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Abstract 

Ethiopia’s smallholder farmers are prone to recurring and unanticipated shocks caused by weather and climate 

related hazards that cause substantial welfare loss. Recently, the concept and measure of household resilience 

capacity in poorer countries and its role to food security has been given much attention by scholars and 

international organizations that proposed an empirical measure of resilience capacity from a food security 

perspective. By using four rounds of household level panel data collected between 2012 and 2019, this paper 

aims to identify the determinants of household resilience to food insecurity and assess the role played by 

technology adoption on improving household resilience and thus food security. The household resilience index is 

estimated by combining factor analysis and structural equation modeling. While addressing the endogeneity 

problem, we estimate the causal link between resilience capacity index and food security indicators with 

technology adoption and shocks. The results reveal that assets take the highest share in building the resilience 

index. We find that adoption is significantly and positively associated with the resilience index. The higher the 

initial level of the resilience score the higher the current level of resilience and thus food security status. Drought 

shock significantly reduces the growth of the resilience index. The findings also reveal the level of adoption does 

not shield households from the negative effects of shocks. Based on our research findings we recommend that 

policy interventions should exert much effort not only in promoting technology adoption but also in building 

household resilience accompanied by improved infrastructure for smallholders. 
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Abstract 

Ethiopia’s smallholder farmers are prone to recurring and unanticipated shocks caused by weather and climate 

related hazards that cause substantial welfare loss. Recently, the concept and measure of household resilience 

capacity in poorer countries and its role to food security has been given much attention by scholars and 

international organizations that proposed an empirical measure of resilience capacity from a food security 

perspective. By using four rounds of household level panel data collected between 2012 and 2019, this paper 

aims to identify the determinants of household resilience to food insecurity and assess the role played by 

technology adoption on improving household resilience and thus food security. The household resilience index is 

estimated by combining factor analysis and structural equation modeling. While addressing the endogeneity 

problem, we estimate the causal link between resilience capacity index and food security indicators with 

technology adoption and shocks. The results reveal that assets take the highest share in building the resilience 

index. We find that adoption is significantly and positively associated with the resilience index. The higher the 

initial level of the resilience score the higher the current level of resilience and thus food security status. Drought 

shock significantly reduces the growth of the resilience index. The findings also reveal the level of adoption does 

not shield households from the negative effects of shocks. Based on our research findings we recommend that 

policy interventions should exert much effort not only in promoting technology adoption but also in building 

household resilience accompanied by improved infrastructure for smallholders. 

  



 

1 Introduction 

Households in developing countries particularly smallholder farmers are one of the most 

vulnerable social groups to shocks caused by changes in weather patterns, climatic, economic, 

and human-induced shocks (Dercon, 2004). As it is in most of African countries, smallholder 

farmers in Ethiopia are disproportionately affected by weather-related shocks such as drought, 

flooding as well as several other human-induced shocks including conflict /political 

instability, animal diseases, high input prices, and imperfect product market (Carter et al., 

2007). The United Nations Framework Convention on Climate Change (UNFCCC, 2014) 

categorized Ethiopia among the top most vulnerable countries to the adverse impacts of 

climate variability in sub-Saharan Africa. The effects of shocks, even small in magnitude, 

may have persistent negative effects because rural households in the country have limited 

capacity and resources to absorb their adverse consequences. According to (Carter et al., 

2007), for instance, every Ethiopian rural household was exposed to drought at least once in 

the previous five years. The extent of harm, however, varies from household to household 

depending on the different household or community characteristics. Studies indicate that the 

poorest households are the most affected and often struggle to cope with shocks (Dercon, 

2004; Dercon et al., 2005). This group of households mostly practice costly and harmful 

coping strategies such as desperate sales that in turn potentially risked them entering the 

poverty trap.  

The concept of economic resilience which is defined as “the household’s ability to absorb the 

negative effects of adverse shocks” (Adger, 2000) has become an important research and 

policy issue especially in developing countries where a significant proportion of their 

population are vulnerable. Household resilience capacity is hypothesized to reduce the 

adverse effects of idiosyncratic and covariate shocks that the households may experience. 

Resilience is a multidimensional concept determined by several indicator variables known as 

resilience pillars. Investment in agricultural technologies can be one of the important 

determinants of resilience capacity that may have a considerable role in building resilience 

and thus reducing food insecurity. The use of agricultural technologies boosts agricultural 

productivity and yield thereby improving sales income that also ensures higher food 

consumption (Shiferaw et al., 2014), leading to an overall improvement of household welfare 

and vulnerability to adverse shocks (Kassie et al., 2011).  

The measurement of resilience and its determinants has not been adequately explored partly as 

the field is relatively new in the context of economic resilience. The measurement of 



 

resilience in the food security context is first explored by Alinovi et al. (2008, 2010). The 

authors estimated the resilience index by using a two stage factor analysis where in the first 

stage the resilience pillars are estimated using observable indicator variables and in the second 

stage they use the predicted values of the pillars to estimate the resilience index.  The authors 

use cross sectional data and also shocks are not explicitly explored in their model. Recently, 

others attempted to assess the determinants of the change in welfare over time using short 

term panel data (Vaitla et al., 2012). Using the FAO RIMA II approach (d’Errico and Pietrelli, 

2017; FAO, 2018) estimated the resilience index and attempted to explore its determinants 

over time as well as its role in reducing the negative impact of shocks and thereby improve 

food security indicators. The RIMA II approach is a resilience measurement approach 

proposed by the FAO Resilience Measurement Technical Working Group (RMTWG) (FAO, 

2018) which is evolved from the RIMA I approach applied by Alinovi et al. (2010). The 

RMTWG also defined resilience as “the ability of a household to keep with a certain level of 

well-being (i.e. being food secure) by withstanding shocks and stresses”. 

None of these authors, however, explicitly considered the role adoption of agricultural 

technologies may play in building the resilience capacity and thus improve the food security 

indicators and also in reducing the adverse effects of shocks. This paper explores the link 

between household welfare represented by resilience capacity index (RCI), household dietary 

diversity (HDD), and food consumption with the adoption of chemical fertilizer and improved 

seed including their joint adoption and shocks (drought and flooding) over time. Furthermore, 

we analyzed the differential effect between adoption and shocks on the outcome variables. 

The two technologies are chosen mainly because of their complementarity and are also often 

recommended to be used as packages (Dorfman, 1996; Marra et al., 2003). The analysis 

allows us to measure the level of resilience capacity and its determinants as well as how 

livelihoods change over time that assists public intervention as well as gives insights for 

further research. Moreover, the study highlights the determinants of resilience and how is 

household resilience composed. This article is organized into five sections, including the 

introduction. The next section provides a general concept of resilience and its measure, while 

section three presents the methodology and data sources. Section four presents the statistical 

and econometric results and discussion of the main outputs. The conclusions and 

recommendations of the study are presented in section five.   



