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Modeling Fresh Tomato Marketing
Margins: Econometrics and
Neural Networks

Timothy J. Richards, Paul M. Patterson, and Pieter Van Ispelen

This study compares two methods of estimating a reduced form model of fresh tomato

marketing margins: an econometric and an artificial neural network (ANN) approach. Model

performance is evaluated by comparing out-of-sample forecasts for the period of January 1992

to December 1994, Parameter estimates using the econometric model fail to reject a dynamic,

imperfectly competitive, uncertain relative price spread margin specification, but

misspecification tests reject both linearity and log-linearity. This nonlinearity suggests that an

inherently nonlinear method, such as a neural network, may be of some value. The neural

network is able to forecast with approximately half the mean square error of the econometric

model, but both are equally adept at predicting turning points in the time series.

Retail-farm margins are of interest to agricultural
economists for many reasons. First, wider margins
mean that growers obtain a smaller share of the
retail dollar. During periods when retailers are un-
able to raise their prices, this means lower grower
revenue. Second, the extent to which margin
growth is not due to higher marketing costs can
suggest inefficiencies somewhere in the marketing
channel (Kinnucan and Nelson 1993). Typically,
such inefficiencies are due to the exercise of mar-
ket power, on either the buying or the selling side,
downstream from the farm. Third, market power
and informational asymmetries are often cited as
reasons for slow margin adjustment in response to
change in underlying supply and demand condi-
tions (Powers 1995; Kinnucan and Forker 1987).
Whereas retail prices respond quickly to price in-
creases, farm prices often take time to adjust.
Fourth, margins are known to widen in the degree
of uncertainty in returns to a crop—whether risk
arises through prices or yields (Brorsen et al.
1985). This risk is of particular concern to growers
who may not have access to future markets or crop
insurance. Although all of these issues are impor-
tant to growers of virtually all commodities, they
are of particulm concern to produce growers, who
often face many planting and harvesting decisions
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throughout a typical growing season, face many
alternatives for their land, and have relatively few
means by which they can manage risk. However,
these issues are rarely explored in fruit and veg-
etable markets.

In particular, the performance of the fresh to-
mato marketing channel continues to be an issue to
growers in both California and Florida. 1 However,
typical methods of estimating the determinants of
retail-farm price spreads may not be the best way
to approach this problem. Econometric analysis of
marketing margins has become a popular and im-
portant way of investigating the effects of many
different factors on the efficiency of price trans-
mission for a variety of commodities (Heien 1980;
Brorsen et al. 1985; Wohlgenant and Mullen 1987;
Thompson and Lyon 1989; Brester and Musick
1995). By developing reduced-form models that
reflect more complete structural underpinnings of a
particular market (Waugh 1964; Gardner 1975;
Holloway 199 1), empirical studies often concern
themselves with non-nested tests that compare al-
ternative empirical representations of various com-
peting margin theories (Lyon and Thompson
1993). Kastens andBrester(1996), however, argue
that such tests are often inconclusive. They argue
that an alternative method of model selection, a
comparison of out-of-sample forecasting ability, is
conceptual y preferable because “it is difficult to
imagine how a model that provides less accurate
in-sample and out-of-sample forecasts . . . could
still be deemed the ‘better’ model” (p. 302). If the
common goal among margin studies is to find the
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best fit to margin data by this criterion, given dif-
ferent data frequencies, different levels of geo-
graphic aggregation, or different commodities, but
to include similar sets of explanatory variables,
perhaps an approach other than an econometric one
can better serve the purpose.

Artificial neural network (ANN) models provide
one such alternative. Increasingly popular among
financial and commodity analysts for their ability
to forecast short-run price movements, neural net-
works can also provide an alternative way to de-
termine the “best” model of retail-farm margins.
ANN models are nothing more than nonlinear least
squares estimators of highly nonlinear functional
forms. The unfortunate name, however, derives
from the analogy often drawn of their ability to
emulate the biological processes of the human
brain in “recognizing” patterns in the data and
thereby “learning” relationships between sets of
independent variables, or inputs and dependent
variables, or outputs, Although economic theory
can suggest the elements of the input and output
sets, significant nonlinearities in the relationship
introduced through the inclusion of risk prefer-
ences, imperfect competition, or dynamic margin
behavior may mean that a neural network model-
ing approach provides a better fit to the data than
do traditional econometric approaches.

Consequently, the primary objective of this pa-
per is to compare the advantages and disadvan-
tages to investigating an important empirical prob-
lem through neural network versus econometric
methods. In doing so, the paper also attempts to
derive a better empirical explanation of the retail-
farm price spread in fresh-market tomatoes. The
first section of the paper develops an economic
model of fresh tomato marketing margins. This
model guides the specification of an econometric
model in the second section of the paper and is
used to determine the set of input variables in the
neural network model, as discussed in the third
section. The fourth section describes the data used
in making the comparison, while the fifth section
presents and compares the forecast results from
each model. Prior to drawing some conclusions
and implications for model selection, this section
also interprets the econometric parameter estimates
and suggests how equivalent information can be
taken from the neural network results.

Economic Model of Marketing Margins

For purposes of this study, the marketing margin,
or retail-farm price spread, is defined as the differ-
ence between an average U.S. monthly retail price

and a grower price for fresh tomatoes. This section
derives a conceptual model of marketing margins
that, while working toward a reduced form solu-
tion, maintains theoretical consistency with an
equilibrium model of margin determination.

