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Abstract: 

    Increasing the use of chemical fertilizer is the key to a sustained growth of agricultural 
productivity in sub-Saharan Africa. However, it has been shown in previous studies that crop 
yield response to fertilizer depends on soil characteristics. This study examines how information 
about expected effectiveness (EE) of fertilizer application based on soil characteristics affects 
farmers’ decisions as to fertilizer allocation based on a randomized controlled trial (RCT) 
conducted in the central highland zone of Madagascar. More specifically, this study investigates 
whether simply designed binary information based on the result of soil analysis helps farmers to 
optimize their fertilizer use in terms of adoption and application rates. The results reveal that high 
EE information significantly increases the rates of nitrogen fertilizer application in responsive 
plots while low EE information decreases the probability of nitrogen fertilizer adoption and its 
application rates in non-responsive plots. One important implication of these findings is that the 
interventions that target the adoption of chemical fertilizers are more likely to succeed if 
additional information about soil characteristics is provided to farmers. 
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Impact of Information of Expected Effectiveness Based on Soil Quality on Farmers’ 

decision of Fertilizer Use: Evidence from Madagascar 

 

1 Introduction 

    It is widely recognized that sustained growth of agricultural productivity in sub-

Saharan Africa (SSA) requires increase in chemical fertilizer application (Vlek, 1990; 

Morris et al., 2007; Xu et al., 2009; Holden, 2018). The pace of increase in nitrogen 

fertilizer use in agriculture has been substantially slower in SSA than other parts of the 

world (FAO, 2020). A large body of literature has proposed various factors that help to 

explain the low use of fertilizer in SSA. The education level of the heads and other 

household members affects adoption decisions of fertilizer (Asfaw, 2004). The poor 

accessibility to input and credit markets are constraints (Croppenstedt et al., 2003). Bold 

et al. (2015) proposed that low quality of inputs sold in markets discourage farmers to 

adopt fertilizer.  

    Another group of research shed light on the relationship between soil characteristics 

and crop yield response to fertilizer which contributes to the heterogeneous rate of returns 

to fertilizer use. For instance, soil carbon content (SCC) (Marenya and Barret, 2009), 

phosphorus (Asai et al., 2020), and other factors related to soil chemistry including pH 

and carbon exchange capacity (CEC) (Burke et al., 2019) on crop yield response to 

fertilizer application have been studied. In addition to soil characteristics, Duflo et al. 

(2008) pointed out that application rates affect crop yield response and profitability of 

fertilizer use. 

    Findings from these studies suggest that suitable types of fertilizer and appropriate 

application rates may be largely different from plot to plot, depending on inherent soil 
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conditions. More importantly, farmers usually do not have accurate information about 

their soil characteristics and thereby they make decisions without knowing how to 

optimize the use of fertilizer. Some studies such as Harou et al. (2018) have paid attention 

to the role of site-specific recommendations about fertilizer application rates. These 

studies commonly examine the effect of information on plot-level optimization, focusing 

on how much extent information could close the gap between required rates and actual 

rates of application. The recommendation is made based on the deficiency of nutrient in 

soil as well as required types and amount of fertilizer to fill the gap between ideal and 

actual levels of soil nutrition. The required amount is naturally larger in nutrient poorer 

soils.   

    However, under financial and physical limitation of access to fertilizers, applying the 

appropriate types of fertilizer at required level following site-specific recommendation in 

all plots may not be feasible for farmers, especially if the degree of deficit is high. Thus, 

an alternative approach is taken to help farmers optimize fertilizer use at farm level, which 

is a novelty of this study. We provide farmers with the information related to effectiveness 

of fertilizers in the main plots for rice production. This information is expected to allow 

farmers to take a better strategy by diverting fertilizer from plots that do not response 

positively to those more responsive to it. This viewpoint has rarely been presented in 

existing literature.  