 

2 The Concept and Measure of Resilience and Shocks  

2.1 The Concept and Measure of Resilience 

Recently researchers and humanitarian agencies have given much emphasis on the concept of 

resilience and its measure, mainly because of the increase in the frequency and severity of 

adverse shocks and exposure of vulnerable households (Barrett and Constas, 2014, Hallegatte, 

2014). Thus, several attempts have been made to define and measure economic resilience. 

However, both the definitions and methodology used to measure is heterogeneous which 

raises the question of whether they measure one identical concept with the different methods 

used. In terms of the definition of resilience, according to Ellis (1998) it is defined as “the 

ability of a system to absorb change”. Similarly, Adger (2000) defined resilience as “the 

ability of groups or communities to cope with external stresses and disturbances as a result of 

social, political and environmental change”. But the most recent definition of resilience in 

food security context is from the FAO by Alinovi et al. (2008). According to them resilience 

is the capacity of households to ensure that adverse shocks and stressors do not have long-

lasting development consequences (Alinovi et al., 2010, 2008; Barrett and Constas, 2014; 

FAO, 2018). With regard the empirical estimation of the resilience index, the FAO Resilience 

Measurement Technical Working Group (RMTWG) (FAO, 2018) proposed an advanced 

methodology the Resilience Index Measurement and Analysis (RIMA II) evolved from the 

RIMA I (Alinovi et al., 2010). The RMTWG also defined resilience as “the ability of a 

household to keep with a certain level of well-being (i.e. being food secure) by withstanding 

shocks and stresses”. Other alternative approaches were also proposed by (Frankenberger et 

al., 2012). As we aim to measure the resilience capacity of households to food insecurity and 

explore its effect on future household food security in the face of adverse shocks along with 

other determinants of resilience including technology adoption. The estimation of resilience 

capacity in this paper is estimated by employing the RIMA II approach.  

The concept of resilience considers both ex-ante actions that reduce the risk of households 

becoming food insecure and ex-post actions that help households cope after a crisis occurs 

indicating that the analysis of resilience requires the use of panel data. The use of panel data 

helps us to capture the change in household welfare and the factors determining the change 

over time. Resilience is not also easily observed or is considered as latent that its measure 

requiring the use of several indicator variables called resilience pillars. These resilience pillars 

are unobservable themselves. Thus, resilience is created using composite indices which are 

computed by combining the important indicator variables and create the resilience scores 

(Krishnakumar, 2007). Note that the measure of resilience and vulnerability is quite different 



 

where vulnerability is measured using a single indicator variable such as income or 

consumption expenditure that shows the susceptibility of people to damage when exposed to 

particular adverse shocks (Biru et al., 2020). Resilience, on the other hand, is a 

multidimensional concept measured by several indicator variables. Regarding the number of 

components building resilience, the RMTWG  listed nine resilience pillars used to construct 

the household resilience index (FAO, 2018). Seven out of the nine dimensions fall under the 

physical category which includes: income and food access; access to basic services; assets; 

enabling institutional environment; climate change; agricultural practices and technology; and 

social safety nets. The remaining two dimensions represent the capacity category and include 

sensitivity and adaptive capacity. In this study, four out of the nine resilience pillars are 

considered (see Appendix Table A1). Agricultural technology and experience to shocks, 

however, are not considered in the construction of the resilience index in our case as these 

variables are the main covariates of our regression models. 

Households may experience shocks that have a substantial adverse impact on their regular 

consumption as well as welfare. When a shock hits, households employ several coping 

strategies, mainly consumption smoothing, asset smoothing, and adoption of new livelihood 

strategies such as the adoption of improved seed, in our case. Household resilience capacity 

which is constituted from the different pillars also contributes to absorb and cope with shocks 

and helps households to bounce back to their previous state of well-being. Thus, the effects of 

shocks results in the long term increase or decrease in food security. This leads to the 

aftershock state level of food security which can also be obtained using the different resilience 

pillars or time variant and time invariant household characteristics.  In this chapter, we 

adopted the FAO RIMA II approach to estimate the resilience capacity score. We aim to 

measure the resilience capacity of households to food insecurity and explore its effect on 

future household food security in the face of adverse shocks along with other important 

determinants of resilience including technology adoption. The estimation of resilience 

capacity in this paper is estimated by employing the RIMA II approach. 

2.2 Estimation of Resilience 

To estimate the resilience score, we employed a two-step procedure adopted from the RIMA 

II approach (FAO, 2018). In the first stage, the latent variable representing each pillar is 

estimated separately using the different observable variables by employing factor analysis 

(FA), and in the second stage Structural Equation Modeling -Multiple Indicators Multiple 

Cause (SEM-MIMIC) model is used to estimate the RCI by using the predicted values of each 



 

of the four pillars. In the MIMIC model, the two variables representing food security 

household HDD and food consumption are assumed to be the achievements of resilience 

capacity and are observable. Figure 4.1 presents the path diagram of the resilience of the 

household model. The circles represent latent variables and the rectangles represent the 

observable variables.  

The explanation and estimation of the four pillars2 and their respective observable indicator 

variables used as well as the estimation of the RCI is presented as follows:  

Access to Basic Services (ABS): access to basic services represent the ability of a household to 

make basic needs, and access and use of basic public services; includes, access to 

infrastructure, health centers, periodic markets, agricultural extension services, and schools. 

Important public services including the source of drinking water; the main source of lighting; 

the proximity of a household (minutes taken using the usual mode of transportation) from the 

closest hospital, periodic market, agricultural extension center, woreda office were included 

under this pillar. With regard to its estimation, standard methods of factor analysis assume 

that the variables are continuous and follow a multivariate normal distribution. In this case, 

the variables are mixed (i.e. continuous and dummy), and using the simple factor analysis 

gives biased estimates. To solve this problem, we use a user written command (polychoric) to 

estimate the factor scores. With regard to the sign of the indicators variables, as expected, 

source of lighting and the main toilet facility as well as source of quality water have a positive 

correlation with the first factor. On the other hand, the distance of the household from the 

periodic market and agricultural extension office is negatively correlated with the first factor. 

Therefore, the first factor seems to have the expected signs with the original variables and 

appears to be the one that explains access to basic services best. As a result, we retained the 

first factor in predicting the ABS latent variable.  

Assets (AST): the assets ownership pillar comprises of both durable and non-durable assets 

that reflect the wealth status of the household. The observable variables used to represent 

assets include the number of habitable rooms (excluding kitchen and toilet), type of roof 

material, agricultural land owned (ha), and livestock ownership in Tropical Livestock Unit 

(TLU). The entire indicator variables used to represent assets is expected to have a positive 

association with the latent variable measuring the asset component of resilience. This is true 

with the first factor where all the variables are directly related with a factor loading of greater 

                                                            
2
 All observed variables used to estimate the pillars are listed in the Appendix along with their Eigen values and 

factor loadings  



 

than 0.4 following the Kasier criterion. As a result the first factor is retained and used for the 

estimation of the resilience index.  

