

The World's Largest Open Access Agricultural & Applied Economics Digital Library

This document is discoverable and free to researchers across the globe due to the work of AgEcon Search.

Help ensure our sustainability.

Give to AgEcon Search

AgEcon Search
<http://ageconsearch.umn.edu>
aesearch@umn.edu

Papers downloaded from AgEcon Search may be used for non-commercial purposes and personal study only. No other use, including posting to another Internet site, is permitted without permission from the copyright owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C.

No endorsement of AgEcon Search or its fundraising activities by the author(s) of the following work or their employer(s) is intended or implied.

Is there a tradeoff between nature reserves and grain production in China?

by Yuquan Chen, Shenggen Fan, Chang Liu, and Xiaohua Yu

Copyright 2021 by Yuquan Chen, Shenggen Fan, Chang Liu, and Xiaohua Yu. All rights reserved. Readers may make verbatim copies of this document for non-commercial purposes by any means, provided that this copyright notice appears on all such copies.

1 **Title: Is There a Tradeoff between Nature Reserves and Grain Production in China?**

2 **Author 1:**

3 Given Name: Yuquan

4 Family Name: Chen

5 Affiliations: Academy of Global Food Economics and Policy, China Agricultural University

6 Address: No. 17, Qinghua East Road, Haidian District, 100083 Beijing, China

7 Email: chenyuquan_cem@cau.edu.cn

8

9 **Author 2:**

10 Given Name: Shenggen

11 Family Name: Fan

12 Affiliations: Academy of Global Food Economics and Policy, China Agricultural University

13 Address: No. 17, Qinghua East Road, Haidian District, 100083 Beijing, China

14 Email: S.FAN@CGIAR.ORG

15

16 **Author 3:**

17 Given Name: Chang

18 Family Name: Liu

19 Affiliations: College of Economics and Management, Jilin Agricultural University

20 Address: No. 2888, Xincheng Avenue, Jingyue District, 130118 Changchun, Jilin, China

21 Email: liuchang@jlau.edu.cn

22

23 **Author 4:**

24 Given Name: Xiaohua

25 Family Name: Yu

26 Affiliations: Courant Research Centre 'Poverty, Equity and Growth', University of Goettingen,

27 Address: Room: MZG 10.121, Platz der Göttinger Sieben 5 37073 Göttingen, Germany

28 Email: xyu@gwdg.de

29

30 Corresponding author: Xiaohua Yu

31

32 **Is There a Tradeoff between Nature Reserves and Grain Production in
33 China?**

34 **Abstract**

35 China is committed to increase its nature reserves coverage up to 18% by the end of 2035. Concerns
36 associated with natural reserve expansion include local grain production restraint and its threat to
37 national food security since agricultural activities are limited in designated natural reserve zones.
38 Grain production has always been one of the top national priorities as it links to national food
39 security. This paper uses an unbalanced panel data with 940 counties from 1989 to 2018 and time-
40 varying difference-in-difference (DID) methodology to estimate the impact of National Nature
41 Reserves (NNRs) on the local agricultural production. Our results indicate that the establishment of
42 NNRs would reduce the average grain production by 4.4% at the county level, and the impact is
43 more intense in high-yield areas. As the NNRs policy proceeds, the treatment effects gradually
44 decline afterwards. The negative impact might be due to (I) direct impact: less fertilizer and pesticide
45 usage and the destruction from wildlife and (II) indirect impact: farmland restrictions within NNRs.
46 To mitigate the negative effect on grain production, we suggest more supportive policies on
47 productivity improvement should be promulgated to the counties that implement nature reserve
48 policy, especially in the early phase of the NNRs and in the high-yield areas.

49 **Keywords:** nature reserves; grain production; difference-in-difference

50 **JEL:** Q58; Q57; Q56;

51

52 **Is There a Tradeoff between Nature Reserves and Grain**
53 **Production in China?**

54 **Introduction**

55 It has increasingly been recognized on the interdependence between protected areas and human
56 activities at social and economic levels (Ferraro, Hanauer, & Sims, 2011; Ferraro & Hanauer, 2011;
57 Gülez, 1992). Protected areas, such as national parks and nature reserve zones, serve as practical
58 approaches for promoting a sustainable livelihood, updating production pattern, and alleviating
59 poverty for social and economic development. Literature has repeatedly addressed the rewards in
60 preserving such areas as an active environmental strategy. Owino et al. (2012) investigate 573 small-
61 scale farmers practicing crop farming and livestock keeping nearby a peri-urban national park in
62 central Kenya, and most of them support the conservation policy as they regard it as a potential for
63 the future economic development of the area, especially through ecotourism to improve incomes.
64 Similar results are found by Sims (Sims, 2010), estimating with 31 wildlife sanctuaries and 57
65 national parks that protected areas boost local consumption by 4.5% and reduce poverty by 10.3%.
66 Therefore, national governments are taking steps to establish and expand nature reserve zones in
67 their areas.

68 China now has the second-largest nature reserve area in the world, following the U.S. In 1956,
69 the Chinese government established its first national nature reserve (NNR) in Zhaoqing, Guangdong,
70 in an effort to maintain its biodiversity and perform scientific research. Over the past 60 years, the
71 Chinese government established 2,750 nature reserve zones with a total area of 1.47 million square
72 kilometers, accounting for 14.86% of national territories (Ministry of Ecology and Environment,
73 2017). Some studies show that the NNRs policy has generated positive impacts in China. For
74 instance, wild Crested Ibis population reached more than 2000 from 7 after the Crested Ibis NNR
75 was established in 1981 to 2017. Around 150 highly endangered wild pandas inhabit the Wolong

76 NNR in Sichuan, China. It attracted more than 200,000 visitors each year¹(Wei et al., 2020). As the
77 NNR policy progresses, China aims to increase its nature reserve coverage to 18% by the end of
78 2035 (China State Council, 2019).

79 Expanding protected areas might generate an internal conflict with agricultural production.
80 However, only a few studies have been conducted to investigate the impact of nature reserve zones
81 on food security, and the results are mixed. On the one hand, ecologists emphasize that biodiversity
82 regimes of natural protected areas contribute to agricultural productivity in farming areas. Protected
83 areas have the function of (1) preventing excess surface runoff and so protecting cultivated land
84 from erosion (de Moraes et al., 2017; de Oliveira et al., 2017), (2) habituating for crop pollinators
85 and crop pest predators (Brandon et al., 2005; Devictor et al., 2007; Rodrigues et al., 2004; Venter
86 et al., 2014), and (3) enriching agrobiodiversity by providing different crop species and varieties,
87 which farmers select for suitability in their locations (Thrupp, 2000). But contradictory facts are
88 reported at the practice level. Zhang et al. (2019) discover that the wheat production loss is around
89 45% in the core area of the waterfowl protected area in Anhui, China. Izquierdo & Grau (2009) also
90 points out that the growing global demand for food and other agri-products provides incentives for
91 transforming protected areas into agricultural land. Koemle et al. (2018) find that Natura 2000
92 program which protects biodiversity in Europe has a negative impact on land rent. To the best of our
93 knowledge, most of the existing studies lack generalizability. Hence, a more comprehensive and
94 robust assessment is needed. As the novelty of this paper, we explore the causal effect of NNRs on
95 grain production from 1989 to 2018 at the county level rather than individual case studies, aiming
96 to provide a broad view on the impact of NNRs on food supply in China.

97 In this paper, we use the county-level panel data collected from 940 counties from 1989 to
98 2018, within which 187 counties own at least one NNR. To assess the NNR policy's effect on grain
99 production, we employ a time-varying difference-in-difference (DID) model (Beck et al., 2010;
100 Deshpande & Li, 2019; Petrick & Zier, 2011). Our finding suggests the average grain production of

¹ https://en.wikipedia.org/wiki/Wolong_National_Nature_Reserve

101 the treatment county is 4.4% lower than that of control counties at a 5% significance level overall.
102 The impact is stronger in high-yield counties and in major grain-producing provinces. In contrast,
103 within the low-yield and nonmajor areas where the agricultural conditions are less favorable, the
104 NNRs' policy impact is not significant instead. Moreover, the effect changes over time. The effect
105 is relatively intense in the beginning but declines gradually afterwards. Lower production caused by
106 NNRs can be explained in two aspects: (I) direct impact: the reduced use of chemical controls such
107 as fertilizers and pesticides and the rising number of wildlife activities in agricultural sites, and (II)
108 indirect impact: farmlands are changed and recovered to protected areas to be in line with the NNRs
109 restraints. However, as crop production may benefit from improved ecology in the long term, the
110 negative impact would gradually decrease. As the fact that grain loss caused by NNRs undermine
111 food supply, the government should pay more attention to the balance between grain production and
112 environmental protection implementations. More supportive policies and funds should be allocated
113 to the major grain-producing areas with nature reserves at the beginning of the NNRs establishment.
114 To be more concrete, the government should keep investment in grain productivity to offset the
115 negative impact of NNRs on food security. Subsidies on income for grain loss and trainings for
116 farmers to diversify their income sources are also encouraged.

117 The remainder of the paper proceeds as follows. Section II briefly introduces the evolution of
118 NNRs in China and graphically illustrate our research conceptual framework. Section III describes
119 the data and econometric methodology, while Section IV discusses core results in our research. In
120 the final section, we provide conclusions.

121 **Background and Conceptual Framework**

122 In this section, we will briefly introduce the history, current situation, and policy contents of nature
123 reserves in China. We will also describe the potential gains and costs of implementing NNR policies
124 on agricultural production.

125 2.1 Policy evolution of national nature reserves

The objective of establishing NNRs is to protect and preserve ecological systems where rare and endangered wildlife species and plants are naturally concentrated. Once the nature reserve is set, the designated zone will be authorized for protection and administration independently. The policy aims to forestall biodiversity loss and species distinction. The total area of nature reserves has been increasing over time. The nature reserve area is nearly doubled since 1996, reaching a total area of 1.47 million square kilometers (km^2) in 2018, making China the second-largest area after the U.S. The nature reserves preserve 35 km^2 of wild forests, 20 km^2 of wetland, and more than 300 endangered species, accounting for 90.5% of ecological systems and 85% of total wildlife and plant species in China (National Park Administration, 2019).

