
 
 

Give to AgEcon Search 

 
 

 

The World’s Largest Open Access Agricultural & Applied Economics Digital Library 
 

 
 

This document is discoverable and free to researchers across the 
globe due to the work of AgEcon Search. 

 
 
 

Help ensure our sustainability. 
 

 
 
 
 
 
 
 

AgEcon Search 
http://ageconsearch.umn.edu 

aesearch@umn.edu 
 
 
 

 
 
 
 
 
 
Papers downloaded from AgEcon Search may be used for non-commercial purposes and personal study only. 
No other use, including posting to another Internet site, is permitted without permission from the copyright 
owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C. 

https://makingagift.umn.edu/give/yourgift.html?&cart=2313
https://makingagift.umn.edu/give/yourgift.html?&cart=2313
https://makingagift.umn.edu/give/yourgift.html?&cart=2313
http://ageconsearch.umn.edu/
mailto:aesearch@umn.edu


Copyright 2021 by Marie Lassalas, Sabine Duvaleix, and Laure Latruffe. All rights 
reserved. Readers may make verbatim copies of this document for non-commercial 
purposes by any means, provided that this copyright notice appears on all such 
copies.  

Stringency of environmental standards, yield, product 
quality and revenue: Evidence from French wheat 

production

by Marie Lassalas, Sabine Duvaleix, and Laure Latruffe



1 
 

Stringency of environmental standards, yield, product quality and revenue:  

Evidence from French wheat production 

 

Marie Lassalas1, Sabine Duvaleix1, Laure Latruffe2  

1. SMART-LERECO, INRAE, Institut Agro, 35011 Rennes, France 

2. INRAE, GREThA, Université de Bordeaux, 33608 Pessac, France 

 

June 2021 

 Preliminary paper 

 

 

Abstract 

Many environmental standards were developed over the past three decades and the agricultural 

sector is not an exception. Environmental standards differ by their stringency. This paper aims at 

understanding whether farmers have incentives to adopt an intermediate environmental standard to 

limit the negative impact of their agricultural practices without changing all their farming system. As 

intermediate standards have various levels of environmental restrictions, we investigate and compare 

two environmental standards that differ by their stringency levels. We assess their impacts on 

pesticides use on yield, product quality and sales revenue at the plot level. We focus on two quality 

attributes, specific weight and protein content, which are used in marketing contracts for milling 

activities and bakers. To control for the possible selection bias in the decision to adopt the most 

stringent environmental standard, we use an endogenous switching regression method. We show that 

there is a selection bias on the adoption of the most stringent environmental standard regarding 

quality attributes. Our results highlight that banning most toxic pesticides at the plot level to limit the 

negative impact of agricultural practices on biodiversity has mixed effects on technical results. It 

decreases yield by 1.4%, decreases specific weight by 0.3kg/hl, and increases protein content by 0.02 

point of percentage. It increases sales revenue by 13€ per ha. Thus, farmers have low monetary 

incentives to adopt the most stringent environmental standard to preserve biodiversity. 
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1.  Introduction  

Environmental labels are growing worldwide. The Ecolabel Index (2021) identifies 455 environmental 

labels in 199 countries, and 25 industry sectors. Firms often use them to differentiate their products 

in the market. However label proliferation can lead to inefficient outcomes on welfare (Bonroy and 

Constantatos, 2015; Yokessa and Marette, 2019). The Farm to Fork Strategy (part of the European 

Green Deal) reports that the European Commission is looking for ways to create a sustainable label 

and to harmonize voluntary green claims. The agricultural sector counts numerous environmental 

labels developed both by public and private organizations (mainly non-governmental organizations 

and firms). French public policies recognized organic farming in 1981 and then harmonized it at the 

European level in 1992. Another example is the French High Environmental Value (Haute Valeur 

Environnementale) created in 2012. Private organization have also developed their own 

environmental labels (e.g. Agri Confiance (2002), Bee Friendly (2012)). Sometimes, firms’ labels can be 

confounded with trademarks as they define their own environmental set of rules to be applied to 

farmers. When it comes to explore the diversity of the development of environmental labels, the 

literature pay attention to consumers’ behavior and preferences. Consumers are not willing to increase 

price premium when the number of labels reported on a product increase (Tebbe and von 

Blanckenburg, 2018). Several theoretical articles investigated the impact of label competition in the 

market depending on the stringency of the sets of rules (Ben Youssef and Abderrazak, 2009; Fischer 

and Lyon, 2014; Li and van 't Veld, 2015; Poret, 2019). However, to our knowledge no attention has 

been carried out on farmers’ choice when a variety of environmental labels was offered.  

The literature investigating the effect of environmental standard adoption at the farm level mainly 

focused on the organic label. The agronomic literature wildly studied the impact of the adoption of the 

organic standard on yield (de Ponti et al., 2012; Seufert et al., 2012; Reganold and Wachter, 2016). 

These studies highlighted a negative impact of the adoption of organic practices on yield. There is no 

consensus in the economic literature on the link between the adoption of the organic standard and 

financial performances. Uematsu and Mishra (2012) founded that, despite income increase with the 

adoption of the organic standard, organic farms do no earn significantly higher income than 

conventional ones. Froehlich et al. (2018) showed that organic farms’ profit are lower. The links 

between the adoption of environmental practices and yield as well as economic return was explored 

in numerous case studies in developing countries. Most of them showed a positive relationship. Di 

Falco et al. (2011) found that farmers who adopted new varieties, soil conservation strategies and tree 

planting to cope with climate change in Ethiopia got higher yields (Di Falco et al., 2011). Abdulai and 

Huffman (2014) founded similar results in Ghana, they showed that the adoption of soil and water 

conservation technology increased rice yields and net returns. Kleemann and Abdulai (2013) showed 
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a positive relationship between the intensity of agro-ecological practice use and return on investment 

for pineapple farmers in Ghana. In addition, other studies investigated the effects of input use on yield 

and economic results. Koussoubé and Nauges (2017) investigated the effect of nitrogen use on maize 

yield and its profitability. Kawasaki and Lichtenberg (2015) assessed the impact of pesticides use on 

yield and quality. Few papers took into account how inputs use influenced quality, although some 

studies showed that ignoring quality underestimated the economic value of pesticide use (Babcock et 

al., 1992; Cobourn et al., 2013; Kawasaki and Lichtenberg, 2015). Furthermore, most studies examined 

the adoption of new practices and input use strategies at the farm level. Only, Koussoubé and Nauges 

(2017) focused their analysis at the plot level .  