Social Safety Nets (SSN): social safety is the measure of the household’s ability to get 

assistance from institutions as well as help from relatives and friends in case of need. SSN 

helps households  to satisfy their basic needs and household consumption and this resilience to 

food insecurity (Andrews et al., 2018). Informal institutions which are comprised of strategies 

used for risk sharing involving social networks, norms, trust, and reciprocities such as credit 

networks, food, and labor sharing networks play an important role in helping households in 

times of shock in Ethiopia (Dejene, 2010). These arrangements help communities from 

adverse livelihood shocks and uncertainties. According to Dejene (2010), local informal 

institutions in Ethiopia are known to play important roles in assisting the poor and food 

insecure. In our case, social safety net is represented by membership in institutions such as 

credit, mahber, iqub and idirr. The first factor has the expected signs with the latent variable 

measuring SSN. Therefore, we retained the first factor in predicting this pillar.  

Adaptive Capacity (ADC): adaptive capacity is the ability of a household to adapt to a new 

situation and develop new strategies of livelihood (Folke, 2006) cited by (Alinovi et al., 2010) 

which is linked with the existence of institutions and networks that enable the household to 

acquire knowledge or learn so that they are able to adjust while changes are taking place, so as 

to retain the same livelihood functions. According to Gallopín (2006), the capacity of 

adapting to perturbations and shocks is strictly connected with being able to learn from 

technological progress. Variables representing ADC component are literacy of the household 

head (read and write), whether the household has another source of income/remittance as well 

as the irrigation dummy representing whether the household uses irrigation technology. Other 

technology adoption-related variables that may be relevant to this pillar are not included here 

as our main objective is to assess the causal link between technology adoption and shocks 

with resilience to food insecurity. Other variables such as the demographic structure of the 

household affect adaptive capacity (Vincent, 2007), but as they are included as explanatory 

variables in our regression models, they are excluded from use in the estimation of RCI. The 

eigenvalues and the factor loadings of the first stage resilience estimation (FA) is reported in 

Table A1 of the Appendix in this chapter. 

As depicted in Figure 4.1 the MIMIC model has two components (Bollen et al., 2010). The 

first component causes (pillars) and the RCI (latent) and in the second component the RCI in 

turn determines food security indicator variables represented by HDD and food consumption 



 

which are observable. In this model food security is represented by real per capita3 food 

consumption expenditure and HDD. 

Source: adapted from (FAO, 2018) 

Figure 1 Path diagram of the RCI estimation of a household model 

FA assumes that the residual errors are uncorrelated with each other, whereas the SEM-

MIMIC approach relaxes this assumption and allows such correlation.  The RCI  is the 

predicted score of the four pillars (Asset, ABS, SSN and ADC) MIMIC model. It assumes that 

all the estimated components are normally distributed with mean 0 and variance 1. The 

resilience scores created using the MIMIC model, however, are unit less. Therefore, to make 

interpretation of the regression coefficients simple, we rescale into values ranging from 0 to 1. 

The transformation is executed using the min-max scaling based on the simple formula:  

(
𝑥𝑖

∗ = (𝑥 − 𝑥𝑚𝑖𝑛)
𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛

⁄ ).  
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The food security indicator variables employed here are HDD and real per capita food 

consumption expenditure.  The two components of the MIMIC model, namely the 

measurement component Eq. (1) - indicate the link between RCI and the food security 

indicators and the structural component Eq. (2), which links the estimated pillars to the RCI. 

Empirically, the relationship can be written as: 

[
𝐹𝑜𝑜𝑑 𝐸𝑥𝑝𝑒𝑛𝑑𝑖𝑡𝑢𝑟𝑒

𝐻𝑜𝑢𝑠𝑒ℎ𝑜𝑙𝑑 𝐷𝑖𝑒𝑡𝑎𝑟𝑦 𝐷𝑖𝑣𝑒𝑟𝑠𝑖𝑡𝑦
] = [𝛾1, 𝛾2][𝑅𝐶𝐼] + ⌈𝜀1, 𝜀2⌉        (1) 

[𝑅𝐶𝐼] = [𝑤𝐴𝐵𝑆, 𝑤𝐴𝑆𝑇𝑤𝑆𝑆𝑁 , 𝑤𝐴𝐶] + [

𝐴𝑆𝑇
𝐴𝐵𝑆
𝐴𝐶

𝑆𝑆𝑁

] + [𝜀3]         (2) 

Where Where, RCI=resilience capacity index; ABS =access to basic services; AST= asset 

index; SSN=social safety nets; and ADC= adaptive capacity, wk the weight for the k
th

 block in 

defining resilience; and ei=error term. There, the RCIit is the predicted score of the five pillars 

mentioned above using SEM, considering that all the estimated components are normally 

distributed with mean 0 and variance 1. The MIMIC model does not solve endogeneity issues 

if it is detected in the model. Therefore, this analysis using the MIMIC approach is more of 

descriptive showing the relationship between resilience and its pillars.  In this paper, the 

causal inference is dealt in the subsequent regression analysis. 

2.3  The Occurrence of Shocks  

Shocks: in this sub-section, we describe the types of shocks reported in our sample 

households. Shocks are defined as adverse events that lead a substantial loss of household 

income, a reduction in consumption, and/or a loss of productive assets (Dercon et al., 2005). 

Household resilience capacity can be substantially reduced by shocks (Dercon, 2004; Dercon 

et al., 2005; Hoddinott, 2006) and this welfare deterioration along with its other determinants 

can be measured using panel datasets. Recurrent drought is one of the most common causes of 

crop failure and food shortages in the SSA, particularly Ethiopia (Shiferaw et al., 2014). 

Regarding the types of shock data, respondents were asked if shock events have happened in 

the past five years and if those shocks lead the household to a substantial loss or substantial 

reduction in their food and regular non-food consumption. In terms of shock categories, 

shocks are divided into a number of broad categories such as natural, market, agricultural, 

political, criminal shocks. The most common types of shocks reported in our sample 

households are drought, flooding, agricultural production and marketing related shocks. Very 

few households reported the same type of shock that occurred more than once in the previous 



 

five years. Regarding the proportion of households reported shocks, using the pooled data of 

2014, 2016 and 2019 about 30% of the sample households reported to have experienced at 

least one type of shock. Figure 2 presents the different types of shocks reported by the sample 

households using the pooled data of 2014, 2016 and 2019. It can be seen that drought and 

animal death are the most reported shocks (19%) followed by the death of working household 

member (12%) and illness of working HH members (11.5%).  

 

 

Figure 2 Households reporting adverse shocks between 2014 and 2019 

 

The ability of households to withstand shocks or stresses depends on the available livelihood 

options and on how well households are able to handle risks. Figure 3 reports the most 

important coping strategies households used to cope the reported shocks. The majority (47%) 

of the households did nothing to cope with the shocks and about 23% and 20% of those 

affected by adverse shocks reported that they have used own monetary saving and sale of 

livestock, respectively. Other coping strategies that are reported are selling of assets, 

borrowing and postponing the purchase of assets.  