135 [Insert Figure 1-4]

136 The Chinese government is committed to enforcing strict conservation measures to minimize
137 the damage caused by human activities. In 1994, the Chinese State Council formulated *the*
138 *Regulation of the People's Republic of China on Nature Reserves* (RPRCNR) to strengthen the
139 enforcement and management of nature reserves. The regulation stipulates that minimal agricultural
140 activities should be undertaken in nature reserves. Therefore, establishing nature reserve zones
141 would curb planting and cultivating activities. In some cases, local farmers and households are
142 forced to abandon their land, resulting in a loss of agricultural labor input. For instance, a survey of
143 600 farmers who inhabit the peripheries of the NNR in Shaanxi, China, finds cultivated land
144 resources are deficient as land use is controlled and regulated in protected areas (Song et al., 2015).
145 Nearly 34.4% of the local farmers lose their land because of NNRs, and 80.9% of the farmers need
146 abandon their land and make a living in the non-NNR places as migrant workers due to the scarcity
147 of arable land.

148 2.2 Conceptual framework of nature reserves on grain yield

149 The designation of natural reserves implications for agricultural production from multiple channels
150 is shown in Figure 5. On the one hand, natural reserves restrict human activities such as agricultural

151 production in certain areas. Chemical fertilizers and pesticides are limited. These NNRs
152 implementations affect the grain yield directly. Besides, as farmlands should be transformed back
153 to protected areas, grain production would decrease correspondingly with declined planting areas.
154 On the other hand, biodiversity enhancement in the natural reserves could enhance agricultural
155 production through ecosystem services such as pollination, biological control, water purification,
156 and soil nutrient protection (Tscharntke et al., 2005). The aggregate results might be uncertain and
157 need to be verified empirically.

158 **[Insert Figure 5]**

159 **2.3 Potential benefits and costs of nature reserves for agriculture production**

160 To better understand the impact mechanism of nature reserves on agriculture, we categorize
161 potential benefits and costs of NNRs on agricultural production as follows:

162 - **Costs of nature reserves.** Firstly, counties with reliable and profitable crop production
163 would regard the payoff of NNRs less attractive (Brandon et al., 2005). Secondly, to
164 minimize human activities within the boundaries of NNRs, the government must resettle
165 farmers and villagers to new places. The ecomigration and land use change reduce the
166 agricultural labors since farmers without land need to make a living as migrant workers in
167 the urban area. Monetary compensations are more common than the compensation of
168 cultivated land during the process of eco-migration (McElwee, 2010). Thirdly, since
169 irrigation systems, roads, or other infrastructures are not allowed to be constructed within
170 the NNRs, a higher cost to maintain agricultural productivity is incurred due to the lack of
171 market access and efficient facilities (Gurrutxaga et al., 2011; Koemle, 2018; Li et al., 2020;
172 Symes et al., 2016). Finally, wild animals within the NNRs might approach farmland and
173 search for food, resulting in production loss. (Hou & Wen, 2012; Zhang, 2019).

174 - **Gains of nature reserves.** Firstly, the NNRs improve soil conservation and water
175 restoration while providing an environmental-friendly and sustainable place for insects and
176 animals. For example, rainforests and wetlands act as natural sponges. They reduce

177 droughts, purify water, and participate in the process of soil formation. Secondly, the NNRs
178 also could promote agricultural production through pollination and biological control
179 (Tscharntke et al., 2005). The positive externality might eventually be transformed into the
180 advantages for agriculture activities, enhancing the farmland yield (Balmford et al., 2002;
181 Wei et al., 2014). Thirdly, another critical function of nature reserve is to protect, restore,
182 and recreate natural habitats for valuable, distinct, and endangered species. Nature reserves
183 also provide abundant germplasm for seedbanks. Agricultural scientists use biological
184 resources for breeding high-yield, stress-tolerant, and nutritious varieties (Ragamustari &
185 Sukara, 2019; Scherer et al., 2017).

186 The discussion above may explain why extensive human activities and commercial
187 developments continue to grow within protected areas. In areas where agriculture fails to provide
188 secured crop productions but with high natural value, there are potential conflicts between
189 conservation and agricultural activities. According to the research of Jones et al. (Jones et al., 2018),
190 one-third of global protected land is under intense human pressure. The same critic goes for China's
191 practices, especially at the local level, and there is evidence showing that human activities have
192 damaged NNRs implementations (Xu et al., 2015). It is crucial to understand the tradeoff between
193 nature reserves and local agricultural activities. Resistance could rise from farmers whose economic
194 benefits are affected negatively.

195 **Data and empirical model**

196 **3.1 Data**

197 This paper uses an unbalanced panel data that includes 10,622 observations from 940 counties in
198 China between 1989 and 2018². Within 940 counties, 187 counties possess at least one national
199 nature reserve. The treatment group contains 1,761 observations, which accounts for 19.8% of the

² The data is generated by deleting the top 1% and bottom 1% of the original dataset to avoid the impact of extreme values of the variables.

200 total observations. In terms of the geographical distribution of NNRs, 187 treated counties are
201 distributed in 13 provinces (Figure 6). As shown in Figure 7, the average production of the treatment
202 counties between 1989 and 2018 is 295.2 tons, which is 146.2 tons less than that in counties without
203 treatment. Figure 8 shows that the average production of the NNRs treated observations is 301.5
204 tons, which is also smaller than that of the control group (438.4 tons). Both figures suggest a
205 negative correlation between the establishment of NNRs and grain production.

206 **[Insert Figure 6-8]**

207 The primary dependent variable is grain production (ton) at the county level from 1989 to 2018.
208 The information on grain production is from the National Statistical Bureau in China (NSBC)
209 (National Bureau of Statistics, 2019). The data refers to the total amount of grain produced in one
210 calendar year. Grains include rice, wheat, corn, sorghum, millet, as well as potatoes and beans.
211 Beans are calculated by the dried beans after pod removal; potatoes (including sweet potatoes and
212 potatoes, excluding taro and cassava) are calculated as converting 5kg of fresh potatoes into 1kg of
213 grain equivalent. The statistical bureau in each county reports the data. Since the effect of NNR
214 would not be differentiated by crops, here in this paper, it should be incorrect to use separated grain
215 production information to test the NNRs on the varying grain types like rice, wheat, or maize
216 individually. As the shortage of grain types data within or nearby the NNRs, using selected crop
217 rather than the sum might generate the risk of downwards bias. For instance, if one selected crop's
218 production is reported at the county-level, but the crop is not located in or around the NNRs zone,
219 then the estimators could not reflect the causal correlation between NNRs and grain productions.
220 To minimize the heterogeneity within the production information, we use the fixed effects model in
221 our estimation since, in most counties, the principal crop types usually are fixed and would not
222 change dramatically along with time. The information on our key independent variable of the NNRs
223 is extracted from *the List of National Nature Reserves* issued by the Ministry of Ecology and
224 Environment in China (MEEC). The list was recently updated in 2019, containing information on
225 name, location, establishment date, type, administrative district, etc. The list shows 312 nature

226 reserve areas are established after 1989, indicating the protected land has been vigorously
227 established over time.

228 To control the county-specific, time-dependent changes in a county's agricultural production,
229 we use the EPS dataset³ to collect information on the agrarian input factors, including consumption
230 of chemical fertilizers, total power of agricultural machinery, employment in the agricultural sector
231 and grain planting area. The data is collected by the Statistic Yearbook of each province each year
232 and compiled by the EPS dataset correspondingly. To be more specific, (1) Consumption of
233 chemical fertilizers in agriculture: this variable refers to the volume (1,000 tons) of chemical
234 fertilizers applied in agriculture per year. Chemical fertilizers include nitrogenous fertilizer,
235 phosphate fertilizer, potash fertilizer, and compound fertilizer. We use the amount of chemical
236 fertilizer calculated in pure nutrient in our dataset. The pure nutrient refers to the amount of nitrogen
237 fertilizer, phosphate fertilizer and potassium fertilizer converted into the 100% components of
238 nitrogen, phosphorus pentoxide and potassium oxide, respectively. Compound fertilizer is converted
239 according to its main components. (2) Total power of farm machinery (10,000 KWH): this variable
240 represents the total power consumption of machinery used in planting and other agricultural
241 activities. The power of machinery and electric motors is converted from horsepower to watts for
242 comparison. (3) Agricultural employment (10,000 people): this variable refers to the labor force
243 engaged in farming and other agricultural activities at the county level. (4) Grain planting area
244 (1,000 hectare): it refers to farmland that is plowed repeatedly for growing crops.

245 **3.2 Empirical strategy**

246 In our paper, we follow the Beck et al. (2010) time-varying DID specification to evaluate the policy
247 impact of NNRs on grain production. We set up the following regression model (Proof in Appendix
248 A),

249
$$y_{it} = \delta_0 + \Pi_i + \mathbf{T}_t + \tau D_{it} + \delta_k X_{itk} + \varepsilon_{it}, \quad t = 1989, \dots, 2018; i = 1, \dots, 187,$$

³ The EPS is a leading China data provider that collect and display market and demographic dataset on its platform.

250 (1)

251 where y_{it} represents the grain production for county i in year t . In terms of the treatments in multiple
252 periods, D_{it} is a binary variable where $D_{it} = 1$ means the treatment of NNR program in year t , whereas
253 $D_{it} = 0$ means untreated counties. We construct vector $\mathbf{D}_i = (D_{i1}, \dots, D_{iT})$ as an indicator to describe
254 the history of the NNR program for each observation. The coefficient τ in Equation (1) is the critical
255 estimator that reflects the difference between the counterfactual effects. If τ is positive, NNRs increase
256 the treated counties' grain production, whereas NNRs decrease production if τ is negative. \mathbf{X}_{itk} is a
257 set of control variables, including consumption of chemical fertilizers, total power of agricultural
258 machinery, planting area, and agricultural labor employment. The $\mathbf{\Pi}_i$ and \mathbf{T}_t variables account for
259 unobservable characteristics of county-specific and time-specific confounders. Specifically, \mathbf{T}_t is
260 incorporated to control unobserved effects such as technology change. While $\mathbf{\Pi}_i$, a state-specific dummy
261 variable, controls time-invariant characteristics such as crop types and rotations, soil quality, landscape,
262 weather conditions, etc. ε_{it} is the idiosyncratic disturbance term for county i in year t with $E(\varepsilon_{it}) =$
263 0.