Following the work of Gardner on the determi-
nation of farm-retail price spreads in competitive
agricultural markets, Wohlgenant and Mullen
(1987) develop a “relative price spread (RPS)”
model. In this model, the price spread is a linear
function of the retail price, marketing costs, and
industry retail revenue. Both Lyon and Thompson
(1993) and Farninow and Laubscher (1991) pro-
vide empirical support for the superiority of the
RPS model in aggregate monthly data over a more
restrictive markup specification. Extensions to this
basic model consider the effect of lagged adjust-
ment of prices at one level to changes in demand or
supply at the other level (Heien 1980; Powers
1995), the effect of risk on the farm-retail price
spread (Brorsen et al. 1985; Schroeter and Azzam
1991; Holt 1993), product quality (Parker and Zil-
berman 1993), market power (Cotterill 1986;
Schroeter and Azzam 1991; Durham and Sexton
1992; Stiegert, Azzam, and Brorsen 1993; Brester
and Musick 1995), vertical integration (Kinnucan
and Nelson 1993), and changes to farm policy
(Thompson and Lyon 1989). Of this set of consid-
erations, dynamic margin adjustment, tomato price
risk, market structure, and quality are likely rel-
evant to the tomato margin problem. This section
begins with a dynamic extension of the RPS model
and then incorporates the other factors in turn.

Particularly in studies using data with a fre-
quency of less than a year, the current retail-farm
margin is often found to be a function not only of
current supply and demand conditions, but also of
those of previous weeks or months, Often, this
conclusion follows from empirical studies that
show prices downstream adjust at a different rates
whether the upstream price is rising or falling
(Heien 1980; Ward 1982; Kinnucan and Forker
1987; Powers 1995). Such asymmetry may be due
either to incomplete information on the part of
buyers or sellers, or to market power by down-
stream interests (Powers 1995). While primarily
concerned with prices at only one level, dynamic
margin adjustment in these models is implicit.
Heien (1980), for example, develops a model of
retail price adjustment to changes in wholesale
prices that relies upon an assumption that retailers
adopt a naive inventory adjustment rule. Similarly,
Wohlgenant (1985) demonstrates that retail and
wholesale prices may adjust at different rates be-
cause of retailer inventory behavior. However, be-
cause of the perishability of fresh tomatoes, inven-
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tory adjustment is not a likely explanation for slug-
gish margin adjustment.

Alternatively, Wohlgenant and Mullen (1987)
also show that a marketing margin must equal the
marginal cost, and hence the marginal value in
competition, of a bundle of marketing services.
This marginal value must also include the value
expected to accrue through all future periods of
investing in brand equity today. Increasingly, to-
mato sellers are investing in brand equity through
trade promotions, trade media advertising, and
merchandising materials (The Packer 1996–97).
Because obtaining brand recognition is a long-term
asset to the seller, dynamic margin adjustment re-
sults from the dynamics of demand for these ser-
vices, rather than retail inventory adjustment. This
dynamic demand specification, however, must also
take into consideration several other factors that
influence the price spread,

One factor in particular-imperfect competition
in the fresh tomato market-appears to have a sig-
nificant influence on aggregate tomato margins. It
is well known that the exercise of market power,
whether on the buying or selling side, results in
wider retail-farm margins (Holloway 199 1). Using
the ‘ ‘new empirical industrial organization”
(NEIO) (Bresnahan 1989; Applebaum 1982; Az-
zam and Schroeter 1991) framework, Durham and
Sexton (1992) show that processing tomato buyers
exercise considerable monopsony power in sourc-
ing raw product, while Jordan and Van Sickle
(1995) show that, in aggregate, the U.S. and
Mexico are imperfect competitors in the winter
fresh tomato market. However, Holloway (199 1),
using data from Wohlgenant (1989), finds that the
assumption of perfectly competitive behavior in
fresh vegetables cannot be rejected in aggregate
data. Given that Mexico provides competition only
during the winter season, it is likely that U.S.
growers are able to exercise some degree of market
power—market power that will be evident only in
monthly or seasonal data. Although the NEIO ap-
proach admits a formal test of this hypothesis,
implementing a complete structural model of the
tomato market is beyond both the scope and the
data of this paper. Amade and Pick (1996), how-
ever, show that measures of market share may be
suitable proxies for more formal market power in-
dicators. Brester and Musick (1995) employ a
similar measure of concentration in the lamb-
packing industry to determine the effect of market
structure on marketing margins, Given identical
market structures, however, many argue that vari-
ability of the output price is likely to be an impor-
tant determinant of retail-farm margins.

This is particularly true in the case of fresh veg-

etables. If growers face what they perceive to be
low market prices at harvest, their only options are
to harvest and sell into a depressed market or to
abandon the crop to avoid harvesting costs. Storage
is not an option. While the latter choice is viewed
as extreme by most growers, the former causes
prices to fall further. Given the inflexibility of re-
tail prices documented by Powers (1995), margins
will widen if many choose to harvest. Brorsen et al.
(1985), Holt (1993), and Schroeter and Azzam
(1991) provide both theoretical justifications and
empirical support for the contention that margins
widen with uncertainty. The following section ex-
tends their approach by including uncertainty and
market power in a dynamic model of marketing
margins.

