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Abstract

Beneficial water management practices (BWMPs) are farm management practices with en-
vironmental benefits of mitigating adverse impacts generated from conventional tile drainage.
However, the adoption of BWMPs typically reflects the dilemma of agri-environmental tech-
nologies: although there are high social benefits, low private incentives mainly prevent tech-
nology adoption by farmers. Due to micro-level studies’ limitations of using the econometric
models from the ex-post perspective and absence from policy interventions, this study em-
ployed agent-based modelling (ABM) to bring new insights into technology adoption. The
dynamic adoption/diffusion process of BWMPs was calibrated through the ABM model. Fur-
thermore, a case on cost-effectiveness evaluation of the cost-share program was exemplified
in this study to explain how ABM can support the agri-environmental policy design. Conclu-
sively, this model can be used as a powerful and flexible tool in policy ex-ante evaluation and
design regarding social-ecological systems based on various perspectives of policy goals, such
as participants, land, total social benefits and cost-effectiveness. Moreover, the application of
ABM or complex adaptive systems, incorporated with interdisciplinary research and poten-
tially interfaced with big data, machine learning and reinforcement learning techniques in the
future, can shed light on the economy’s complexity, which may be ignored by established eco-
nomic theory.
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1 Introduction

As a focal driving force for agricultural development, the diffusion and application of innovative

agricultural technology eventually depend on farmers’ adoption of new technologies. In particular,

given the severe challenges of increasing agri-environmental concerns, including natural resource

destruction, soil, water and air pollution, and issues regarding climate change, agri-environmental

beneficial technologies or practices are expected to be voluntarily implemented by farmers to sus-

tain agriculture (FAO, 1991, 2007, 2016). Based on that, studying the mechanism of the adoption

and diffusion of these agricultural technologies by farmers are essential for understanding the fac-

tors and barriers of technology adoption and enhancing extensive technology implementation, thus

abating the deterioration of the agri-environment and improving the efficiency of agricultural pro-

duction and development.

During the past decades, considerable research has been done to identify factors affecting the

adoption of various agricultural technology (see literature review of Knowler and Bradshaw (2007),

Baumgart-Getz et al. (2011), Oorschot et al. (2018), Ugochukwu and Phillips (2018) and Pathak

et al. (2019)). These factors are from wide-range aspects, such as the economic return of the tech-

nology, risks, farmers’ socio-demographics, and farmers’ perceptions and attitudes on the technol-

ogy. Likewise, learning and social networks have been studied for their effects on the diffusion

of technology based on socio-psychological theory (Abrahamson and Rosenkopf, 1993; Munshi,

2004; Conley and Christopher, 2001; Conley and Udry, 2010). However, only a few studies in-

volved the dynamic adoption process due to the unavailability of panel data, while the dynamics

imply the spatial-tempo essence of the adoption/diffusion process of technology (Jaffe and Stavins,

1995). Also, micro-level studies using the econometric models always reveal an explicit limitation

that most of them are from an ex-post perspective and absent from the effects of policy interven-

tions, which can not be compatible with the objective of potential policy instruments’ design and

evaluation (Doss, 2006). In particular, the path dependence of complex technological innovations

is commonly important can play an important role in technology adoption (Rycroft and Kash,

2002). However, the analysis of materiality and feasibility of agricultural technology, including
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land and climatic conditions and precedent technology, has not been explained adequately in the

literature.

The above insufficiency of existing studies suggests the potential embrace of new complex

models in technology adoption, such as agent-based computational models, especially when it in-

volves agricultural social-ecological systems. Agent-based modelling (ABM) in social simulation,

also known as artificial society, is an emerging research field that integrates computer science with

sociology, economics, and system science (Epstein and Axtell, 1996). The theoretical basis of

using ABM in addressing problems in economics lies in the theory of Complexity economics, pro-

posed by W. Brain Arthur in a series of complexity economics research (e.g. Arthur (1999), Arthur

(2014) and Arthur (2021)). Based on the core ideas and concepts of complexity economics, ABM

representing a typical computational economics modelling tool serves as an essential economic

adaptation of the complex adaptive systems paradigm (Tesfatsion, 2003).

Followed by the development of complexity science and computational economics, many stud-

ies using ABM have made significant progress in the research regarding the social-ecological sys-

tem, including land planning, pollution regulation and comprehensive environmental management.

Nolan et al. (2009) explained the advantages of using ABM to explore research questions in agri-

cultural and resource economics. Regarding agricultural policy evaluation, ABM often involves

the transition of land use and farm structure. For example, Berger (2001) studied the impacts of

various policies (such as credit support, irrigation technology investment) on land use of an agri-

cultural region in Chile using a spatial multi-agent programming model to simulate how market-

driven sustainable technological changes led to increased employment in agricultural production

and hindered the protection of land resources. Similarly, Happe et al. (2006) applied the ABM of

AgriPoliS to investigate the agricultural structural change resulted from a payment policy switch

from production attached to land use only. Environmental policy evaluation using ABM is an-

other prevailing research emphasis. The policies include conservation regulations, nature resource

evaluation, transportation and land use planning. For example, emissions cap and trade have been

studied using ABM to simulate the transmission and feedback process of policy and identify the
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dynamic impact of such factors on market efficiency, like transaction costs, corporate feedback,

and consumer demand (Zhang et al., 2010, 2011; Huang and Ma, 2016). Bakam et al. (2012) as-

sessed the relative cost-effectiveness of market-based GHG mitigation policy instruments in the

agricultural sector by incorporating transaction costs. Berger and Troost (2014) and Troost et al.

