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Effects of Agricultural Mechanization on Land Productivity: Evidence from China 

Abstract 

This study investigates the determinants of adoption of different mechanized farming strategies 

(i.e. no-mechanized farming, semi-mechanized farming, and full-mechanized farming) and 

their impacts on land productivity. An innovative multinomial endogenous switching regression 

model estimates farm household data derived from the China Labor-force Dynamics Survey. 

The empirical results show that farmers’ decision to adopt semi-mechanized farming is 

positively affected by household size, access to credit, farm size, irrigation rate, subsidies, and 

machinery service; their decision to adopt full-mechanized farming is primarily determined by 

the age of household heads, farm size, land use certificate, subsidies, and machinery service. 

Adopting semi- and full-mechanized farming exerts positive impacts on land productivity, and 

the larger impact is associated with the adoption of full-mechanized farming. The disaggregated 

analyses indicate that female-headed households adopting semi-mechanized farming obtain 

higher land productivity relative to their male-headed counterparts; the farm size–land 

productivity relationship is positive for semi-mechanized farming adopters but negative for 

full-mechanized farming adopters; both semi- and full-mechanized farming adopters living in 

central China obtain the highest land productivity relative to their counterparts residing in the 

western and eastern China. The findings of this study have significant implications for 

sustainable production and food security. 

Keywords: Agricultural mechanization; Land productivity; MESR; China 

JEL codes: O13, Q12, Q15 
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1. Introduction 

Improving land productivity is fundamental to facilitating sustainable agricultural production, 

ensuring food and nutrition security, alleviating poverty, and enhancing sustainable rural 

development (Adamopoulos and Restuccia, 2020; Asfaw et al., 2017; Bado et al., 2021; Helfand 

and Taylor, 2021; Zheng et al., 2021b). However, in recent decades, smallholder farmers in 

developing countries face acute issues, such as labor shortages because of rural-to-urban 

migration and rising labor costs (Liu et al., 2020; Paudel et al., 2019; Wang et al., 2016a; Zhou 

et al., 2018). These issues significantly challenge sustainable agricultural production and the 

growth of farm productivity, especially for labor-intensive crops such as rice and wheat. Paudel 

et al. (2019) revealed that farmers in the mid-hills of Nepal required more time for land 

preparation because of labor shortages, causing delayed seedling transplantation and lower rice 

productivity.  

Adoption of mechanical technologies can help alleviate the labor bottlenecks, enhance 

agricultural production, and lower the unit cost of crop production (e.g., Amoozad-Khalili et 

al., 2020; Benin, 2015; Daum and Birner, 2020; Ma et al., 2018b; Paudel et al., 2019; Takeshima 

and Liu, 2020; Zhang et al., 2016; Zheng et al., 2021c). This is because mechanized agriculture 

improves the farm operation's timeliness, quality, and efficiency and reduces drudgery. 

Although agricultural mechanization brings significant benefits to agricultural production, its 

adoption rate remains low in developing countries (Adekunle et al., 2016; Benin, 2015; Qiao, 

2017; Zhou et al., 2018). Qiao (2017) found that farm machines harvested 0.23% of the cotton 

in the major cotton-producing regions (excluding Xinjiang province) of China in 2014. Thus, 

understanding and identifying the constraints and incentives that influence smallholder farmers’ 

decisions to mechanize agriculture and evaluate agricultural mechanisation's economic impacts 

would provide significant evidence to policymakers for designing better policy instruments.  

Several studies have examined the nature and determinants of agricultural mechanization 

in rural areas of developing countries. Researchers have used three methods to measure 

agricultural mechanization, including binary machine use status (Aryal et al., 2019; Ji et al., 

2012; Paudel et al., 2019; Takeshima et al., 2020; Zhang et al., 2019; Zhou et al., 2020), use of 

total machine horsepower or expenses on farm machine use (Wang et al., 2016b; Zhang et al., 

2017), and machine use intensity or rate (i.e. the proportion of land cultivated land with farm 

machine adoption) (Baudron et al., 2019; Li et al., 2017; Ma et al., 2018b; Zheng et al., 2021c; 

Zhou et al., 2018). For example, Adekunle et al. (2016) showed that social structure, culture 

and religion, unemployment concerns, gender factors, and perceived consequences are the 

critical factors that affect the machine use rate in cassava cultivation in African countries. Wang 

et al. (2018) revealed that agricultural machination, proxied by farm household machine 

expenses in China, is mainly affected by farm size and land fragmentation. Using survey data 

from rural Bangladesh, Aryal et al. (2019) found that farmers’ decision to adopt small-scale 

machines such as power tillers, threshers, and irrigation pumps are mainly affected by their off-

farm work participation, market access, and economic position. 

Studies examining the impacts of agricultural mechanization have focused on two strands. 