    This study aims to contribute to the literature by providing new empirical evidence of 

the role of information. More specifically, this study is to answer the question: does site-

specific information about expected effectiveness (EE) of nitrogen fertilizer application 

affect farmers’ decisions as to fertilizer allocation? The hypothesis is that information 

based on soil characteristics helps farmers to optimize fertilizer allocation in terms of its 
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adoption and its application rates. Information of high EE will contribute to increase in 

the probability of adoption of nitrogen fertilizer as well as its application rates at targeted 

plots and low-EE information will have opposite effects. In the case of low EE plots, 

farmers might utilize the information to select another plot as a place to use nitrogen 

fertilizer. Eventually, both types of information ideally will increase in the total rice yield 

at farm level and improve household welfare.  

    Using evidence from the agronomic experiment by Asai et al. (2020) that nitrogen 

fertilizer does not increase paddy yield when the amount of phosphorus in soil is less than 

100 mg/kg, we designed a simple binary information about EE of nitrogen fertilizer 

application. Then, a randomized controlled trial (RCT) was conducted in the central 

highland zone of Madagascar. Treated farmers receive information of either “high” or 

“low” in terms of the EE about one main lowland rice plot before planting time in addition 

to nitrogen fertilizer for free, while farmers in control group receive free nitrogen fertilizer 

only. Results reveal that high EE information significantly increases the rates of nitrogen 

fertilizer application and low EE information decreases the probability of adoption of 

nitrogen fertilizer and its application rates. We further find that high EE information about 

only one plot for each household increases total nitrogen application rates and total rice 

yield at farm level.  

    The rest of this paper is organized as follows. Section 2 is used to explain the context 

of the study site. Experimental design is proposed in section 3. Section 4 explains 

econometric specification applied in the analysis. Results are presented in section 5, 

followed by conclusion.  
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2 Context 

2.1 Madagascar 

    Madagascar is an island nation located in the Indian Ocean with a population of 25.67 

million people as of 2018 (INSTAT, 2019). Rural population accounts for 80.7% of the 

total population (INSTAT, 2019). Poverty head count ratio reaches over 75%, which is 

one of the highest in the world (World Bank, 2019). In Madagascar, rice is historically 

the main staple food crop and it is the major income source for rural population. 89% of 

the rural households are engaged in rice cultivation and 56% of agricultural land is 

devoted to it (World Bank, 2019). Therefore, the improvement of rice productivity has 

long been one of the central issues in national policies for poverty reduction and food 

security. 

2.2 Study sites 

    The study site is located in the Vakinankaratra region which is in the central highland 

zone. The study site was selected because it is one of the major rice-producing regions. 

The Vakinankaratra region has an asymmetric landscape: The altitude in its eastern part 

is high up to near 1,800 meters above the sea level and there is a long mild slope 

descending towards the western end of the region. This asymmetry affects agroecological 

environment and thus agricultural practice although rice production in lowland is a 

common practice.  

    The selection of the Vakinankaratra region has another advantage. The findings of Asai 

et al. (2020) are highly applicable to this study since their agronomic experiment was 

implemented within this region.  
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3 Experimental design 

3.1 Sampling procedure 

    Five villages across three districts in the Vakinankaratra region were chosen. 

Purposively, two villages from the eastern part, another two villages from western part, 

and the other one in between the two groups of villages were selected to evenly represent 

the agroecological diversity. All the five villages are located along the national road that 

runs east and west in the middle of the region (Figure 1). 

    Each village has several smaller administrative units. Based on the units, two 

enumeration areas (EAs) were chosen in each village. The two EAs in a village have 

similar characteristics in terms of distance from the national road, population, and rice 

cultivation practices based on information collected in a preliminary field survey1. Then, 

we randomly selected farmers who grew rice in lowland plots in 2018-19 rainy season. 

Before intervention, all the sample farmers were asked to list all the agricultural plots 

used in that season and then to choose one most important lowland rice plot. We visited 

each plot selected and measured its location and size by GPS. In addition, soil was taken 

from three points in each plot to obtain composites of soil sample. All the soil samples 

were sent to national laboratory to examine phosphorus amount. Based on the result of 

this soil analysis, all the plots selected as the most important lowland rice plot were 

classified as either high EE or low EE. 