(2015) argued ABM as a complementary tool for assessing farmer responses to alternative climate

change policies. Morgan and Daigneault (2015) modelled the impact of a greenhouse gas price

on farm-level land use, net revenue, and environmental indicators such as nutrient losses and soil

erosion. Recent research in ABM of agricultural agents has integrated spatial analysis, including

geographic and climatic information. Wise and Crooks (2012) took traditional farming areas in

northern New Mexico as a case study, which applied empirical GIS data to construct a visional

social-ecological system and then analyzed the accumulative influences of regional water system,

water system structure on sustainable development of land. Shahpari and Allison (2017) proposed

a spatial ABM Crop GIS-ABM developed in Agent Analyst toolbox (developed by ESRIArcGIS)

to simulate the interactions between the geographic agent (represented in vector polygon) and

generic farmer agent.

In general, ABM has the flexibility in calibrating and simulating interactions between agents

and also adaptation between agents and their environment surrounded as a complex system (Nolan

et al., 2009). ABM is conducive to reflect the collective decision-making of technology adoption

by farmers and thus dynamic diffusion process in the real world. Based on that, the objective

of this study is to develop an agent-based computational model for the adoption of beneficial

water management practices (BWMPs) in eastern Canada. RePast ABM tool-kit in the Eclipse

development platform based on the JAVA language was used to develop and implement the model

1. Therefore, an Adoption-BWMPs class package has been developed in this study with the RePast

class library to implement the following functions:

• import and generation of the spatial environment and the agents’ attributes;

1RePast (Recursive Porous Agent Simulation Toolkit) was originally developed by researchers from the Social
Science Computing Research Center of the University of Chicago and was subsequently extended by Argonne National
Laboratory as a packaged software infrastructure (North et al., 2013).
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• identification and recording the technology feasibility through the interactive decision-making

of agents to the environment;

• simulation of agents’ decision-making based on their attributes and motivation, including

farm production, farm drop-out of operation, adoption of base technology and BWMPs,

social communication;

• simulation with various scenarios, such as policy instruments and climate change impacts on

agricultural production and BWMPs’ adoption;

• results output for all agents by year, including individual production and adoption results

and collective statistics presenting the dynamic adoption and accumulative adoption curve.

Besides, the verification and validation (V&V) process in the ABM results was performed

based on the Monte Carlo simulation experiments in the social system through multiple trials on

the model, enabling a robustness check of the model.

To sum up, this ABM model on the adoption of BWMPs can calibrate the dynamic adop-

tion/diffusion process derived from individuals’ decision-making institutions and their networks

and simulate policy instruments’ effects on improving the adoption. Thus, this model can evaluate

policy instruments based on their agri-environmental goal from an ex-ante perspective, thereby

implying the predictive insights in the agri-environmental policy design by applying ABM in sup-

porting public decision-making.

2 Conceptual framework

The ABM model is developed under GIS data to represent the research site of Essex County in

Ontario, where agents representing farms are plotted randomly and connected in networking topol-

ogy. From this spatial representation of the problem, critical questions concerning the adoption of

BMWPs in this region arise: (1) What would be the adoption rate of BWMPs among the farms at
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the regional scale over time? (2) How would climate change affect the production and adoption de-

cision, and if adopted, what would be the overall social (e.g., environmental and human health) and

economic benefits? (3) Given an agri-environmental policy and its associated costs, what would

be the change in the technology adoption, and what are the overall benefits of the policy inducing

producers to adopt BWMPs in this region?

Figure 1: Framework of ABM for adoption of BWMPs (adapted from Berger (2001))

Figure 1 depicts the model’s conceptual framework of ABM using gray-box format for address-

ing the above questions concerning the adoption of BWMPs. The left-side box indicated the inputs,

whereas the right-side box indicated the outputs from the model. The main body of the model is

composed of: (1) an environment to represent GIS data; (2) a large number of agents operating

farms specified at the region; (3) decision-making heuristics, including farm production decision

and technology adoption decision; (4) agents’ interactions and adaptive processes. Agents and

environment are integrated to construct a tempo-spatial dynamic system to observe and compare

the results over time.

