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Abstract: Weather index insurance (WII) has long been advertised as a viable alternative to 

crop yield insurance. WII products were firstly developed to assist climate-vulnerable farmers 

from developing countries where establishing a well-structured crop insurance market is ex-

pressively difficult due to the poor transport infrastructure and the prevalence of sparsely dis-

tributed small-scale farms. In Brazil, the semi-arid region stands out as the one that concen-

trates the ideal conditions for the implementation of a WII product since it houses thousands 

of climate-vulnerable farmers. Seen this, we designed and priced a WII product for farmers 

from the semi-arid region of Brazil and posteriorly investigated its risk efficiency. To do so, 

we first investigated crop yield responses to aridity, enabling the selection of locations for 

which the WII product was posteriorly assessed. Second, we grouped selected locations into 

specific contracts according to geographical proximity and evaluated each of these contracts to 

attest the risk efficiency of the proposed WII product using the method of stochastic efficiency 

with respect to a function (SERF). Our results show that the WII product is indeed effective in 

protecting farmers from adverse variations in production revenue, being attractive for utility-

maximizer farmers that are sufficiently risk-averse. 
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1. Introduction 

 

Climate change is expected to lead to decreasing rainfall and rising temperature in sev-

eral parts of the world, including Brazil. As a consequence, the expansion of areas with arid-

like climates is identified as one of the main developments of global warming (Pour et al., 

2020). In fact, the number of people living in arid lands worldwide may rise by more than 20% 

in the near future (Park et al., 2018). Therefore, evaluating and monitoring this phenomenon is 

of very importance, especially for the regions where agriculture and livestock production cor-

responds to an expressive share of local economy (Pellicone et al., 2019). 

Considering the Brazilian territory, the semi-arid region (Figure 1) stands out in terms 

of the (possible) effects of climate change. Being primarily composed by municipalities from 

the Northeast region, the Brazilian semi-arid is, among the arid regions of the world, the most 

densely populated (Marengo, 2008). The region experiences great interannual variability in 

rainfall, which leads to the periodic occurrence of drought episodes (Marengo and Bernasconi, 

2015). These phenomena have severe social, economic and environmental consequences 

(Silva, 2004), which are mainly driven by declines in the yield of crops. 

 

[Figure 1 here] 

 

In the semi-arid region of Brazil, rainfed cultivation predominates, which surges the 

risk of crop frustration due to the region’s climatic variability. Despite this, many farmers still 

grow crops primarily for human consumption, but, when plants fail to grow, stover is used as 

animal feed (Silva and Regitano-Neto, 2019). Ultimately, the residents of the semi-arid, which 

often exclusively depend on the outcomes of agricultural production for their livelihood, face 

the challenge of achieving a sustainable rainfed production with an increasingly-limited water 



supply (Melo and Voltolini, 2019). Therefore, climate aridification poses a serious threat on 

the livelihood of the semi-arid population.  

Accordingly, one can relate the climate of the Brazilian semi-arid region to the preva-

lence of poverty among its inhabitants, especially those living in rural areas. In fact, data from 

the 2017 Census of Agriculture show that farmers from the semi-arid region account for only 

6.4% of Brazil’s agricultural production value despite operating more than 1/3 of country’s 

farms. In spite of housing thousands of climate-vulnerable farmers who could benefit greatly 

from insurance products1, the Brazilian semi-arid region has long been neglected by the Rural 

Insurance Premium Subsidy Program (PSR) as its farmers account for only 0.6% of program’s 

operations (MAPA, 2020).  

In this context, weather index insurance products stand out as possible alternatives to 

protect vulnerable farmers from the semi-arid region of Brazil against adverse events like 

droughts. These products use a weather parameter as a proxy to crop yields. By conditioning 

payouts on the realization of an independent and transparent index instead of actual yield 

losses, key problems related to crop yield insurance schemes are surpassed (Conradt et al., 

2015). Farmers cannot influence payoffs due to the randomness of the underlying index, miti-

gating information asymmetry (Shen and Odening, 2013), whilst, administering costs are min-

imized as the on-farm assessment of losses are unnecessary (Stoppa and Hess, 2003). 

Seen this, we designed and priced a weather index insurance product for farmers from 

the semi-arid region of Brazil and posteriorly investigated its risk efficiency. To do so, we 

applied a multistep approach. First, crop yield responses to weather—which is captured by an 

aridity index—were thoroughly investigated, enabling the selection of locations for which the 

 
1 It must be stressed that family farmers from the Brazilian semi-arid are currently served by the Garantia Safra 

Program. It works like an area-based crop insurance as farmers are compensated when crop yields measured at 

the municipal level fall below the long-term average. Although the participation fee is divided between federal, 

state and municipal governments, as well as the farmer himself, payouts are standardized to R$850.00, which are 

paid in five equal installments. This amount, however, is often not able to cover crop losses. 



weather index insurance product was posteriorly assessed. Second, selected locations were 

grouped into specific contracts according to geographical proximity and each of these contracts 

were evaluated in order to attest the risk efficiency of the proposed weather index insurance 

product using the method of stochastic efficiency with respect to a function (SERF). 

