plot and to identify the period(s) when productivity effects start to develop. That is, this indicator 

varies for each plot, depending on the year when it received the technology. The omitted category 

is y = −1, the year before the plot received the technology. Thus, each estimate of the vector β𝑦 

is interpreted as the change in the vegetation indices between treated and control plots during 

the year 𝑦, as measured from the year prior to treatment. Notice that, as the date of entry to the 

program was randomly assigned, this variable is exogenous. Therefore, this methodology allows 

us to take advantage of the gradual nature of the program roll out. Equation (2) is estimated using 

a linear regression model and we report the heteroskedasticity-robust standard errors, clustered 

at the plot level. 

This methodology also allows to test comparability between the control and treatment groups in 

the pre-treatment periods. This assumption is known in the literature as Parallel Trend 

Assumption and it has an essential role in the validity of the outcomes. This implies that, had 

program not been in place, the behavior of control and treatment groups should have been similar. 

Thus, this assumption ensures that the control group is comparable to the treatment group 



because, in the absence of the program, they would have followed a similar trend. For this case, 

if the vegetation indices for the treatment and control groups had similar trends before receiving 

the technology, it is expected that the coefficients associated with temporary events y = −3 to  

y = −1 should be small and not statistically significant.  

6. Results 

6.1 Results on land use trend changes. 

Graph Analysis: Vegetation Indices 

As previously stated, using the corrected and cloud-free images, we constructed vegetation 

indices for each of the images and polygons. This allowed us to graph time trends that are 

displayed in Figure 8 and Figure 9. In Figure 8 we present specific examples for beneficiary and 

non-beneficiary plots while Figure 9 portrays the aggregate analysis of the NDVI values for 

treatment and control groups. 

As an example, in Figure 8 A and B show two specific cases of farmers who received irrigation 

technology through PATCA, while Figure 8 C corresponds to a plot without PATCA. In this figure, 

the timeframe from 2011 to 2019 is represented on the X axis and the values for the vegetation 

indices are presented on the Y axis. Additionally, we have a "temporary” variable that takes the 

value of 0 if the plot reported to have a permanent crop and takes the value of 1 if the plot reported 

to have a temporary crop. 

Figure 8A shows stable vegetation indices values for the year 2011 since it is a fallow plot, as 

reported in the survey. Then, two peaks and plunges of the vegetation indices in a single year 

suggest the existence of a temporary crop, for 2012 and 2013. At the beginning of 2014, a low 

index value increasing throughout the year and reaching its maximum peak at the end of 2014 

was observed, confirming what was reported in the survey, indicating the presence of a 

permanent crop (banana plantation). The values of the indices then decreased throughout 2015. 



At the beginning of 2016, the indices increased again following a stable trend between the end of 

2016 and mid 2018 (a total of two years of stability), suggesting the presence of a permanent 

crop. The second semester of 2018 starts with a drop until 2019 where we can notice the behavior 

associated with a short-cycle temporary crop: an increasing phase, a peak, and a sudden drop 

within the same year. This result was also confirmed by the second follow-up survey in 2019, 

which recorded a temporary crop by the end of 2019. 

Fig. 8: Vegetation indices time series. A and B) change of temporality, C) permanent crop 

 

 

Figure 8B presents another example. In the self-reported survey, the producer reported to have 

a permanent crop in 2011. The figure suggests that this was switched to a temporary crop from 

2012 to 2015, which was evidenced in the survey collected in 2014. The figure also indicates that 

since the end of 2016 until the end of 2017 values were stable. In 2018 the presence of a 

temporary crop is observed and finally in 2019 a permanent crop is confirmed by the second 

follow-up survey. 



Lastly, Figure 8C shows the dynamics of a plot in the control group. The time series enables us 

to observe a trend from 2011 to 2014 with a permanent crop, since the vegetation indices values 

indicate an increasing phase, a peak, and a drop every year. On the other hand, NDVI values are 

stable from 2015 to the second semester of 2018, which suggest the presence of a permanent 

crop. Then, the plot starts the trend of a temporary crop until the end of 2019.  

Using the monthly NDVI values, we graphed the average half-yearly NDVI values for both groups 

(control and treatment). Figure 9 shows evidence that, in general, the NDVI mean is higher for 

PATCA beneficiaries almost throughout the entire time series. This allows us to infer that program 

beneficiaries experienced a better plant health. The trends also show a decline of the NDVI for in 

the middle of each year included in the analysis, which portrays the regular agricultural cycle of 

the country where most of the harvests take place in the second semester. 