Suppose that a firm invests in a stock of mar-
keting services (think of such investments as ef-
forts to create brand equity) to facilitate both cur-
rent and future sales. Brand equity accumulates
over time directly with the level of sales, but de-
teriorates at a rate proportional to the current stock.
Because investment in a brand is costly, the equi-
librium rate of adjusting the stock of equity will be
less than instantaneous. Further, assume that retail-
ers face a Leontief technology where output is a
fixed proportion of the farm input, but they can
employ various amounts of marketing services:

(1) y = min[x/k, g(S)],

where y is monthly shipments from one firm, x is
the amount of farm input, k is a constant of pro-
portionality, and S is the stock of marketing ser-
vices. Brorsen et al. (1985) show that this technol-
ogy leads to an indirect cost function of the form:

(2) C(w,pf,y,t) = kpfy + h(w,y,t),

where p~ is the farm input price, w is a rental price
for marketing services, t is a time trend variable,
and C is linearly homogeneous, increasing and
concave in prices, and convex in output. If the
stock of brand equity evolves as described above,
the equation of motion constraining S is given by:
dS/dt = (y – 8S), where 8 is the constant rate of
depreciation (suppressing the time subscript). As-
suming tomato retailers choose output in order to
maximize the expected utility of the present value
of their firm, the dynamic optimization problem is
given by a current value Hamiltonian:

(3)

H(6) = (p; – kp{)y, – C(w,,y,,t) + LLI(Y,– W))

where p: is the retail price and I.Ltis the dynamic
multiplier, or the equilibrium cost of adjusting the
stock of brand equity.
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Application of the maximum principle to equa-
tion (3) first requires differentiating the Hamilto-
nian with respect to the control variable, or output.
Assuming a representative utility function that re-
flects constant absolute risk aversion and normally
distributed output prices, maximizing expected
utility of firm value produces first order conditions
that require the current value of an additional unit
of brand equity to be equal to the difference be-
tween the marginal cost of production and the sum
of three elements—the retail-farm margin, the ef-
fect of market power on retail prices, and the effect
of price variability on the margin (Schroeter and
Azzam 1991). In terms of the value of marketing
services, the first order condition is given by:

(4) p,, = Cy,– (p;– kp;)– E;l(lpfrrnst– Aycr;,

= CY, – m, – @p,rmsl – kyu~,,

where CYfis marginal cost, mf is the margin, ejl is
the inverse demand elasticity, (3 is the conjectural
variation, defined as 0 = d Y/dy where Y is total
market shipments, ms is the share of total market
shipments due to one firm, h is the coefficient of
absolute risk aversion, and C& is the variance of
retail prices. Further, the costate equation requires:

(5) ~, – i-p = -dHIM’ = 8p,

or, & = (r + 8)p,, where r is the rate of interest,
assumed to be constant for this problem.z

Differentiating (4) with respect to time, assum-
ing marginal costs change linearly with time at a
rate ~, and assuming that neither the market power
nor risk aversion terms vary with time, and then
substituting the result into (5) provides an expres-
sion for the time path of margins:

(6)

2 – Cy,) + T.~[ = (r+ ~)(mf + @plrms~+ ‘YtuPt

As with most economic problems, the data are dis-
crete rather than continuous, Expressing (6) in dis-
crete time and solving for ml gives a first order
difference equation for the retail-farm margin:

(7)
mt=ctmt_l

+ (r+ 8)ci(@pfrmsf + hytu~r– CY) + w,

where a = 1/(1 – r – ?3).Equation (7) implies that
the current margin is a linear function of the pre-
vious margin, the marginal cost of marketing to-
matoes, an interaction term between retail price
and market share, an interaction term between firm
shipments and price variability, and a time trend.
The following section describes an empirical
model of fresh tomato retail-farm margins based
on this theoretical framework.

Econometric Model Specification

Although the economic model above is derived in
general terms, it does not imply a specific func-
tional form of relationship between the margin and
its determinants. Given the presence of terms rep-
resenting tomato sellers’ risk attitudes, aggregate
market power, and dynamic adjustment, it may in-
deed be far from linear. Tests of model misspeci-
fication determine whether a linear model is valid
as compared with some nonlinear alternative.
These tests consist of Ramsey’s RESET test (Ram-
sey 1969), Davidson and Mackinnon’s Pe test
(Davidson and Mackinnon 1981), and tests of dif-
ferent k values in a BOX-COX specification (Box
and Cox 1964). Although the latter two tests posit
either a double-log or flexible alternative model,
respectively, failure of the RESET test does not
suggest an alternative. Under the null hypothesis of
linearity, the dynamic RPS model, augmented with
a set of monthly dummy variables, becomes:

(8) mt= ~lmt–l + (&ptr+ 133P;”~

+ (&p,r. mstus + 135Yt”UPt
12

where msus is the U.S. share of total monthly ship-
ments, u~f is a five-month moving measure of re-
tail price variation, t is a time trend, Wt is the av-
erage hourly wage of workers in food and kindred
industries, mnk are binary monthly indicator vari-
ables, and e is an independent, identically distrib-
uted normal error term.3 Although U.S. market
share is primarily included as an indicator of to-
mato market structure, its influence may also re-
flect differences in quality between U.S and Mexi-
can tomatoes.4

The neural network model includes each of
these variables and interaction terms but need not
specify a functional form. In fact, failure of each of
the above specification tests suggests that a wide
variety of nonlinear specifications may be prefer-
able to the maintained model. If so, then an ANN
model can represent this unspecified nonlinear al-
ternative, the exact form of which is found through
experimenting with alternative designs and struc-
tures.

Designing a Neural Network for
Margin Forecasting

ANN models are systems of interconnected nodes
(neurons) that map input data, or explanatory vari-
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ables in econometric usage, into outputs, or depen-
dent variables. Based upon the presentation of sev-
eral input patterns and their associated outputs, or
examples, the network is able to autonomously
learn the map from inputs to outputs (Beltratti,
Margarita, and Tema 1996). In emulating the neu-
ral processes of the human brain, ANNs in general,
and those using the backpropagation algorithm of
this study in particular, have several desirable
properties as forecasting tools. In particular, be-
cause ANNs do not rely on prior specification of
either a functional form or an error distribution,
they are able to approximate any nonlinear input-
output relationship and are robust estimators even
under conditions of extreme non-normality. Fur-
thermore, the iterative solution algorithm prevents
overfitting so they can generalize extremely well
beyond the estimating, or training sample (Hiem-
stra 1996).