The literature on the potential of weather index insurance products covers a wide vari-

ety of crops, geographical locations and methods of evaluation. For Brazil in specific, to the 

best of our knowledge, Raucci et al. (2019) is the only applied study on the subject. They design 

a weather index insurance contract for soybean cultivation in selected locations from southern 

Brazil and evaluate hedging efficiency against lack of rainfall during the growing season. Our 

analysis, however, significantly differs to theirs. In addition to differences in the crops and the 

locations analyzed, we contribute to the literature as the insurance product is evaluated in terms 

of risk efficiency and not only to divergences in expected revenue. 

 

2. Data 

 

In order to design and price a weather index insurance product for the semi-arid region 

of Brazil, we used information on weather conditions—which were employed in the construc-

tion of De Martonne’s aridity index—and crop yield. Data on accumulated precipitation and 

average temperature recorded by automatic weather stations distributed across the Brazilian 

semi-arid region were obtained from the Meteorological Database for Education and Research 

(BDMEP) of the Brazilian National Institute of Meteorology (INMET). Yield data were col-

lected from the Municipal Agricultural Production Survey (PAM), which is conducted annually 

by the Brazilian Institute of Geography and Statistics (IBGE).  

 

2.1.Yield data 



 

Annual yield data, which are measured in kilograms per hectare, were gathered specif-

ically for beans and maize. Data from the 2017 Census of Agriculture show that these are the 

crops most cultivated in the semi-arid region of Brazil—at least in terms of the number of farms 

in which they are grown. In fact, out of the more than 1.3 million rural establishments existing 

in the analyzed region, approximately 0.8 million cultivated beans or maize. Moreover, it must 

be highlighted that both beans and maize are temporary crops, being harvested up to three and 

two times in the same year, respectively. However, we only consider the first harvest, as it 

concentrates most of the regional production of beans (~80%) and maize (~85%). 

Figure 2 depicts the average yield of beans (left-hand side) and maize (right-hand side) 

for the semi-arid region of Brazil during the period ranging from 2003 to 2018. Only the mu-

nicipalities in which these crops were grown during all years of analysis are considered, totaling 

602 municipalities for beans and 591 for maize. Both crops follow a relatively similar pattern 

in terms of the geographic distribution of mean yields since the lowest values are concentrated 

predominantly in the northern portion of the Brazilian semi-arid. Moreover, the highest means 

of crop yields are achieved in municipalities located in the southwest region of the investigated 

territory. 

 

[Figure 2 here] 

 

2.2.Weather data 

 

Monthly data on accumulated precipitation and average temperature from 71 automatic 

weather stations distributed across the semi-arid region of Brazil (Figure 3) were spatially in-

terpolated. We used three methods: inverse distance weighting (IDW), ordinary kriging (OK) 



and thin plate spline (TPS). IDW estimates the value for unsampled points as the weighted 

average of the actual points in its vicinity, where weights are a decreasing function of distance 

(Lu and Wong, 2008). OK estimates the value of a variable over a given region for which a 

variogram is known, assuming stationarity (Wackernagel, 2003). TPS smooths a scatter plot 

by fitting a nonparametric regression model that uses penalized least squares (Wood, 2003). 

 

[Figure 3 here] 

 

The accuracy of interpolation methods was evaluated using the mean absolute error 

(MAE) and the root mean square error (RMSE) obtained by 𝑘-fold cross-validation. As de-

picted in Table 1, IDW generated more accurate data than OK and TPS for both precipitation 

and temperature. This result is in line with Xavier et al. (2016), who investigated Brazil as well. 

However, it should be noted, especially for precipitation, that the accuracy of spatial interpo-

lation was relatively low, i.e., both the mean absolute error and the root mean square error were 

quite high. This is possibly due to the sparse distribution of weather stations within the Brazil-

ian semiarid and the high spatiotemporal variation of precipitation in the region. 

 

[Table 1 here] 

 

Precipitation and temperature data were extracted for the centroid of each of the mu-

nicipalities analyzed, being used to construct the aridity index proposed by De Martonne 

(1926). This is one of the most used indicators of the degree of local water deficiency. In fact, 

despite being one of the oldest indexes developed to assess aridity levels, De Martonne’s aridity 

index is still applied worldwide due to its efficiency and relevance in classifying regions in 

arid/humid climates (Pellicone et al., 2019). One of the main advantages of such aridity index 



regards data requirement, since it only demands information on precipitation and temperature. 

Specifically, growing season values for De Martonne’s aridity index were calculated as 

 

𝐼𝐷𝑀 =
𝑃 ×

12
𝑑

𝑇̅ + 10
 (X) 

 

where 𝐼𝐷𝑀 is the aridity index; 𝑃 is the growing season accumulated rainfall; 𝑑 is the duration 

of the growing season in months; and 𝑇̅ is the growing season average temperature. Precipita-

tion is multiplied by 12 𝑑⁄  in order to annualize the values and 10 is added to the temperature 

in order to avoid a negative denominator. 