3 GIS-based Implementation of ABM

Figure 2 shows the diagram of the process and scheduling of the ABM model. For each run of

the simulation model, agents are obliged to make various farm management decisions based on
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randomly assigned conditions from input data, including sale prices of crops, operation costs and

neighbourhood. During the course, agents renew their production decisions and adoption decisions

under extended agri-environmental policy scenarios. The implementation of ABM are explained in

detail in the following sub-sections: Description of input data (Section 3.1), Initialization (Section

3.2), Production decision-making algorithm (Section 3.3), Adoption decision-making algorithm

(Section 3.4) and Policy scenarios and evaluation method (Section 3.5).

3.1 Description of input data

3.1.1 Data for constructing GIS environment

Two GIS layers were used to construct the spatial map for this model’s environment and also to

decide the feasibility of implementing the BWMPs based on technology and land conditions as

following:

• Tile Drainage Records (TDR’s) are rough sketches of where tile drainage has been installed

and were collected from Land Information Ontario (LIO)2;

• Controlled Drainage/Subirrigation (CDSI) Report includes polygonal data layer delineates

areas according to their suitability for implementing the BWMPs.This data set was created

based on guidance from a Technical Steering Committee composed of representatives from

Land Improvement Contractors of Ontario (LICO), Agriculture and Agri-Food Canada, On-

tario Ministry of Agriculture, Food, and Rural Affairs (OMAFRA) and the Ontario agricul-

tural community 3.

In addition, to connect tempo-spatial climatic conditions into the environment of ABM, data

of weather stations, historical precipitation and temperature in Essex County were obtained from

Environment Canada 4.
2Tile Drainage Area (Ontario GeoHub): https://geohub.lio.gov.on.ca/datasets/

tile-drainage-area
3Controlled Drainage (Ontario GeoHub): https://geohub.lio.gov.on.ca/datasets/

4b2e0e3cdd0f48f0a832e568629daf56
4Historical climate (Environment Canada): https://climate.weather.gc.ca/prods_servs/cdn_
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Figure 2: Process overview and scheduling for a model run
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3.1.2 Agents data

The agents were built based on the Individuals File, 2016 Census, Public Use Microdata Files

(PUMF)5. Specific variables indicating characteristics of the Canadian population were used to

filter agents in this ABM to represent the farm operators in the research area. Finally, 933 samples

with their operators’ and farm characteristics were imported to create agents in the ABM model.

Algorithm 1 in Appendix presents a filter to clean data for building agents based on group and

variables of Census. The data contained the following characteristics to describe farm operators:

Sex, Education, Household type and Income. The farm size, tenure were randomly assigned to

each sample according to the value of Income.

Table 1: Statistical tests of key indicators’ comparison between agents and Essex farm operators
Indicators Agents Essex Statistics P-value
Mean of operators’ age 57.56 58 -1.1365 0.2560
Age: Under 35 years 5% 5% -0.0976 0.9222
Age: 35 to 54 years 31% 29% 1.6183 0.1056
Age: 55 years and over 63% 56% 4.2553 0.0000
Gender: Female 25.8% 24% 1.2768 0.2020
Mean of Farm size(acres) 328.101 328.317 -0.0127 0.9898
Area rented or leased from others 22.4% 24% -1.1709 0.2419

To verify the reliability of agents in this model to imitate the farm operators in the research area

in presence, Figure 1 shows statistical tests of fundamental indicators’ comparison between agents

and regional farm operators. For most indicators, including operators’ age, gender, farm size and

tenure ratio, there is no significant difference between agents and Essex statistics. The proportion

of operators’ age group of 55 years and over indicated the only statistically significant difference,

which agents showed a 6% higher proportion in this group than regional-level.

climate_summary_e.html
5Individuals File, Census of Population (Public Use Microdata Files): https://www150.statcan.gc.ca/

n1/en/catalogue/98M0001X
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3.1.3 Costs and benefits of BWMPs

The input data regarding the benefits and costs of BWMPs were derived from prior research about

the socio-economic assessment of BWMPs. Marmanillo Mendoza (2020) conducted an economic

analysis of BWMPs in Quebec and Ontario with detailed investment costs and benefits of BWMPs.

The Net present value (NPV) was estimated in Marmanillo Mendoza (2020)’s on-farm economic

analysis model to interpret the economic return of implementing BMWPs by farmers. Environ-

mental evaluation of BWMPs based on primary field biophysical experimental data and life cycle

assessment (LCA) were from the authors’ unpublished report for the same project regarding the

integrated socio-economic assessment of BWMPs.

3.1.4 Farm operation data

Historical data in respect to the farm operation in Essex, Ontario, including climate(Average tem-

perature and precipitation), crop prices and operation costs data, were entirely collected from the

public source (see Table 2). As the objective of ABM involves the prediction of technology adop-

tion, the forecast of farm operation data, especially future climatic conditions and crop commodity

prices, can be highly vital for the model to provide practical and validated insights for decision-

making.

This study employed a supervised machine learning model (Prophet) based on historical time-

series data to forecast future climate and prices. Taylor and Letham (2018) described this algorithm

“Forecasting at scale,” and Prophet toolkit based on R and python was released by Facebook’s Core

Data Science team 6. Prophet can work best with time series that have substantial seasonal effects

and several seasons of historical data. Considering the relationship between corn, soybean, wheat

prices in the long-term cycle of commodities price fluctuation, the soybean and wheat price ratio

based on corn price are used as the train data to predict the soybean and wheat prices.