The ability of ANN to forecast out-of-sample at
least as well as existing methods is well known in
corporate finance (Trippi and DeSieno 1992; Ban-
sal, Kauffman, and Weitz 1993; Refenes, Zapranis,
and Francis 1994; Hiemstra 1996), commodity
price forecasting (Mendelssohn and Stein 199 1;
Chakraborty et al. 1992; Grudnitski and Osbum
1993), and macroeconomics (Moody 1995), but it
is only now emerging as an analytical tool in ag-
ricultural economics (Joerding, Li, and Young
1994; Kohzadi et al. 1995; Kastens and Feather-
stone 1996). This section provides a brief descrip-
tion of the structure of a feed-forward network that
uses the standard backpropagation learning algo-
rithm and then describes the application of this
model to tomato margin data.

The node, or neuron, is the basic element of any
ANN. Data are first transformed with a scaling
function before submission to the network. Next,
the scaled data pass from neurons in the input
layer, through one or more hidden layers, to an
output layer. Neurons in each layer receive inputs
(Ii) from those in the layer below, compute a
weighted sum of these inputs (nj), and pass the
result to all neurons in the next layer through an
activation function. The activation function,
commonly approximated by a sigmoid form, maps
the weighted sums into outputs (Ok) that are
bound by zero and one. Mathematically, the feed-
forward structure to the kth output neuron appears
as:

(9) Ok = [1 + exp(-n~)]-’,

where nk = ~j wkjHj and Hj is the output from the
hidden layer J given by:

(lo) Hj = [1 + exp(–nj)]-].

As in the previous step, the value of nj in equa-
tion (10) is a weighted sum from the input layer:
nj = XiwjiZJ Consequently, in determining the
“best” fit to the data, the ANN algorithm must
estimate each of the w~j values. With a data set
consisting of M observations, or patterns, each
is presented to the network through this feedfor-
ward process, resulting in a series of outputs 0~~.
Comparing these outputs with the observed target
values, T~~, generates a series of errors that forms
the basis for the backpropagation learning algo-
rithm.

Backpropagation (BP) refers to the way in
which the ANN updates the parameters of the sys-
tem, Wij, in order to move the outputs closer to the
target values. Updating, or learning, proceeds by
either an unsupervised or a supervised algorithm.
Supervised learning uses a fixed set of inputs and
outputs. As opposed to unsupervised learning, the
example described here compares the network out-
put with a known target in computing the predic-
tion error. Specifically, supervised learning implies
that BP updates the weights between each layer in
order to minimize the sum of squared errors be-
tween the outputs and targets (Beltratti, Margarita,
and Tema 1996):

MK

(11) E(wv) = ( 1/2)~,~, (Tn~ – 0~~)2.
m=lkl

Offline, or batch, learning updates the weights af-
ter presenting all examples in the data set, whereas
online learning updates after each presentation.
Updates are made according to the rule:

(12) Awji = –CY~ ,
J1

where a is the learning-rate parameter. In order
to reduce the oscillation of the weights between
iterations, it is possible to include a momentum
term ~Af_lwU such that changes in one presenta-
tion, or epoch, persist to the next. The learning rate
and momentum represent the two parameters under
the control of the researcher. Consistent with the
notation above, this rule implies .l x K updating
equations between the hidden and output layers,
and I x J between the input and hidden. Taking
advantage of the relative simplicity of the logistic
function, the partial derivative in equation ( 12) be-
comes:
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(13)
t)E dE dnj

—= ——
8WU i3nj dw~

= Hj( 1 – Hj)Ij~ (Tk – Ok)Ok( 1 – o~)w~j.
k

for updating weights between the input and hidden
layers, while the equivalent term between the hid-
den and output layers is:

(14)
8E 8E L?Ok

— .——
dwjk dokdwjk

= -(Tk - Ok)Ok( 1- Ok)Hj.

Repeating the feed forward process with the new
weights generates a new error vector, so unless
these errors fall within the selected convergence
criterion, the weights are again updated according
to the rule in (12). Iterating this procedure until
convergence provides an optimal set of weights
and, if globally optimal, the minimum mean square
error weight pattern, However, there are many
other considerations that determine whether the
optimum is local or global, and the rate at which it
is achieved,

Although there are other ANN structures and
learning algorithms (see Cheng and Titterington
1994 for a review), the feedforward/backprop-
agation method is well understood. Different meth-
ods of specifying and solving an ANN problem
share a set of decisions that are made by the net-
work designer. Principal among these are the net-
work architecture (number of hidden layers and
neurons per layer), the gradient descent terms
(learning rate and momentum term), the training
time (number of presentations or iterations), the
type of activation function, and the selection of
training, test, and production data sets. As there is
little theoretical guidance in making these choices,
the final form of the model results from trial and
error. In the current example, therefore, the eco-
nomic model of tomato margins determines the
input and output sets, but the other considerations
evolve from experimentation.5

The first step involves partitioning the data set.
Dividing the data into training, test, and production
components is meant to achieve the best tradeoff
between in-sample estimation precision and out-
of-sample performance. However, there is little
guidance in choosing these partitions. Conscious of
the relatively limited number of observations avail-
able in the tomato margin data set, this study de-
fines the production set as consisting of observa-
tions from January 1992 to December 1994. The
rest of the data, from January 1980 to December
1991, forms the training set and test set. Estimation

uses only the training data, but the ability of the
current estimates to generalize, or to forecast out-
of-sample, is continually evaluated on the test set.
Continuous testing is necessary to keep the net-
work from memorizing the training set and simply
creating a lookup table, In cases where the problem
set is finite, a test set is not necessary since the
training set will include all possible patterns, and
memorization of all these patterns by the network
will generate the best results. After considerable
experimentation, data from 1988–9 1 make up the
test set, while the remaining years (1980-87) form
the training set.