 
1 When the national road passes through the target village, we selected one EA from the northern side of 

the national road, the other EA was selected from the southern side of the road. 
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Figure 1: Location of target villages 

 

 

 

 

 

 

 

 

3.2 Randomization 

Figure 2. Assignment Structure 

 

 

    Figure 2. shows assignment structure. The total number of participants was 70. 

Randomization was done at EA level to minimize the risk of interaction between 

treatment and control groups to take place. Randomization at EA level was more suitable 

than at household level because communication with treated participants might let ones 

in control group learn from information given to the treated if both the treated and the 

control groups exist within an EA. Since two EAs in a village are geographically apart 

Participants 

70HHs 

Treatment 

35 HHs 

Phosphorus > θ 

EE = High 

Phosphorus ≦ θ 

EE = Low 

Control 

35 HHs 

Phosphorus > θ 

EE = High 

Phosphorus ≦ θ 

EE = Low 

Source: Authors created based on data obtained from 
Humanitarian Data Exchange (HDX) 
https://data.humdata.org/dataset/madagascar-administrative-
level-0-4-population-statistics   
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and farmers in control EAs had no information about treated EAs, spillover of information 

could be prevented by randomization at EA level.  

    After randomization, treatment and control groups had 35 households for each. 

Regardless of the assignment status, we provided all participants with common inputs 

that consisted of free fertilizer (5kg of urea), the size of the targeted plot, and general 

recommendation about timing and rates of urea application. There was no restriction on 

the usage of the free fertilizer. Participants were clearly informed that they would be able 

to use it to any crop at any plot, keep it, sell it, or even give it to others. The distribution 

was implemented in October in 2019. 

    Then, when the common inputs were distributed, only farmers in treatment group were 

additionally provided with information about the result of soil analysis including 

phosphorus amount and EE of urea application of not only each farmer’s own targeted 

plot but also of all other participants’ targeted plots in the same EA. As a result, although 

both treatment and control groups were divided into two sub-groups by EE status, only 

the treated farmers could know which sub-group they belong to and make decisions about 

whether and how much they would use urea on the targeted plot based on the EE. Farmers 

in control group had to decide how to use the given fertilizer without knowing EE status 

of their targeted plots.  

 

4 Analytical framework  

4.1 Definition of expected effectiveness to nitrogen fertilizer 

    Table 1 presents the summary of results of soil analysis by EA. The amount of 

phosphorus was measured as oxalate phosphorus. The averages largely vary across study 

area from 36.96 mg/kg of Tsarazaza as the lowest to 482 mg/kg of Befaritra as the highest. 
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One possible explanation of such a huge difference is that a volcano affects soil in its 

surrounding EAs including Befaritra, Amohimilemaka, Mahazina, and Morafeno. 

Volcanic soil contains rich phosphorus, but most of the phosphorus exists in a form which 

plants cannot absorb and utilize. According to a publicly available guideline for fertilizer 

application in Japan, required amount of phosphorus in volcanic soil is three times larger 

than that in non-volcanic soil (MAFF, 2008). 

 

Table 1. Summary of variation of phosphorus amount by EAs 

Name of EA  Mean S.D. Min Max 
Volcanic 

soil 
θ 

Befaritra 482.48 219.91 228.27 823.08 Yes 300 
Ambohimilemaka 321.31 196.94 24.49 615.74 Yes 300 
Mahazina 335.71 134.06 94.16 586.60 Yes 300 
Morafeno 316.25 117.60 136.88 481.96 Yes 300 
Ampotaka Afovoany 74.29 44.68 23.48 184.22 No 100 
Ambany Ravinkazo 58.76 27.42 27.50 97.57 No 100 
Tsarazaza 36.96 12.69 20.30 60.58 No 100 
Soanotohizana 38.87 22.83 24.44 113.50 No 100 
Antanetibe 90.20 38.00 42.54 166.81 No 100 
Antohobe 70.52 26.31 34.99 135.99 No 100 
Note: Unit is mg/kg of dried soil. Phosphorus amount is measured as oxalate phosphorus. S.D. 
stands for standard deviation. 