Historical data regarding operation costs were collected from annual Field corp budgets, pro-

vided by OMAFRA to support farm management of estimating costs and evaluating cropping

6Prophet: https://facebook.github.io/prophet/
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alternatives 7. Similarly, field crop statistics between 2004 and 2019 are reported by OMAFRA,

including acre seeded, acre harvest and yields 8. The future yields for the running period (2016-

2050) are generated randomly from a Gaussian distribution with average yields as the mean and

standard error of historical yields between 2004 and 2019 as standard deviation.

Table 2: Historical dataset of farm operation and projection method
Historical dataset Frequency Range Data source Projection method
Climate data
(Average temperature
and precipitation )

Daily 1969-2019 ECCC
Time Series
Forecasting

With Prophet
Corn price Weekly 1992-2019 OMAFRA based on
Soybean price Weekly 1998-2019 OMAFRA Machine Learning
Wheat price Weekly 2004-2019 OMAFRA (ML)
Operation costs
(Field crop budgets) Yearly

2016
2018-2020 OMAFRA

Projecting with
annual growth

Yields - Corn,
soybean,wheat
(bushels per acre)

Yearly 2005 - 2019 OMAFRA
Randomly

generated from
N(Y ieldsavg, Y ieldssd)

3.2 Initiation

This ABM established a GIS environment for the research area to represent the abstract agricul-

tural landscape. Total 933 agents were initialized in the GIS environment, and the model was

implemented for annual steps of 34 years (2016-2050). The properties of agents include:

• making their own decisions according to individual utility functions with bounded rational-

ity;

• composing of network based on their location (coordinates in GIS map);

• responding to the feasibility of environment in the decision-making and responsive to the

environment;
7OMAFRA Publication 60 - Field Crop Budgetshttp: //www.omafra.gov.on.ca/english/busdev/

facts/pub60.htm
8OMAFRA Field Crops Statistics: http://www.omafra.gov.on.ca/english/stats/crops/

index.html
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• interacting with neighbour agents within a spatial distance.

• continuing or merging with other agents according to operation and age.

The basic global parameters configured in the initialization stage can be found in Table 3.

Table 3: Global parameters configured to initialize the model
Parameter Description Value Change rule

numAgents Total numbers of agents 933
Farm drop-out
algorithm

startYear Starting year of simulation 2016 Configurable
period Total running steps of model 34 Configurable
dist Distance for agents to build network 1000 Configurable
climateChange Climate change scenario (False, True) Configurable
policyScenario Policy scenario (False, True) Configurable

In terms of network construction, this study simulates farmers’ social cycles by indicating

the agent’s social network radius, within which agents have close interactions with neighbour

agents around it (see Figure 3). The social network’s visual interface from the model illustrates

the location of agents and their networking in the social circle that use the farmer as the center and

a certain distance as the radius. The smaller the social network radius with the smaller the social

circle of farmers means fewer interactions between this agent and its networks. The agents outside

the networks of a particular agent do not directly affect his decision, but there are also possible

indirect interactions between local social networks.

(a) Distance = 1000 m (b) Distance = 2000 m

Figure 3: Network construction in the model
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3.3 Production decision-making algorithm

Agents’ production decision-making contains three aspects, including individual-level decision-

making, collective-level decision-making and possible farm drop-out. The production decision-

making rules and interpretations are in the following subsections. In addition, pseudo-codes illus-

trate the concrete algorithm for the production decision-making rules in Algorithm 2 in Appendix.

3.3.1 Individual decision-making

Production decision-making constitutes an essential basis for farmers to adopt other agricultural

technology due to the classic assumption of farm management to maximize profits. Above all, two

assumptions need to be clarified to simplify the problem based on local agricultural production

features. One is farmers are price-takers which means that the market faced by each farmer is

completely competitive and market prices (including input prices and output prices) are all given

exogenously; the other one is no employment of labour in farming, which coincides with the situ-

ation that in Southern Ontario, family-operated farm still account for a large proportion, especially

in field crop production.

Linear programming (LP) is used to describe the production optimization algorithm for an

agent by allocating farmland to three field crops: corn, soybean, wheat, to achieve profit maxi-

mization. The LP problem of farm production decision-making can be explained in the following

form with objective function and constraints (see Equation 1). The profit is defined as production

profit as the total market value of crops minus operational costs (excluding land cost/rent and util-

ities). Despite various agricultural production restrictions, such as land, water, labour force, and

capital investment, the LP algorithm here only considers the restrictions bounded by the most cru-

cial land input. The land acres for corn, soybean and wheat may not be larger than the total acre of

farm size. Notably, because farmers may have habitual farming behaviour in allocating farmland

and lagging in adjusting their production decisions based on market prices promptly, acres are set
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in a range between a minimum of historical planting proportion for three field crops, respectively.