In this paper, we explore the effects of environmental labels on farmers. Farmers must comply with 

several environmental standards, each of them defined by a different label with different levels of 

stringency. We apply our analysis to the French wheat production in which many environmental 

standards exist. We contribute to the existing literature by dealing with intermediate environmental 

requirements to investigate the effect of the adoption of environmental standards, that is to say the 

standards examined have environmental requirement lower than the organic standard and higher than 

conventional practices. Little attention is paid to these standards although, despite lower 

environmental requirement, they may lead to an improvement of agricultural practices and limit the 

negative impact of agriculture on the environment. To our knowledge, there is no study investigating 

the role of those intermediate standards on technical and economic results. We examine how different 

intermediate standards, with different levels of stringency, influence wheat yield, quality attributes 

and sales revenue though an empirical application on wheat production in France in 2014-2020.  We 

pay attention to two quality attributes: specific weight and protein content. Specific weight is a quality 

attribute for milling activities and protein content is another quality attribute useful for bakers. 

Farmers get a marketing contract that provides quality premiums for these quality attributes. Our 

study is conducted at the plot level to take into account the possibility for farmers to adopt several 

environmental standards and to choose on which plot each set of rules is applied. We focus on two 

environmental standards whose goals are to reverse the decline in biodiversity. The standard with 

higher environmental requirements ban most toxic pesticides thus it modifies agricultural practices 

whereas the standard with lower requirements only requires the presence of habitat on plots to favor 

biodiversity.     

The rest of the article is organized as follows. Firstly, we describe the data used and discuss summary 

statistics. Then, we explain our empirical strategy based on the endogenous switching regression 

method. In the fourth section, we analyze and discuss our results. Finally, we conclude. 
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2. Data  

Our empirical study is applied to wheat production in France. Wheat is the main cereal produced in 

France; it represents 54% of total French cereal production. On average, from 2014 to 2018, 5 millions 

of hectares where cultivated with wheat, representing 17% of the French agricultural land. France is 

the first producer of wheat in Europe and the fifth at a world scale (FranceAgriMer, 2021).  

We focus on environmental labels with intermediate environmental requirements, between organic 

standard and conventional farming system.  The adoption of the organic standard is excluded from our 

analysis because it requires a three-year transition. Thus, the decision to adopt this standard may 

wildly differ from the environmental standards studied in our analysis that can be reached on a year 

basis. Secondly, the adoption of the organic standard changes the whole farming system and it does 

not only change practices at the plot level. Organic farming is one of the most stringent standard but 

the share of organic wheat produced in France is low. Organic certified wheat represents 2.7% of the 

annual wheat production for human food (Renault et al., 2020). We consider two standards. The first 

standard, the one with lowest requirement, tend to favor biodiversity by enforcing the existence of 

biodiversity habitats. For example, the standard requires the existence of bird perches and that 3% of 

the arable land of the farm to be dedicated to honey plant fallow. The second standard go further. 

Beyond the presence of habitats to favor biodiversity, it requires to reduce the negative impact of 

agricultural practices on biodiversity by limiting most toxic pesticides use. Most toxic active ingredients 

are prohibited and farmers can only use a limited list of active ingredients. This standard also defines 

a list of non-recommended active ingredients, which are allowed but the quantity applicable is limited.  

We carry out our study with data from arable plots obtained from an agricultural cooperative. The data 

were collected between 2014 and 2020. Farmers can decide for each plot either to adopt the low 

requirement standard (L standard) or the high requirement standard (H standard). Our database 

contains 8,139 plot observations, corresponding to 281 farms. Unlike the analysis of  Bravo‐Ureta et 

al. (2020) that is conducted at plot level on wine grape, we were not able to build a balanced panel 

data. Crop rotation prevents us from building a balanced panel data because each year, farmers change 

the crops produced on each plot. Moreover, we do not observe what is done on a plot when farmers 

choose a crop different from wheat. For example in Table 1, we observe that from 2014 to 2020, 64% 

of the plots only had one year with wheat production, 25% of the plots received wheat twice and 9% 

had wheat production three times in the seven-year period. The database includes information about 

plot characteristics, the input management, as well as the farms operating the plots. Tables 2 presents 

descriptive statistics and a comparison of mean characteristics between the plots with the H standard 
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and plots with the L standard. For each plot, the database also gives us information on technical results 

(yield and quality attributes) and sales revenue. Sales revenue represents the revenue that farmers 

perceived from the cooperative when selling their wheat.  

Table 1: Structure of the unbalanced panel data 

Panel length1  Frequency Percentage 

1 3476 63.9 % 
2 1372 25.2 % 
3 484 8.9 % 
4 108 2.0 % 
5 7 0.0 % 
6 0 0.0% 
7 0 0.0% 
8 0 0.0 % 
Total 5440 100.00 % 

1Panel length correspond to the number of observations 
in the sample for a same plot from 2014 to 2020 

 

To quantify pesticides use on each plot, we rely on the treatment frequency index (TFI) which is an 

indicator widely used by French decision-makers for monitoring the use of pesticides in agriculture. TFI 

counts the number of reference rates used per hectare during a crop year. We only take into account 

pesticides applied on the crop. It is determined as follows.   