We followed the schedule presented by the National Food Supply Company (Conab, 

2019) to define that maize growing season ranges from January to August (𝑑 = 8), while beans 

growing season goes from December to June (𝑑 = 7). Taking the average for the period be-

tween 2003 and 2018, Figure 4 shows the spatial distribution of De Martonne’s aridity index 

for the growing season of (a) beans and (b) maize in the Brazilian semi-arid. Local climate is 

classified based on Araghi et al. (2018). It is worth noting that arid-like climates (𝐼𝐷𝑀 < 20) 

are more prevalent during maize growing season since it has a longer duration, reaching July 

and August, which are some of the driest months of the year in the Brazilian semi-arid. 

 

[Figure 4 here] 

 

3. Methodology 

 

The approach employed in this study to evaluate the risk efficiency of a weather index 

insurance product for the semi-arid region of Brazil is composed of three steps. First, 



considering the values of De Martonne’s aridity index obtained for the municipalities analyzed, 

we used the Geographically Weighted Panel Regression (GWPR) model to examine crop yield 

responses to the degree of aridity and selected the locations where basis risk is possibly mini-

mum. Second, we applied actuarial tools to design and price a weather index insurance product. 

Third, we assessed product’s risk efficiency by the utilization of the Stochastic Efficiency with 

Respect to a Function (SERF) method. 

 

3.1. Choosing the municipalities to be analyzed 

 

It is of key importance to correctly identify the municipalities to be analyzed since it 

makes no sense to implement a weather insurance product in locations where the correlation 

between index realizations and crop yields are weak or even nonexistent. Recognizing that crop 

yield responses to weather conditions vary across locations, we estimated the Geographically 

Weighted Panel Regression (GWPR) model proposed by Yu (2010). This approach allowed 

the identification of municipalities for which the correlation between index realizations and 

crop yields are sufficiently strong through the estimation of a single model that takes into ac-

count the spatial non-stationarity of the weather-yield relationship. 

Specifically, the GWPR model is expressed as 

 

𝑌𝑖𝑡 = 𝑋𝑖𝑡𝛽𝑖 + 𝜀𝑖𝑡 (X) 

 

where 𝑌 denotes the dependent variable; 𝑋 denotes independent variables; and 𝜀 denotes idio-

syncratic errors. The parameters to be estimated are denoted by 𝛽, and its estimates, which vary 

across space but not in time since the spatial relationship between locations is time-invariant, 

are given by 



 

𝛽̂𝑖 = (𝑋′𝑊𝑖𝑋)−1𝑋′𝑊𝑖𝑌 (X) 

 

where 𝑊𝑖 denotes a 𝑛-by-𝑛 spatial weighting matrix whose diagonal elements indicate the 

weight assigned to each of the 𝑛 observations for the regression point 𝑖. 

The regression model presented in the Eq. X was calibrated via Weighted Least Squares 

(WLS), which assumes that the closer an observation is to the regression point 𝑖, the greater its 

influence on the estimation of 𝛽𝑖. The spatial weighted matrix, in specific, was calculated by 

an adaptive bi-square kernel, which allows the bandwidth to adjust to data density. Taking 𝑑𝑖𝑗 

as the distance between locations 𝑖 and 𝑗, the bi-square kernel is specified as 

 

𝑤𝑖𝑗 = [1 − (𝑑𝑖𝑗 𝑑𝑖𝑘⁄ )
2
]
2

 if 𝑗 ∈ 𝑍𝑖(𝑘)

= 0                                otherwise,
 (X) 

 

where 𝑤𝑖𝑗 denotes the weight assigned to 𝑗 when calibrating the model for 𝑖; and 𝑍𝑖(𝑘) denotes 

the set of 𝑘th nearest neighbors of 𝑖. 

In spite of evidence showing that crop yields respond nonlinearly to the weather, only 

the linear term of the weather proxy was considered in the present study. Schlenker and Roberts 

(2009), for instance, found that nonlinearity is expected to occur only when temperature varies 

more than 10ºC across observations. Cai et al. (2014), however, argue that an expressive spatial 

variation is highly unlikely when applying a GWPR model since coefficients are estimated 

using geographically close subsets of data. Moreover, investigating only the linear aspects of 

the weather-yield relationship facilitates the discussion of results in an insurance context. 

Ultimately, the following model was estimated: 

 



𝑦𝑖𝑒𝑙𝑑𝑖𝑡 = 𝑐𝑖 + 𝛽1𝑖𝑎𝑟𝑖𝑑𝑖𝑡𝑦𝑖𝑡 + 𝑡𝑟𝑒𝑛𝑑 + 𝜀𝑖𝑡 (12) 

 

where 𝑦𝑖𝑒𝑙𝑑𝑖𝑡, and 𝑎𝑟𝑖𝑑𝑖𝑡𝑦𝑖𝑡 respectively denote crop yields and the aridity index of location 

𝑖 in year 𝑡; 𝑐𝑖 denotes location-specific, time-invariant fixed effects2; 𝑡𝑟𝑒𝑛𝑑 denotes a linear 

time trend3; and 𝜀𝑖𝑡 denotes the error term. 