Max Profit =
∑

i=corn,soybean,wheat

(Y ieldsi ∗ Pricei − Costsi) Acrei

S.t. Acrecorn + Acresoybean + Acrewheat ≤ farmSize

Acrecorn, Acresoybean, Acrewheat ≥ 0

Acrei ≤ maxiRatio

Acrei ≥ miniRatio

(1)

The LP in this model is solved by lp solve 9, which is a Mixed Integer Linear Programming

(MILP) solver 10. This Java native interface (JNI) supports the full functionality of lp solve in a

Java programming environment.

3.3.2 Collective feedback

However, individual decision-making mechanisms based on the design from ”rational choice” can-

not adequately reflect the equilibrium of supply and price in the market. When the profit margin of

one crop is explicitly higher than that of other crops, all rational agents in the system will adopt a

convergent decision to switch farmland from low-priced crops to high-priced crops without consid-

ering the descending price adjustment due to increased supply. Therefore, a feedback mechanism

from collective production decisions has been designed to adjust crop prices’ expected value in

this ABM. The parameter is given by

∆ Pricei = α + β ∆ Acresi i = corn, soybean, wheat. (2)

The function implies that if too much farmland were allocated to a specific crop, this crop’s

price would change correspondingly. Here, a generally negative parameter β means the price of

9lp solve reference guide: http://lpsolve.sourceforge.net/5.5/
10lp solve was initially developed by Michel Berkelaar at the Eindhoven University of Technology and extended to

a Java interface made by Juergen Ebert (University of Koblenz-Landau, Germany).
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drop i would fall when seeded acre for that crop increased. The parameters were estimated by a

regression model of crop prices on seeded acres.

3.3.3 Farm drop-out from farming

Based on the farm and farmers’ situation, agents decide whether to continue farm operation next

year. So the number of agents changes according to the rules of the farm drop-out farming decision.

The two main reasons for an agent closing farm are profitability and farmers’ age. Accordingly,

the concrete rules of closing a farm are placed as follows:

• When a farm has suffered a profit loss for two consecutive years, the operator chooses to

end the farm and sell farmland to a buyer. The buyer will be selected as the other farm with

the highest profit from this farm’s network. This agent’s farmland will be merged into the

buyer’s farm.

• When the farmer’s age exceeds the retirement age, the farmer will arrange the farm operator

after retirement based on household type. Specifically, the farm operation will be transferred

to the next generation if the heir/heiress is available, while else this farmer will consider

ending farm operation and selling farmland to potential buyers. If the farm cannot be sold

due to no proper buyer, the farmer will continue to operate until finally finding the buyer.

3.4 Adoption decision-making algorithm

The algorithm 3 for adoption decision-making rules is given by pseudo-codes in Appendix.

3.4.1 Land feasibility

The precondition of technology adoption is to assess whether a farm with a random plotted lo-

cation can implement the BWMPs according to land suitability. The rules are composed of two

conditions. One is whether the farm has been installed tile drainage as the base technology, and the

other is whether the farmland can upgrade to new technology based on soil type and land slope.
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3.4.2 Economic rule for adoption

The economic concern for making the adoption decision-making rule is the investment return of the

new technology and farm operating net margin. In specific, an agent makes the adoption decision

each year according to the rules below:

• The net present value (NPV) of implementing BWMPs should be positive, meaning that the

farm can obtain economic benefits from the investment. NPV is calculated each year for

each farm to present the net return of CDSI investment starting from the current year till the

whole life expectancy of the technology (see Equation 3). Initial costs as fixed costs will

happen in the current year, and maintenance costs will be paid yearly in future.

NPVt =

ti+l∑
i=t

Padopted − Punadopted

(1 + r)i−tbase
− Cfixed − Cmaintenance ∗ farmSize (3)

• The operating profit margin of farms considering the adoption of BWMPs should be higher

than the average profit margin of farms, meaning that relatively good business capability

constitutes a basis for farms to invest in technology.

• The profit of the farm can cover initial investment costs. Although funds and loans can be

applied to support the BWMPs, the farm should contain enough cash for adoption regarding

down-payments and installation fees.

3.4.3 Diffusion of technology adoption through network

The ABM enables calibrating the diffusion of technology adoption through the interactions be-

tween agents’ networks. This function can investigate potential ”herd behaviour” or ”bandwagon

effect” in the adoption of BWMPs from a simple point that an agent’s decision-making probably

can be affected by other agents from its network. Through the network, farmers observe their

neighbours’ adoption decisions as percentage values of neighbours who have adopted the tech-

nology for base technology and BWMPs. The values of Pspatial(FD, i) and Pspatial(CDSI, i)
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measure the popularity of base technology and BWMPs within the network that are connected to

the specific agent.

Pspatial(FD, i) = Network(FD, i) /
∑

Network(FD, i)

Pspatial(CDSI, i) = Network(CDSI, i) /
∑

Network(CDSI, i)

(4)

where Network(FD, i) and Network(CDSI, i) represent the number of farmers that have adopted

the water management technology FD or improved CDSI within the farmer i’s network. A thresh-

old ratio indicates the condition triggering the effect of collective decision-making on the farmer.