In determining the best network architecture for
the tomato problem, this study also considers re-
current networks, general regression neural net-
works, and Ward NetsTM. Each of these has its own
particular advantages, but none performed as well
as the chosen algorithm. With the feedforward/
backpropagation approach, a three-layer network
will, in general, provide the best results for most of
the problems in economics (Gorr, Naglin, and Szc-
zypula 1994), In very complex and data-intensive
problems, more layers add precision to the model,
but adding layers to a simple problem (such as the
tomato margin example) harms the network’s abil-
ity to generalize. In the tomato example, a three-
layer feedforward network considerably outper-
forms networks with more layers.

Within the hidden layer, a larger number of
nodes allows the network to learn more structures
in the patterns and, as such, will learn the training
set better. Too many hidden layer nodes can, how-
ever, lead to poor out-of-sample performance. Kas-
tens, Featherstone, and Biere (1995) cite recent
theoretical research that determines mathemati-
cally the required number of nodes in the hidden
layer that allows a three-layer network to exactly
represent a continuous activation function (Sal-
chenberger, Cinar, and Lash 1993), With n input
nodes, the required number of nodes in the hidden
layer is 2n + 1. In the tomato example, we begin
with an alternative rule of thumb that suggests the
number of neurons in the hidden layer should be
approximately 1.5 times the number of input layer
neurons— 18 in the tomato problem, After experi-
menting with hidden layers of different sizes (from
10 to 40 nodes), the network performed best with
27 nodes in the hidden layer. These nodes are con-
nected to the output and input layers with the ac-
tivation function.

The tomato margin neural network uses the
symmetric logistic activation function between the
input and hidden layers and between the hidden
and output layers. The scaling function, which is
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applied within the input layer, is linear, mapping
the data into the [-1, 1] interval. Some studies
choose a linear activation function between the
hidden and output layers, but this can reduce the
power of the network to generalize, so this practice
is not adopted here. The forecasting ability of the
network is also determined by the parameters of
the backpropagation process.

The factors that control the learning algorithm
consist of the learning rate, momentum term, pre-
sentation pattern, weight initialization, and training
time. As with the network structure, experimenta-
tion is a valuable tool in selecting these training
criteria, Backpropagation essentially adjusts the
weights of each link in order to apportion “blame”
for the error to various nodes. As equation (12)
shows, the learning rate controls the rate of weight
adjustment as a function of current error values. As
a general guideline, large values (>0.6) lead to bet-
ter results in simple problems, while small values
(<0. 1) are more appropriate for complex problems
with noisy data. In the current study, the network
converges rapidly if the learning parameter is held
constant, Including a momentum term in (12)
causes the weight updates to depend on a propor-
tion, determined by the momentum term (~), of
previous weight changes. A higher momentum
term (0.6–0.9) is useful in noisy data, or in com-
bination with a high learning rate, In the final to-
mato margin model, the learning rate is 0,05, while
the momentum term is 0.3.

The sequence in which the patterns are pre-
sented to the network can also influence the out-
come. Of the two choices, rotational and random,
the former is more appropriate when similar data
points are equally dispersed through the data set,
while the latter is preferable in seasonal or cyclical
data. In the tomato example, the rotational pattern
is chosen, as it provides slightly better perfor-
mance, irrespective of the solution algorithm used.

Because the backpropagation algorithm uses a
gradient descent solution method, convergence is
often sensitive to both the initial values for the
weights and the number of iterations. After varying
the initial weight values between 0.05 and 0.7, a
value of 0.5 provided the best forecast accuracy. In
determining how many iterations, or epochs, the
network uses to learn the training set, the tradeoff
is again between fit and a loss of generalization.
However, by calibrating the network, the subjec-
tive element of stopping time is avoided. Calibra-
tion involves computing an average error for both
the test and training sets. As training progresses,
the training error falls monotonically, while the test
error reaches a minimum and then rises. Stopping
the learning process at the minimum test error,

after fewer than 300 iterations, optimizes the out-
of-sample performance of the network. Once the
neural network converges, the results are saved and
the “optimal” network is applied to the production
set. These results are then compared with the fore-
casts from the econometric model. The next sec-
tion describes the data used in estimating each
model.

Data and Estimation Methods

This study uses a series of monthly retail prices,
grower prices, and shipment levels for the period
January 1980 to December 1994. These data are
obtained from Tomato Statistics (USDA-NASS
1995), Both price series are national averages and
are converted to common units of dollars per hun-
dredweight ($/cwt). Monthly tomato shipments are
in units of thousand hundredweights. The average
weekly wage of workers in the “food and kindred
industries” as reported by the Bureau of Labor
Statistics (BLS) serves as a proxy for tomato pack-
ing costs. Data for aggregate Mexican tomato ship-
ments are also found in Tomato Statistics.

The econometric margin model is estimated us-
ing an instrumental variables procedure in order to
account for the endogeneity of tomato prices. In-
struments include all of the exogenous variables
described above in addition to a monthly retail let-
tuce price (BLS, Consumer Price Index, Average
Price Data 1997), and annual measures of U.S.
population and personal disposable income
(WEFA Group 1997) converted to monthly series
using the cubic spline EXPAND procedure in SAS.
The neural network is trained using Ward Systems’
Neuroshell 2 software. For both models, all prices
and wages are in real values. The sample period
consists of the monthly observations from January
1980 to December 1991. This subsample is equiva-
lent to the training and test sets used by the neural
network.