TFI =
applied rate

reference rate
∗

area treated

plot area
(1) 

 

Almost two third of the observations (65%) adopted the H standard. Some plots, irrespective to 

pesticides use are not eligible to the H standard because of their intrinsic characteristics, such as being 

close to a highway. In our sample, 55% of the plots with the L standard are eligible to the H standard. 

Most plots (90%) are cultivated by farmers with a previous experience with H standard.  

About one third of the plots are tilled, which is close to the French average for wheat plots (Agreste, 

2020b). The mineral nitrogenous (N) fertilization applied is 180 kg N/ha on average, and is slightly 

higher than the French average, 164 kg N/ha (Agreste, 2020a). Herbicide TFI and insecticide TFI are 

close to the regional average, respectively 1.8 and 0.3. Fungicide TFI is slightly lower than the regional 

average (1.5). The average wheat yield per plot reaches approximatively 6 tons/ha. As far as the quality 

attributes are concerned, the specific weight is 79.25 kg/hl and the protein content in wheat reaches 

12.10% on average.  
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We compare mean characteristics between plots with H and L standards (Table 2). We show that the 

two groups have different farm and plot characteristics. We note that the plots with H standard are 

more frequently observed in livestock farm. Plots with H standard are on average larger, and are more 

tilled than plots with L standard. We observe differences in pest management at 1% of significance 

whereas fertilization management differ only at 10% of significance. Herbicide TFI, insecticide TFI and 

fungicide TFI are higher for plots with H standard. Likewise, herbicide, insecticide and fungicide 

expenditures are higher for plots with H standard. We were not expecting plots with H standard to get 

higher quantity of pesticides. However, the set of rules implies binding requirements on the applied 

quantity of moderate toxically active ingredients but not on the total applied quantity. In addition, 

farmers cannot use as efficient active ingredients with low rate because of the ban of most toxic 

ingredients. In terms of technical results, we observe similar yields and specific weight between the 

two groups. However, protein content is slightly higher for plots with H standard. Wheat sales revenue 

per hectare, which is the revenue farmers get from the cooperative when they sale their wheat, is 

higher for plots with H standard by 42€/ha on average.   
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Table 2: Variables definition and descriptive statistics 

Variable Definition Full sample Comparison of mean 
characteristics 

  Mean Std. 
dev. 

Plots - L 
standard 

Plots - H 
standard 

Significance1 

Outcome variables       

 TECHNICAL RESULTS      

Yield Yield (tons/ha) 5.96 2.08 5.95 5.97 n.s 

Specific weight Specific weight (kg/hl) 79.25 2.94 79.21 79.27 n.s 

Protein content  Protein rate (%) 12.10 0.96 12.06 12.13 *** 

 SALES REVENUE      

Wheat sales revenue Wheat sales revenue per ha 
(€/ha) 

1,017.85 374.93 990.28 1,032.50 *** 

Input management at plot level      

 FERTILIZATION      

Mineral N quantity  Mineral nitrogen unity applied 
(kg/ha) 

180.46 36.87 181.13 180.08 * 

Fertilizer expenditure Fertilizer expenditure (€/ha) 229.21 67.77 233.80 226.79   *** 

 CROP PROTECTION      

Herbicide TFI Treatment frequency index for 
herbicide 

1.74 0.79 1.70 1.76 *** 

Insecticide TFI Treatment frequency index for 
insecticide 

0.33 0.56 0.27 0.37 *** 

Fungicide TFI Treatment frequency index for 
fungicide 

1.36 0.64 1.33 1.38 *** 

Herbicide expenditure Herbicide expenditure (€/ha) 64.91  30.69 60.53 67.23 *** 

Insecticide expenditure Insecticide expenditure (€/ha) 1.91  3.34 1.51 2.12 *** 

Fungicide expenditure Fungicide expenditure (€/ha) 69.49  26.29 67.35 70.63 *** 

Control variables  

 PLOT CHARACTERISTICS      

Corn previous crop  1 if the previous crop was corn  0.34  0.55 0.23 *** 

Tillage  1 if the plot has been tilled 0.38  0.22 0.46 *** 

 FARM CHARACTERISTICS   

Livestock  1 if livestock on farm  0.24  0.17 0.27 *** 

Individual governance 1 if farm in under individual 
governance  

0.39  0.41 0.38 *** 

H standard experience  1 if farmers have previous 
experience with the highest 
standard  

0.90  0.86 0.92 *** 

Exclusion variables  

Plot size Plot size (ha) 5.06 4.84 3.95 5.64 *** 

Highway 1 if the plot is located close to an 
highway 

7.6  0.22 0.00  

Number of observations  8,139  2,819 5,320  

*, **, *** indicate significance at 10%, 5% and 1%, respectively. 
1 A Wilcoxon rank-sum test is performed for continuous variables and a chi-square test of independence 
is performed for categorical variables.  
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3. Empirical strategy 

We aim at estimating the effect of the adoption of the H standard on three technical outcomes at the 

plot level (yield, specific weight and protein content) and on an economic outcome (sales revenue) 

taking into account the level of input use. The decision to adopt the H standard on a plot is voluntary 

and may be the consequence of self-selection. Observable and unobservable characteristics might 

affect self-selection and then affect the estimation of yield, quality and sales revenue. We thus choose 

to implement an endogenous switching regression model (ESR) to deal with the potential endogeneity 

of the adoption of the H standard. We choose to implement this method rather than propensity score 

matching because this model take into account observed and unobserved factors when estimating the 

impact of adopting the H standard. Propensity-score matching methodology rely only on observed 

characteristics (Imbens and Wooldridge, 2009). Besides, the difference-in-difference methodology is 

wildly use in the literature to estimate the impact of a treatment such as adoption of new practices or 

consequences of public policies implementation (Bravo‐Ureta et al., 2020; Mennig and Sauer, 2020). 