Source: Own computation (DFG-Ethiopia data)
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Figure 3 Households reporting coping strategies between 2014 and 2019   

Source: Own computation (DFG-Ethiopia data)
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3 Methodology and Data 

3.1 Data and study area 

 

A household-level panel data collected in four rounds collected in 2012, 2014, 2016 and 2019 

are used in this study. The household survey is collected in a random sample of 373 farm 

households from 29 Kebeles
4
 selected in fifteen woredas (districts) of Southwestern Ethiopia, 

each differing in their climatic and agro-ecological characteristics (see, Biru et al., 2020). This 

is a follow up survey from which the sample woredas are drawn from a nationally 

representative baseline survey conducted in 2012 by the International Food Policy Research 

Institute (IFPRI) and the Agricultural Transformation Agency (ATA) of Ethiopia. Our follow-

up surveys conducted in 2014, 2016 and 2019 considering the South Western parts of 

Ethiopia covering Oromia and SNNP regions of Ethiopia. Because of logistical and budget 

reasons, the sample woredas were limited to those baseline Woredas located in the specified 

region.  

The data collection was carried out in September for the baseline survey and between March 

and June for the last consecutive three rounds. The household surveys were carried out using 

computer-assisted personal interviewing (CAPI) that ensured superior data quality through 

built-in consistency checks and other correction methods. The household level questionnaire 

collects information on demographic characteristics, asset ownership, technology and input 

use, consumption, production, health, risk and ambiguity. Moreover, community level data 

including access to infrastructure such the household’s proximity to the nearest dry weather 

road, clean water, hospital, clinic, agricultural extension offices. The sample households were 

also asked to report in the previous three years if they have experienced any type of adverse 

shock that lead to a substantial welfare loss. Regarding tracking the sample households over 

the four long rounds was quite good. The attrition rate is 0% between 2012 and 2014, 2.5% 

between 2014 and 2016, (4%), and 2% between 2016 and 2019. 

3.2 Conceptual Framework  

 

Households may face both endogenous and exogenous shocks. However, we assumed the 

shocks considered here as exogenous that are theoretically beyond the control of the farmer. 

Further, we assumed that the shocks themselves are not inter-correlated. The effect of shocks 

on welfare can, therefore, be estimated using single equation models with the assumption that 

welfare indicators and exposure to shocks are linearly associated. However, estimating the 
                                                            
4
 The smallest administrative unit of Ethiopia  



 

causal link between adoption and the welfare indicator variables using single equation models 

could lead to biased estimates because of the potential presence of endogeneity problems 

caused by unobserved heterogeneities (Tittonell et al., 2007). 

Farmers’ adoption and non-adoption decision is related to the expected net returns of adoption 

or non-adoption. A household adopts a technology set that maximizes the expected profit, 

where its returns are also dependent on several factors such as factor markets and the 

production function of the specific technology (Feder et al., 1985). In developing countries, 

household production and consumption decisions are non-separable that needs to be 

considered in our impact analysis. Smallholders in Ethiopia operate under a thin or missing 

factor and product market as well as households production and consumption decisions are 

non-separable. With this regard, to investigate the welfare impact of adoption, we apply a 

non-separable recursive household model. For simple conceptualization, suppose that A 

represents adoption (chemical fertilizer and improved seed including joint adoption), the 

adoption equation can be written as: 

A=f(X,L,Z,V)      (3) 

Where X represents variables determining the household’s ability to adopt the technology 

choice sets, L is household demographic characteristics including labour endowment, Z is 

agro-ecological characteristics and V represents community characteristics.  

The next step is linking technology adoption with the welfare indicators. Technology adoption 

improves resilience capacity and thus food security. Here we formulate the household welfare 

equation in a utility framework such that  

W=f(A, S, L,V)    (4) 

Where W represents household welfare (i.e. RCI, HDD, food consumption) S represents 

shocks (drought and flooding) and other variables are as previously defined. We hypothesized 

that the adoption of the two inputs accompanied with other complementary soil and water 

conservation practices increases the level of food security for adopters and potentially reduces 

the negative impacts of shocks.   



 

3.3 Empirical Approach 

Estimation of Multiple Technology Adoption 

To assess the effects of adoption and shocks on household resilience to food insecurity and 

the role adoption may play in averting the adverse effects of these shocks, we first estimate 

the adoption equation of two commonly practiced complementary inputs: chemical fertilizer 

and improved seed. Starting from Eq. (3) in our conceptual framework we specify the 

following: 

𝐴𝑖𝑡 = 𝛼 + 𝛽1𝑥𝑖𝑡 + 𝛽3𝐻𝐻𝑖𝑡 + 𝛽4𝑉𝑖𝑡 + 𝛽5𝑇𝑡 +  Ɛ𝑖𝑡     (5) 

𝑥𝑖𝑡  represents variables determining technology adoption,  HHit household characteristics, Vit 

represents spatial or agro-ecological characteristics, Tt denotes year dummy.  Ɛ𝑖𝑡 is a 

compound error term consisting of unobserved time-invariant factors, ci, and unobserved-time 

variant shocks, vit, that affect technology adoption. In estimating Eq. (5) we used MNL model 

and include all exogenous variables, year and community dummies, as well as the means of 

time-varying variables to control for unobserved heterogeneity. This correlated random effects 

model relaxes the strong assumption of no correlation in a standard random-effects model 

(Wooldridge, 2010).  

Estimating the Impact of Adoption and Shocks on the Resilience Index 

The impact analysis of technology adoption on the RCI and food security indicators and its 

role in reducing the adverse impact of idiosyncratic and covariate shocks is the main objective 

this study. As outlined in the conceptual framework, we can formulate the following 

simplified relationship:  

𝑊𝑖𝑡 = ƞ𝐴𝑖𝑡 + 𝛿𝑆𝑖𝑡 + 𝛽′𝐻𝐻𝑖𝑡 + 𝛽4𝑉𝑖𝑡 + 𝛽5𝑇𝑡 + 𝛳(𝐴𝑖𝑡 ∗ 𝑆𝑖𝑡) + 𝛼𝑖
∗ + 𝜀𝑖𝑡   (6) 

 

Where 𝑊𝑖𝑡 welfare indicator (RCI, HDD and food consumption), 𝐴𝑖𝑡 technology adoption 

sets, 𝑆𝑖𝑡 shock, 𝑋𝑖𝑡 is the community and household level socio-economic characteristics, 𝛼𝑖
∗ 

household fixed effects and 𝜀𝑖𝑡 the idiosyncratic error term. 𝛳 captures the differential effect 

of technology adoption and shocks. This model suffers from three potential sources of 

endogeneity. The first potential source of endogeneity comes from unobserved heterogeneity. 