Comparisons of the forecasting performance of
the econometric and neural net models are made on
the basis of three alternative measures. First, the
mean square error is calculated for both forecasts
over the January 1992 to December 1994 period.
Second, Theil’s U provides a similar measure of
forecast error that is independent of the units with
which the margin is measured (Theil 1961). For
practical purposes, however, methods that are suc-
cessful in predicting changes in direction may be
more useful than those with superior forecast ac-
curacy as measured by the mean square forecast
error. Consequently, the third test consists of Hen-
riksson and Merton’s test (1981) of the relative



Richards, Patterson, and Van lspelen Fresh Tomato Marketing Margins 193

ability of different models to forecast turning
points in a time series. The results of each of these
tests, and the estimation results from each model,
are presented in the next section.

Results and Discussion

In order to address the objectives of this paper, this
section presents the results obtained by testing for
misspecification of the econometric model, fol-
lowed by measures of forecast performance for
each model, and then an interpretation of the model
coefficients. Although the parameters of the econ-
ometric model have the usual interpretation as
marginal impacts of the right-hand-side variables
on the margin, derivation of analytical expressions
that show similar marginal effects of each input
node on the output node in the neural network is
beyond the scope of this paper, However, sensitiv-
ity analysis of the margin to numerical changes in
each of the input values provides a valuable ap-
proximation. While this exercise demonstrates the
potential value for neural network modeling as a

policy tool, its strength clearly lies in forecasting
noisy time series.

As discussed above, rejection of the maintained
linear RPS model by any of the misspecification
tests implies that an alternative, nonlinear model
should be considered, First, the linear model fails
Ramsey’s RESET test using both squared and cu-
bic terms for the fitted margin.6 Second, the Pe test
of Davidson and Mackinnon (1981) rejects both
the linear model and a double-log alternative,7
Given the indecisiveness of these tests, conducting
likelihood ratio tests for h = 1 (linear) or k = O
(double-log) against a variable A alternative in a
BOX-COXregression may suggest a more flexible
alternative. This method yields a value of k =
0.73, rejecting both the linear and double-log al-
ternatives. Consequently, this section compares the
neural network and BOX-COX estimates of the
structural econometric model,

Figure 1 provides a graphical representation of
the forecasted margins from each model against
the actual tomato margins. Close inspection of this
figure shows that both models miss many of the
same turning points, but the neural network fore-
casts appear to be much closer to the actual values.
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Figure 1. Neural Network and Econometric Models, Forecasts versus Actuals, U.S. Fresh Tomato
Margins (January 1992 to December 1994)
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In particular, both approaches miss the sharp
downturns in months 154 and 160, while both miss
the upturn in month 158. Quantitative measures of
forecast accuracy provide an alternative basis for
comparison.

Both the mean square error and Theil’s U sta-
tistic provide similar measures of forecast accu-
racy. Table 1 shows each of these statistics for both
models. Clearly, the neural network outperforms
the econometric model by a considerable margin
according to these measures. Other summary sta-
tistics, however, provide some opposing evidence,
While the neural network predictions are within
59. of the actual value 25 .0% of the time, forecasts
with the econometric model are within 5% only
16.7% of the time. However, the error range for the
econometric is smaller than for the neural network,
erring by 1.0970at a minimum and 56,4’%0at a maxi-
mum, while the neural network errors range from
0.2% to 62.8%. Whereas the average absolute error
by the econometric model is 14.2%, the average
error by the neural network is 11.390. Therefore,
these measures provide some evidence for the su-
periority of the neural network model, but they are
not conclusive. As Henriksson and Merton (1981)
argue, however, often the ability to correctly fore-
cast changes in the direction of a series is more
important than obtaining accuracy by these quan-
titative measures.

Dorfman and McIntosh (1990) describe an ap-
plication of the Henriksson and Merton (HM) test
that compares alternative methods of forecasting
the price of an agricultural commodity. The null
hypothesis in the HM test is that the forecast con-
tains no informational value, that is, the forecast
predicts downturns correctly only 50% of the time,
and upturns correctly 50% of the time. In such a
case, a naive forecast would do just as well on
average. Comparing the confidence level at which
the null hypothesis is rejected between two aker-
native forecast models constitutes a test of their
forecast accuracy. Dorfman and McIntosh explain
the HM test method in some detail so is not re-
peated here. In this example, the neural network
forecasts 14 downturns, 12 of which are correct,

Table 1. Two Measures of Forecast
Performance: RMSE and Theil’s U, 1992-94

Neural Net Econometric

Root mean square error 13.674 19.186
Theil’s U“ 0.252 0.341

‘Theil’s U statistics is calculated as

“m”

while there are 19 actual downturns in the margin
series. Applying the HM test to the neural network
forecast gives a confidence value of 0,9972, which
suggests rejecting the null hypothesis at levels of
significance greater than 0.0028. According to the
HM test, however, the econometric model per-
forms marginally better, as it makes 24 downturn
forecasts, 18 of which are correct. Although the
econometric model medicts 6 downturns that do
not occur, its ability ~o accurately forecast 18 of 19
actual turning points still implies a higher confi-
dence level of 0.9996. Therefore. if the research
objective is to forecast changes in the direction of
a series, the econometric approach provides a
slight improvement over the purely data-based
neural network models Often. however. research-
ers are interested in estimates of structural param-
eters. In this case as well, an econometric approach
may prove more useful.