As an exercise of robustness check, GWPR results are compared to those obtained from 

a non-spatial fixed effects (FE) model. Additionally, two statistical tests for spatial non-sta-

tionarity are also applied. Under the null hypothesis that GWPR and FE models describe the 

data equally well, the first statistic (𝐹2) evaluates GWPR goodness of fit using analysis of 

variance. The second statistic (𝐹3), on the other hand, considers the null hypothesis that all 

local coefficients estimated via GWPR are statistically equal, testing if spatial non-stationarity 

indeed holds for the analyzed sample. These tests are demonstrated and explained in depth by 

Leung et al. (2000). 

 

3.2. Designing and pricing a weather index insurance product 

 

We divided the semi-arid region of Brazil in three subregions according to geographical 

proximity4 and a different contract was designed and priced for each of them. In order to min-

imize basis risk, we chose the municipalities for which the aridity coefficient estimated by the 

GWPR model was positive and statistically pseudo-significant5 at the level of 5%. 

 
2 As some time-invariant aspects specific to each unity of analysis can interfere in the relationship between crop 

yields and the degree of aridity, the use of a fixed effects specification is readily justified. Among such aspects, 

one could highlight both altitude and soil quality. The spatial rigidity of altitude is straightforward. For soil quality, 

in turn, this consideration is not so simple. However, for not-so-long time spans one could expect soil quality to 

remain relatively constant as both the degradation or correction of soil take some time to occur. 
3 The time trend is used to control for technological advances that can influence crop yields. 
4 Specifically, subregions are determined by k-means clustering, using latitude and longitude as inputs. 
5 Pseudo-significance, in this case, refers to the t-statistic for the coefficient of each regression point (Kusuma et 

al., 2018). 



Additionally, we followed Stoppa and Hess (2003) and defined annual degree of aridity as a 

weighted average of growing season’s monthly values of De Martonne’s aridity index, as fol-

lows 

 

𝐴𝑡 = ∑ 𝜔𝑖𝐷𝑀𝑖𝑡

𝑛

𝑖=1
 

(1) 

 

where 𝐴𝑡 is the degree of aridity for year 𝑡; 𝑛 is the total number of months in the growing 

season; 𝜔𝑖 is the weight assigned to the month 𝑖; and 𝐷𝑀𝑖𝑡 is De Martonne’s aridity index for 

the month 𝑖 of year 𝑡. 

The weights were chosen to maximize the sample correlation between the degree of 

aridity and crop yields: 

 

max
𝜔𝑖

𝑐𝑜𝑟𝑟(𝐴, 𝑌) =
∑ (𝐴𝑡 − 𝐴̅)𝑡 (𝑌𝑡 − 𝑌̅)

[∑ (𝐴𝑡 − 𝐴̅)2
𝑡 ]1 2⁄ [∑ (𝑌𝑡 − 𝑌̅)2

𝑡 ]1 2⁄
 

(2) 

                      subject to 0 ≤ 𝜔𝑖 ≤ 1 and ∑𝜔𝑖 = 1. 

 

where 𝑌𝑡 denotes crop yield for year 𝑡, and 𝑌̅ denotes average yield. 

Among contract parameters, the trigger and the exit point are the most important ones 

as they define indemnity payments according to the payout structure. In a simple zero/one con-

tract, indemnity is paid in full once the trigger is surpassed. A layered scheme, in turn, has a 

set of triggers and exit points. In a proportional payment schedule, which is the one considered 

here, payouts are defined as a fraction of the insured amount. Indemnity starts to be paid when 

the index falls below the trigger, increasing until the exit point is reached. At this point, the 

payment received by the farmer is maximum, equaling total liability. In particular, the payout 

is governed according to the following scheme 



 

𝑃𝑎𝑦𝑜𝑢𝑡 =

[
 
 
 

1    if 𝐴𝑡 ≤ 𝐴𝐸

𝐴𝑇 − 𝐴𝑡

𝐴𝑇 − 𝐴𝐸
 if 𝐴𝐸 < 𝐴𝑡 ≤ 𝐴𝑇

0    if 𝐴𝑇 < 𝐴𝑡 ]
 
 
 
× 𝐿𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦 

(3) 

 

where 𝐴𝑇 denotes the trigger and 𝐴𝐸 denotes the exit point. 

The values of 𝐴𝑇 and 𝐴𝐸 were empirically determined in the same fashion as 

Choudhury et al. (2016) as we employed a model-base clustering to identify two heterogeneous 

groups regarding the degree of aridity and crop yields. Focusing on the cluster with the lowest 

values for the degree of aridity and crop yields, the trigger (𝐴𝑇) was defined as the average 

value of the degree of aridity, whilst the exit threshold (𝐴𝐸) was defined as the lowest value 

observed for aridity. The model-based clustering built on parameterized finite Gaussian mix-

ture models was estimated by the expectation-maximization (EM) algorithm. Detailed infor-

mation about this method can be found in Bouveyron et al. (2019). 

The insurance product was priced via burning cost analysis, a method that uses the em-

pirical distribution of insurance losses to calculate the premium (Heimfarth and Musshoff, 

2011). As observed by Parodi (2015), burning cost analysis is essentially a multi-step proce-

dure. Accordingly, we followed four steps to calculate the risk premium rate. First, payouts 

were retrospectively calculated from 2018 to 2003. Second, both liability6 and payout values 

were forwardly discounted at a 5% rate. Third, annual loss cost ratios were obtained by aver-

aging the ratio of payouts to liabilities over locations. Fourth, the risk premium rate was com-

puted by averaging the loss cost ratio over the analyzed years. 