Time-invariant household characteristics which are unobserved may be correlated both with 

adoption and with our welfare measure. The second potential source of endogeneity is 

selection bias, where some households, depending on wealth status, risk preference, and 



 

ability/skill are tend to adopt new technology while also having a higher welfare level. Third, 

the current resilience score and food security indicator variables may heavily depend on past 

resilience scores and the food security indicator variables causing omitted variable bias. As a 

result, the inclusion of a lagged dependent variable and also lagged values of some of the 

independent variables, in our model, is theoretically required (Wooldridge, 2012). 

Empirically, Eq.(6) can be re-written as follows: 

𝑊𝑖𝑡 = 𝜌𝑊𝑖,𝑡−1 + ƞ𝐴𝑖𝑡 + 𝛿𝑆𝑖𝑡 + 𝛽′𝐻𝐻𝑖𝑡 + 𝛽4𝑉𝑖𝑡 + 𝛽5𝑇𝑡 + 𝛳(𝐴𝑖𝑡 ∗ 𝑆𝑖𝑡) + 𝛼𝑖
∗ + 𝜀𝑖𝑡           (7) 

𝑊𝑖,𝑡−1 is the lagged dependent variable (first-order lag), other variables are as defined in 

Eq.(6). This type of model can be estimated by first differencing within the transformation, as 

in one-way fixed effects models, or by taking first. This type of econometric relationships is 

estimated using dynamic panel data (DPD) models. Although the use of lagged dependent 

variables in DPD models allow for partial adjustment of the model, it causes a bias arising 

from the demeaning process that subtracts an individual’s mean values of the dependent and 

each of the independent variables including the lagged dependent variable from each of the 

respective variable creating a correlation between regressor and error according to Nickell 

(1981). To resolve this issue, one prominent econometric model has been proposed by (Hsiao 

and Anderson, 1981) and extended by (Arellano and Bond, 1991). This model is commonly 

known as growth model (Dercon et al., 2009) and can be estimated using the first difference 

Generalized Method of Moments(GMM) model estimation. The difference GMM model uses 

the difference between the outcome variables at period t and t-1 as the dependent variable for 

the period. The GMM estimates of the (Arellano and Bond, 1991) model can be written as:  

∆𝑊𝑖𝑡 = 𝜌∆𝑦𝑊𝑖,𝑡−1 + ∆𝐴𝑖𝑡 + ∆𝑆𝑖𝑡 + 𝛽′∆𝑋𝑖𝑡 + 𝛳∆(𝐴𝑖𝑡 ∗ 𝑆𝑖𝑡) + ∆𝜀𝑖𝑡    (8) 

Where ∆ is the change in the variables from the baseline over time, and the rest is as 

previously defined. The model is designed for cases in which is at least equal to 3 and the 

number of observations is large (small 𝑇 and large 𝑁) (Arellano and Bond, 1991). 

Furthermore, the GMM estimation all the independent variables that are assumed to be 

endogenous and the lagged values of the outcome variable are instrumented using lagged 

values of the same variable. Compared to RE and FE models, AB estimation weaken the 

exogeneity assumption for a subset of regressors, thereby providing consistent estimates even 

if reverse causality is present. 

In summary, in estimating the impact of shocks and technology choice sets including their 

interaction, first we estimate the adoption equation using MNL model as previously outlined. 



 

Secondly, we execute the predicted probabilities from the MNL model. Finally, we estimate 

the welfare equation using the GMM growth model as well as IV model by instrumenting 

with their lagged values of the RCI and the predicted values of adoption from the MNL 

model. Similarly, the two other outcome variables representing food security: food 

consumption and HDD are estimated using the same procedure. In this case we hypothesized 

that the lagged values of the RCI influences the current food security status of a household. 

4 Results and Discussion 

This section presents descriptive results of the outcome variables (RCI, HDD, food 

consumption) and the covariates both the endogenous (adoption dummies) and the exogenous 

variables included in the regression model. We estimated the RCI by combining the FA and 

SEM-MIMIC model. In the MIMIC model HDD and food consumption are considered to be 

influenced by the resilience capacity and are directly observable and indirectly associated with 

the remaining four pillars (FAO, 2018). 

4.1 Descriptive Results 

Figure 4 shows the radar graph for the resilience index and its pillars by the adoption status of 

households (i.e. single or joint adoption of chemical fertilizer and improved seed) including 

non-adopters where none of the technologies or their combinations is adopted. The analysis of 

the resilience score and its components for the different periods also reveals that the 

importance of the drivers is dynamic throughout the survey rounds. It is shown that 

households that adopted only improved seed appear to have the highest RCI even higher than 

those who adopted both technologies jointly. But this is only a descriptive result that does not 

necessarily show a causal link. It is shown that non-adopters scored less in all of the pillars 

and RCI except SSN and ADC where non-adopters have a higher score compared with the 

fertilizer-only adopters.  



 

 

 

Figure 1 Radar graph of the resilience pillars by adoption status of households 

 

 Figure 5 shows the Kernel density plot used to visualize the distribution of the resilience 

index over the four survey rounds. The figure shows a slight difference in the resilience 

distribution between the first three rounds and the last round (2019). However, there is no 

clear difference in the means of the resilience index between the first three rounds. 

 

Figure 2 Kernel density distribution of resilience index by survey (2012-2019) 
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The SEM-MIMIC results presented in Table 1 shows that all the five pillars are statistically 

significant determinants of the RCI. This table also shows that the two most important drivers 

of resilience capacity are asset ownership (AST) and adaptive capacity (ADC). The estimated 

value of RCI is unitless. Therefore, a scale is defined by constraining the food consumption 

variable loading (𝛾1) to be 1. 

Table 1 Estimation of RCI using MIMIC: coefficients of structural and measurement 

components 

 Coeff.  sig  

Structural     

Assets (AST) 0.19 *** (0.02) 

Access to Basic Services (ABS) 0.12    *** (0.03) 

Social Safety Nets (SSN) 0.05    *** (0.014) 

Adaptive Capacity (ADC) 0.06    *** (0.015) 

Measurement    

Per capita  food consumption expenditure (log) 1   

Household dietary diversity (HDD) 2.60 *** (.04) 

χ2 11.94   

P-value 0.007   

Obesrvations  1164   

Table 2 presents the differences in the household characteristics by the resilience index and its 

pillars. The t-statistics for the pair-wise comparison among the means of the independent 

variables including shock categories and input combinations are also presented in this table. 

The pairwise comparison and the t-statistics with the technology choice sets is always 

compared with the non-adopters.  

In terms of differences by adoption status, adopters who used at least one of the technologies 

have a statistically significantly higher resilience score compared to non-adopters. The same 

applies to the pillars where non-adopters have lower mean scores all the four pillars compared 

with adopters. Regarding food consumption and dietary diversity, adopters appear to have a 

higher mean per capita food consumption and HDD.  