Table 2 presents parameter estimates from the
econometric model. In this table, t-tests are used to
evaluate each of the hypotheses derived from the
theoretical model above.

First, despite questions as to the functional form
of the RPS model, the significance of both the
price and total revenue terms fail to reject the com-
mon specification of the relative price model. Sec-
ond, the significance of the lagged margin value
indicates that the price spread adjusts slowly to-
ward its equilibrium level. Third, the coefficient on
the trend variables shows that the margin not only
is slow to adjust but is narrowing over time.
Fourth, the margin rises in wages—a result that is
consistent with prior expectations. Fifth, the price-
variance parameter supports Brorsen et al. (1985)
in showing that margins rise in price uncertainty.
Finallv. whether the U.S. market share variable.,
measures quality factors or oligopsony in the fresh
tomato market, the results in table 2 show that it is
a significant determinant of tomato margins.
Whereas increasing price spreads between the farm
and retail are commonly attributed entirely to re-
tailer concentration and market power (The Packer
Nov. 11, 1997), these results show that risk, in-
creased demand for marketing services, labor
costs, and rigidity in margin adjustment all explain
a statistically significant proportion of the differ-
ence in prices. Uncovering parameters that allow
such direct interpretation of the neural network re-
sults are difficult to derive analytically, but there
are two options for extracting similar information
indirectly.

First, because the weights of all the links in the
network are known, they may be used to calculate
the economic significance of each factor through
successive application of the chain rule (Refenes,
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Table 2. BOX-COXEstimates of Retail-Farm Price Smead in Fresh Tomatoes. 1980-91

Variable’ Estimate T-Ratiob Variable Estimate T-Ratio

m,-.,’

Pr
P“Y
t
p’ms”’
yuy
w
Jan.
Feb.
March

0.124
0,067
0.003

-0.003
0.024
0.119
0.072

-0.877
-0.842
-0.888

4.215*
5.369*
8.105*

-3.9141*
2.535*
3.501*
3.304*

-3.99 1*
-3.825*
-4.005”

April
May
June
July
Aug.
Sep.
Oct.
Nov.
Dec.
A

-0.889
–0.936
-0.903
-0.855
-0.802
-0.796
-0.846
-0.831
-0.805
0,730

-1.968
-2.199*
-2.040”
-1.848
-1.636
-1.614
-1.779
-1.789
-1.660

R2 0.877 D,W. 2,034

‘Variable definitions: m = retail-farm margiw p’ = retail price, y = shipment amount, t= time trend, ms”’ = U.S. market share,
~~ = five-yew movingst~nd~d&viatiOrrOfretai] price, w = wage rate per hour of workers in food and kindred irrchrstrim
Jan.–Dec. = monthly binary variables.
bAsterisk indicates significance at a 5% level.
CData sources: Retail prices and wages are from the Bureau of Labor Statistics (1997); all other data are from USDA Tomato
Statistics (1995).
‘This parameter and the monthly dummies have been scaled by a factor of 103 for presentation purposes.

Zapranis, and Francis 1994). Second, and perhaps
most valuable, holding each of the variables at
their mean and performing sensitivity analysis with
respect to a factor of interest provides a pattern of
response in the output variable. This approach is
both a useful and a practical way to conduct policy
analysis with a neural network.

For example, consider the effect of changing
U.S. market share on fresh tomato margins. Figure
2 shows that the margin, in fact, falls in the U.S.
market share, reaches a minimum, and only then
begins to rise. This result suggests one possible
source of the failed misspecification tests con-
ducted with the iinear econometric model above. In

fact, the correct form may indeed be quadratic in
the U.S. market share. It also indicates that the
results from the econometric model above may not,
in fact, be true for all values of the U.S, share.
Whereas margins may widen for increases in share
when the U.S. is already dominating the market, a
higher U.S. share when Mexico is the dominant
producer may cause margins to narrow.

Combining the forecast performance and ‘‘para-
metric” results using this method presents another
perspective on one issue of importance to Florida
tomato growers—the effect of Mexican imports on
the performance of the winter tomato market. First,
note from figure 1 that spikes in the margin tend to
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Figure 2. Sensitivity Analysis with Neural Network: U.S. Market Share and Margin Level
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coincide with periods of seasonal decline in Mexi-
can imports, suggesting that the market is less than
efficient and may indeed be affected by imperfect
competition. This result is supported by both the
estimated effect of U.S. market share in the econ-
ometric model and the behavior of margins in the
neural network model. Second, figure 1 shows that
the econometric model tends to consistently under-
state the severity of these margin spikes. To the
extent that existing policy models use econometric
methods, the cost borne by U.S. growers and con-
sumers is understated and policy recommendations
are similarly misinformed. In this respect, a neural
network approach to policy modeling would pro-
vide better measures of the economic significance,
rather than the statistical significance, of a per-
ceived problem.

Conclusions and Implications

This paper seeks to determine the factors that in-
fluence fresh tomato retail-farm margins and to
compare the ability to model these margins using
econometric and neural network methods. The set
of possible factors, explanatory variables in the
econometric model and inputs to the neural net-
work, is determined by developing a dynamic rela-
tive-price spread margin model subject to output
price uncertainty and imperfect competition.