When Pspatial(FD, i) and Pspatial(CDSI, i) exceeds the threshold, the farmer may relax the rules

of economic constraints on adoption and decide to adopt the technology.

3.5 Policy scenarios and evaluation method

Considering the high initial costs of implementing BWMPs, the government prefers using eco-

nomic incentives like the cost-share program to encourage the voluntary adoption of BMWPs by

farmers. Thus a cost-share program scenario was exemplified in this study to simulate how policy

intervention would affect farmers’ decision-making on the production and adoption of BWMPs.

By assigning the attributes of policy variables, the effects of policy variables on the agents’ be-

haviour compared to the status quo can be observed through a functional established ”stimulus-

response model.”

Three indicators are used as following to comprehensively compare the effects between policy

instruments on the adoption of BWMPs:

• adoption rate comparison: policy scenario vs. base scenario

• adoption farmland comparison: policy scenario vs. base scenario
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• policy cost-effectiveness comparison:

ratiopolicy =

∑n
i (AdopedY earpolicy − AdoptedY earbase) ∗ (Np +Ns)

Costspolicy
(5)

where n is the affected number of farmers under policy scenarios. Np and Ns are private net

benefits and social net benefits of the implementation of BWMPs by farmers.

4 Results

4.1 Cost-share program induced BWMPs adoption

Given a policy scenario with cost-share subsidies on the initial investment costs of BWMPs, Figure

4 shows the results of simulated adoption of BWMPs based on 15 trials per cost-share ratio. The

base scenario indicated by ”no cost-share” shows in the figure. Considering the base scenario, the

adopted farm numbers by year indicate that before 2025, the adoption of BWMPs will first sporad-

ically appear, and then rising volatility, and then increase dramatically around the 2030s, followed

by a rapid decline to the few adoptions in the 2040s. The adoption fluctuation is accompanied by

three ”ascending-peak-descending” waves, happening from 2020 to 2023, from 2025 to 2028, and

the last one from 2029 to 2033, respectively. The accumulative technology adoption rate gives

the diffusion curve of the adoption rate by the year. The curve is generally compatible with the

conventional S-shape curve but much steeper, starting to ascend slowly and speeding up to get the

high peak of adoption in the 2030s. After the peak, the accumulative adoption will remain about

47% for farm numbers under no cost-share scenario.

The comparable results of both numbers of adopted farms each year and the accumulative

adoption rate under various ratios in cost-share programs illustrate that cost-share programs can

accelerate farmers’ adoption by shortening their adoption year, but no significant effect on enhanc-

ing the ultimate adoption rate. For example, if 80% cost-share program was conducted, a 40%

adoption rate goal can be achieved around 2020, ten years ahead compared with no program in-
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(a) Numbers of adopted farm by year

(b) Accumulative adoption rate by year

Figure 4: Simulated adoption of BWMPs with cost-share program scenario (based on 15 trials on
each cost-share ratio))
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volved. However, the final adoption rate will not be improved by the implementation of cost-share

programs. Unlike the conventional convex curve explaining technology adoption with decreasing

marginal adoption rate, simulated marginal adoption rate from this model continues to increase

until reaching the highest point as the critical point, then turning to decreased marginal adoption

rate, even close to zero in the late period. Given that the highest operating profit margin happens

around 2030 from the production decision-making simulation, the recovery of farming profitability

causes a possible explanation for when the peak in adoption occurs. Nevertheless, the next highest

operating profit margin happens around 2042, it cannot incentivize large amounts of adoption, and

the final adoption rate fails to exceed 50%.

4.1.1 Cost-share program evaluation

Aside from the overall impacts on the adoption rate, the effectiveness of policy can be evaluated

by comparing social benefits associated with implementing BWMPs and the program’s direct pay-

ment to affected adopters. Table 4 and Table 5 show the simulation results of each trials and a

summarized cost-effectiveness evaluation of various cost-share program at 20%, 50% and 80%,

respectively. The number of farms affected by the cost-share program and years of shortened to

adopt technology increase significantly as the subsidized ratio of technology costs. Average farm

size of the affected farm by program increase by around 20 acres from 20% cost-share to 50% and

80%. Social benefits of implementing BWMPs are from prior research on socio-economic evalu-

ation ($ 40.46 ha−1 and $ 508 ha−1yr−1, respectively). Also, total payments can be estimated by

the initial structure and installation costs of the technology, multiplying various cost-share ratios.