With regard to experience to shocks, households have no statistically significant differences in 

the resilience score and its pillars except in SNN score where households who did not report 

any shock have a higher SSN compared with those who have experienced at least one type of 

shocks during the study period. Specifically, there is no statistical difference in the resilience 

index and its pillars between households who reported drought and those who did not report. 

Concerning household headship, male-headed households have a higher and statistically 



 

significant resilience index compared with female-headed households. Male-headed 

households have higher and statistically significant scores in all of the resilience pillars but 

ABS compared with female-headed households. Regarding changes on the resilience score 

over time, we compared the mean levels of the resilience index and its score with that of the 

baseline (2012). The pairwise comparison shows a slight increase in the resilience index 

between 2012 (-0.03) to 2014 (-0.02) and in 2016 (0.04) and then dropped in 2019 (0.001). 

The pairwise comparison of the difference in RCI between the baseline 2012 and the last 

wave 2019 is not statistically significantly different from zero.  

Overall, adopters of the different technology combinations including single technology 

adoption show a higher resilience score. However, the resilience scores more or less remains 

constant over time. 

Table 2 Differences in household characteristics by the RCI and its building blocks  

 

 
Mean values of the RCI and its building blocks 

Variables RCI ABS AST ADC SSN 

F0V0 -0.45 -0.08 -0.46 -0.04 -0.06 

F0V1 0.44***  0.36***  0.47***  0 .13 0.48*** 

F1V0 -0.06*** -0.04 -0.03*** -0.16* -0.01 

F1V1 0.26*** 0.05**  0.23***  0.20*** 0.12*** 

HHs reported shock 0.03 0.01 0.01 -0.09 -0.12 

HHs reported no shock -0.05 -0.003 0.002 0.03 0.07*** 

HHs reported drought -0.01 0.11 -0.002 0.20 0.01 

HHs with no drought experience 0.01 -0.01 0.03 0.01 0.01 

Female headed  households -0.38 .055*** -0.26 -0.75 -0.15 

Male headed households 0.07*** -0.01* 0.05*** 0.14*** 0.03*** 

2012 -0.03 -0.01 -0.03 -0.01 -0.01 

2014 -0.02 -0.07 -0.14 0.08 -0.23 

2016 0.04 0.02 0.01 0.01 0.32 

2019 0.001 0.06 0.13 -0.10 -0.06 

N     1116 

Note: *, **, *** indicate significant differences at α = 0.10, α = 0.05, α = 0.01, respectively. F and V represent 

chemical fertilizer and improved seed respectively; subscript “0” denotes non-adoption while “1” denotes 

adoption. 

Table 3 presents the changes in household food security indicators over the last three panel 

waves. Considering only the three waves, we computed proportion of households that 



 

experience a loss in the two food security indicator variables. About 38% of the sample 

households experienced a decline in HDD between 2014 and 2016 and a little less (35%) 

experienced a decline in HDD between 2016 and 2019. Out of those households who 

experienced a decline in HDD, 43% of them were able to recover in 2019. In terms of food 

consumption, the proportion of households experiencing a decline in food consumption 

between 2014 and 2016 is quite high (60%) compared to the proportion of households 

experienced decline food consumption between 2016 and 2019 (36%). Only 20% of the 

households were able to recover from the loss of food consumption on 2019.   



 

Table 3 Changes in food security status between two periods 

Changes in food security status   

HDD N % 

Households experienced a decline between  (2014 -2016) 149 38 

Households experienced a decline between (2016-2019) 140 35 

Households recovering from loss (2014 and 2019) 106 43 

Per capita food consumption   

Households experienced a decline between  (2014 -2016) 236 60 

Households experienced a decline between (2016-2019) 143 36 

Households recovering from loss (2014 and 2019) 106 28 

 

The means and standard deviations for resilience and its building blocks by survey year is 

given in Table 4. As explained, the main objective of this paper is to analyze the impact of 

adoption and adverse shocks as well as their differential effects on the welfare outcome 

variables. Using the two inputs (chemical fertilizer and improved seed), four possible 

combinations including non-adoption where none of these technologies are adopted can be 

constructed. Thus, adoption is represented by four dummy variables (F0V0, F0V1, F1V0, F1V1). 

Shocks and Household demographics such as gender, age, household size, and dependency 

ratio that are not used to construct the resilience pillars are included in our regression models.  

The descriptive results show that the resilience index increased in the first three rounds and 

then somehow dropped in the last round. On the contrary, the joint adoption of chemical 

fertilizer and improved seed shows an increasing trend over time (26%, 33%, 39%, and 40% 

in 2012, 2014, 2016, and 2019, respectively). On average, the proportion of non-adopters 

remains constant between 2012 and 2014 (24%) but then decreased to 16% in 2016 and again 

increased to 21 % in 2019. Concerning the demographic characteristics of households, the 

average size of the household is more or less the same (on average 6) throughout the survey 

rounds. The dependency ratio which is 47% and gender household head did not also change 

over the survey rounds. The proportion of non-adopters of the two technologies or their 

combinations is the same between 2012 and 2014 and constantly decreased between 2014 and 

2019. The proportion of households adopting only improved seed only adopters decreased 

from 9% to 4% and 3% for the first three rounds and again slightly increased to 4% in the last 

round. On the other hand, the proportion of fertilizer only adopters which is the highest 

technology choice set in our sample is the same throughout the survey rounds (40%). The 



 

proportion of households adopting chemical fertilizer and improved seed variety jointly 

(F1V1) consistently increased over the four survey rounds.  

The different types of shocks including drought, flooding, animal death, death of a family 

member, high input price and low sales price are included in the regression model. In terms of 

the frequency of reported shocks, more households reported adverse shocks in 2019 followed 

by the 2014 round. The proportion of households that reported at least one type of shock for 

the previous three years decreased between 2014 and 2016 (29% versus 23%) but then 

increased to 36% in the 2019.  Out of the households who reported shocks in 2014, 2016, and 

2019, on average, 2%, 11%, and 2% were affected by droughts, respectively. Moreover, a 

significant proportion of households 29% in 2014, 22% in 2016, and 36% in 2019 have 

reported flooding shocks. Households took about six months to recover to their normal 

welfare level.  Regarding the reduction of food or regular consumption, about 19%, 13%, and 

22% reduced their food consumption in 2014, 2016, and 2019 due to shocks, respectively. 

Likewise, 18%, 14%, and 19% of households were forced to reduce their regular consumption 

in 2014, 2016, and 2019, respectively. 