264 **3.2.1 Empirical model specification**

265 Since we have no prior knowledge of the actual specification of the production function, we apply
266 the first-order Taylor expansion (Cobb-Douglas function) to construct it. The specification of
267 empirical model is in Equation (2).

$$268 \ln y_{it} = \alpha_0 + \tau_{CD} D_{it} + \sum_k \alpha_k \ln X_{ikt} + \mathbf{T}_t + \mathbf{\Pi}_i + \varepsilon_{it}. \quad (2)$$

270 In Equations (2), all variables are measured in logarithmic form except for D_{it} (The treatment
271 of NNRs). The parameter of D_{it} , τ_{CD} can be regarded as difference-in-difference estimators,
272 measuring the impact of NNRs on the grain production at the county level.

273 **3.2.2 Endogeneity analysis**

274 The county-specific, unobserved factors like local landscapes and ecological systems are important
 275 determinants of how NNR counties are selected. Thus, it is reasonable to presume $cov(D_{it}, \Pi_i) \neq$
 276 0, which violates the ignorability assumption. However, the fixed effects approach solves the
 277 endogeneity issue by differencing each observation from its county-group means to meet the
 278 assumption of ignorability. Here, Equation (2) could be rewritten as,

279
$$y_{it} - \bar{y}_i = \tau(D_{it} - \bar{D}_i) + \delta_k(X_{ikt} - \bar{X}_{ik}) + (\varepsilon_{it} - \bar{\varepsilon}_i). \quad (3)$$

281 Equation (3) eliminate the effects due to unobserved, time-invariant characteristics across the
 282 time since the source of endogeneity (Π_i) is dropped from differencing.

283 **3.2.3 Mechanism analysis**

284 Here we follow Baron & Kenny (1986) model to explore the path of NNRs affecting the grain
 285 production. From Figure 5, we find there might be mediation processes existed in terms of farmland
 286 use change between the establishment of NNRs and grain production. Based on our conceptual
 287 framework, we decompose the policy effects into two aspects: (1) Direct effects: the NNRs restraints
 288 chemical fertilizer and promote the wild animal activities, which decrease the grain yield
 289 correspondingly. (2) Indirect effects: according to the RPRCNR, once the NNRs are established,
 290 farmland should be transformed back to protected land. Therefore, the planting area variable is the
 291 (hypothesized) mediator that is transmitted the causal effect of NNRs to production. To test our
 292 hypothesis, we construct Equation (4) to (6) as follows,

293
$$\ln y_{it} = \gamma_0 + \gamma_{CD} D_{it} + \sum_{k+1} \gamma_{k+1} \ln X_{ik+1,t} + \mathbf{T}_t + \Pi_i + \varepsilon_{it}. \quad (4)$$

295
$$\ln X_{1it} = \beta_0 + \beta_{CD} D_{it} + \sum_{k+1} \beta_{k+1} \ln X_{ik+1,t} + \mathbf{T}_t + \Pi_i + \varphi_{it}.$$

296 (5)

297
$$\ln y_{it} = \alpha_0 + \eta_{CD} D_{it} + \alpha_1 \ln X_{1it} + \sum_{k+1} \alpha_{k+1} \ln X_{ik+1,t} + \mathbf{T}_t + \mathbf{\Pi}_i + \omega_{it}.$$

298 (6)

299 In our framework, Equation (4) to (6) are used to estimate the direct and indirect effects of the
300 NNRs. Specifically, the direct effect is measured by η_{CD} as the path from NNRs to grain
301 production, while the indirect effect is equivalent to the product of the path from NNRs to planting
302 areas (β_{CD} in Equation (5)) and the path from planting areas to grain production (α_1 in Equation
303 (6)). If γ_{CD} , β_{CD} , τ_{CD} and α_1 are significant, we could verify farmland use change is at least one of
304 the mediators in our NNRs analysis (Agler & De Boeck, 2017; Baron & Kenny, 1986; Judd & Kenny,
305 1981).

306 **Results and Discussion**

307 The estimation results of Equation (2) are reported in Table 2. Table 3 presents the test results of
308 parallel-trend assumption of DID. In Table 4, we divide our dataset into quantile groups by average
309 grain yield. Next, in Table 5, we employ the data from major grain-producing provinces and
310 nonmajor grain-producing provinces separately. Next, we employ the lagged year treatment variable
311 from 1 to 3 years to determine the variation in treatment effect over time in Table 6. Furthermore,
312 we test the mechanism of NNRs on grain production in consideration of mediation effect and display
313 the results in Table 7. The results are consistent among all specifications, demonstrating our results
314 are robust and reliable.

315 **[Insert Table 1]**

316 **4.1 The establishment of NNRs policy**

317 Using the panel data mentioned above, we obtain the estimates for Cobb-Douglas production
318 function specifications shown in Table 2. We see that the establishment of NNRs has a significant
319 negative impact on grain production in column (1). The grain production of the treated counties is

320 4.4% less than that of the control ones at a 5% significance level. As discussed in the earlier section,
321 the establishment of nature reserves affects the grain production with mixed consequences. From
322 Table 2, we conclude the negative effect is dominant in our observation period. In column (2), we
323 use the year trend variable rather than the year fixed effect to estimate the NNRs policy, the result
324 also indicates that NNRs' impact on the grain production is significantly negative. As the likelihood
325 ratio test favors the fixed-effect model specification, thus we would use the two-way fixed effect
326 for our following discussion.

327 The negative estimate implies an internal tradeoff between food security and the NNR zone
328 regulation. Since grain production has always been one of the top national priorities, a 4.4% decline
329 would trigger a concern on the stability of food supply. Thence, the government should keep
330 improving the grain productivity of the counties with NNRs and offset the negative impact.
331 Moreover, a 4.4% decrease in grain production would generate a considerable income loss for local
332 farmers. The result could partially explain the cause of increasing human pressure in the
333 establishment of NNRs. The resistance would become more intense in counties where farmers'
334 primary income is from farming activities.

335 **[Insert Table 2]**

336 **4.2 Other covariates estimation**

337 We now discuss the estimation results of other variables separately. In Table 2, we find the
338 coefficients of input variables are consistent with our expectations. The variables of agricultural
339 employment, fertilizer, area, and machinery positively affect the grain production at the 1%
340 significance level. The coefficient of agricultural employment input is 0.0504, and the coefficient
341 of machinery input and fertilizer is 0.0312 and 0.0316 each. It means that a 1% increase in
342 agricultural employment, machinery and fertilizer could generate a 0.0504% , 0.0312%, and 0.0316%
343 increase in our dependent variable, respectively. In our estimation model, the area variable plays the
344 most important role in promoting production increase. If the grain area expands by one percent, the
345 grain production of the county will increase by 0.875% at a 1% significance level. Furthermore, we

346 use the Wald test to verify whether the grain production function is in line with the homogeneity
 347 assumption. The result indicated the sum of input factors estimates is not significantly different from
 348 one, indicating the homogeneity assumption is well-satisfied. To capture the technological change,
 349 we involve the year dummy and year trend variables in our models. They are significantly positive
 350 in the model, implying the technology plays a positive role in grain production growth.

351 **4.3 Test of parallel-trend assumption**

352 One of the assumptions in time-varying DID is the difference between the treatment and control
 353 group should be constant before the NNRs, or saying “parallel-trend assumption”. To test the
 354 assumption, we follow Giovanni and Marco (2019)’s approach and construct the following
 355 regression model In Equation (7). We select a seven-year window, spanning from three years before
 356 the NNRs until three years after the NNRs. The $D_{it}^{-\omega}$ is one for counties in the ω th year before NNRs,
 357 while D_{it}^{ω} equals one for counties in the ω th year after NNRs.

$$358 \quad \ln y_{it} = \rho_0 + \rho_1 D_{it}^{-3} + \rho_2 D_{it}^{-2} + \rho_3 D_{it}^{-1} + \rho_4 D_{it} + \rho_5 D_{it}^1 + \rho_6 D_{it}^2 + \rho_7 D_{it}^3 + \sum_k \alpha_k \ln X_{ikt} \\ 359 \quad + \mathbf{T}_t + \mathbf{\Pi}_i + \varepsilon_{it} \quad 360 \quad (7)$$

361 We plot the trend of treatment effect in Figure 9, we could visually observe that the difference
 362 between the treatment and control group is close to zero before the establishment of NNRs, while,
 363 since the second year after the treatment, the gap fades away gradually. This is in line with the result
 364 of F-test on $\rho_1 = 0$, $\rho_2 = 0$, $\rho_3 = 0$. Our result indicates that the F-test is not significant and
 365 parallel-trend assumption is well passed. Thus, we could safely say that previous the NNRs policy,
 366 the treatment counties and control counties share the common change trend as expected.

367 **[Insert Table 3 and Figure 9]**

368 **4.4 Sensitivity model analysis**

369 **4.4.1 Sensitivity model analysis of different subgroups**

370 Furthermore, we are interested in the variation of the impact of NNRs within different subgroups,
371 we test the heterogeneity in two approaches. (1) We apply the quantile sample sorted by the average
372 grain yield. In Table 4, we use the top 1% to 25%, top 26% to 50%, top 51% to 75%, and top 76%
373 to 100% to estimate the grain production function. The coefficients in the high-yield groups (top 1%
374 to 25% and top 26% to 50%) are negative and significant at a 5% level for the latter one. However,
375 in the second half of our dataset (51% to 75%; top 76% to 100%), the impact of NNR turns to be
376 insignificant. The heterogeneous effects indicate that the NNRs play a different role in different
377 regions. (2) We divide our dataset into the major grain-producing provinces and nonmajor grain-
378 producing provinces in Table 5,. The former subgroup includes Inner Mongolia, Liaoning, Jilin,
379 Jiangxi, Jiangsu, Henan, and Hubei, while the latter includes Shanxi, Zhejiang, Guangxi, Hainan,
380 Guizhou, Gansu, and Qinghai. The estimate in column (1) in Table 5 is -0.0815 at a 5% significance
381 level, while the coefficient turns to be insignificant for the nonmajor production province sample.
382 The results in Table 4 and Table 5 consistently imply that the NNR regulation has a more intensive
383 negative impact on the counties with high grain yield and resilient ecological conditions, but the
384 role of NNRs on grain production for the low-yield areas still call for more evidence to explore. It
385 might because the low-yield counties or nonmajor production areas are concentrated in areas where
386 environmental conditions are fragile and unsuitable for agricultural activities. Therefore, the NNRs
387 could rehabilitate the ecological systems and improve their farming conditions, eventually
388 counteracting the production decline rendered by the agricultural activities restrictions.