Figure 9. Average NDVI for Beneficiary and Control Plots 

 

 

 



Validation of trend models and CCDC 

Subsequently, trend models are applied to identify breaking points in the NDVI time series which 

would suggest a change in land use. For the validation of our models, we use data for the two 

rounds of follow-up surveys (2014 and 2019). The information of the plot geolocation was 

collected in the 2011 baseline survey and we have the same number of plots in the two follow-up 

rounds. However, during 2019 it was not possible to collect 73 surveys due to general attrition 

problems. For this reason, as some of variables needed for the validation of the models come 

solely from the surveys, 109 plots (73 farmers) were not included for validation. A total of 268 

plots were included for the validation considering the periods of 2014-2019 and 2011-2019, while 

377 plots were considered for the validation of the period of 2011-2014. 

When comparing survey data with NDVIs for the period from 2011 to 2014, the results of the 

Mann Kendall and CCDC models provide a precision of 56% and 71%, respectively (Figure 10, 

panels A and D). For the period between 2014 and 2019, the Mann Kendal and the CCDC 

presented a precision of 42% and 61%, respectively (Figure 10, panels B and E). Finally, for the 

period between 2011 and 2019, the Mann Kendal had a precision of 51 % and CCDC a precision 

of 59% (Figure 10, panels C and F). This suggests that the CCDC model is a better fit for the 

data. However, both models have an appropriate precision.  

 

 

 

 

 

 



 

Figure 10. Confusion matrix A - C) Mann Kendall, D - F) CCDC 

 

Comparing with Zhu and Woodcock, (2014), the precision of the CCDC model is appropriate, 

especially for the period between 2011-2014 and 2014-2019. These details are improved because 

follow-up surveys do not offer information about the non-surveyed years (2012-2013, 2015-2018), 

so as the time frame of the analysis increases (2011-2019), the surveys can generate false 

negatives. In short, the model detects changes that are not recorded in the surveys due to the 

lack of information in the non-surveyed years, diminishing the precision of the model over time 

(Ángel, 2012). 

For the period between 2011 and 2019, the Mann Kendal model indicates that 44% of the PATCA 

plots incurred in a land change compared to 38% of the control plots. The CCDC model indicates 

that 29% of the plots with PATCA made a change in land use compared to 37% of the control 

group (Table 5). However, these results are general averages descriptions and do not estimate a 

causal effect of the program. The following section presents the results of the causal effects using 

impact assessment methodologies based on counterfactual analysis. 



 

Table 5. Land-Use Changes 

Model   2011-2014 2014-2019 2011-2019 

Kendal 

Control 

    
Land use 

changes 
27% 46% 38% 

PATCA 

    
Land use 

changes 
48% 41% 44% 

CCDC 

Control 

    

Land use 

changes 
44% 39% 37% 

PATCA 

    

Land use 

changes 
16% 25% 29% 

 

 

6.2 Results of the effect of the program on vegetation indices 

As stated before, the analysis of trends and averages does not allow for the identification of the 

causal effect of the program on productivity or land use changes. Hence, to measure causal 

effects, we applied a Difference in Difference and an Event Study methodologies. First, we use a 

Difference-in-Difference model that compares the beneficiary group with the control group. This 

model provides a summary of the effects across all post-treatment years. The results of this 

methodology are presented in Table 6 (Equation 1). Overall, it is observed that the group of plots 

that received irrigation technology, present a higher vegetation index than the group of farmers 

who did not receive the treatment in the post treatment period. Specifically, this change 

corresponds to 0.0156 units for the NDVI index, which is equivalent to an increase of 2.7%, 

significant at 1%; and 0.0096 units, equivalent to a 2.4% increase for the OSAVI index, significant 

at 5%. 



In addition, equation # 1 was also estimated using standard deviations of the annual vegetation 

indices as outcome variables. This was implemented to estimate disruptive changes in the indices 

that could provide signs of land use changes. In that sense, a stable NDVI over time would imply 

few changes in land use, while an NDVI with a high standard deviation would imply a larger 

change in land use. The results of columns (3) and (4) also show a higher standard deviation of 

the indices throughout the post-treatment period. This implies a higher variability of both indices 

during this period, since the indices degree of dispersion at the year and plot level is greater for 

the plots that received the treatment. 

When the effects are disaggregated to understand the dynamic nature of treatment over time, 

estimating equation (2), three interesting results are found (Table 6). First, during the year when 

the technology is received (Year 0), the vegetation index for beneficiary plots is lower than the 

vegetation index for control plots, compared to one year prior to receiving the technology. The 

sign of the effect is preserved for any of the indices (NDVI or OSAVI), as well as the significance 

level of 1%. This implies that, receiving irrigation technology, alters farmers’ behavior which is 

reflected in land use changes that cause a reduction of the NDVI. This might occur, for example, 

when farmers switch crops or renew plantations as lower productivity is observed during the 

planting period. This coincides with the results from the short-term analysis conducted with the 

baseline survey and the first follow-up (2011-2014) (Aramburu et al., 2019). 