We were not able to implement this method because we do not have enough observations before and 

after the adoption of the H standard. Therefore, the advantage of the ESR method is that it allows us 

considering two different technologies for the plots adopting the H standard and the plots adopting 

the L standard adopters. 

 

To implement the ESR model we follow the Maddala (1983) specification. The first stage of the ESR 

aims at determining the factors which influence the adoption of the H standard on a plot, named the 

selection equation. We assume that the decision to adopt the H standard on plot p depends on the 

expected net utility of this decision. If the utility derived by the adoption of the H standard is greater 

than the decision not adopting it, the H standard will be adopted on the plot. We assume that we can 

model expected net utility on plot p, 𝐴𝑝
∗ , as a function of factors affecting the expected utility of the H 

standard. These factors are included in vector 𝑍𝑝 as follows: 

𝐴𝑝
∗ = 𝑍𝑝𝛾 + 𝜇𝑝 (1) 

where 𝛾 is a vector of parameters to be estimated and  𝜇𝑝 is the error term 

We do not observe the latent variable, 𝐴𝑝
∗ ; only the decision whether or not the H standard was 

adopted on the plot in observed, 𝐴𝑝, which is related to 𝐴𝑝
∗  as follows: 

𝐴𝑝 = {
1   𝑖𝑓 𝐴𝑝

∗ > 0

 0   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
(2) 
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We consider input use, plot characteristics, as well as farm characteristics as factors affecting the 

expected utility of the H standard. Agricultural practices determine the probability of adopting the H 

standard. We take into account pesticides TFI and mineral N quantity, as there are input use 

requirements in the H standard. We also consider the type of crop previously grown on the plot and if 

the plot has been tilled. These two factors may influence the expected utility of the H standard as they 

affect pesticides use. Plots not tilled have more weed, farmers may need to rely on an efficient and 

toxic active ingredients to get rid of it, compromising plots possibility to adopt the H standard. Alike, 

wheat grow on plots where was previously grown corn are more sensitive to Fusarium wilt, thus these 

plots may get more fungicide or need to spray a more toxic active ingredient. We also control for soil 

quality. Our database does not gather information on soil quality at the plot level. However, we know 

the region where each farm is located. Those regions are divided into five sub-regions of the studied 

area. We consider sub-region localization as a proxy for soil quality. Then, farm characteristic can also 

play a role on the perception of the H standard utility. For example, we might expect that farmers who 

have a previous experience with the H standard are more willing to adopt the H standard on a plot, as 

they already know  the practices to implement. We use exclusion variables that is to say variables that 

directly affect the selection variable but not the outcome variables. In our model, we use two exclusion 

variables: highway and plot area. A plot being close to a highway cannot be eligible to the H standard. 

The standard enforces binding restrictions on distances from the plots to highway Farmers may have 

incentives to adopt the H standard on larger plots as they can expect higher returns on their 

investment, in addition the latter may imply fixed costs that can be spread across a larger area.  

In the second stage, we estimate the outcome variables, 𝑦𝑝, for the two regimes: the adopter of the L 

standard and the adopter of the H standard. The equations are defined as follows.   

𝑅𝑒𝑔𝑖𝑚𝑒 1 (𝑎𝑑𝑜𝑝𝑡𝑖𝑜𝑛 𝑜𝑓 𝐻 standard):   𝑦1𝑝 = 𝑋1𝑝𝛽1 + 𝜀1𝑝    𝑖𝑓 𝐴𝑝 = 1 (3𝑎)

𝑅𝑒𝑔𝑖𝑚𝑒 0 (𝑎𝑑𝑜𝑝𝑡𝑖𝑜𝑛 𝑜𝑓 𝐿 standard):   𝑦0𝑝 = 𝑋0𝑝𝛽0 + 𝜀0𝑝     𝑖𝑓 𝐴𝑝 = 0 (3𝑏)
 

where 𝑋1𝑝 and 𝑋0𝑝 are vectors of inputs, agronomic plot characteristics, and soil quality. 𝛽1𝑝 and 𝛽0𝑝 

are vectors of parameters to be estimated, 𝜀1𝑝 and 𝜀0𝑝 are error terms.   

We assume that the error terms of equation (1), (3a) and (3b) have a trivariate normal distribution 

with mean vector zero and covariance matrix such as  

Ω = [

𝜎𝜇
2 𝜎1𝜇 𝜎0𝜇

𝜎1𝜇 𝜎1
2 .

𝜎0𝜇 . 𝜎0
2

] (4) 
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where 𝜎𝜇
2 is the variance of the error term in the selection equation (1), and 𝜎1

2  and 𝜎0
2 are variances 

of the error terms in the outcome variables estimation equations (3a et 3b). We can consider 𝜎𝜇
2 equal 

to 1 as 𝛾 is estimable only up to a scale factor. 𝜎1𝜇 and 𝜎2𝜇 are, respectively, covariances of 𝜇𝑝 and 

𝜀1𝑝, 𝜇𝑝 and 𝜀0𝑝. The covariance between 𝜀1𝑝 and 𝜀0𝑝 is not defined since 𝑦1𝑝 and 𝑦0𝑝 are never 

observed simultaneously.  

In the presence of selection bias, when 𝜇𝑝 is correlated to 𝜀1𝑝 and 𝜀0𝑝, the expected values of 𝜀1𝑝 and 

𝜀0𝑝 conditional on the sample selection are different from zero.  