 Table 4 The descriptive statistics if the variables in the regression model 

  2012   2014  2016  2019  Pooled  

Variable Description Mean SD Mean SD Mean SD Mean SD Mean SD 

RCI Resilience Capacity Index (Standardized , 0 to 1) 0.33 0.11 0.34 0.12 0.35 0.12 0.34 0.13 0.34 0.12 

HDD Household Dietary Diversity 6.88 1.4 6.51 1.7 6.50 1.7   6.67  6.64 1.6 

Household size Number of family members 6.25 2 6.4 2.2 6.5 2.3 6.4 2.3 6.4 2.3 

Gender  Dummy, 1= if the household head is male 0.84  0.83  0.83  0.83  83.4  

Dependency ratio The ratio of working to non-working hh members 0.48 0.2 0.47 0.2 0.46 0.2 0.47 0.2 0.47 0.2 

Age Age of the household head in years 45 14 46 14 49 13.7 50 14.3 47.5 14 

F0V0 None adopters of chemical fertilizer and improved seed 0.24  0.24  0.20  0.16  0.21  

F0V1 Proportion of households adopted high yielding variety 0.09  0.04  0.03  0.04  0.05  

F1V0 Proportion of households Fertilizer and improved seed 0.40  0.38        0.38        0.39  0.39  

F1V1 Proportion of households adopted chemical fertilizer 0.26        0.33        0.39        0.40  0.34  

Shock exp.  HHs reported shocks past three years   0.29  0.23  0.36  0.29  

Drought  Drought experience the past three years   0.02  0.11  0.02  0.05  

Flooding Proportion of households experienced shock   0.29  0.22  0.36  0.29  

Hailstorm Proportion of households reporting hailstorm   0.03  0  0.02  0.01  

Yield Loss Proportion households reported yield loss   0.05  0.002 8 0.03  0.03  

Animal death Proportion of households reporting animal death   0.04  0.013  0.11  0.05  

Recovery months Number of months the hh took to recover to normal    4.6 6 3 5 8 10 6 7.5 

Regular Cons. Proportion of households reduced regular consumption    0.18  0.14  0.19  0.17  

Food consumption Proportion of households reduced food consumption   0.19  0.13  0.22  0.18  

N  372 1116  

Note: *, **, *** indicate significant differences at α = 0.10, α = 0.05, α = 0.01, respectively.                                                                                                                                                                                             

F and V refer to chemical fertilizer and improved seed, respectively; subscript “0” denotes non-adoption while “1” denotes adoption 



4.2 Impact Assessment on the Resilience Capacity Index and Food Security 

The assessment of the impact of technology adoption and shocks on welfare is undertaken by 

representing welfare by RCI, HDD, and per capita food consumption. We employed the 

GMM model following (Arellano & Bond, 1991) to estimate the impact of adoption and 

shocks on resilience growth. Furthermore, we executed the instrumental variables (IV) 

regression model instrumenting the technology dummies with their lagged values and the 

predicted probabilities of adoption from the first stage MNL adoption equation. As a 

robustness check for the IV model estimates, we also executed mixed Tobit model regression, 

but, by using only data from the last three rounds; due to the lack of shock information in the 

baseline survey.  

Table 5 presents the GMM estimator (column 1), IV (column 2), and the mixed Tobit (column 

3) model estimates.  In terms of the model results, the signs of both the endogenous and 

exogenous variables have the expected signs and are qualitatively similar to that of the IV and 

mixed Tobit results. However, very few variables seem to be significant in the difference 

GMM consistent with the descriptive results which show a negligible change in resilience 

capacity over the survey rounds. The results indicate drought has a statistically significant 

negative impact on the household on the growth of the resilience capacity index. Family size 

increases the growth of the resilience score statistically significantly. It is also shown that 

growth in 2016 was significantly higher compared to the other survey rounds. Our findings 

(Column 2 of Table 4.5)  show that the initial value of the resilience capacity, the technology 

choice sets (F0V1 and  F1V1), gender of the household head, household size, age of the 

household head are statistically significant determinants of the resilience index. Specifically, 

male-headed households have a statistically significant and higher level of resilience index 

compared to female-headed households. Household size statistically significantly increases 

the RCI. A unit increase in the initial value of the RCI increases the current RCI
5
 by 0.5 

points. Age has a statistically significant negative impact on the resilience index. The 

adoption of F0V1 significantly leads to a higher resilience score. Overall, Our findings show 

initial resilience index, technology dummies (F0V1 and F1V1), gender of the head, household 

size, age of the household head determine resilience index significantly.  Drought appears to 

significantly decrease the growth resilience score. 

                                                            
5
 In this paper the terms resilience index and resilience capacity or RCI are used interchangeably. 



Table 5 Impact of adoption and shocks on resilience capacity index 

Variables Description (1) 

GMM 

(2) 

IV 

(3) 

Tobit 

RCIt-1 Initial resilience capacity 0.05  (0.07) 0.51 *** (0.05) 0.561 *** (0.02) 

HH size Number of household members 0.006 *** (0.003) 0.005 **  0.003 *** (0.002) 

Gender Sex of the household head 0.02  (0.02) 0.02 ** (0.01) 0.02 *** (0.01) 

F0V1 Dummy=1, if HH adopted only improved seed 0.007  (0.04) 0.50 * (0.30) 0.10 *** (0.02) 

F1V0 Dummy=1, if HH adopted only fertilizer 0.003  (0.01) 0.04  (0.04) 0.02 ** (0.01) 

F1V1 Dummy=1, if adopted both improved seed and chem. Fertilizer 0.002  (0.02) 0.06 ** (0.03) 0.05 *** (0.01) 

Drought Dummy=1, HH reported drought shock -0.04 * (0.02) 0.02  (0.05) -0.01  (0.03) 

Flood Dummy=1, HH reported flood shock -0.02  (0.02) -0.01  (0.02) -0.0004  (0.02) 

Age Age of the HH head (years) -0.0003  (0.001) -0.001 *** (0.00) -0.001 *** (0.001) 

Drought* F0V1 Interaction term drought and improved seed -0.01  (0.06) -0.42   -0.02  (0.05) 

Drought* F1V0 Interaction term drought and chemical fertilizer -0.001  (0.02) -0.03  (0.06) -0.01  (0.04) 

Drought* F1V1 Interaction term drought and improved seed and fertilizer  -0.02  (0.03) -0.01  (0.05) -0.01  (0.04) 

SNNPRs Dummy=1, if SNNPRs region          

2016 Dummy=1, if 2016 survey round 0.01 * (0.01) 0.015  0.01 0.020 **  

2019 Dummy=1, if 2019 survey round 0.004  (0.01) -0.01  0.009 -.001   

R
2
 or Log-likelihood    0.26      

Sample size  1,116   1,116   746   

   Note: *, **, *** indicate significant differences at α = 0.10, α = 0.05, α = 0.01, respectively.  

   F and V refer to chemical fertilizer, improved seed, respectively; subscript “0” denotes non-adoption while “1” denotes adoption.  In the GMM model, F0V1, F1V0 and F1V1  

were instrumented with their lagged values and all the lagged explanatory variables included in the model.  