 

    Following Asai et al. (2020), phosphorus amount of 100 mg/kg was used as the base 

threshold (𝜃) to define EE of soil to nitrogen fertilizer use. Then, the base threshold was 

applied except for the 4 EAs where soil is affected by the volcano. For the 4 EAs, 300 

mg/kg was employed as the threshold to deal with influence of volcanic soil. Eight out of 

10 EAs embrace both sub-groups, implying that there exist substantial variations of soil 

quality even within a village.  

4.2 Econometric specification 

    In RCT setting, the average treatment effects are estimated by using OLS. The basic 
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specification is given as equation (1) as below. 

𝑌௜ = 𝛼଴ + 𝛼ଵ𝑇௜ + 𝛼ଶ𝑋௜
ᇱ + 𝛼ଷ𝑣𝑖𝑙𝑙𝑎𝑔𝑒′ + 𝑢௜ …(1) 

where 𝑌௜ is one of outcome variables at plot 𝑖, 𝑇 is assignment status, 𝑋 is a vector of 

control variables that include plot characteristics, previous year experiences of fertilizer 

use, and household characteristics. Dummy variables to control unobserved factors 

attributable to village characteristics are included. However, this model is not suitable to 

test the hypotheses that two types of information have effects differently on fertilizer 

adoption and application rates. Therefore, we mainly use equation (2) in which two 

treatment variables are separately included.  

𝑌௜ = 𝛽଴ + 𝛽ଵ𝑇௜
௛௜௚௛

+ 𝛽ଶ𝑇௜
௟௢௪ + 𝛽ଷ𝑋′௜ + 𝛽ସ𝑣𝑖𝑙𝑙𝑎𝑔𝑒′ + 𝑢௜ …(2) 

where both 𝛽ଵand 𝛽ଶare parameters of interest.  

    The major concern of this research is the small number of observations and villages 

which are used as clusters in estimation process. To deal with the small number of 

observations a typical strategy is to conduct bootstrap. However, it is also known that the 

ordinary bootstrap method that performs replications by resampling a pair of outcome 

variables and covariates at cluster level may work poorly when the number of clusters is 

only a few or the number of observations largely vary across clusters (Roodman et al., 

2018). Since this study has only 5 villages as clusters, wild cluster bootstrapping (WCR) 

method is employed to make results as rigorous as possible. 

 

5 Results 

5.1 Descriptive statistics about households 

    Table 2 presents summary statistics about participants’ household. The size of 

household is 5 people on average. More than 90% of households are headed by a male. 
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Farmers cultivate two or more lowland plots for rice. This implies that most of them have 

options to diverge plots for fertilizer use. In the season of 2018-19, nearly a half of 

participants cultivated rice on upland plots as well as lowland plots. Lowland plots 

accounts for 83.2% of the total rice plots on average, and therefore, lowland rice is the 

main production. This table confirms that there is no systematic difference between 

treatment and control groups. 

 

Table 2. Descriptive statistics about participants’ household  
Variables Unit Total Control Treatment Pr (|T|>t) 

Household size People 5.21 5.29 5.14 0.746 
HH head’s sex % 92.86 94.29 91.43 0.648 
HH head’s age  Years old 46.57 46.03 47.11 0.711 
HH head’s education Years 6.0 6.31 5.69 0.416 
Total No. of parcels Number 5.67 5.80 5.54 0.678 
Total No. of lowland rice 

plots 
Number 2.74 2.83 2.66 0.612 

Upland rice cultivation % 48.57 48.57 48.57 1.00 
Proportion of lowland rice 

plots 
% 83.23 80.49 85.97 0.32 

Value of asset per capita 1,000MGA 146.46 131.50 161.42 0.545 
Value of consumption in 3 

months 
1,000MGA 246.99 282.19 211.79 0.437 

Agricultural income per 
capita 

1,000MGA 167.21 172.37 162.05 0.820 

Observations  70 35 35  

Source: Authors.  
Note: MGA is local currency, standing for Malagasy Ariary, HH stands for household. 