𝐸(𝜀1𝑝 |𝐴𝑝 = 1) =  𝜎1𝜇  
𝜑(𝑍𝑝𝛾)

𝜙(𝑍𝑝𝛾)
=  𝜎1𝜇𝜆1𝑝            (5𝑎)

𝐸(𝜀0𝑝 |𝐴𝑝 = 0) =  − 𝜎0𝜇  
𝜑(𝑍𝑝𝛾)

1 − 𝜙(𝑍𝑝𝛾)
=  𝜎0𝜇𝜆0𝑝 (5𝑏)

 

where 𝜑 and 𝜙 are respectively the standard normal density function and the standard normal 

distribution. 𝜆1𝑝 and 𝜆0𝑝 are defined as follows: 

𝜆1𝑝 =
𝜑(𝑍𝑝𝛾)

𝜙(𝑍𝑝𝛾)
        (6𝑎)

𝜆0𝑝 =
𝜑(𝑍𝑝𝛾)

1 − 𝜙(𝑍𝑝𝛾)
 (6𝑏)

 

Thus, using equations (3a) and (3b), the outcome estimation functions can be written as follows:  

𝑅𝑒𝑔𝑖𝑚𝑒 1 (𝑎𝑑𝑜𝑝𝑡𝑖𝑜𝑛 𝑜𝑓 𝐻 𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑):   𝑦1𝑝 = 𝑋1𝑝𝛽1 + 𝜎1𝜇𝜆1𝑝 + 𝜐1𝑝    𝑖𝑓 𝐴𝑝 = 1 (7𝑎)

𝑅𝑒𝑔𝑖𝑚𝑒 0 (𝑎𝑑𝑜𝑝𝑡𝑒𝑟 𝑜𝑓 𝐿 𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑):   𝑦0𝑝 = 𝑋0𝑝𝛽0 + 𝜎0𝜇𝜆0𝑝 + 𝜐0𝑝     𝑖𝑓 𝐴𝑝 = 0 (7𝑏)
 

Maddala (1983) suggests to estimate equations (7a) and (7b) by weighted least squares rather than 

ordinary least squares to account for the error terms, 𝜈1 and 𝜈0, heteroscedasticity. However, a more 

efficient method is the full information maximum likelihood (FIML) method (Lokshin and Sajaia, 2004; 

Di Falco et al., 2011; Läpple et al., 2013; Abdulai and Huffman, 2014; Abdulai, 2016).  

Given previous assumptions on the distribution of the error terms, the log likelihood function is written 

as follows:  

ln 𝐿𝑖 =  ∑ 𝐴𝑖  [ln  𝜑 (
𝜀1𝑝

𝜎1
) − ln 𝜎1 + ln 𝜙(θ1𝑝)] + (1 − 𝐴𝑝) [ln 𝜑 (

𝜀0𝑝

𝜎0
) − ln 𝜎0 + ln (1 − 𝜙(θ2𝑝))]

𝑁

𝑖=𝑝

(8) 

𝜃𝑗𝑝 =  

𝑍𝑝𝛾 +
𝜌𝑗𝜀𝑗𝑝

𝜎𝑗

√1 − 𝜌𝑗
2

   𝑤𝑖𝑡ℎ 𝑗 = 0,1 (9) 
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𝜌1 =
𝜎1𝜇

2

𝜎𝜇𝜎1
      𝜌0 =  

𝜎0𝜇
2

𝜎𝜇𝜎0
   (10) 

 

where 𝜌1 and 𝜌0 are, respectively, the correlation coefficients between the error term 𝜇𝑝 of the 

selection equation (1) and the error terms  𝜀1𝑝 and 𝜀0𝑝 of the equations (3a) and (3b).  

The FIML is implement with clustered standard errors at the farm level and year dummies are added. 

We clustered standard errors at the farm level because we assume that plots belonging to the same 

farm are subject to a global farm management. 

We follow the same methodology for the estimation of wheat sales revenue. However, we use input 

expenditures instead of input quantities in vectors 𝑋1𝑝 and 𝑋0𝑝 and add quality attributes (specific 

weight and protein content) to account for the impact of grain quality on farm revenue. Farmers get a 

marketing contract that provides quality premiums for the two quality attributes: specific weight and 

protein content. Specific weight is a quality attribute for milling activities and protein content is 

another quality attribute useful for bakers. 

 

Treatment effect on the treated 

The results of the ESR allow us to compute the expected outcome variables for plots with the H 

standard 𝐸(𝑦1𝑝|𝐴𝑝 = 1)  and to determine the expected outcome variables in the counterfactual 

hypothetical case where the plots with the H standard adopt the L standard 𝐸(𝑦0𝑝|𝐴𝑝 = 1). The 

conditional expectations are specified as follows:  

 

𝐸(𝑦1𝑝 |𝐴𝑝 = 1) =  𝑋1𝑝 𝛽1 +  𝜎1𝜇𝜆1𝑝 (11𝑎)

𝐸(𝑦0𝑝 |𝐴𝑝 = 0) =  𝑋0𝑝 𝛽0 +  𝜎0𝜇𝜆0𝑝 (11𝑏)
 

 

In line with Heckman and Vytlacil (2001), we compute the effect of the treatment, the H standard, on 

the treated (TT). TT represents the effect of the adoption of the H standard on the outcome variables 

for plots that actually adopt the H standard. TT can be obtained as follows:    

𝑇𝑇 = 𝐸(𝑦1𝑝 |𝐴𝑝 = 1) −  𝐸(𝑦0𝑝 |𝐴𝑝 = 1)

  =  𝑋1𝑝 (𝛽1 − 𝛽0) + (𝜎1𝜇 − 𝜎0𝜇)𝜆1𝑝

(12) 
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4. Results and discussion 

Effect of the H standard adoption on technical results – yield and quality  

We present the results of the ESR model for technical results on Tables 3 to 5. The first column shows 

the results for the selection equation. Columns 2 and 3 present the estimates of the ESR on outcomes 

for, respectively, the group of plots with the L standard and the group of plots with the H standard.  

 

Table 3: Parameters estimates when yield is the outcome variable – ESR model  

 (1) (2) (3) 

 Selection L standard H standard 

Yield Coef. Std. Err. Coef. Std. Err. Coef. Std. Err. 