The econometric model is estimated, and the
neural network is trained using monthly margin
observations from 1980 to 1991. Parameter esti-
mates from the econometric model fail to reject the
relative price spread (RPS) model as specified by
Wohlgenant and Mullen (1987). A nonlinear Box-
Cox specification of their RPS model supports in-
cluding considerations for packing cost, imperfect
competition, lagged margin adjustment, output
price variability, and trends in the retail-farm mar-
gin. The choice of a BOX-COXmodel is based upon
the results of several misspecification tests, each of
which reject both linear and nonlinear margin
models. Neural networks, however, are able to rep-
resent highly nonlinear relationships, so rejection
of the linear econometric model in particular sug-
gests that a neural network approach may be a
viable alternative in both forecasting and conduct-
ing policy analysis.

As an example of using a neural network for this
purpose, the study conducts sensitivity analysis by
fitting the retail-farm margin for various levels of
the U.S, market share. Whereas the econometric
model indicates that retail-farm margins widen
monotonically in U.S. market share, the neural net-
work model instead shows that the relationship is

convex in U.S. share. Therefore, it is not necessar-
ily true that maintaining a minimum U.S. market
share through trade protection or minimum import
prices is likely to cause margins to widen. In fact,
if the U.S, market share is below 85%, rising mar-
ket share is consistent with narrower retail-farm
margins. In addition to policy analysis, various
measures of forecast performance compare the
ability of the neural network and econometric
models to explain the margin data.

Specifically, model selection is made on the ba-
sis of mean square forecast error, Theil’s U statis-
tic, and the Henriksson-Merton (HM) test for the
ability to predict turning points. The neural net-
work outperforms the econometric model by the
first two criteria, but the models are indistinguish-
able according to the HM test. Comparing the neu-
ral network and econometric forecasts also shows
that the latter consistently understates the extent of
margin spikes—spikes that typically occur when
Mexican imports begin their seasonal decline.
Such errors are critical as it is during these periods
when complaints from grower groups typically oc-
cur. Understating the severity of changes in the
margin may both trivialize grower concerns and
misattribute shocks to factors other than U.S. mar-
ket power.

Further research in this area is needed to find
additional methods of deriving results from neural
network models that are comparable to parametric
results obtained from econometric models. Be-
cause most of the applied economic research using
neural networks concerns their power as forecast-
ing tools, comparatively little work has been done
in bringing general comparative static results to the
literature. As forecasting tools, neural networks
may play a valuable role in policy simulation and
welfare analysis, such as calculating lost economic
welfare from implementing some of the trade poli-
cies discussed herein. Additional research on alter-
native network architectures may also be of inter-
est in testing the sensitivity of the conclusions to
network design.
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Notes

1. In 1996, California growers produced 31% of
U.S. tomato output and Florida growers 39% (Lu-

cier et al. 1996). California production occurs
mainly from May to October, while the Florida
deal extends from October to late April. Growers
in both regions, however, are concerned over the
possible impact on their share of the retail tomato
dollar if Mexican growers have indeed violated the
November 1996 suspension agreement, as has been
alleged.
2. While a constant rate of interest is clearly a
strong assumption, in the empirical model to fol-
low scaling all arguments by the same value has no
effect on the estimated parameters.
3. As a reviewer suggests, the summer and winter
fresh tomato markets may differ significantly be-
cause the summer market is supplied by California
and Baja-Mexico, while the winter is supplied by
Florida and Sinaloa-Mexico. Including monthly
dummy variables will account for differences in
the average margin by month and season, but this
model maintains that the marginal effects of each
expkmatoty variable are constant across seasons. Al-
though the sources of supply differ by season, behav-
ior of the marketing channel does not necessarily
have to follow because the set of buyers and buying
practices remain the same throughout the year.
4. In recent years, consumers have begun to regard
Mexican tomatoes as a higher quality product, so a
high U.S. share may suggest that the average quality
on the market is relatively low. As Parker and Zil-
berman (1993) show, quality is an important deter-
minant of the retail-farm margin, but it is especially
difficult to measure. Including a market share vari-
able may also capture some of the impact of in-
creased imports of greenhouse and hydroponic toma-
toes. Imports of these products, up 87?L0in the first
eight months of 1996, sell for between two and three
times the price of domestically grown field tomatoes
(Lucier et al. 1996).
5. Beltratti, Margarita, and Terna (1996) describe the
process of evaluating the experimentation results in
terms of’ ‘performance evaluation. . . based on some
statistical indicator such as the coefficient of deter-
mination computed over the targets and the outputs
of the network” (p. 16), When this is done in-sample,
it is a measure of the training performance or fit of
the network, whereas when it is done out-of-sample,
it is an evaluation of the ability of the model to gen-
eralize, or to forecast. In our research, we use the
mean square error (MSE) to similar purpose.
6. The calculated F-statistics are FI,120 = 11.511,
and F2,119 = 12.714, respectively. The critical F sta-
tistics are 3,92 and 3.07 at a 570 level.
7. The Pe test consists of estimating a linear margin
model that also includes a variable representing the
difference between the fitted margin values
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from a log-log regression and the log of the fitted
margin values from the linear regression, If the
coefficient on this variable is significantly different
from zero, then the linear model is rejected. A test
of the log-log model uses the reverse of this pro-
cedure, where the included variable consists of the
difference between the fitted margins from a linear
regression and exp(log$). The t-ratios on these
variables are 1.97 and 2.06, respectively. An
anonymous reviewer points out that transforming
fitted log values to fitted level values in this man-
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ner induces bias in the predicted value. However,
Goldberger (1968) shows that “the alternative es-
timates are virtually identical. . . no payoff appears
to the use of the minimum variance unbiased esti-
mators rather than their approximate counterparts”
(p. 471), Furthermore, this bias is confined to the
intercept of the regression, so it does not affect the
parameter of interest in the Pe test.
8. In fact, the difference in the performance of the
two models is not statistically significant at any
reasonable level of confidence.