Subsequently, the cost-effectiveness ratio, indicating the ratio of social benefits to direct pro-

gram payments, can be calculated to evaluate policy effectiveness under various ratio scenarios. In

this case, the cost-effectiveness ratio is 43, 20 and 12, resulted from the cost-share ratio increasing

from 20% to 80%. The cost-effectiveness ratio means the value of social-benefits gained from

each dollar expenditure on the program. The highest value of cost-effectiveness among the cost-

share scenarios is 20%. Hence a higher ratio of green payments may not necessarily lead to an
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Table 4: Results of 15 trials on simulation under cost-share program

No.
Number of farm
affected by policy Years of shorten Avg. acres of farm

20% 50% 80% 20% 50% 80% 20% 50% 80%

1 202 237 265 -11 -13 -15 278 282 303
2 205 236 251 -11 -13 -15 272 292 274
3 198 240 240 -12 -13 -14 256 284 286
4 206 257 236 -11 -14 -14 317 286 287
5 195 238 262 -12 -13 -15 314 296 270
6 198 235 240 -11 -13 -14 272 282 286
7 191 235 257 -11 -14 -15 305 300 250
8 185 230 249 -11 -13 -14 243 270 286
9 206 225 235 -11 -13 -14 317 270 274
10 217 231 249 -12 -13 -14 281 297 287
11 220 231 241 -12 -13 -14 259 275 301
12 229 227 230 -11 -12 -14 261 284 299
13 202 240 231 -11 -13 -14 274 285 293
14 205 257 241 -11 -14 -14 268 298 291
15 254 230 261 -11 -13 -15 101 288 263
Mean 208 237 246 -11 -13 -14 268 286 283
S.d. 17 9 11 0.39 0.37 0.44 52 10 15

increase in program effectiveness. The selection of policy like cost-share ratio should combine the

effects of policy on adoption (number of farms or farmland) and program cost-effectiveness based

on policy’s specific purpose.

Table 5: Results of cost-effectiveness for various cost-share ratio (based on 15 trials per scenario)
Ratio No. of Years of Avg.acres Social benefits Payments Cost-

farms shorten of farm ($/per farm) ($/per farm) effectiveness
20% 208 11 267.83 566,424 13,236 43
50% 237 13 285.93 713,901 35,328 20
80% 246 14 283.45 692,108 56,033 12

5 Conclusions

The dynamic process of agricultural technology adoption is exceptionally complex by its na-

ture, with various factors involved in the agricultural system that can substantially affect farmers’
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decision-making. The factors are composed of different aspects, such as technology, farm, farmer,

and the network between stakeholders. In light of agri-environmental beneficial technology, like

BWMPs, an important question is whether and/or how to design policy instruments to support the

adoption of the technology based on its social benefits since there are insufficient economic incen-

tives for the individual farm. This study develops an agent-based simulation model to calibrate the

dynamic adoption process of beneficial water management systems by farms in eastern Canada and

then conduct an ex-ante analysis on policy instruments’ effects on improving agri-environmental

technology adoption. Subsequently, a comprehensive decision-making tool can be developed by

the basic ABM model with flexible connections between multiple agri-environmental policy goals

and the projected direct public funds associated with the agri-environmental program for the fu-

ture design of agri-environmental policy instruments. This model integrates the theoretical and

empirical knowledge of interdisciplinary decision-making systems, including complex science,

agricultural and resource economics, geography and ecologic planning, systems simulation. No-

tably, ABM is potentially interfaced with big data and machine learning techniques, bringing novel

sights on established economic theory in the future.

Nowadays, the application of ABM in economics research is still rare and in great need of fur-

ther studies, especially in developing representative cases modelling equilibrium or dynamic non-

equilibrium in economics. Some pivotal questions are proposed for the improvement of ABM.

Firstly, the standardization of modules and algorithms in the model design should be adopted.

Although some guiding protocols like ODD have been proposed, these protocols have not been

strictly accepted and observed in ABM (Grimm et al., 2020). Secondly, in terms of validation, to

what extent the outputs of ABM can be considered as ”consistent” with the real world needs to be

solved for the results are only verified subjectively by tuning parameters to meet the consistency of

data from real-world (Heckbert et al., 2010). The model can be primarily affected by the subjec-

tive consciousness of researchers and developers. Moreover, the ABM results may not be robust

and can be significantly affected by the initial conditions (Ligtenberg et al., 2004). Due to these

conditions are derived based on the research objective, there exists selection bias. Although ABM
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has many imperfections, it can still be used as a flexible tool to provide insights into predictive

dynamic behaviour by calibrating the complex socio-ecological systems and conducting ex-ante

analysis on incentives.

For further research, agents’ decision-making institutional mechanism algorithms can be fur-

ther optimized by closely combining the latest AI research, such as reinforcement learning and

autonomous behaviour of the agent interacting with the environment. For example, the drastic

increase numbers of adopted farm around 2030, which reveal the convergence of farmers’ optimal

decision-making, can be resulted from lack of lagged effects. However, the current model can not

catch such effects unless introducing reinforcement learning. Also, restricted by the computing

capacity of personal computers, the ABM in this study only contains Essex county as a representa-

tive area of eastern Canada for adoption process simulation and policy evaluation. Expanding to a

larger area needs an improvement in the computing environment, especially for storing and reading

GIS data. Thus, large-scale ABM simulation should combine with new big data techniques like

Distributed computing framework to enrich and optimize the project, especially in exploring sta-

tistical tests for a cause-and-effect relationship (Pu et al., 2019). In addition, a dynamic monitoring

and self-correction mechanism can be modified with the model for improving the interpretation

capacity of information from the simulated results. For example, the simulated adoption results

from the model can be modified automatically based on the investigation of actural adoption to

provide instructions to adjust policy. Hence, improving the capability and validation of ABM in

understanding and addressing problems in the real world is a critical extension for further research.
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Appendix: Algorithm pseudo-code

The pseudo-code of the different algorithms and procedures developed for the implementation of

ABM has been listed in this appendix.