 

5.2 Descriptive statistics about targeted plots 

    Table 3 shows descriptive statistics of targeted plots. The number of plots is the same 

as the number of households because we targeted one plot for each household. The 

percentage of plots which had high EE was 31.4%. Although it was 34% and 28% in 

control and treatment group, respectively, no statistically significant difference was found. 

The mean plot size is 15.3 Ares, implying participants are typically small farmers. As for 
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experiences of fertilizer use in the previous year, the percentage of targeted plots where 

farmers had applied urea was 17% and that for NPK was only 8%. Due to free distribution 

of urea, the percentage of urea use increased to 61.4% in total. This suggests that 

accessibility to input is a major constraint for fertilizer adoption in the context of study 

site. In addition to chemical fertilizer, manure use is an important input in rice cultivation. 

31.4% of the targeted plots had received manure in the previous year and the percentage 

did not largely change after intervention. The average rice yield is 51.09kg per Are. 

Although this seems relatively higher than publicly available data, it is probably because 

of the inverse relationship between plot size and yield as literature has shown (Desiere 

and Jolliffe, 2018). Between plots from treatment group and those from control group, no 

statistically significant difference was observed. 

Table 3. Descriptive statistics 
Variables Unit Observation Total Control Treatment Pr(|T|>|t|) 

Expected 
Effectiveness 

% 70 31.43 34.28 28.57 0.61 

Plot size are 70 15.29 12.81 17.76 0.18 
Production shock % 70 44.29 37.14 51.43 0.24 
Urea use % 70 61.43 68.57 54.29 0.23 
NPK use % 70 8.57 5.71 11.43 0.40 
Manure use % 70 35.71 37.14 34.29 0.81 
Urea application kg 70 4.19 4.76 3.62 0.38 
Nitrogen application kg 70 2.1 2.19 2.01 0.81 
Urea use in the 
previous year 

% 70 17.14 14.28 20 0.53 

NPK use in the 
previous year 

% 70 8.57 5.71 11.43 0.40 

Manure use in the 
previous year 

% 70 31.43 31.43 31.43 1.00 

Yield kg/are 68 51.09 52.82 49.37 0.69 
Source: Authors  
Note: the number of observations is 68 for yield because the two targeted plots were not used for rice 
cultivation. 
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Table 4. Urea adoption by assignment status 
 Adopt Not Adopt Total % 

Panel A: Low EE plots 
Treatment 12 13 25 48.0 

Control 13 10 23 56.5 
Total 25 23 48 52.1 

Panel B: High EE plots 
Treatment 7 3 10 70.0 

Control 11 1 12 91.7 
Total 18 4 22 81.8 

 

    Table 4 summarizes the numbers of the targeted plots by adoption behavior in each 

group of treatment assignment. Panels were prepared to show the numbers separately by 

different status of EE. Panel A shows that on 12 targeted plots, urea was used although 

participants received the information that EE was low. However, the share of such plots 

was no more than 50 % among the treatment group and it was less than that of plots 

among the control group. Panel B also shows that the share of plots on which urea was 

applied is smaller in treatment group than control group, while the shares among high EE 

plots (Panel B) are higher than those among low EE plots (Panel A) regardless of the 

treatment status. 