389 **[Insert Table 4-5]**

390 **4.4.2 Sensitivity model analysis of lagged NNR treatment**

391 In a dynamic context, the policy effect might vary with the length of the county exposure to it, which
392 is usually referred as the “dynamic treatment effect” (Callaway & Sant’Anna, 2018; Dettmann et
393 al., 2019). To verify the change of NNR effect over time after the displacement, we measure the

394 lagged effect of the treatment from the first to the third lagged year after the NNRs establishment.
395 According to the results in Table 6, we find a declined effect of the NNRs treatments in our
396 observation. We could observe the policy effects are significantly negative one year after the policy
397 carries out, but the effect gradually decreases to zero. While the third to the fourth year of the NNRs
398 treatments (second to third-year lags) are not significantly different from zero with much smaller
399 parameters. The estimates reflect the variation of NNR effects as the policy proceeds.

400 The outcome aligns with the policy implementation experience in China. At the early stage of
401 the NNRs establishment, the policy would become more stringent and robust due to the pressure of
402 evaluation and supervision from the central government. Therefore, we could observe a noticeable
403 decline in grain production. However, this impact could not hold persistently. The trend of declined
404 impact could be attributed to two aspects: First, since there is a tradeoff between the agricultural
405 production and NNRs, agricultural activities might rebound if the regulation relaxes along with time.
406 Second, in the long term, the ecological benefits of NNRs might take effect gradually and become
407 dominant in the following years.

408 **[Insert Table 6]**

409 **4.5 Mechanism analysis of NNRs on grain production**

410 Columns (1) to (3) in Table 7 confirm that the NNRs generate a negative impact on grain production
411 through agricultural land use restriction. Without controlling planting areas, the reduced model in
412 Column (1) indicates that the NNRs are negatively correlated with the grain production at a 1%
413 significance level with which the parameter value is equivalent to -0.093. However, in the full model
414 in Column (3) planting area variable included, the impact is still significantly negative at a 5%
415 significance level, but the coefficient drops to -0.044. Considering the NNRs also significantly
416 decrease the agricultural planting areas (Columns (2)), we could confirm planting areas partially
417 mediate the effect of NNRs on grain production at the county level.

418 In Table 7, we further explore the relationship between the NNRs and agricultural productivity.
419 Column (4) indicates the NNRs also negatively affect the grain yield by 4.37% at a 5% significance

420 level. This indicates there might be a second pathway that NNRs curtail production except farmland
421 use restriction. As aforementioned in Section 2.3, lower yield caused by NNRs can be explained by
422 the reduced use of chemical controls such as fertilizers and pesticides and the rising number of
423 wildlife activities in agricultural sites.

424 **[Insert Table 7]**

425 **Conclusions and policy implications**

426 In response to worldwide global warming and biodiversity loss, the nature reserve zone has become
427 a prevalent practice to rehabilitate ecological systems. Nowadays, China has 2,750 nature reserve
428 zones, of which 474 are at the national level. According to the Ministry of Ecology and Environment
429 in China, the total nature reserve area accounts for 14.86% of China's national land territory. In the
430 past decades, nature reserve policies have made significant achievements in rebuilding a sustainable
431 environment and ecological system. However, along with the expansion of nature reserve areas, the
432 concern arises whether it might threaten the national food security since limited agriculture activities
433 are allowed to continue within the zone. Is there a tradeoff between grain production and NNRs
434 policy? Our research aims to examine the relationship between environmental protection
435 implementations of the NNRs and food security in China.

436 To evaluate the impact of nature reserve policy, we construct a county-level panel data between
437 1989 to 2018 and apply a time-varying DID model to empirically estimate the potential effect. The
438 dataset has 940 counties with 10,622 observations, within which 940 counties possess at least one
439 nature reserve. The empirical results show that the average grain production in the county with
440 NNRs policy would be 4.4% smaller than that of control counties, which demonstrates there is a
441 tradeoff between NNRs and grain production. The impact is stronger in the high-yield subgroups
442 and the major grain-producing areas. But within the low-yield and nonmajor areas where the
443 agricultural conditions are less favorable, the NNRs' role of the grain production is not significant
444 instead. In terms of lagged effects, the paper finds the earlier stages of the NNRs policy
445 implementation have a much larger impact than that of the later years. The mechanism analysis in

446 our paper verifies two paths from NNRs to grain production. (1) The NNRs policy constrains the
447 agricultural inputs within the boundary, leading to fewer usage of fertilizers and pesticides. The
448 grain yield declines directly. (2) The NNRs policy recovers the farmlands within the nature reserves
449 into protected areas, indirectly reducing the grain production at the county level.

450 The tradeoff between NNRs and food security sheds light on the concerns of NNR expansion
451 on agricultural activities. (1) Generally, in order to relieve the conflicts between food security
452 pressure and NNRs, we suggest supportive funds should be allocated to improve the agricultural
453 productivity in the counties with NNR treatments. For instance, low-carbon agriculture should be
454 developed in the NNRs areas. (2) Since the tradeoffs occur much higher in high-yield areas,
455 requiring the central government to have a more careful strategy in selecting sites. Avoiding the
456 farmland with productive crop potentials chosen as nature reserves could alleviate the conflict
457 between the protected land and farming activities. Besides, for the areas where land is not desirable
458 for crop production, setting aside for NNRs should be encouraged. (3) It is worth pointing out that
459 the negative impact is more intensive in the early stage of the NNR establishments. Therefore, more
460 supporting policies on productivity and moderate assessment on food security should be executed
461 in these NNR regions in the beginning years.

462

463 **Appendix**

464 **A.1 Proof of Time-varying DID specification as Two-way fixed effects**

465 The estimation strategy incorporates the DID estimator into a conventional panel regression
466 (Dettmann et al., 2019). The canonical DID model is a 2×2 *case* that refers to two analyzed
467 groups and two time periods. The estimator is the coefficient of the interaction of the treatment
468 group dummy and the post-treatment-period dummy (Wing et al., 2018). But the two-group two-
469 periods DID model could not accommodate the cases that involve treatment exposures in multiple
470 groups and varying periods. We consider an estimation strategy associated with heterogeneous
471 treatment effects in a panel data context. To assess the impact of NNRs on grain production, we
472 build a DID with two-way fixed effects model (Beck et al., 2010; Deshpande & Li, 2019; Petrick &
473 Zier, 2011). The mechanism in this design is as follows. We construct counterfactuals to counties
474 affected by NNRs by comparing counties that experience the same NNR policy a few years later or
475 never. The difference is the treatment effect of the NNRs.

476 We consider the case where county i is a participant or nonparticipant in the NNR program
477 in each period t . In terms of the treatments in multiple periods, D_{it} is a binary variable where D_{it}
478 = 1 means the treatment of NNR program at year t , whereas $D_{it} = 0$ means untreated counties.
479 We construct vector $\mathbf{D}_i = (D_{i1}, \dots, D_{iT})$ as an indicator to describe the history of the NNR program
480 for each observation. For completeness, we also denote $y_{it}(1)$ and $y_{it}(0)$ the counterfactual
481 grain production in the treated and untreated counties, respectively.

482 To identify the impact of the NNR program with no selection bias, we here, following
483 Wooldridge's approach (Wooldridge, 2010), assume \mathbf{D}_i and $(y_{it}(1), y_{it}(0))$ should be
484 independent conditional on the unobserved heterogeneity Π_i and \mathbf{T}_t and observable
485 characteristics X_{it} , which is widely called the assumption of ignorability (or unconfoundedness) of
486 treatment (Rosenbaum & Rubin, 1983). Mathematically, the ignorability should be in conditional
487 mean independence as following,

488
$$(y_{it}(1), y_{it}(0)) \perp \mathbf{D}_i \mid X_{it}, \Pi_i, \mathbf{T}_t.$$

489 $E[y_{it}(g)|\mathbf{D}_i, X_{it}, \boldsymbol{\Pi}_i, \mathbf{T}_t] = E[y_{it}(g)|X_{it}, \boldsymbol{\Pi}_i, \mathbf{T}_t], \quad g = 0, 1.$

490 (A.1)

491 To note that the ignorability assumption imposes a strict exogeneity on the treatment
 492 assignment \mathbf{D}_i . In terms of the observed outcome expressed as $y_{it} = y_{it}(0) + D_{it}E[y_{it}(1) -$
 493 $y_{it}(0)]$, it is straightforward to rewrite $E[y_{it}(g)|\mathbf{D}_i, X_{it}, \boldsymbol{\Pi}_i, T]$ as follows,

494 $E[y_{it}(g)|\mathbf{D}_i, X_{it}, \boldsymbol{\Pi}_i, \mathbf{T}_t] = E(y_{it}(0)|X_{it}, \boldsymbol{\Pi}_i, \mathbf{T}_t) + D_{it}E[y_{it}(1) - y_{it}(0)|X_{it}, \boldsymbol{\Pi}_i, \mathbf{T}_t].$

495 (A.2)

496 The treatment effect we are interested in is measured by $E[y_{it}(1) - y_{it}(0)|X_{it}, \boldsymbol{\Pi}_i, \mathbf{T}_t]$. To
 497 proceed with the identification, we make a set of assumptions on Equation (A.2): (i) The treatment
 498 effect is equal to τ and constant across counties and time. The assumption is the so-called common-
 499 effects assumption (Petrick & Zier, 2011). (ii) $E(y_{it}(0)|X_{it}, \boldsymbol{\Pi}_i, \mathbf{T}_t)$ could be expressed as a linear
 500 and additively separable specification, which is widely used in causal inference literature (Angrist
 501 & Pischke, 2019; Khandker et al., 2009). (iii) We impose the homogeneity assumption on the
 502 parameters of our observed covariates X_{it} , indicating β_k is not varying within each observable
 503 variable. (iv) No carryover effects. We assume for each given county i , the NNR implement at year t
 504 is randomized conditional on the realized treatment in previous years, but without conditioning on the
 505 previous grain yield outcome (Imai & Kim, 2019). Then the Equation (A.2) leads to,

506 $y_{it} = \boldsymbol{\Pi}_i + \mathbf{T}_t + \delta_k X_{itk} + \tau D_{it} + \varepsilon_{it}, \quad t = 1, \dots, T, \quad k = 1, \dots, K.$

507 (A.3)

508 The coefficient τ in Equation (A.3) is the critical estimator that reflects the difference between
 509 the counterfactual effects. \mathbf{X}_{it} is a set of control variables. Equation (A.3) leads to a DID analysis
 510 with two-way fixed effects.