Mineral N quantity  0.001 0.001 0.006*** 0.001 0.004*** 0.001 
Herbicide TFI -0.021 0.045 -0.008 0.057 -0.041 0.046 
Insecticide TFI 0.213*** 0.069 0.291*** 0.100 0.229*** 0.065 
Fungicide TFI -0.010 0.058 0.214** 0.085 0.183*** 0.067 
Corn previous crop  -1.552*** 0.097 -0.157 0.112 0.326*** 0.112 
Tillage  1.442*** 0.109 0.251** 0.115 -0.200* 0.103 
H standard experience 0.570*** 0.143 -0.209 0.157 0.049 0.139 
Livestock 0.189 0.136 -0.243 0.147 -0.078 0.109 
Individual governance -0.051 0.084 -0.390*** 0.125 -0.234** 0.109 
Highway  -9.624*** 0.242     
Plot size 0.051*** 0.008     
Constant -0.927*** 0.285 5.008*** 0.386 5.494 0.338 
lnσ0 0.629*** 0.020     
ρ0 0.032 0.040     
lnσ1 0.578*** 0.017     
ρ1 -0.143 0.103     
Log likelihood -19,294.981     
Wald test of independence: χ2 2.31      

Number of observations 8,068  2,819  5,249  

*, **, *** indicate significance at 10%, 5% and 1%, respectively. 

Note: we include control dummy variables for soil quality and years. We implement the FIML method 
with clustered standard errors at the farm level 
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Table 4: Parameters estimates when specific weight is the outcome variable – ESR model 

 (1) (2) (3) 

 Selection L standard H standard 

Specific weight Coef. Std. Err. Coef. Std. Err. Coef. Std. Err. 

Mineral N quantity 0.000 0.001 0.005*** 0.001 0.003 0.002 
Herbicide TFI -0.013 0.041 -0.057 0.095 -0.046 0.072 
Insecticide TFI 0.170*** 0.062 0.067 0.147 0.001 0.124 
Fungicide TFI -0.024 0.057 0.185 0.123 0.257*** 0.097 
Corn previous crop  -1.490*** 0.098 -0.164 0.195 1.213*** 0.192 
Tillage  1.401*** 0.107 -0.049 0.165 -0.816*** 0.172 
H standard experience 0.526*** 0.145 -0.087 0.215 -0.140 0.270 
Livestock 0.161 0.125 -0.139 0.268 -0.412** 0.169 
Individual governance -0.045 0.079 -0.219 0.166 0.017 0.155 
Highway  -9.516*** 0.248     
Plot size 0.047*** 0.008     
Constant -0.754*** 0.283 75.623*** 0.477 77.255*** 0.578 
lnσ0 0.757*** 0.028     
ρ0 0.138** 0.060     
lnσ1 0.862*** 0.032     
ρ1 -0.779*** 0.057     
Log likelihood -20,519.300     
Wald test of independence: χ2 58.81***      

Number of observations 8,068  2,819  5,249  

*, **, *** indicate significance at 10%, 5% and 1%, respectively. 

Note: we include control dummy variables for soil quality and years. We implement the FIML method 
with clustered standard errors at the farm level 
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Table 5: Parameters estimates when protein content is the outcome variable – ESR model 

 (1) (2) (3) 

 Selection L standard H standard 

Protein content  Coef. Std. Err. Coef. Std. Err. Coef. Std. Err. 

Mineral N quantity  0.000 0.001 0.001 0.001 0.001* 0.001 
Herbicide TFI -0.020 0.044 0.041 0.047 0.020 0.024 
Insecticide TFI 0.204*** 0.066 -0.133*** 0.051 0.006 0.039 
Fungicide TFI -0.015 0.058 0.099** 0.048 0.084** 0.037 
Corn previous crop  -1.538*** 0.098 -0.152*** 0.059 -0.297*** 0.081 
Tillage  1.428*** 0.112 0.047 0.060 0.196** 0.094 
H standard experience 0.572*** 0.143 -0.019 0.109 0.164* 0.094 
Livestock 0.174 0.135 0.330*** 0.080 0.066 0.072 
Individual governance -0.036 0.084 0.011 0.070 0.091 0.056 
Highway  -9.627*** 0.251     
Plot size 0.052*** 0.008     
Constant -0.871*** 0.320 11.620*** 0.244 11.055*** 0.254 
lnσ0 -0.233*** 0.026     
ρ0 -0.025 0.057     
lnσ1 -0.217*** 0.036     
ρ1 0.415* 0.189     
Log likelihood -12,546.985     
Wald test of independence: χ2 3.92      

Number of observations 8,068  2,819  5,249  

*, **, *** indicate significance at 10%, 5% and 1%, respectively. 

Note: we include control dummy variables for soil quality and years. We implement the FIML method 
with clustered standard errors at the farm level 
 

We show that exclusion variables explain the probability for a plot to adopt the H standard, validating 

our choice as exclusion variables. Being close to a highway has a negative effect. It is not surprising as 

plots close to a highway are not eligible to the H standard. On the other hand, plot size has a positive 

effect. It validates our hypothesis that farmers may have higher incentives to adopt the H standard on 

larger plots as they expect higher returns on their investment. Farms characteristics do not affect the 

probability for a plot to adopt the H standard. Only, the experience of farmers with the H standard 

increases plots probability to adopt the H standard. Plots probability to adopt the H standard also 

depends on agricultural practices. The probability to adopt the H standard increases if the plot is tilled 

and decreases if the previous crop grown is corn. Tilling is an alternative technique to the use of 

herbicide to destroy weeds. As most toxic (and thus most efficient) herbicide are prohibited, farmers 

tend to rely more on tillage to control weeds on plots with H standard. Plots where was previously 

grown corn are more sensible to Fusarium wilt, thus farmers may choose not to adopt the H standard 

on these plots as they are limited in fungicide use in terms of active ingredients and quantity. Besides, 

insecticide TFI affect positively plots probability to adopt the H standard.  
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We highlight that there exists a selection bias on the adoption of the H standard on a plot regarding 

quality attributes but not on yield. For the yield estimation (Table 3), both estimated coefficients of 

the correlation terms, ρ1 and ρ0, are not significantly different from zero. These two coefficients 

measure the correlation between the error term of the selection equation and the outcome equation 

for plots with the L standard (ρ0) and plots with the H standard (ρ1). For specific weight estimation 