 

3.3. Assessing product’s risk efficiency 

 
6 Liability is calculated as the expected yield times the coverage level. In order to account for operational costs, a 

deductible of 15% is considered and thus coverage level is set at 85%. 



 

The effectiveness of the weather index insurance product proposed in this study in guar-

anteeing farmers against climate risk is evaluated through the comparison of crop revenues 

with and without insurance adoption. When no insurance is contracted, per hectare revenue 

corresponds to the multiplication of crop yield (kg ha-1) by postharvest crop price (R$ kg-1). 

For the case where index insurance is contracted, in turn, the premium is subtracted and the 

(possible) payout is added to the per hectare revenue previously presented. Specifically, we 

compared these alternatives in terms of risk efficiency through the use of the Stochastic Effi-

ciency with Respect to a Function (SERF) method. 

The SERF method was firstly proposed by Hardaker et al. (2004). This method identi-

fies utility efficient alternatives for a range of risk attitudes as the assessed alternatives are 

ordered in terms of the certainty equivalents (CEs) calculated for a set of risk aversion coeffi-

cients. A certainty equivalent corresponds to the sure sum that yields the same utility as the 

expected utility of a given alternative. Following the subjective expected utility hypothesis, the 

utility of an individual depends on the degree of risk aversion, 𝑟, and the distribution of returns, 

𝑅, as follows: 

 

𝑈(𝑅, 𝑟) = ∫𝑈(𝑅, 𝑟)𝑓(𝑅)d𝑅 ≈ ∑ 𝑈(𝑅𝑗 , 𝑟)𝑃(𝑅𝑗)
𝑚
𝑗=1 , (6) 

 

where 𝑈(∙), which denotes the utility function, is evaluated for risk aversion values ranging 

from 𝑟L to 𝑟U. The second term of (6) represents the continuous case, whilst the third term 

provides the discrete approximation, in which 𝑃(𝑅𝑗) denotes the probability of state 𝑗 among 

the set of the 𝑚 states for each alternative. 

Partial ordering alternatives by CEs yields the same results as partial ordering through 

utility values since the former is given by the inverse of the utility function (Hardaker et al., 



2015). Only the alternatives with the highest CEs for some coefficient in the [𝑟L, 𝑟U] interval 

are utility efficient (Hardaker et al., 2004). The difference between the CE of a utility efficient 

alternative and any other alternative yields the utility weighted risk premium (UWRP), which 

corresponds to the minimal amount one should receive for not choosing the utility efficient 

alternative (Wang et al., 2020). In mathematical terms, 

 

𝑈𝑊𝑅𝑃(𝑎, 𝑏, 𝑟𝑘) = 𝐶𝐸(𝑎, 𝑟𝑘) − 𝐶𝐸(𝑏, 𝑟𝑘), (7) 

 

where UWRP for a risk aversion level of 𝑘 is obtained by subtracting the CE of the utility 

efficient alternative 𝑎 from the CE of alternative 𝑏. 

Under SERF, the calculation of CEs can be done using any type of utility function for 

which the inverse can be obtained (Hardaker et al., 2004). As farmers are assumed to be risk-

averse (Lien et al., 2007; Fathelrahman et al., 2011), we used the following monotonic concave 

(𝑈′ > 0 and 𝑈′′ < 0) power utility function 

 

𝑈(𝑅) =
𝑅(1−𝑟𝑟(𝑅))

1 − 𝑟𝑟(𝑅)
 

(8) 

 

where 𝑟𝑟 denotes the coefficient of relative risk aversion. According to Anderson and Dillon 

(1992), the degree of (relative) risk aversion varies from 0.5 (hardly risk-averse) to 4 (ex-

tremely risk-averse). Therefore, we considered that the relative risk aversion coefficients vary 

within that interval, i.e., 𝑟L = 0.5 and 𝑟U = 4. 

 

4. Results 

 



First, we present the results obtained by the GWPR model, which we use to select the 

municipalities to be considered for the development of the weather index insurance product. 

Considering that the GWPR model estimates one coefficient for each municipality analyzed, 

we present the aridity estimates by quantiles (Table 2). As supposed, the magnitude of local 

coefficients varies considerably across the region. In fact, the interquartile range of GWPR 

estimates is considerably larger than the standard errors of the global coefficient obtained by 

the FE model. This is an indication that crop yield responses are characteristically non-station-

ary in space7, endorsing the validity of estimating local coefficients. 

 

[Table 2 here] 

 

The median value of the coefficients estimated by the GWPR model is quite similar to 

the global coefficient estimated by the FE model, providing evidence in favor of the robustness 

of the GWPR model in estimating crop yield responses to the degree of aridity. Moreover, 

GWPR estimates are also validated by the results of Leung’s tests (Table 3). We were able to 

reject both null hypotheses at the 1% significance level. Therefore, we can state that, in the 

context of the present study, the GWPR model describes the data analyzed better than the FE 

model, whilst local coefficients estimated for the degree of aridity are not statistically equal, 

i.e., different locations indeed present distinct yield responses to the weather. 