Reference

512 Agler, R., & De Boeck, P. (2017). On the interpretation and use of mediation: Multiple perspectives on
513 mediation analysis. *Frontiers in Psychology*. <https://doi.org/10.3389/fpsyg.2017.01984>

514 Angrist, J. D., & Pischke, J.-S. (2019). Mostly Harmless Econometrics. In *Mostly Harmless*
515 *Econometrics*. <https://doi.org/10.2307/j.ctvcm4j72>

516 Balmford, A., Bruner, A., Cooper, P., Costanza, R., Farber, S., Green, R. E., Jenkins, M., Jefferiss, P.,
517 Jessamy, V., Madden, J., Munro, K., Myers, N., Naeem, S., Paavola, J., Rayment, M., Rosendo,
518 S., Roughgarden, J., Trumper, K., & Turner, R. K. (2002). Ecology: Economic reasons for
519 conserving wild nature. In *Science*. <https://doi.org/10.1126/science.1073947>

520 Baron, R. M., & Kenny, D. A. (1986). The moderator-mediator variable distinction in social
521 psychological research: Conceptual, strategic, and statistical considerations. *Journal of*
522 *Personality and Social Psychology*. <https://doi.org/10.1037/0022-3514.51.6.1173>

523 Beck, T., Levine, R., & Levkov, A. (2010). Big bad banks? The winners and losers from bank
524 deregulation in the United States. *Journal of Finance*. [6261.2010.01589.x](https://doi.org/10.1111/j.1540-
525 6261.2010.01589.x)

526 Brandon, K., Gorenflo, L. J., Rodrigues, A. S. L., & Waller, R. W. (2005). Reconciling biodiversity
527 conservation, people, protected areas, and agricultural suitability in Mexico. *World Development*,
528 33(9 SPEC. ISS.), 1403–1418. <https://doi.org/10.1016/j.worlddev.2004.10.005>

529 Callaway, B., & Sant'Anna, P. H. C. (2018). Difference-in-Differences with Multiple Time Periods and
530 an Application on the Minimum Wage and Employment. In *arXiv*.
531 <https://doi.org/10.2139/ssrn.3148250>

532 China State Council. (2019). *Guiding Opinions on Establishing a System of Natural Reserves with*
533 *National Parks as the Main Body*. The General Office of the Central Committee of the CPC and
534 the General Office of the State Council. [06/26/content_5403497.htm](http://www.gov.cn/zhengce/2019-
535 06/26/content_5403497.htm)

536 de Moraes, M. C. P., de Mello, K., & Toppa, R. H. (2017). Protected areas and agricultural expansion:
537 Biodiversity conservation versus economic growth in the Southeast of Brazil. *Journal of*
538 *Environmental Management*, 188, 73–84.

539 de Oliveira, S. N., de Carvalho Júnior, O. A., Gomes, R. A. T., Guimarães, R. F., & McManus, C. M.
540 (2017). Deforestation analysis in protected areas and scenario simulation for structural corridors
541 in the agricultural frontier of Western Bahia, Brazil. *Land Use Policy*, 61, 40–52.

542 Deshpande, M., & Li, Y. (2019). Who Is Screened Out? Application Costs and the Targeting of
543 Disability Programs. *American Economic Journal: Economic Policy*.
544 <https://doi.org/10.1257/pol.20180076>

545 Dettmann, E., Giebler, A., & Weyh, A. (2019). *flexpaneldid: A Stata command for causal analysis with*
546 *varying treatment time and duration*. IWH Discussion Papers.

547 Devictor, V., Godet, L., Julliard, R., Couvet, D., & Jiguet, F. (2007). Can common species benefit from
548 protected areas? *Biological Conservation*, 139(1–2), 29–36.

549 Ferraro, P. J., Hanauer, M. M., & Sims, K. R. E. (2011). Biodiversity Conservation and Poverty Traps
550 Special Feature: Conditions associated with protected area success in conservation and poverty
551 reduction. *Proceedings of the National Academy of Sciences*.
552 <https://doi.org/10.1073/pnas.1011529108>

553 Ferraro, Paul J., & Hanauer, M. M. (2011). Protecting ecosystems and alleviating poverty with parks
554 and reserves: “Win-win” or tradeoffs? *Environmental and Resource Economics*.
555 <https://doi.org/10.1007/s10640-010-9408-z>

556 Gülez, S. (1992). A method for evaluating areas for national park status. *Environmental Management*,
557 16(6), 811–818.

558 Gurrutxaga, M., Rubio, L., & Saura, S. (2011). Key connectors in protected forest area networks and
559 the impact of highways: A transnational case study from the Cantabrian Range to the Western
560 Alps (SW Europe). *Landscape and Urban Planning*, 101(4), 310–320.
561 <https://doi.org/https://doi.org/10.1016/j.landurbplan.2011.02.036>

562 Hou, Y., & Wen, Y. (2012). Analysis of Influence and Compensation Issue of Wild Animals Causing
563 Accident to the Community Farmers. *Issues of Forestry Economics*, 32(5), 388–391.
564 doi:10.16832/j.cnki.1005-9709.2012.05.003

565 Imai, K., & Kim, I. S. (2019). When Should We Use Unit Fixed Effects Regression Models for Causal
566 Inference with Longitudinal Data? *American Journal of Political Science*.
567 <https://doi.org/10.1111/ajps.12417>

568 Izquierdo, A. E., & Grau, H. R. (2009). Agriculture adjustment, land-use transition and protected areas
569 in Northwestern Argentina. *Journal of Environmental Management*.
570 <https://doi.org/10.1016/j.jenvman.2008.02.013>

571 Jones, K. R., Venter, O., Fuller, R. A., Allan, J. R., Maxwell, S. L., Negret, P. J., & Watson, J. E. M.
572 (2018). One-third of global protected land is under intense human pressure. *Science*.
573 <https://doi.org/10.1126/science.aap9565>

574 Judd, C. M., & Kenny, D. A. (1981). Process analysis: Estimating Mediation in Treatment Evaluations.
575 *Evaluation Review*. <https://doi.org/10.1177/0193841X8100500502>

576 Khandker, S., B. Koolwal, G., & Samad, H. (2009). Handbook on Impact Evaluation. In *Handbook on*
577 *Impact Evaluation*. <https://doi.org/10.1596/978-0-8213-8028-4>

578 Koemle, D. (2018). *The impact of agri-environmental policy and infrastructure on wildlife and land*
579 *prices*. Georg-August-Universität Göttingen. <http://hdl.handle.net/11858/00-1735-0000-002E-E538-E>

581 Li, S., Weiwei, L., Mengdi, F., Boyan, L., Yueheng, R., & Yanpeng, Z. (2020). Current problems,
582 challenges and countermeasures of community development in nature reserves. *Environment and*
583 *Sustainable Development*, 3, 130–133. 10. 19758 / j. cnki. issn1673-288x. 202003130

584 McElwee, P. D. (2010). Resource use among rural agricultural households near protected areas in
585 Vietnam: The social costs of conservation and implications for enforcement. *Environmental*
586 *Management*, 45(1), 113–131. <https://doi.org/10.1007/s00267-009-9394-5>

587 Ministry of Ecology and Environment. (2017). *The number and area of nature reserves in China have*
588 *reached a high level*. http://www.xinhuanet.com/politics/2017-02/20/c_129486709.htm

589 National Bureau of Statistics. (2019). *National Statistical Yearbook* (J. Ning (ed.)). China Statistics
590 Press. <http://www.stats.gov.cn/tjsj/ndsj/2020/indexch.htm>

591 National Park Administration. (2019). *China's nature reserve system tends to be perfect.*
592 <http://www.forestry.gov.cn/main/72/content-1028677.html>

593 Owino, A. O., Jillo, A. H., & Kenana, M. L. (2012). Socio-economics and wildlife conservation of a
594 peri-urban national park in central Kenya. *Journal for Nature Conservation*.
595 <https://doi.org/10.1016/j.jnc.2012.08.004>

596 Petrick, M., & Zier, P. (2011). Regional employment impacts of Common Agricultural Policy
597 measures in Eastern Germany: A difference-in-differences approach. *Agricultural Economics*.
598 <https://doi.org/10.1111/j.1574-0862.2010.00509.x>

599 Ragamustari, S. K., & Sukara, E. (2019). Strengthening the genetic diversity conservation narrative in
600 Indonesia: challenges and prospects. *Biodiversity and Conservation*, 28(7), 1647–1665.
601 <https://doi.org/https://doi.org/10.1007/s10531-019-01749-0>

602 Rodrigues, A. S. L., Andelman, S. J., Bakarr, M. I., Boitani, L., Brooks, T. M., Cowling, R. M.,
603 Fishpool, L. D. C., Da Fonseca, G. A. B., Gaston, K. J., & Hoffmann, M. (2004). Effectiveness
604 of the global protected area network in representing species diversity. *Nature*, 428(6983), 640–
605 643.