(Table 4), the estimated coefficients of the correlation terms ρ1 and ρ0 are both significant, ρ1 is 

negative whereas ρ0 is positive. It indicates a positive selection bias for plots with the H standard and 

a negative selection bias for plots with L standard. It suggests that plots with higher than average 

specific weight are more likely to adopt the H standard whereas plots with lower than average specific 

weight are more likely to adopt the L standard. For protein content (Table 5), the ρ1 is positive at 10% 

of significance. It highlights a negative selection bias, plots with lower than average protein content 

are more likely to adopt the H standard.  

 

Despite the absence of self-selection on the adoption of the H standard regarding yield, our results 

show that there are differences in the coefficients estimation of the yield equations between plots 

with L standard and plots with H standard (Table 3, columns 2 and 3). Thus, it illustrates the presence 

of heterogeneity in the sample. For both groups, increasing the quantity on plots of mineral N, 

insecticide TFI and fungicide TFI positively affect wheat yield. However, the effect of tillage on yield is 

opposite between the two groups. Tilling has a positive effect on plots with L standard whereas it has 

a negative effect on plots with H standard. Previous crop being corn has a significant effect only for 

plots with H standard. Coefficient estimations also differ between groups for quality attributes. Specific 

weight is positively affected by an increase in mineral N quality for plots with the L standard. For plots 

adopting H standard, fungicide TFI and corn being the previous crop positively affect specific weight 

whereas tilling negatively affect this quality attribute. Mineral N quantity only increase significantly 

protein content for plots with H standard. It could be surprising to note that mineral N quantity does 

not affect protein content for plots with L standard. However, protein content is mainly affected by 

the last application of mineral N and not the all quantity applied. Fungicide TFI has a positive effect on 

protein content for both groups. Plots with L standard are negatively affect by insecticide TFI and plots 

with H standard are negatively affect by the previous crop being corn.  

 

Table 6 presents the average outcome results for yield, specific weight and protein content, under 

actual (highlight in grey) and counterfactual conditions. The last column reports the treatment effects 

of the adoption of the H standard on the treated (TT) for plots with the H standard. Our results show 

that, for plots with the H standard, the adoption of the H standard decreases yield and has mixed effect 

on quality attributes. Adopting the H standard reduces yield by 80kg/ha, representing a 1.4% decrease 
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in yield. It decreases specific weight by 0.3kg/hl whereas it increases protein content by 0.02 point of 

percentage. Farmers have incentives for quality through a marketing contract that provides quality 

premiums for specific weight and protein content. If specific weight is higher than the threshold 

76.3kg/hl, a reduction of 0.3kg/hl have no financial consequence. However, if the specific weight is 

below this threshold, a reduction by 0.3kg/hl can lead to a penalty up to 10€/ton of wheat. An increase 

of protein content by 0.02 point of percentage do not have financial impact, an increase of 0.1 point 

of percentage is needed to get a prime of 0.5€/ton of wheat.  

 

Our results highlight that the adoption of the H standard on a plot in comparison to the L standard has 

overall a negative effect on technical results. Thus, banning most toxic pesticides at the plot level to 

limit the negative impact of agricultural practices on biodiversity decreases yield by 1.4%, decreases 

specific weight by 0.3kg/hl, and increases protein content by 0.02 point of percentage. The following 

section aims at estimating the consequences of the adoption of the H standard on sales revenue by 

hectares. More specifically, we examine whether the prime premium of the H standard compensates 

its negative effect on technical results and whether farmers get monetary incentives to adopt the H 

standard.  

 

Table 6: Treatment effect on the treated - Effect of the H standard on technical results 

 Decision stage  

Sub-samples: 
Plot with H standard 

To adopt H standard To adopt L standard Treatment effects 

Yield 5.96 (0.01) 6.05 (0.01) TT = -0.08*** 
Specific weight 79.26 (0.03) 79.58 (0.03) TT = -0.32*** 
Protein content  12.13 (0.01) 12.11 (0.01) TT = 0.02*** 

*, **, *** indicate significance at 10%, 5% and 1%, respectively. 

 

Effect of H standard adoption on sales revenue   

Our results show that there is no selection bias on the adoption of H standard on a plot regarding sales 

revenue (Table 7). However, there are differences in the coefficients estimation of sales revenue 

equations between plots with H standard and L standard (Table 7, columns 1 and 2). Sales revenue of 

both groups are influenced positively by the increase of mineral N, insecticide, and fungicide 

expenditures. Plots characteristic influence L standard and H standard in an opposite way. Corn being 

the previous crop has a negative impact on sales revenue for plots with the L standard whereas it has 

a positive impact for plot with the H standard. Tilling plots increases sales revenue for plots with the L 

standard and decreases it for plots with the H standard. Regarding quality attributes, the increase in 

specific weight enhances sales revenue for both groups. Protein content is negative and significant 
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only for the plots with H standard. This result could be surprising as there is a monetary incentive for 

protein content in the marketing contract. However, there is a negative relation between yield and 

protein content while sales revenue per ha highly depends on yield.  

 

Table 7: Parameters estimates when sales revenue is the outcome variable – ESR model 

 (1) (2) (3) 

 Selection L standard H standard 

Sales revenue  Coef. Std. Err. Coef. Std. Err. Coef. Std. Err. 