 

[Table 3 here] 

 

 
7 Following Fotheringham et al. (2002), spatial non-stationarity refers to the case where the investigated process 

is not constant over space. In other words, the estimate of the relationship of interest depends on where the meas-

urement is taken. 



The proportion of municipalities for which aridity estimates were pseudo-significant at 

the 5% level is 94% for beans and 74% for maize. The vast majority of the coefficients esti-

mated are positive, with the magnitude of crop yield responses to the degree of aridity varying 

across the territory as depicted in Figure 5. The municipalities for which estimates were not 

pseudo-significant are primarily located in the southern part of the territory, the same area 

where the locations with negative coefficients are concentrated. On the other hand, the loca-

tions for which the largest coefficients were estimated are agglomerated in the western portion 

of the semiarid region of Brazil. 

 

[Figure 5 here] 

 

As previously explained, we selected only the municipalities for which the aridity co-

efficients estimated by the GWPR model were positive and statistically pseudo-significant at 

the 5% level. Subsequently, we calculated the weights to be assigned to each of the months of 

beans and maize growing seasons. Table 4 presents the solution to the maximization problem, 

which considered average values of each subsample. Weights are highly heterogenous between 

crops as well as between contracts of a same crop. This result can be related to two facts. First, 

different growing seasons lead to different responses to aridity. Second, distinct climatic re-

gimes and yield levels are observed among the analyzed subregions. 

 

[Table 4 here] 

 

After generating weighted values for the degree of aridity, we determined the values of 

the trigger and exit parameters via model-based clustering and applied burning cost analysis to 

determine the premium rate—as well as the payouts—related to each of the contracts designed 



for beans and maize. The information presented in Table 5 shows how parameters vary between 

the crops analyzed. Averaging across contracts, the premium rate estimated for maize is higher 

than that calculated for beans, indicating that it is riskier to grow the former than the latter in 

the Brazilian semi-arid as the premium rate is expected to be directly proportional to crop’s 

risk exposure. 

 

[Table 5 here] 

 

Unlike for maize, the premiums calculated for beans vary considerably between its con-

tracts. This is an indication that the analyzed subregions have different levels of risk exposure, 

which may be connected to the distinct weather patterns experienced by the municipalities in 

these areas. Both trigger and exit points also vary substantially, especially for maize. This is 

due to differences in weight assignment and, consequently, to differences in the values used 

for the aridity index. For instance, August dominates index weighting for maize’s contract of 

subregion 1, leading to weighted aridity values comparatively lower than those of the other 

subregions. 

Having defined contract parameters and the distribution of crop revenues, we were able 

to evaluate the risk efficiency of the weather index insurance product. In order to complement 

the results of the SERF method, which will be exhibited ahead, we explore the notion of mean-

semivariance8 to compare the insurance and no insurance scenarios in terms of mean crop rev-

enue and its deviations below the mean (downside risk). The results of the mean-semivariance 

approach, depicted in Table 6, show that no dominance is identified as the introduction of the 

 
8 Under the mean-semivariance approach, dominance implies that an insured farmer has a higher expected revenue 

and at least an equal risk exposition or a lower risk exposition and at least an equal expected revenue than a farmer 

that is uninsured. 



weather index insurance product leads to declines in both risk and return. This is true for all 

contracts analyzed for both crops. 

 

[Table 6 here] 

 

Finally, we used the SERF method to rank insurance and no insurance alternatives in 

terms of farmer’s attitude towards risk. Figure 6 depicts the UWRP curve for risk aversion 

coefficients ranging from 0.5 to 4.0. Regardless of the contract analyzed, the insurance scenario 

becomes utility efficient as the level of risk aversion increases. In fact, the UWRP becomes 

positive when the risk aversion coefficient is around 1.5. From such point on, the CE calculated 

for the insurance scenario exceeds that of the no insurance alternative, with the opposite being 

true for risk aversion coefficients below this threshold. The CEs calculated for risk aversion 

coefficients ranging from 0.5 to 4 are found in the Appendix. 

 

[Figure 6 here] 

 

5. Discussion 

 

Crop yield responses to weather conditions considerably fluctuate across the semi-arid 

region of Brazil. Accordingly, so do the parameters governing the payouts of the weather index 

insurance product designed in this study. Trigger and exit thresholds, as calculated through a 

model-based clustering algorithm, vary expressively among the different contracts designed 

for beans and maize. This is, therefore, another piece of evidence on the spatially non-stationary 

nature of risk exposure to the weather, which corroborates the idea of offering different con-

tracts to different parts of the Brazilian semi-arid. 



With the payout parameters in hand, we were able to calculate the premium rate of each 

contract by means of a burning cost analysis. Except for the region for which Contract 1 was 

designed, which comprises municipalities from the states of Piauí, Bahia and Minas Gerais, an 

expressive divergence regarding the premium rate was observed between the crops analyzed. 

In fact, maize premiums calculated for Contract 2 and 3 are approximately twice as high as 

those computed for beans. For Contract 1, in turn, beans premiums are slightly higher. 