606 Rosenbaum, P. R., & Rubin, D. B. (1983). The central role of the propensity score in observational
607 studies for causal effects. *Biometrika*, 70(1), 41–55.

608 Scherer, L., Curran, M., & Alvarez, M. (2017). Expanding Kenya's protected areas under the
609 Convention on Biological Diversity to maximize coverage of plant diversity. *Conservation
610 Biology*, 31(2), 302–310. <https://doi.org/https://doi.org/10.1111/cobi.12792>

611 Sims, K. R. E. (2010). Conservation and development: Evidence from Thai protected areas. *Journal of
612 Environmental Economics and Management*, 60(2), 94–114.
613 <https://doi.org/10.1016/j.jeem.2010.05.003>

614 Song, W., Li, G., & Han, X. (2015). Analysis on the Conflict Between Ecological Protection and
615 Farmers' Development intention in Nature Reserves – Based on the Survey Data of 660 Farmers

616 around Shaanxi National Nature Reserve. *China's Population Resources and Environment*,
617 25(10), 139–149.

618 Symes, W. S., Rao, M., Mascia, M. B., & Carrasco, L. R. (2016). Why do we lose protected areas?
619 Factors influencing protected area downgrading, downsizing and degazettement in the tropics and
620 subtropics. *Global Change Biology*, 22(2), 656–665. <https://doi.org/10.1111/gcb.13089>

621 Tscharntke, T., Klein, A.M., Kruess, A., Steffan-Dewenter, I. and Thies, C. (2005), Landscape
622 perspectives on agricultural intensification and biodiversity – ecosystem service management.
623 *Ecology Letters*, 8: 857-874. <https://doi.org/10.1111/j.1461-0248.2005.00782.x>

624 Thrupp, L. A. (2000). Linking agricultural biodiversity and food security: the valuable role of
625 agrobiodiversity for sustainable agriculture. *International Affairs*, 76(2), 265–281.

626 Venter, O., Fuller, R. A., Segan, D. B., Carwardine, J., Brooks, T., Butchart, S. H. M., Di Marco, M.,
627 Iwamura, T., Joseph, L., & O'Grady, D. (2014). Targeting global protected area expansion for
628 imperiled biodiversity. *PLoS Biol*, 12(6), e1001891.

629 Wei, W., Swaisgood, R. R., Pilfold, N. W., Owen, M. A., Dai, Q., Wei, F., Han, H., Yang, Z., Yang,
630 X., Gu, X., Zhang, J., Yuan, S., Hong, M., Tang, J., Zhou, H., He, K., & Zhang, Z. (2020).
631 Assessing the Effectiveness of China's Panda Protection System. *Current Biology*.
632 <https://doi.org/10.1016/j.cub.2020.01.062>

633 Wei, X., Shao, M., Gale, W., & Li, L. (2014). Global pattern of soil carbon losses due to the conversion
634 of forests to agricultural land. *Scientific Reports*. <https://doi.org/10.1038/srep04062>

635 Wing, C., Simon, K., & Bello-Gomez, R. A. (2018). Designing Difference in Difference Studies: Best
636 Practices for Public Health Policy Research. In *Annual Review of Public Health*.
637 <https://doi.org/10.1146/annurev-publhealth-040617-013507>

638 Wooldridge, J. M. (2010). *Econometric analysis of cross section and panel data*. MIT press.

639 Xu, W., Qin, W., Jiang, M., Liu, X., Xia, X., Zhou, D., & Fang, L. (2015). Status Quo of Distribution
640 of Human Activities in the National Nature Reserves. *Journal of Ecology and Rural
Environment*, 31(6), 802–807. 10. 11934/j. issn. 1673—4831. 2015. 06. 003

642 Zhang, G., Li, G., Liu, L., & Yao, X. Y. (2019). Economic Loss Assessment and Compensation of

643 Farmers due to Overwintering Waterbirds in Shengjin Lake. *Wetland Science*, 17(5), 504–510.

644 10.13248/j.cnki.wetlandsci.2019.05.002

645 Zhang, J. (2019). A study on the Damage Caused by Wild Animals to the Production and Living of the

646 Masses. *China Forestry Economics*, 3(156), 120–130. 10.13691/j. cnki. cn23-1539/f.

647 2019.03.034

648

649

Table 1 Summary statistics

No.	Variable	Unit	Obs	Mean	Std. Dev.	Min	Max
1	Nature reserve area	0/1	10,622			0	1
2	Year		10,622			1989	2018
1	Grain production	1000 Ton	10,622	396.95	664.60	0.26	9843.70
2	Production Function	Grain area	1000 Hectare	10,622	69.34	96.74	0.07
3		Fertilizer	1000 Ton	10,622	41.10	74.66	0.03
4		Machinery power	1000 Kwh	10,622	527.49	612.31	0.80
5		Agri-employment	1000 Persons	10,622	191.55	297.33	0.20
1		Yield	Ton/Hectare	10,622	5.30	1.63	0.86
2	Yield	Fertilizer usage per hectare	Ton/Hectare	10,622	0.57	0.39	0.05
3	Function	Machinery power per hectare	Kwh/Hectare	10,622	9.88	8.15	1.26
4		Agri-employment per hectare	Persons/Hectare	10,622	3.245	2.063	0.458
							17.892

Table 2 The impact of NNRs on grain production by counties in 1989-2018

VARIABLES	Production	
	(1)	(2)
Treatment	-0.0442** (0.0203)	-0.0697*** (0.0203)
Area	0.875*** (0.0109)	0.891*** (0.0107)
Fertilizer	0.0316*** (0.00627)	0.0401*** (0.00623)
Machinery	0.0312*** (0.00567)	0.0371*** (0.00525)
Agri-employment	0.0504*** (0.0106)	0.0257** (0.0105)
Year trend		0.0161*** (0.000434)
Constant	1.978*** (0.110)	1.874*** (0.106)
Year fixed-effect	Yes	No
County fixed-effect	Yes	Yes
Observations	10,622	10,622
R-squared	0.657	0.636
Number of counties	940	940
Likelihood ratio test	628.09***	

Standard errors in parentheses *** p<0.01, ** p<0.05, * p<0.1

Table 3 Test of the parallel trend assumption

VARIABLES	Production
Treatment_pre3	0.00576 (0.0235)
Treatment_pre2	-0.0350 (0.0435)
Treatment_pre1	-0.181* (0.108)
Treatment	0.158 (0.132)
Treatment_lag1	-0.233 (0.199)
Treatment_lag2	0.0844 (0.120)
Treatment_lag3	0.0330 (0.0651)
Area	0.862*** (0.0513)
Fertilizer	0.0518*** (0.0180)
Machinery	0.00684 (0.0186)
Agri-employment	0.00468 (0.0259)
Constant	2.460*** (0.511)
Year fixed-effect	Yes
County fixed-effect	Yes
Observations	10,622
Number of county code	612
R-squared	0.641
Test of the parallel trend assumption: $\rho_1 = \rho_2 = \rho_3 = 0$	
F (3, 611)	1.47
Prob > F	0.2206

Robust standard errors in parentheses *** p<0.01, ** p<0.05, * p<0.1

Table 4 The impact of NNRs on grain production at the county in 1989-2018 with quantile sample

VARIABLES	Grain Production			
	(1) 0-25%	(2) 26-50%	(3) 51-75%	(4) 76-100%
Treatment	-0.102 (0.0677)	-0.134** (0.0601)	0.215 (0.186)	0.0555 (0.0566)
Area	0.905*** (0.0491)	1.012*** (0.0336)	0.872*** (0.0397)	0.825*** (0.0531)
Fertilizer	0.0144 (0.0379)	-0.00540 (0.0158)	0.0304* (0.0162)	0.0507** (0.0231)
Machinery	0.0414 (0.0290)	0.00563 (0.0152)	0.0174* (0.00973)	0.0120 (0.0138)
Agri-employment	0.0909 (0.0875)	0.0692* (0.0382)	0.00129 (0.0275)	0.00253 (0.0263)
Constant	1.340*** (0.507)	0.815*** (0.283)	2.091*** (0.418)	2.776*** (0.583)
County fixed effect	Yes	Yes	Yes	Yes
Year fixed effect	Yes	Yes	Yes	Yes
Observations	1,982	2,625	3,041	2,974
R-squared	0.520	0.721	0.798	0.793
Number of counties	212	235	247	246

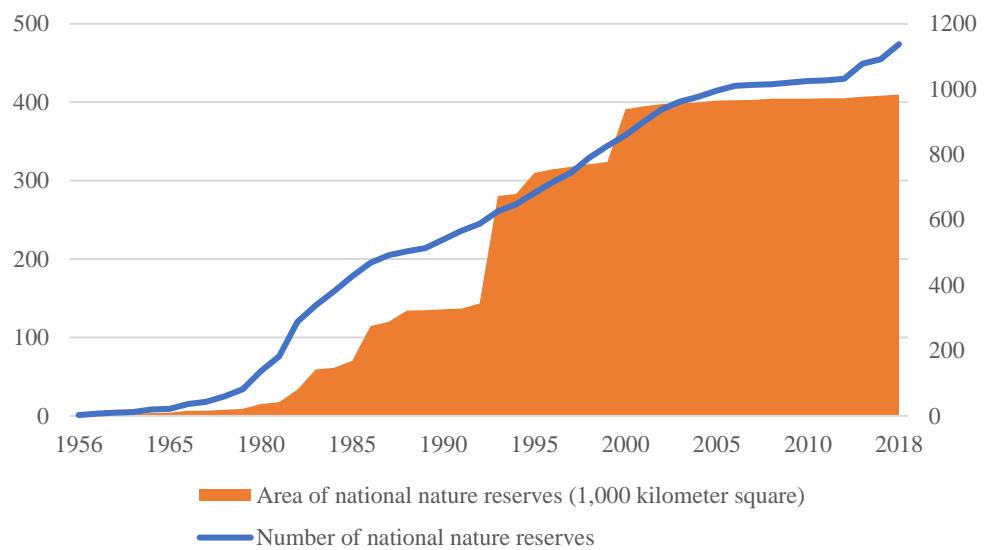
Standard errors in parentheses *** p<0.01, ** p<0.05, * p<0.1