Mineral N  expenditure 0.001 0.001 0.443*** 0.161 0.311*** 0.102 
Herbicide expenditure 0.002* 0.001 -0.066 0.282 -0.162 0.196 
Insecticide expenditure 0.034*** 0.012 11.225*** 3.125 7.372*** 2.486 
Fungicide expenditure 0.003*** 0.001 1.306*** 0.313 1.187*** 0.266 
Corn previous crop  -1.521*** 0.096 -30.233* 17.984 32.249** 16.546 
Tillage  1.440*** 0.108 53.760*** 18.050 -26.172* 14.830 
Specific weight 0.012 0.013 46.801*** 3.725 33.316*** 2.497 
Protein content 0.030 0.042 -9.527 9.521 -28.520*** 6.439 
H standard experience 0.540*** 0.142 -41.652* 25.189 2.115 21.285 
Livestock 0.222* 0.123 -29.639 29.109 3.751 16.352 
Individual governance -0.046 0.082 -62.359*** 19.833 -34.392** 16.882 
Highway  -9.885*** 0.216     
Plot size 0.049*** 0.008     
Constant -2.676** 1.247 -2482.812*** 330.65 -1183.11*** 237.078 
lnσ0 5.761*** 0.026     
ρ0 0.060 0.039     
lnσ1 5.701*** 0.016     
ρ1 -0.089 0.088     
Log likelihood -60,634.581    
Wald test of independence: χ2 3.19      

Number of observations 8,068  2,819  5,249  

*, **, *** indicate significance at 10%, 5% and 1%, respectively. 

Note: we include control dummy variables for soil quality and years. We implement the FIML method 
with clustered standard errors at the farm level 
 

Table 8 reports the report the TT of the H standard on sales revenue. Our results show that the 

adoption of the H standard for plots adopting the H standard increases sales revenue by 13.0€ per ha, 

representing a 1.3% increase of sales revenue per ha. On average, increasing sales revenue per ha by 

13.0€ leads to an increase of 2€/ton. Thus, we conclude that the H standard price premium merely 

compensates the negative impact of H standard adoption on yield and quality. Monetary incentives 

for farmers to adopt the environmental standard with the highest requirements, limiting toxic 

pesticides for biodiversity, is low.   
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Table 8: Treatment effect on the treated - Effect of the H standard on sales revenue 

 Decision stage  

Sub-samples: 
Plot with H standard 

To adopt H standard To adopt L standard Treatment effect 

Sales revenue  1031.91 (2.96) 1018.84 (3.10) TT = 13.07*** 

*, **, *** indicate significance at 10%, 5% and 1%, respectively. 

 

Our analysis highlights that farmers receive very low monetary incentives to implement the standard 

with the highest requirements. Thus, we wonder what are their motivation to choose to change their 

practices on some plots by banning efficient pesticides but harmful for the biodiversity. Meta-analysis 

and literature review show that access to information, knowledge on sustainable practices, financial 

capacity, connection with local network, environmental awareness, risk tolerance, and social factors 

are part of the factors explaining the adoption of sustainable practices by farmers (Baumgart-Getz et 

al., 2012; Dessart et al., 2019). However, these factors cannot be taken into account when it comes to 

understand why they choose to adopt the standard with the highest environmental requirement on 

some plots and not on other plots. Ambec and Lanoie (2008) and Lanoie and Llerena (2015) highlight 

that the adoption of environmental practices in an opportunity to access some markets. Thus, by 

adopting two different standards on different plots of their farm, farmers can have access to two 

different markets.  
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5. Conclusion 

We contribute to the existing literature by investigating the effect of the adoption of a stringent 

environmental standard enforcing restrictions on pesticides use on technical and economical results. 

This standard aims at favoring biodiversity by enforcing the presence of biodiversity habitats and at 

reducing the negative effects of agricultural practices by banning most toxic pesticides. The set of rules 

is an intermediate level between organic standard and conventional practices. We explore the role of 

intermediate environmental standards on wheat yield, quality and sales revenue. For technical results, 

we pay attention to yield and two quality attributes: specific weight and protein content. We choose 

to focus on to these attributes as farmers have monetary incentives for them through a marketing 

contract. Thus, a decrease in this two quality attributes would negatively affect economic results. For 

economic result, we estimated the impact of the adoption of the stringent environmental standard on 

sales revenue per ha. Our empirical analysis is conducted at the plot level on wheat production in 

France from 2014 to 2020. 

We implement an endogenous switching regression method to take into account possible 

heterogeneity in the decision to adopt the most stringent environmental standard. We reveal there is 

selection bias on the adoption of the highest environmental standard regarding quality attributes. 

Furthermore, our results highlight that banning most toxic pesticides at the plot level to limit the 

negative impact of agricultural practices on biodiversity decreases yield by 1.4%, decreases specific 

weight by 0.3kg/hl, and increases protein content by 0.02 point of percentage. The adoption of the 

highest environmental standard increases sales revenue by 13.0€ per ha, representing on average an 

increase of 2€/ton. Thus, monetary incentives for farmers to adopt the environmental standard 

limiting toxic pesticides for biodiversity are low. Farmers may have other incentives to implement them 

on some of their plots such as access to market.  

We analyze the impact of adopting a more stringent environmental standard at the plot level to 

examine accurately the effect of inputs use on technical results such as yield and product quality. 

Moreover, it allows us to take into account the existing differences in plot management within a farm.  

For future work, we would like to deepen our analysis and better understand the effects of the 

adoption of environmental standards on farms’ economic performance. We would then be able to 

study farms' multi-output strategy. Bravo‐Ureta et al. (2020) showed that plot level management 

differences do not have a significant effect on farm efficiency. They found that farm level management 

determined farm efficiency. We could thus explore the trade-off between economic and 

environmental performance at the farm level when farmers adopt an environmental standard with 

different levels of stringency.   
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