As premiums are estimated in order to capture the risk faced by farmers, which ulti-

mately are transferred to insurers, they provide an approximation of how much the farmers of 

a given crop in a given region are exposed to risk. According to the findings of this study, beans 

and maize farmers located in the southernmost part of the semi-arid do not have, between them, 

major differences in risk exposure. For the remainder of the region, however, maize production 

is much more susceptible to weather variations. In fact, as shown by Guerra et al. (2003), in 

certain parts of Brazil, beans require comparatively less water than maize during the growing 

season, with emphasis on the flowering stage of the plants. 

In regard of the effectiveness of the proposed weather index insurance product in pro-

tecting farmers against revenue variability, interesting features of the results achieved in this 

study worth highlighting. The mean-semivariance analysis showed that neither alternative 

dominates the other. In fact, the introduction of the insurance product leads to decreases in both 

downside risk and mean revenue. This result can be interpreted in light of the risk-return 

tradeoff defined by Markowitz (1952), which says that higher returns are obtained at the ex-

pense of a greater exposure to risk. Conversely, farmers should sacrifice some fraction of ex-

pected return in search of a lower level of risk. 

The results of the mean-semivariance analysis are better understood when compared to 

those obtained through the application of the SERF method. For all the contracts analyzed, the 

insurance alternative becomes utility efficient as the relative risk aversion coefficient increases. 



For lower levels of risk aversion, on the other hand, the utility efficient alternative is the one 

with no insurance. As the introduction of this risk management tool leads to declines in both 

the mean and the semivariance of revenues, a less risk-averse farmer would not acquire the 

WII product developed here, thus guaranteeing a higher expected return. 

 

6. Conclusion 

 

In this article, we designed, priced and evaluated a weather index insurance product for 

beans and maize farmers from the Brazilian semi-arid region. Municipalities were chosen ac-

cording to the results obtained by a Geographically Weighted Panel Regression (GWPR) model 

in order to mitigate basis risk. Subsequently, locations were divided in three groups and one 

contract was designed for each of them. The parameters of a proportional payment schedule 

were estimated by a model-based clustering algorithm, contracts were priced via burning cost 

analysis and the risk efficiency of the insurance product was evaluated using mean-semivari-

ance analysis and the Stochastic Efficiency with Respect to a Function (SERF) method. 

Reflecting the greater water requirement and, consequently, the greater production risk, 

the premiums calculated for maize were, on average, higher than those of beans. Averaging 

across contracts, the premium rate for beans (maize) was set at roughly 10.6% (15.7%). Ulti-

mately, these figures may help explaining the incipience of crop insurance in the Brazilian 

semi-arid as the region accounts for only 0.2% (2.1%) of subsidized policies contracted by 

beans (maize) farmers countrywide (MAPA, 2020). The risk exposure may be such that insur-

ers may be intimidated to operate in the region. In this case, government subsidies may play a 

crucial role even for a weather index insurance product. 

Based on the results of the mean-semivariance analysis, it can be concluded that the 

weather index insurance product proposed for beans and maize farmers from the Brazilian 



semiarid would indeed be effective in protecting them from adverse variations in production 

revenue. Moreover, the results obtained through the application of the SERF method suggest 

that utility-maximizer farmers that are sufficiently risk-averse would prefer to adopt the insur-

ance product than to do not use this risk management tool. Assuming that farmers are generally 

risk-averse9, we can ultimately conclude, based on our results, that the weather index insurance 

product designed here would be commercially competitive. 
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Figures 

 

 
Figure 1. The semi-arid region of Brazil. 

Source: Elaborated by the authors. 

  



 
Figure 2. Average yields (kg ha-1) for beans (left-hand side) and maize (right-hand side), Bra-

zilian semi-arid, 2003-2018. 

Source: Elaborated by the authors based on data from IBGE (2020). 

  



 
Figure 3. Geographical distribution of INMET’s automatic weather stations across the semi-

arid region of Brazil. 

Source: Elaborated by the author based on data from INMET (2020). 

  



 
Figure 4. Average of De Martonne’s aridity index for beans (left-hand side) and maize (right-

hand side), Brazilian semi-arid, 2003-2018. 

Source: Elaborated by the authors based on data from INMET (2020). 

  



 
Figure 5. Aridity estimates for beans (left-hand side) and maize (right-hand side), Brazilian 

semi-arid. 

Note: NS represent not significant at the 5% level. 

Source: Research results. 
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Figure 6. Utility Weighted Risk Premiums calculated for (a, b, c) beans and (d, e, f) maize, 

Brazilian semi-arid. 

Source: Research results. 

  



Tables 

 

Table 1. Accuracy of spatial interpolation methods 

Evaluation metrics 
Interpolation method 

IDW OK TPS 

  

Precipitation (mm) 

 

     Mean absolute error 40.0170 46.0752 44.4311 

     Root mean square error 55.4365 60.2441 57.4798 

  

Temperature (ºC) 

 

     Mean absolute error 1.5945 1.9051 1.7966 

     Root mean square error 2.1029 2.3508 2.3313 

Source: Research results. 

  



Table 2. Estimation results for the Geographically Weighted Panel Regression model, semi-

arid region of Brazil, 2003-2017. 