Algorithm 1 Agent data pre-processing algorithm
1: Read data
2: if Province = ”Ontario”

and Industry sectors = ”Agriculture, forestry, fishing and hunting”
and Class of worker (derived)= ”Self-employed”
and Age =”20 to 74 years” then

3: keep sample
4: else
5: drop sample
6: end if
7: if Income = null and Education = null then
8: drop sample
9: else

10: keep sample
11: end if
12: Keep Sex, Education, Household type, Income
13: Save data
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Algorithm 2 Production decision-making algorithm
1: INITIALIZE production data-set

2: for yeart in periods, separately do

3: //Construct production decision-making rule for each running step

4: for agent in Agent do

5: for crop = corn, soybean, wheat do

6: price, yields, costs ← randomly draw price, yields, costs from annual production

input data.

7: end for

8: acresCorn, acresSoybean, acresWheat ← call lp solve to solve the individual LP produc-

tion problem.

9: profit, revenue, profitMargin← calculate profit =
∑

(Y ieldsi∗Pricei−Costsi) Acrei , i =

corn, soybean, wheat, revenue =
∑

(Y ieldsi∗Pricei) Acrei , i = corn, soybean, wheat,

profitMargin = profit / revenue.

10: // Farm drop-out from farming due to low profit

11: if (profitt + profitt−1) ¡ 0 then

12: call search function for buyer with highest profit from network

13: if buyer != null then

14: agent.active = false and buyer.farmSize += agent.farmSize.

15: else

16: farm cannot be sold and continue to operate

17: end if

18: end if

19: // Farm drop-out from farming due to retirement

20: retireAge← randomly draw from N(MeanretireAge, SdretireAge)

21: if age ≤ retireAge and hhtype = with children then

22: agent.age− = 20← farmer retired and handle farm to next generation.
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23: else if age ≤ retireAge and hhtype = without children then

24: call search function for buyer with highest profit from network

25: if buyer != null then

26: agent.active = false and buyer.farmSize += agent.farmSize.

27: else

28: agent.age = avgAge← farmer retired and change operator:

29: end if

30: else

31: farmer no need to consider retirement

32: end if

33: agent.age ++.

34: end for

35: // Collective feedback for the adjustments of crop prices based on seeded acres

36: for crop = corn, soybean, wheat do

37: pricet+1 ← calculate adjusted crop price for next year pricet+1 = pricet [1+ (Acrest-

Acrest−1) β] based on collective farming decisions.

38: end for

39: end for
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Algorithm 3 Adoption decision-making algorithm
1: INITIALIZE parameters l = lifeExpect, c1 = totalInvCost,

c2 = annualCdsiCost, d = diffY ields, highProfitMargin = m

2: for yeart in periods, separately do

3: // Construct adoption decision-making rule for each running step

4: for agent in Agent do

5: for remainYear = tk do

6: npv ← calculate npv for remainY ear = startY ear + period− 1− t

7: if remainYear ≤ lifeExpect then

8: if profit ≤ 0 then

9: npv =
∑

(d ∗ profit)/(1 + r)(l−tk) − c1 − c2 ∗ l

10: else

11: npv =
∑

(d ∗ revenue)/(1 + r)(l−tk) − c1 − c2 ∗ l

12: end if

13: else

14: if profit ≤ 0 then

15: npv =
∑

(d ∗ profit)/(1 + r)(l−tk) ∗ (1 + tk/(l − tk))− c1 − c2 ∗ l

16: else

17: npv =
∑

(d ∗ revenue)/(1 + r)(l−tk) ∗ (1 + tk/(l − tk))− c1 − c2 ∗ l

18: end if

19: end if

20: end for

21: //Adoption condition based on economic rule

22: if agent.FD = True and agent.CDSIpotential = True and npv > 0 and profitMargin > m

and profit > c1 then

23: if adoptedYear = null then

24: adoptedCDSI = True and adoptedYear = t
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25: end if

26: end if

27: //Adoption condition combining technology diffusion

28: call search function for agents with FD and CDSI from network

29: rateFDwithinNet, rateCDSIwithinNet← calculate Pspatial(FD, i) and Pspatial(CDSI, i)

30: for FD, CDSI do

31: if nonAdopted and profitMargin > m and ratewithinNet > rateThreshold then

32: adopted = true and adoptedYear = t

33: end if

34: end for

35: end for

36: end for
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