Table 5 The impact of NNRs on grain production at the county in 1989-2018 with major production province and nonmajor production province

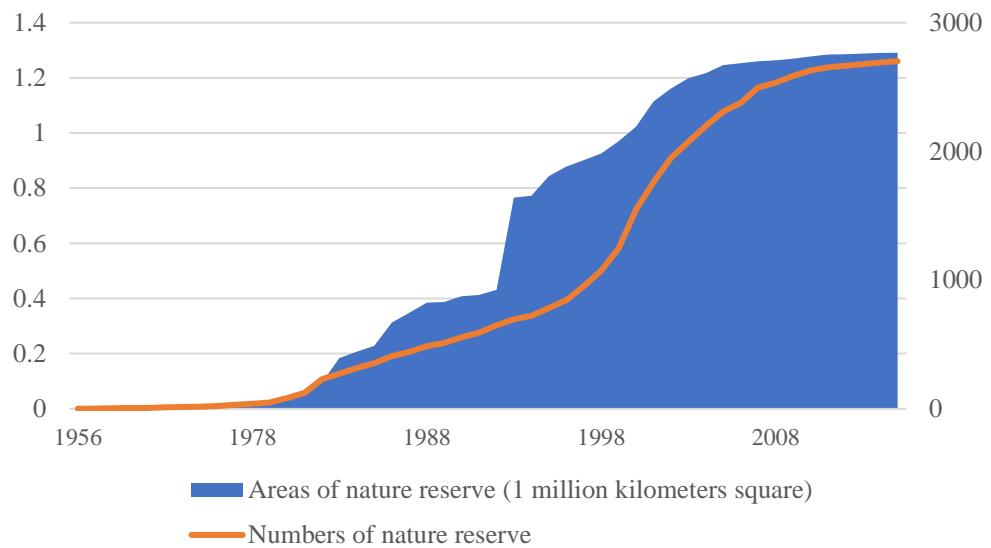
VARIABLES	Grain production	
	(1) Major production provinces	(2) Nonmajor production province
Treatment	-0.0815** (0.0392)	0.135 (0.104)
Area	0.853*** (0.0331)	0.930*** (0.0353)
Fertilizer	0.0795*** (0.0181)	-0.0220 (0.0157)
Machinery	0.0360*** (0.0116)	0.0306** (0.0122)
Agri-employment	0.0398 (0.0295)	0.00139 (0.0364)
Constant	1.817*** (0.340)	2.394*** (0.411)
County fixed effect	Yes	Yes
Year fixed effect	Yes	Yes
Observations	6,368	4,254
R-squared	0.696	0.551
Number of counties	462	478

Standard errors in parentheses *** p<0.01, ** p<0.05, * p<0.1

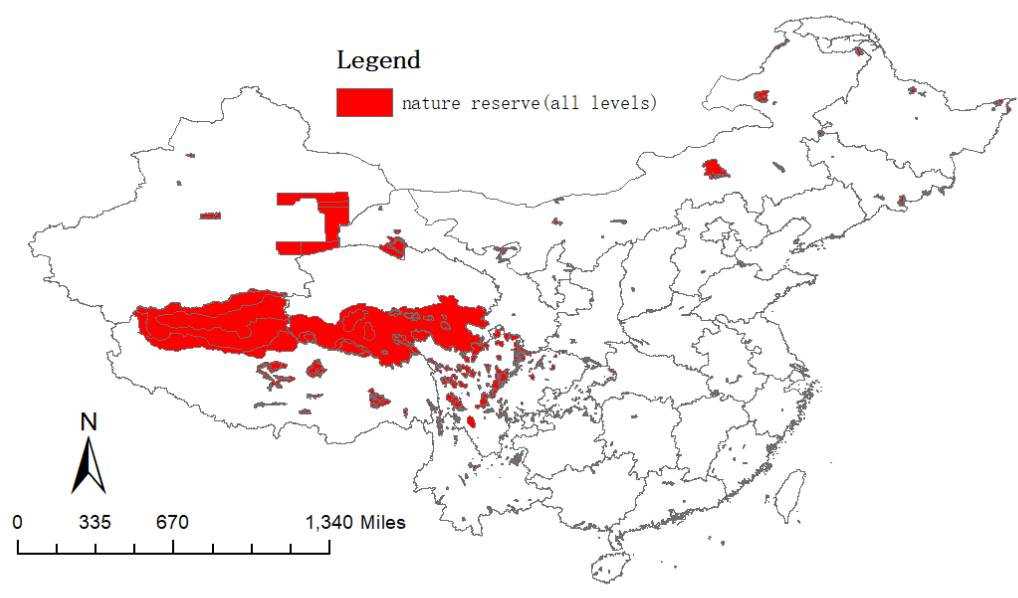
Table 6 The impact of NNRs on grain production at the county in 1989-2018 with lagged effects of policy

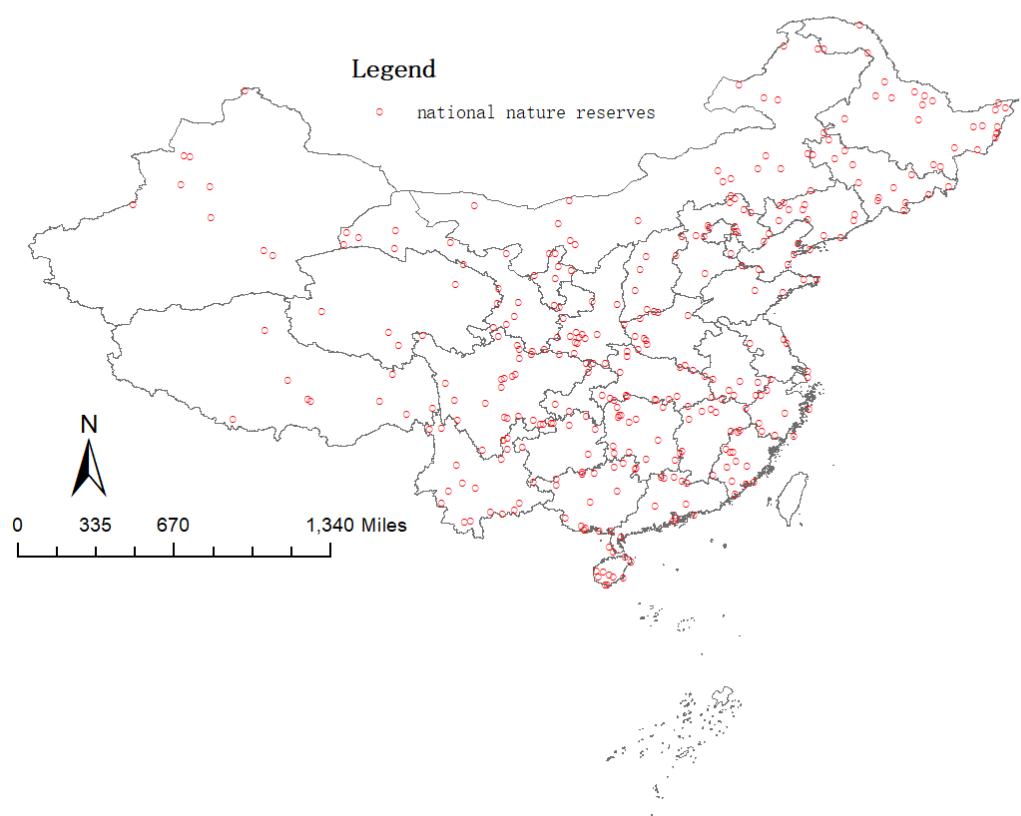

VARIABLES	Grain production		
	(1) One-year lag	(2) Two-year lag	(3) Three-year lag
Treatment_lag1	-0.0492** (0.0218)	-0.0870** (0.0399)	-0.119*** (0.0449)
Treatment_lag2		0.0293 (0.0365)	0.0480 (0.0520)
Treatment_lag3			0.0151 (0.0391)
Area	0.867*** (0.0115)	0.855*** (0.0126)	0.888*** (0.0133)
Fertilizer	0.0380*** (0.00698)	0.0602*** (0.00787)	0.0481*** (0.00797)
Machinery	0.0353*** (0.00575)	0.0273*** (0.00588)	0.0263*** (0.00586)
Agri-employment	0.0258** (0.0110)	0.00418 (0.0116)	0.00395 (0.0119)
Constant	2.390*** (0.116)	2.345*** (0.127)	2.079*** (0.134)
County fixed effect	Yes	Yes	Yes
Year fixed effect	Yes	Yes	Yes
Observations	9,078	7,818	6,645
R-squared	0.674	0.682	0.678
Number of counties	901	858	779

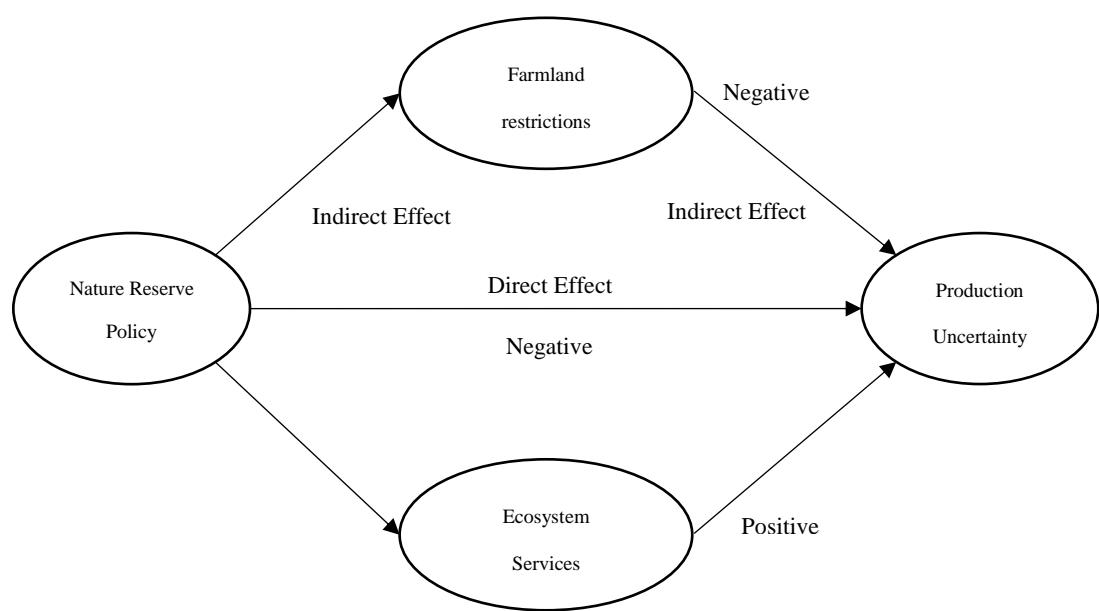
Standard errors in parentheses *** p<0.01, ** p<0.05, * p<0.1