Crop yield GWPR 
FE 

(kg ha-1) Min Q1 Median Q3 Max 

       

 Beans (N = 9,632) 

       

Aridity -3.8228 2.8194 5.5232 7.3921 14.9515 4.4463*** 

      (0.1984) 

Trend -2.3394 -0.8261 0.2011 1.3008 3.9194 0.2058 
      (0.2391) 

       

 Maize (N = 9,456) 

       

Aridity -49.5818 7.4768 11.6032 19.9774 63.0053 11.2879*** 

      (0.6452) 

Trend -9.9721 -2.7182 0.1751 4.1529 47.3939 2.0209*** 
      (0.7504) 

Note: *** represent significance at the 1% level. Standard errors are shown in parentheses. 

Source: Research results. 

  



Table 3. Results for Leung’s tests of spatial non-stationarity 

Test F statistic p-value 

   

 Beans 

  

𝐹2 3.9852 0.0000 

𝐹3 10.4396 0.0000 

   

 Maize 

  

𝐹2 2.5852 0.0000 

𝐹3 6.3928 0.0000 

Source: Research results. 

  



Table 4. Weights assigned to each month of crop’s growing season 

Contract Dec Jan Feb Mar Apr May Jun Jul Aug 

          

 Beans 

  

1 0.54 0.00 0.19 0.26 0.00 0.00 0.00 - - 

2 0.54 0.00 0.05 0.18 0.14 0.00 0.09 - - 

3 0.22 0.24 0.26 0.06 0.19 0.03 0.00 - - 

          

 Maize 

  

1 - 0.00 0.04 0.02 0.00 0.02 0.00 0.00 0.92 

2 - 0.02 0.27 0.33 0.34 0.04 0.00 0.00 0.00 

3 - 0.03 0.04 0.02 0.01 0.08 0.20 0.62 0.00 

Source: Research results. 

  



Table 5. Parameters of weather index insurance for the Brazilian semi-arid 

Contract 
Average liability Trigger Exit Average payout Premium 

(R$ ha-1) (index points) (index points) (R$ ha-1) (%) 

      

   Beans   

      

1 1,324.29 33.15 7.68 167.80 14.93 

2 541.51 30.53 4.09 42.04 9.90 

3 649.78 21.14 1.66 39.41 6.83 

      

   Maize   

      

1 436.68 48.14 13.84 34.47 12.79 

2 713.60 4.71 1.21 90.86 16.77 

3 397.46 4.58 0.62 52.59 17.57 

Source: Research results. 

  



Table 6. Results of mean-semivariance approach for revenues of the contracts designed for 

beans and maize 

Contract 

Mean (R$ ha-1) Semivariance (R$ ha-1) 

Insurance 
No 

insurance 
Difference Insurance 

No 

insurance 
Difference 

       

 Beans 

  

1 1,528.03 1,557.98 -29.95 847.45 869.43 -21.98 

2 625.52 637.07 -11.56 317.08 327.31 -10.23 

3 759.48 764.44 -4.96 352.26 358.12 -5.86 

       

 Maize 

  

1 492.36 513.74 -21.38 288.84 310.55 -21.72 

2 810.72 839.53 -28.80 465.56 497.54 -31.97 

3 450.36 467.60 -17.25 253.79 273.74 -19.95 

Source: Research results. 

Notes: Revenue is averaged across space and time and standard deviation is shown in paren-

thesis.  



Appendix 

 

Table A1. Certainty equivalents for beans and maize, Brazilian semi-arid region 

RRAC1 
Contract 1 Contract 2 Contract 3 

Insurance No insurance Insurance No insurance Insurance No insurance 

       

 Beans 

       

0.50 1,254.26 1,278.34 551.58 560.94 684.18 688.91 

0.89 1,056.53 1,073.10 467.69 473.78 545.11 548.26 

1.28 927.08 936.34 470.66 473.65 676.67 679.06 

1.67 777.07 779.65 404.88 403.12 596.03 596.23 

2.06 647.56 645.70 344.23 337.04 538.80 536.83 

2.44 537.09 532.94 284.12 271.72 484.28 480.39 

2.83 446.18 440.85 227.61 211.98 429.78 424.61 

3.22 373.72 367.15 179.37 163.45 376.02 370.45 

3.61 317.11 308.65 141.91 127.71 325.44 320.29 

4.00 273.18 262.20 114.44 102.60 280.67 276.38 

       

 Maize 

       

0.50 409.99 422.73 663.36 684.40 367.67 380.74 

0.89 298.08 303.00 545.26 556.80 295.66 302.42 

1.28 347.62 346.61 483.40 485.15 280.60 280.85 

1.67 271.60 264.30 386.55 378.40 225.88 218.63 

2.06 214.57 203.20 296.45 280.58 177.59 163.99 

2.44 167.39 154.55 214.35 194.44 134.94 117.77 

2.83 130.21 117.97 148.38 128.83 100.43 83.01 

3.22 102.40 91.81 102.79 86.24 74.83 59.23 

3.61 82.23 73.47 74.01 60.74 56.79 43.58 

4.00 67.70 60.57 56.10 45.43 44.28 33.27 

Note: 1 Relative Risk Aversion Coefficient. 

Source: Research results. 