The first strand of literature has analyzed the impact of agricultural mechanization on 

technology adoption and crop yields (Benin, 2015; Ma et al., 2018b; Paudel et al., 2019; 

Takeshima et al., 2013; Zhang et al., 2019; Zhou et al., 2020). In their study for China, Zhang 

et al. (2019) revealed that farm machinery use significantly reduces the pesticide expenditure 

in maize production because it improves the efficiency of pesticide spraying. In an investigation 

of Nepal, Paudel et al. (2019) found that the adoption of scale-appropriate mechanization 

increases rice productivity by 1,110 kg/ha. The second strand of literature has revealed that 

agricultural mechanization promotes off-farm work participation of rural households (Ji et al., 

2012; Ma et al., 2018b; Pingali, 2007; Zheng et al., 2021a) and empowers rural women in farm 

management (Adekunle et al., 2016; Fischer et al., 2018). Agricultural mechanization relieves 



 4 

the drudgery and frees households’ farm management time that can be reallocated to off-farm 

activities. Additionally, men are more likely to migrate from rural areas to urban areas for better 

off-farm work opportunities, and women are usually left at home for farm management, leading 

to the so-called feminization of agriculture (Ma et al., 2018b). Agricultural mechanization 

enables and empowers rural women by being an alternative to labor in agricultural production 

and helps them maintain or increase crop productivity. 

The studies mentioned above have provided insights into the determinants and impacts of 

agricultural mechanization. However, the findings cannot be generalized as they provide only 

a partial understanding of the relationship between agricultural mechanization and farm 

performance because of differences in natural resource endowments, economic development 

conditions, crop diversification, institutional arrangements, and geographic heterogeneities. For 

example, other studies have considered farmers’ binary machinery use decision and machinery 

use intensity (Aryal et al., 2019; Ma et al., 2018b; Paudel et al., 2019; Takeshima et al., 2020; 

Zheng et al., 2021c; Zhou et al., 2020). However, none of them has considered farmers’ 

mechanization adoption decision in a multiple-choice context. 

 In this study, we extend previous studies and make two significant contributions to the 

literature. First, we provide insights into the factors affecting farmers’ decision to adopt three 

mutually exclusive mechanization strategies (i.e. no-mechanized farming, semi-mechanized 

farming, and full-mechanized farming) and assessing the impacts of agricultural mechanization 

adoption on land productivity. Land productivity is a preferred outcome indicator because it 

affects food security. Improving land productivity is also a pathway to achieve the “zero hunger” 

sustainable development goal promoted by the United Nations General Assembly in 2015. The 

open-access China Labor-force Dynamics Survey data (i.e. 6,447 rural households), collected 

by the Centre for Social Science Survey at Sun Yat-sen University (Guangzhou, China) in 2016, 

are used. 

 Second, we employ an innovative multinomial endogenous switching regression (MESR) 

model to control the selection bias issue that usually arises when agricultural mechanization is 

not randomly assigned and when the technology adoption involves more than two choices. The 

MESR model addresses the selection bias originating from both observed factors (e.g. age, off-

farm work participation, gender, education, and location characteristics) and unobserved factors 

(e.g. farmers’ innate ability, motivations to mechanize agriculture, and managerial skills) 

(Issahaku and Abdulai, 2020; Kassie et al., 2015; Khonje et al., 2018; Tesfaye et al., 2021). For 

robustness check, we also present the results estimated from a multivalued treatment effects 

model. Also, we explore the heterogeneous effects of agricultural mechanization on land 

productivity by gender, farm size, and geographic locations. This issue has been overlooked in 

the literature, despite the evidence that has demonstrated that gender (de Brauw et al., 2013; 

Kansanga et al., 2019), farm size (Adu-Baffour et al., 2019; Takeshima et al., 2020; Wang et 

al., 2018), and geographic locations (Ma et al., 2018b; Van Loon et al., 2020) determine rural 

farmers’ mechanization adoption behaviors and agricultural productivity. 

 The rest of this paper is demonstrated as follows. Section 2 presents the analytical 

framework and the econometric approach. Section 3 introduces the data and descriptive 

statistics. The empirical results are presented and discussed in Section 4. The final section 

concludes with policy implications. 

2. Analytical framework and econometric approach 

2.1 Analytical framework 

Farmers select themselves into adopting different mechanization strategies in farm production, 

depending on household and farm-level characteristics and other socio-economic determinants 

(Amoozad-Khalili et al., 2020; Ji et al., 2012; Ma et al., 2018b; Takeshima, 2017; Tesfaye et 

al., 2021). This phenomenon leads to a sample selection bias issue related to the mechanization 
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adoption variable, which should be addressed to estimate the unbiased effects of agricultural 

mechanization adoption on land productivity. When selection involves only two options, 

namely, a farmer can choose either to adopt a technology or not to adopt it, other studies have 

employed both parametric approaches such as the endogenous switching regression model and 

non-parametric approaches such as propensity score matching to address the selection bias issue 

and estimate the effects of policy programs or technology adoption interventions (Adu-Baffour 

et al., 2019; Khonje et al., 2018; Liu et al., 2019; Paudel et al., 2019).  