Second, the positive effects of the program are found, on average, three years after receiving the 

technology (Year + 3). Specifically, during the third year after receiving the technology, the 

vegetation index of the treated plots is significantly higher than the index of the control plots. This 

effect is significant at 5% and positive for both NDVI and OSAVI indices. This implies that 

technology effects on productivity are dynamic. Hence, it is possible that we are capturing a 

learning curve, which reaches its maximum peak three years after the technology is applied by 

the farmers. This is also in line with the previous short-term analysis where the authors suggest 



the presence of a learning-by-doing process, as estimations provide evidence that effects take 

time to materialize (Aramburu et al., 2019). 

On the other hand, we did not find effects for the subsequent years. This might be because the 

elapsed time has been sufficient for the control group to adapt and acquire the technology, thus, 

reaching the productivity levels of the treatment group. This is validated with the field surveys 

collected for the 2019 agricultural cycle, which show that approximately 63% of the control farmers 

have adopted irrigation technology, indicating a catch-up effect by the control group. 

Regarding the results on the standard deviation of the indices, we find that a greater dispersion 

of the indices is observed in the treated plots relative to the control plots, compared with the 

standard deviation of the index one year prior to receiving the technology. These results would 

suggest a land use change in the plots that received the treatment, since the degree of greenness 

of the crops varied more intensely than in non-treated plots.  

Finally, as stated in Section 4, the Difference-in-Differences methodology requires to demonstrate 

that the assumption of parallel trends is binding. As observed in Table 3, the coefficients 

associated with seasonal events y = -3 and y = -2 are small and statistically insignificant. That is, 

two or three years before receiving the intervention, there were no significant differences in the 

average value of the NDVI, between treatment and control groups. This suggests that productivity 

might have behaved similarly in the pre-treatment period, and therefore the two groups can be 

compared.  

In the Appendix, we present graphic illustrations of the estimated coefficients calculated in Table 

6 for each period (Figure 11). 

 

 

 



Table 6. Effects of PATCA on vegetation indices: Difference-in-Differences and Event 

Study. 

    (1)   (2)   (3)   (4) 

Variables   NDVI   OSAVI   SD NDVI   SD OSAVI 
         

Difference-in-Differences 
      

Patca x Post 0.0156*** 
 

0.0096*** 
 

0.0120*** 
 

0.00828*** 

  
(0.0048) 

 
(0.0035) 

 
(0.0028) 

 
(0.0021) 

Observations   3,015  3,015  3,015  3,015 

Plots   335  335  335  335 
         

Event Study 
       

PATCA x Year-3 -0.00573 
 

-0.00127 
 

-0.00715 
 

-0.00635 

  
(0.0122) 

 
(0.00887) 

 
(0.00819) 

 
(0.00592) 

PATCA x Year-2 -0.00365 
 

-0.00235 
 

-0.0106*** 
 

-0.00679** 

  
(0.00690) 

 
(0.00536) 

 
(0.00405) 

 
(0.00320) 

PATCA x Year0 -0.0295*** 
 

-0.0235*** 
 

0.00477 
 

0.00260 

  
(0.00913) 

 
(0.00698) 

 
(0.00434) 

 
(0.00334) 

PATCA x Year+1 0.00947 
 

0.00673 
 

0.0164*** 
 

0.0110*** 

  
(0.00884) 

 
(0.00663) 

 
(0.00475) 

 
(0.00380) 

PATCA x Year+2 0.00544 
 

0.00302 
 

0.0198*** 
 

0.0144*** 

  
(0.00851) 

 
(0.00669) 

 
(0.00609) 

 
(0.00497) 

PATCA x Year+3 0.0214** 
 

0.0167** 
 

0.00676 
 

0.00551 

  
(0.00983) 

 
(0.00765) 

 
(0.00485) 

 
(0.00392) 

PATCA x Year+4 -0.0126 
 

-0.00879 
 

0.0105** 
 

0.00498 

  
(0.00800) 

 
(0.00622) 

 
(0.00488) 

 
(0.00387) 

PATCA x Year+5 0.00175 
 

0.00142 
 

0.0146** 
 

0.00576 

  
(0.00848) 

 
(0.00645) 

 
(0.00573) 

 
(0.00419) 

PATCA x Year+6 -0.0113 
 

-0.00967 
 

0.0111* 
 

0.00466 

  
(0.0109) 

 
(0.00834) 

 
(0.00637) 

 
(0.00499) 

PATCA x Year+7 -0.00866 
 

-0.00188 
 

0.0256*** 
 

0.0161*** 

  
(0.00766) 

 
(0.00578) 

 
(0.00428) 

 
(0.00335) 

         
Observations 2,484 

 
2,484 

 
2,484 

 
2,484 

Plots 276 
 

276 
 

276 
 

276 

Notes: This table shows the estimated coefficients of the Event Study methodology shown in equation (2), 

as well as the estimated coefficients of the Difference-in-Difference model. Each column corresponds to 

the estimate of a different dependent variable. Columns (1) and (2) estimate the effects on the average of 

the indices and columns (3) and (4) the effects on the standard deviation. Omitted year: the year prior to 

receive the program (-1). Clustered standard errors at plot level. Includes plot and year fixed effects.   * p 

<0.10 ** p <0.05 *** p <0.01. 