5.3 Impact of intervention on fertilizer application at targeted plots 

    Table 5 presents the results of regression of fertilizer use at targeted plots on treatment 

variables. The first two columns focus on urea use. Receiving information of high EE did 

not increase probability of adoption and application rates. However, low EE information 

resulted in significant decrease in the probability of urea use by 19.6% as well as its 

application rates by 0.18 kg per Are. In the third and fourth columns, it examined the 

impact of information on the total nitrogen amount including not only nitrogen from urea 

but also from other fertilizer product such as NPK. As for effects of low EE information, 
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similar results to the columns 1 and 2 were observed. In addition, information of high EE 

shows a significant positive impact on nitrogen application rates by 0.29 kg per Are.  

Table 5: Impact of treatment on urea and nitrogen fertilizer application at targeted plots 
 Urea Nitrogen Manure Nitrogen 

Dependent 
Variables 

Adoption 
(1/0) 

Application 
rate 

(kg/are) 

Adoption 
(1/0) 

Application 
rate 

(kg/are) 

Adoption 
(1/0) 

Additional 
purchase 

(1/0) 
 (1) (2) (3) (4) (5) (6) 

Explanatory Variables 
Treated and High 
EE (1/0) 

-0.278 0.142 -0.279 0.290** -0.238 -0.072 

Treated and Low 
EE (1/0) 

-0.196*** -0.179* -0.182*** -0.141* -0.044 -0.142* 

Plot size (Ares) -0.002 -0.002 -0.003 0.001** 0.004 0.005** 
Proportion of 
lowland rice plots in 
size 

0.648 0.458 0.641 0.301 -0.267 -0.029 

Urea use in the 
previous year (1/0) 

0.263      

Urea application 
rate in the previous 
year (kg/are) 

 0.539*     

Nitrogen use in the 
previous year (1/0) 

  0.131   0.007 

Nitrogen application 
rate in the previous 
year (kg/are) 

   0.919*   

Manure use in the 
previous year (1/0) 

    -0.167  

Size of household 0.007 0.011 0.006 0.020 -0.048 0.022 
Education level of 
household head 
(years) 

-0.019 -0.005 -0.021 -0.005 -0.019 0.010 

Log of value of total 
asset per capita 
(MGA) 

0.687 0.945* 0.597 0.797 -0.578 0.326 

Village dummy Yes Yes Yes Yes Yes Yes 
Constant -1.430 -2.355 -1.125 -2.263 3.120 0.577 
Observations 67 67 67 67 67 67 
R-squared 0.37 0.75 0.35 0.72 0.38 0.35 
Note: ***, ** and * indicate p<0.01, p<0.05 and p<0.1, respectively. Standard errors were recalculated using 
wild-bootstrap method to deal with the small number of clustering. MGA represents local currency, standing 
for Madagascar Ariary. 3 observations were excluded either because the targeted plot was not used for rice 
or because a only very small portion of the plot was used for rice cultivation. 
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    In the fifth column, impact of treatment on manure use was tested because factors to 

change fertilizer use may also influence the use of other types of inputs. No significant 

effects appeared. Finally, in the sixth column, whether information motivated (crowding-

in) or demotivated (crowding-out) farmers to purchase nitrogen fertilizer was explored. 

The amount of urea distributed for free was 5 kg regardless of plot size. Considering that 

the average plot size is 15.3 Ares and farmers had received the instruction that 5 kg of 

urea would be good for 5 Ares of plot, the free urea may not be enough to cover the 

targeted plot for most farmers. Then, if information motivated or demotivated farmers to 

purchase additional fertilizer to follow the instruction is of interest. On the one hand, low 

EE information reduced the probability of purchasing additional fertilizer by 14.2%, 

implying that the information contributed to saving money. On the other hand, no 

significant impact, either positive or negative, was found for high EE information.  

 

5.4 Impacts on rice yield at targeted plots 

    Next, whether treatment had impact on rice yield at targeted plots is examined and the 

first column of Table 6 presents the results. Receiving information of high EE increased 

rice yield by 19.1 kg per Are, which is equivalent to more than a third of the average yield. 