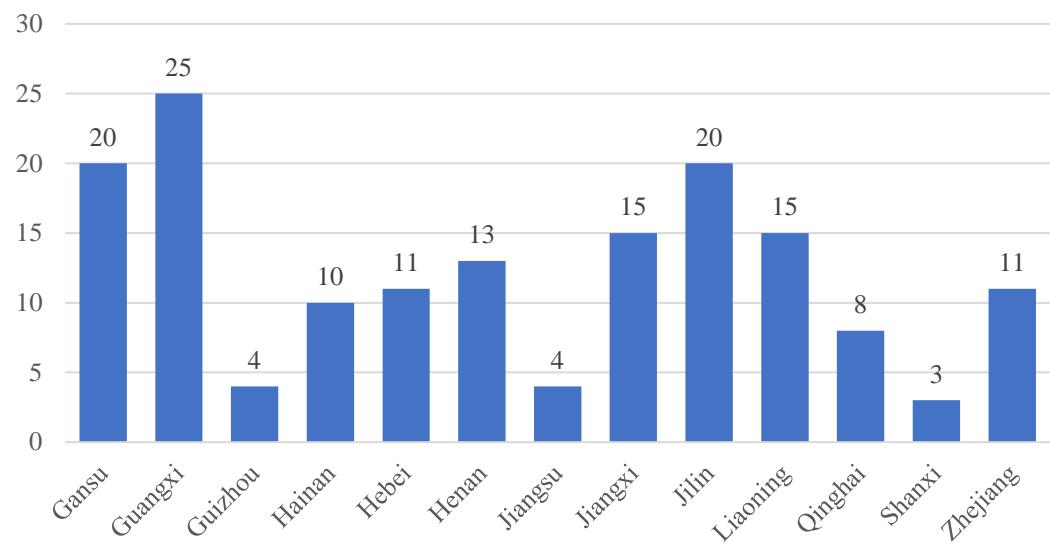

Table 7 Mechanism analysis of NNRs on grain production

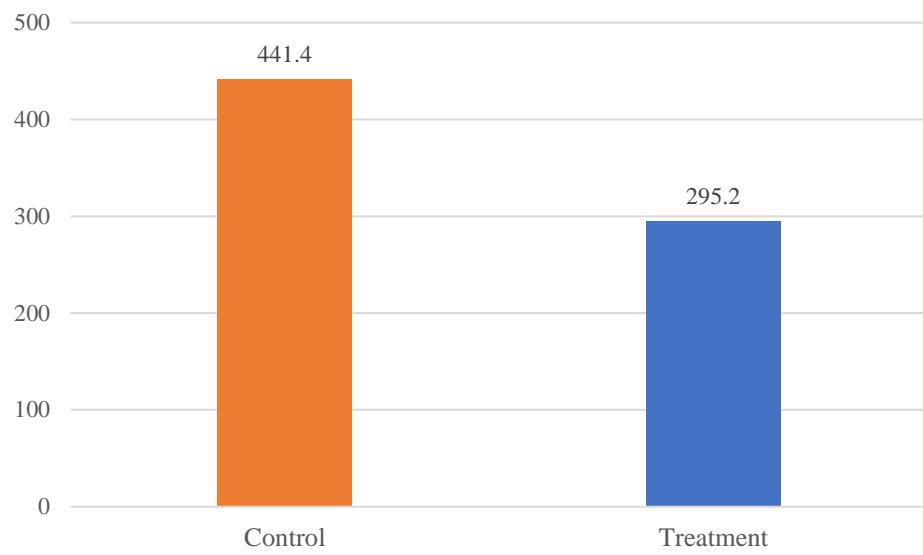
VARIABLES	Grain production (1)	Area (2)	Grain production (3)	VARIABLES	(4)	Yield (5)
Treatment	-0.0930*** (0.0262)	-0.0558*** (0.0189)	-0.0442** (0.0203)	Treatment	-0.0437** (0.0203)	-0.0697*** (0.0203)
Area			0.875*** (0.0109)	Fertilizer/hectare	0.0321*** (0.00624)	0.0404*** (0.00621)
Fertilizer	0.173*** (0.00776)	0.161*** (0.00561)	0.0316*** (0.00627)	Machinery/hectare	0.0321*** (0.00559)	0.0374*** (0.00522)
Machinery	0.0850*** (0.00727)	0.0615*** (0.00525)	0.0312*** (0.00567)	Agri-employment/hectare	0.0557*** (0.00888)	0.0288*** (0.00849)
Agri-employment	0.204*** (0.0135)	0.176*** (0.00972)	0.0504*** (0.0106)	Year trend		0.0161*** (0.000434)
Constant	9.780*** (0.0767)	8.435*** (0.0554)	2.398*** (0.110)	Constant	1.906*** (0.0754)	1.834*** (0.0684)
Year fixed effect	Yes	Yes	Yes	Year fixed effect	Yes	No
County fixed effect	Yes	Yes	Yes	County fixed effect	Yes	Yes
Observations	10,591	10,591	10,591	Observations	10,622	10,622
R-squared	0.972	0.981	0.983	R-squared	0.302	0.260

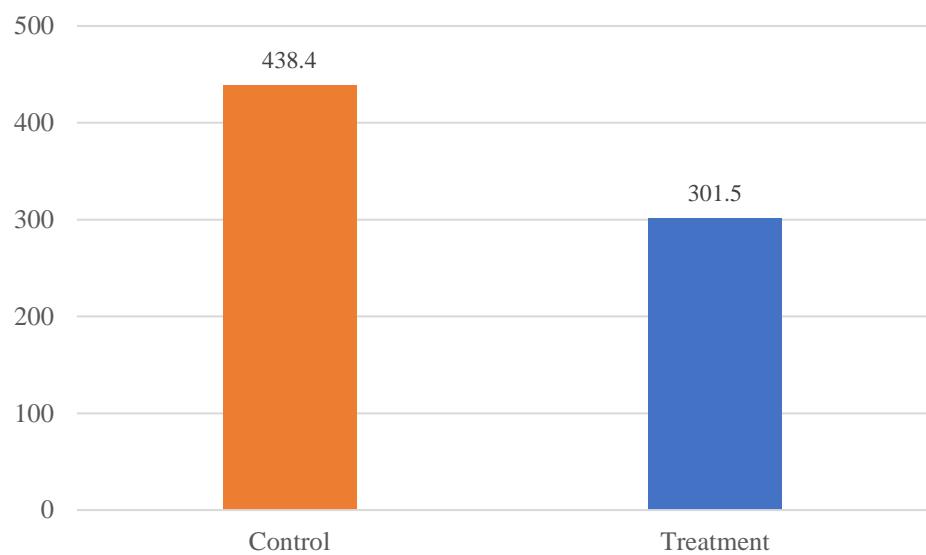

Standard errors in parentheses *** p<0.01, ** p<0.05, * p<0.1


Figure 1 Number and area of national nature reserves in China (National-level)


Figure 2 Number and area of national nature reserves in China (All-levels)


Figure 3 Geographic distribution of the nature reserves by area in China


**Figure 4 Geographic distribution of the nature reserves in China by projects
(National-level)**


Figure 5 Conceptual framework of NNR on agricultural production

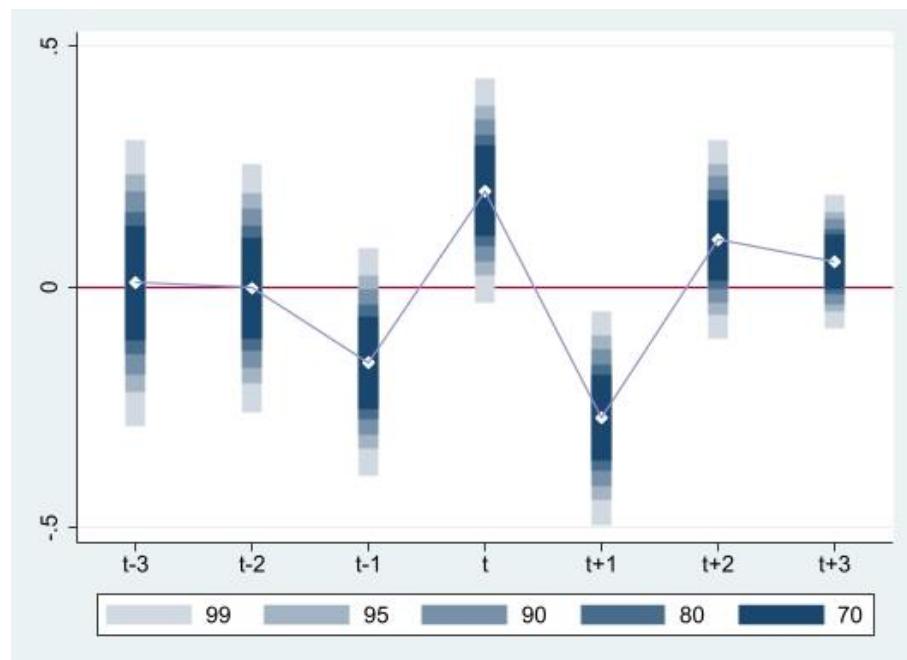

Figure 6 Geographical distribution of the NNRs samples by province

Figure 7 Average grain production by counties with and without NNR from 1989 - 2018

Figure 8 Average grain production by observations with and without NNR from 1989 -2018

Figure 9 Test of pre-treatment parallel-trend assumption with time-varying treatment