 



Table 6 reports the IV regression model executed by instrumenting the resilience index and 

technology dummies with their lagged values (Column 1 and 3). The OLS and mixed Tobit 

estimates for robustness check are also presented in Columns 2 and 4. The outcome variables 

in these models are represented by real per capita food consumption expenditure and HDD.  

As indicated in column 1, demographic characteristics of the household such as family size 

and gender of the household head are statistically significant determinants of consumption. 

The higher the household size the higher the household per capita food consumption. 

Regarding, technology adoption, chemical fertilizer only or improved seed only, or their joint 

adoption is positively and significantly related to food consumption. In terms of shocks, 

drought statistically and significantly decreases food consumption. This significant and 

negative sign confirms our hypothesis that shocks reduce household assets and production, 

thus reducing household food insecurity. Although, not statistically significant the interaction 

terms between the technology dummy and drought (Drought*F1V1) is positive indicating the 

role of adoption of multiple technologies in smoothing the negative impact of shocks.  

Column 2 of Table 6 presents the estimates of the IV regression model on the impact of 

adoption and shocks HDD as the outcome variable. The results indicate that household 

characteristics such as gender of the household head and household size affect dietary 

diversity positively and significantly. The adoption of chemical fertilizer and improved seed 

including their joint adoption also significantly increases household dietary diversity. The 

interaction terms of the technology bundles and drought representing shock are not 

statistically significantly different from zero in this model. 

Overall, the results reveal that the adoption of chemical fertilizer and improved seed including 

their joint adoption increases food consumption and HDD. Although the adoption of chemical 

fertilizer and improved seed including their joint adoption increases the resilience capacity 

index as well as the food security indicators, there is limited evidence on its impact in averting 

the adverse impacts of shocks. 
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Table 6 Impact of adoption and shocks on food consumption and HDD 

Note: *, **, *** indicate significant differences at α = 0.10, α = 0.05, α = 0.01, respectively.  

F and V refer to chemical fertilizer and improved seed; subscript “0” denotes non-adoption while “1” denotes adoption.  

 Food Consumption  HDD 

  (1) 

IV 

(2) 

Tobit 

(3) 

IV 

(4) 

Tobit 

RCIt-1           3.3 *** (0.42) 

Age Age of the HH head (years) 0.0003  (0.001) 0.0001  (0.0004) -0.01  (0.01) -0.01  (0.01) 

Gender Sex of the household head 0.002  (0.02) 0.01  (0.01) 0.58 ** (0.23) 0.58 *** (0.22) 

Household size Number of household members 0.01 *** (0.003) 0.01 *** (0.002) 0.10 *** (0.04) 0.11 *** (0.04) 

F0V1 Dummy=1, HH adopted only improved seed 0.47 * (0.25) 0.13 *** (0.03) 0.90  (0.57) 0.90 * (0.55) 

F1V0 Dummy=1, if HH adopted only fertilizer 0.28 ** (0.12) 0.07 *** (0.02) 0.67 * (0.36) 0.67 * (0.35) 

F1V1 Dummy=1, adopted improved seed and. Fert  0.23 *** (0.08) 0.06 *** (0.02) 1.04 *** (0.35) 1.04 *** (0.33) 

Hailstorm Dummy=1, HH reported Hailstorm shock -0.06  (0.04)    -2.66 * (1.61) -2.66 * (1.55) 

Yield loss Dummy=1, HH reported yield loss shock -0.05 * (0.03) -0.04  (0.05) -0.31  (0.96) -0.32  (0.92) 

Animal death Dummy=1, HH reported animal death shock -0.03  (0.02)    -0.19  (0.73) -0.18  (0.70) 

Drought Dummy=1, HH reported drought shock -0.04 ** (0.02) -0.03  (0.03) -0.11  (0.57) -0.11  (0.55) 

Drought * F0V1 Interaction term drought and F0V1 -0.05  (0.06) -0.05  (0.06) 0.59  (1.04) 0.59  (0.99) 

Drought*F1V0 Interaction term drought and F1V0 -0.001  (0.04) -0.01  (0.04) -0.46  (0.70) -0.45  (0.67) 

Drought*F1V1 Interaction term drought and F1V1 0.02  (0.04) 0.02  (0.04) -0.08  (0.69) -0.08  (0.67) 

R2 or log-likelihood  0.14   965    0.03  2140 

Sample size  1116 
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5 Conclusion and Recommendation 

Smallholder farmers in developing countries particularly in Ethiopia are disproportionately 

affected by natural shocks such as drought, flooding as well as several other human-induced 

shocks including conflict, political instability, and inflation. This often results in significant 

welfare deterioration since smallholders in these regions have a minimal absorptive capacity. 

Investment in agricultural technologies plays important role in building resilience capacity and 

potentially reducing food insecurity. This study uses panel data collected between 2012 and 2019 

to identify the determinants of household resilience to food insecurity and assess the role of 

chemical fertilizer and improved seed including their joint adoption on the resilience capacity and 

food security of smallholders and the role these inputs may play in reducing the adverse effects of 

shocks.  

The four resilience pillars used to construct resilience capacity appear to be significant 

determinants of the resilience capacity index and assets take the highest share. It is also indicated 

that adopters have a significantly higher resilience index compared with non-adopters. The 

findings also reveal that adopters and non-adopters have no significant differences in terms of 

their proneness to shocks. The findings reveal that joint or single use of chemical fertilizer and 

improved seed are significant determinates of resilience capacity index, household dietary 

diversity, and food consumption. Drought is negatively and statistically significantly linked with 

the growth of the resilience capacity index. Other variables determining household dietary 

diversity and consumption expenditure are household size, gender, and age of head. The results 

also show that the initial value of the resilience capacity index is a significant determinant of the 

resilience capacity index. We find that adoption has a limited role in protecting households from 

the adverse impacts of shocks. Based on our research findings we recommend that policy 

interventions should exert much effort not only in promoting technology adoption but also in 

building resilience accompanied by improved infrastructure for smallholders.   
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Appendix  

Table A1 The eigenvalues and factor loadings of the resilience pillars used to estimate the RCI 

Pillars  

Variable 

Factor loadings 

Factor1 Pillars’ correlation 

with the var. 

ABS Source of light 0.50 0.30 

Type of toilet  0.42 0.27 

Distance from market -0.66 -0.42 

Distance from agricultural extension office -0.67 -0.42 

Source of drinking  water 0.50 0.31 

AST Livestock (TLU) 0.60 0.3 

Land (ha) 0.49 0.27 

Number of rooms 0.80 0.42 

Corrugated iron roof 0.76 0.42 

SSN Iqub 0.69 0.56 

Iddir 0.52 0.43 

Mehaber 0.37 0.31 

Credit  0.56 0.46 

ADC Education 0.75 0.65 

 Other income 0.72 0.62 

 Irrigation  0.25 0.22 

Source: Own computation from DFG-Ethiopia data 
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Figure A1   Resilience path diagram 
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