This positive effect is consistent with increase in nitrogen fertilizer application rates 

which was presented in Table 5. In the second column, it was examined whether urea 

application on high EE plot was in fact more effective than on low EE plot. Although the 

coefficient of the interaction term of the amount of urea and being high EE plot is positive, 

it is not statistically significant. A simple average of urea use of two years is included to 

control pre-existing status of soil condition that affect yield and urea use. 
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Table 6. Regressions of rice yield at targeted plots 
  Dependent variables:  Rice yield (kg/are) 

 (1) (2) 
  Explanatory variables   

Treated and High EE 19.10**  

Treated and Low EE 4.35  

High EE plots  2.09 
Amount of Urea applied  6.70 
Amount of Urea applied * High EE  13.75 
Average amount of Urea in 2 years  5.98 
Average amount of Urea in 2 years * High EE   -18.16 
Production shock -16.97** -10.99 
Plot size  -1.44* -1.38* 
Plot size squared  0.01 0.01 
Terrace -11.99 -10.38 

  Rice variety dummy Yes Yes 
  Household level control variables Yes Yes 
  Village dummy Yes Yes 
  Constant -1.83 -43.372 
  Observations 67 67 
  R-squared 0.53 0.53 
Note:** and * indicate p<0.05 and  p<0.1, respectively. Standard errors were recalculated using wild-
bootstrap method to deal with the small number of clustering. 3 observations were excluded either because 
the targeted plot was not used for rice or because only a very small portion of the plot was used for rice 
cultivation. 
 

5.5 Impact of intervention on rice yield and fertilizer use at farm level 

    The first two columns of Table 7 show the impact of treatment on rice yield at farm 

level. The outcome variable is the average rice yield that is calculated with weight of plot 

size. Overall, the results are similar to those presented in previous tables. Information of 

high EE contributed to increase in farm-level rice yield by 15.5 kg per Are. The reason is 

probably because high EE information increased total nitrogen application rates as well. 

It is noteworthy that at farm level, no significant negative effect of low EE information 

on nitrogen use was detected while it showed significantly negative effects at the targeted 

plot. It implies that farmers reallocated urea to other rice plots when they received low 

EE information about one specific plot.  
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Table 7: Impact of treatment on rice cultivation at farm level 

Dependent Variables 
(kg/are): 

Rice yield 
(weighted) 

Urea 
application rate 

(weighted) 

Nitrogen  
application rate 

(weighted) 

  (1) (2) (3) (4) (5) (6) 
Explanatory variables       

Treated household (1/0) 6.13  0.01  0.07**  

Treated and High EE (1/0)  15.50*  0.10  0.27* 
Treated and Low EE (1/0)  0.53  -0.02  -0.001 
Total size of rice plots (Ares) -0.27** -0.26** -0.001** -0.001*** -0.001** -0.001*** 
Proportion of lowland rice 
plots in size 

15.37 16.76 0.16* 0.18** 0.05 0.09 

Production shock  -35.29* -39.39*     

Log of asset value per capita 
(MGA) 

4.29 4.27 0.03 0.03* 0.01 0.02 

Years of education of head  1.47 1.54 0.01 0.01 0.001 0.003 
Household size 1.93 2.17 0.02* 0.02** 0.01 0.02* 
Village dummy Yes Yes Yes Yes Yes Yes        
Constant -15.88 -20.62 0.23 -0.17 0.21 0.07 
Observations 67 67 67 67 67 67 
R-squared 0.54 0.55 0.58 0.60 0.40 0.47 
Note: ** and * indicate p<0.05 and p<0.1, respectively. Standard errors were recalculated using wild-bootstrap 
method to deal with the small number of clustering. MGA represents local currency, standing for Madagascar 
Ariary. 
 