  



6.2.1 Spillover effects 

In addition of estimating the direct effects, the sample collected and the nature of the program 

implementation allowed us to identify the presence of spillover effects. For this, we compared 

control farmers located in beneficiary subzones (contaminated counterfactual) with pure control 

farmers.  

Figure 12 shows that, on average, the contaminated counterfactual portrays a higher NDVI than 

the control group. Also, we estimated Equations #1 and #2 for both groups (Table 7). The results 

confirm the presence of some spillover effects. In fact, farmers who were located geographically 

closer to program beneficiaries have a greater NDVI than pure control producers, significant at 

10%. This suggests that, by observing their neighbors, farmers could have been motivated to 

adopt irrigation.  However, this effect is not corroborated when using the OSAVI index. Regarding 

index variability, the contaminated counterfactual also experiences greater variability for both 

indices, significant at 10% and 5%, respectively. 

 

Figure. 12: Average NDVI of contaminated counterfactual and pure control plots 

 



 

Table 7: Spillover effects 

    (1)   (2)   (3)   (4) 

Variables   NDVI   OSAVI   SD NDVI   SD OSAVI 

         

Difference-in-differences Model:       

Contaminatedx Post 0.0135*  0.00572  0.00774*  0.00690** 

  (0.00712)  (0.00537)  (0.00462)  (0.00336) 

         

         

Observations 2,232  2,232  2,232  2,232 

Number of id 248  248  248  248 

Covariates No   No   No   No 

Notes: This table shows the estimated coefficients of indirect beneficiaries and pure 

controls, using a Difference-in-Differences model. Each column corresponds to the estimate 

of a different dependent variable. Columns (1) and (2) estimate the effects on the average 

of the indices and columns (3) and (4) the effects on the standard deviation. Clustered 

standard errors at plot level. Includes plot and year fixed effects.   * p <0.10 ** p <0.05 *** 

p <0.01.  

 

 

 
 

7. Conclusions 

This study combines data collected through surveys with remote sensing to analyze the causal 

effects of a technology adoption program implemented using a randomized control trial in the 

Dominican Republic. The PATCA program offered vouchers that partially financed the adoption 

of modern irrigation technologies to a group of randomly selected farmers to increase agricultural 

productivity. The vegetation indices, NDVI and OSAVI, were used as proxy variables of 

agricultural productivity, and were calculated through the spectral information provided by satellite 

images for a total of 377 plots, 129 beneficiaries and 248 control. These vegetation indices provide 

information on the nutritional status of the crops and in this specific case, the benefits from 

irrigation. In general, the relationship between NDVI values and plant health is directly 

proportional, which implies that a higher NDVI value is related to better plant health (Chuvieco, 

1991). 



To estimate the effects of the program on agricultural productivity, this study implemented impact 

assessment methodologies that allow the comparison of vegetative indices between the group of 

beneficiaries and the control group. By implementing a Difference-in-Differences methodology, 

we find that, in general, the beneficiary plots reported higher vegetation indices in the post-

treatment period compared to the control group. This implies healthier crops, with greater vigor, 

and therefore, with a greater productivity than the control group.  

Additionally, an Event Study model was implemented, which allows us to identify the effect of the 

program on productivity for different post-treatment periods. This methodology is especially useful 

to analyze the dynamics of the vegetation indices over time. The results show that the benefits 

from adopting irrigation technologies are obtained in the third year after the implementation of the 

technology. However, the coefficients of the subsequent periods are not significant, suggesting 

that the control farmers could have catched-up by adopting the technology. This has been 

validated with field surveys which suggest that farmers in the control group present a higher level 

of adoption of irrigation technologies in 2019. In addition, the program implementation using a 

two-stage randomized process allowed us to measure spillover effects at the geographical level. 

The results present some evidence of indirect impacts in neighboring farmers. 

This study confirms the complementarity between data obtained through remote sensors (i.e. 

remote sensing) and field data. In general, remote sensing is a cost-effective technological 

alternative for the acquisition of data with greater temporality that facilitates the monitoring of 

crops through the creation of time series of vegetative indices, even for the years that field surveys 

were not collected. Therefore, this tool can be used to measure and monitor the effects of different 

policies and programs in the long term, thus complementing agricultural surveys.  

This study also aims to encourage further research to contribute to the incipient literature that 

combines randomized experiments and satellite images to measure the impact evaluation of 

agricultural programs. 
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