5.6 Impact of intervention on household welfare variables 

    To see whether the intervention contributed to welfare improvement of treated 

households, two outcome variables are regressed on treatment variables. First, crop 

income per capita is used because rice yield increase as a result of farm-level optimization 

is supposed to have had a positive impact on crop income. Second, consumption per 

capita during 3 months after rice harvest is measured in monetary value and used as the 

other outcome variable. Although hypotheses expected positive effects, neither high EE 

nor low EE information had significant effects in any of these variables probably because 

the impact was too small to see at farm level. 
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Table 8. Impact of treatment on household welfare indicators 

Dependent Variables (1000MGA): Crop income per capita 
Consumption per capita 

for 3 months after 
harvest 

 (1) (2) (3) (4) 
Explanatory variables     

Treated household (1/0) -33.65  -26.79  

Treated and High EE (1/0)  -54.93  111.46 
Treated and Low EE (1/0)  -26.21  -75.15 
Production shock (weighted 
average) 

-253.27 -243.14 -75.40 -141.21 

Age of head (years old) 1.87 1.89 -0.10 -0.23 
Sex of head (=1 if male) 54.32* 56.38 -24.78 -38.72 
Years of education of head 
(years) 

3.75 3.48 4.19 5.96 

Household size (no. of member) -8.09 -8.83 -26.99* -22.23 
Log of total asset per capita 43.42** 43.36** 30.85 31.24 

  Village dummy Yes Yes Yes Yes 
  Constant -408.73 -509.72 -64.68 -114.41 
  Observations 67 67 67 67 
  R-squared 0.33 0.33 0.10 0.14 
Note: ** and * indicate p<0.05 and p<0.1, respectively. Standard errors were recalculated using wild-
bootstraping method to deal with the small number of clustering. MGA represents local currency, standing 
for Madagascar Ariary. 
 

6 Conclusion 

    The objective of this paper is to provide new empirical evidence of the role of 

information in optimal fertilizer management. In Madagascar, like in other SSA countries, 

fertilizer use has been limited to insufficient level.  

    A randomized controlled trial was implemented in one of the major rice-producing 

regions of Madagascar. Using agronomic findings that phosphorus amount in soil has the 

critical role in effectiveness of nitrogen fertilizer, a simple binary information about 

expected effectiveness (EE) was designed. We examined whether the information of 

either high or low EE would affect the probability of nitrogen fertilizer use and the rate 

of its application. First, this study revealed that phosphorus amount in soil largely varies 

across study site and even within a village. This large variation of soil characteristics 
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emphasizes the importance of site-specific advices as conventional blanket 

recommendations about fertilizer management might lead to disappointing outcome in 

some plots where crop yield response is low due to soil quality. Second, this study found 

that high EE information significantly increases the rates of nitrogen fertilizer application 

in responsive plots while low EE information decreases the probability of nitrogen 

fertilizer adoption and its application rates in non-responsive plots. With a viewpoint that 

giving up or reducing the fertilizer use in low EE plots is one way of optimization under 

limited accessibility to fertilizer, the results of regressions provided evidence that farmers 

utilize information to optimize fertilizer allocation.   

    To improve farmers’ accessibility to fertilizer, various attempts including subsidy 

program, credit lending, training about how to use have been implemented in SSA. Some 

studies have proposed that combination of subsidy and other inputs have led to better 

outcome. Then, this study showed that combination of information based on soil 

characteristics, even a simple information as used in this study, and conventional policies 

with focus on accessibility to inputs has potential to enhance effectiveness of fertilizer 

promotion policies.  

    Limitations of this study are as follows. First, the experiment was implemented in only 

a few villages in the region and the number of observations is small. Considering criticism 

about external validity of many RCT studies in addition to the small sample problem, 

generalization of the results of this research requires a particular care. Similar intervention 

with larger scale will be important to reconfirm the key findings. Second, this study only 

examined the impact of information in the season of intervention. Additional data in the 

following seasons would be useful to see whether the impacts would last without free 

fertilizer provision. Finally, this study would also face the same criticism that Burke et al. 
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(2019) made against Marenya and Barret (2009) as we dealt with only phosphorus, 

ignoring complicated structure of soil that affects crop yield response. Inclusion of 

multiple soil characteristics in information design will make a similar intervention more 

meaningful both for researchers and farmers. 
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