 When the selection is of more than two options, the multivalued treatment effects (MVTE) 

model has been applied in the literature (Linden et al., 2016; Ma et al., 2018a). For example, 

using the MVTE model, Ma et al. (2018a) analyzed the impact of three types of dairy farming 

systems (i.e. low-, medium-, and high-input systems) on milk production and financial 

performance in New Zealand. They found that higher input systems perform significantly better 

physically than lower input systems do, but not financially. The major limitations of the MVTE 

approach are that it does not consider selection bias from unobserved factors, and it cannot 

estimate the determinants of land productivity because of the non-parametric nature of the 

model. 

 In this study, we model the impacts of the adoption of three agricultural mechanization 

strategies on land productivity within a MESR framework. Compared with the MVTE model, 

the MESR is a relatively new selectivity correction methodology that has three advantages: (a) 

it has the ability to address the selection bias originating from both observable and unobservable 

factors; (b) it enables the identification of factors affecting farmers’ decision to adopt 

mechanization strategies and factors influencing land productivity; and (c) it captures the 

interactions between the choices of three mechanization strategies through selectivity 

correction terms (Di Falco and Veronesi, 2013; Khonje et al., 2018; Tesfaye et al., 2021; Vigani 

and Kathage, 2019). 

2.2 Multinomial endogenous switching regression model 

The estimation of the MESR model is conducted simultaneously in two stages. In the first stage, 

farmers’ decision to choose to adopt different types of mechanization strategies are modeled 

using a multinomial logit (MNL) model. In the second stage, the land productivity equations, 

respectively, for no-mechanized adopters, semi-mechanized farming adopters, and full-

mechanized farming adopters are estimated using ordinary least squares (OLS) regression 

models, in which the selectivity correction terms generated from the first stage of MNL model 

estimation are included. Afterwards, the effects of agricultural mechanization on land 

productivity are calculated by estimating the average treatment effects on the treated (ATT). 

2.2.1 First stage estimation: modeling the determinants of agricultural mechanization adoption 

We assume that risk-neutral farmers choose one of the three mutually exclusive mechanization 

strategies (i.e. no-mechanized farming, semi-mechanized farming, and full-mechanized 

farming) to maximize their utility in agricultural production. In this analytical setting, we 

assume for any individual farm household 𝑖 that the expected utility obtained from choosing 

mechanization strategy 𝑗 is 𝐴𝑖𝑗 and that it is derived from choosing any of the alternative 

option𝑠 𝑘 is 𝐴𝑖𝑘. In this case, a rational farm household 𝑖 chooses to adopt mechanization 

strategy 𝑗  only if 𝐴𝑖𝑗
∗ = 𝐴𝑖𝑗 − 𝐴𝑖𝑘 > 0 (𝑗 ≠ 𝑘 ), where 𝐴𝑖𝑗

∗   refers to the utility difference 

between adopting mechanization strategies 𝑗  and 𝑘 . 𝐴𝑖𝑗
∗   is unobserved because it is 

subjective. Alternatively, 𝐴𝑖𝑗
∗  can be expressed by a latent variable model as follows: 

𝐴𝑖𝑗
∗ = 𝑍𝑖𝛽𝑗 + 𝜇𝑖𝑗, 𝑗 = 1, 2, 3 (1) 

where 𝑍𝑖 represents a set of household and farm-level characteristics, 𝑗 refers to a categorical 

indicator that describes a farmer’s decision to choose the mechanization strategy 𝑗, 𝛽𝑗 is a set 
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of parameters, and 𝜇𝑖 is an error term. Although the expected utilities obtained from adopting 

two alternative mechanization strategies cannot be observed directly, a household 𝑖’s decision 

to adopt the 𝑗-th mechanization strategy can be expressed by 

𝐴𝑖 = {

1, 𝑖𝑓 𝐴𝑖1
∗ > 𝑚𝑎𝑥𝑗≠1(𝐴𝑖𝑗

∗ )

2, 𝑖𝑓 𝐴𝑖2
∗ > 𝑚𝑎𝑥𝑗≠2(𝐴𝑖𝑗

∗ )

3, 𝑖𝑓 𝐴𝑖3
∗ > 𝑚𝑎𝑥𝑗≠3(𝐴𝑖𝑗

∗ )

 (2) 

where 𝐴𝑖 is an index that denotes farmer i’s choice of mechanization strategy. In particular, 

𝐴𝑖 = 1  if the farmer chooses no-mechanized farming, 𝐴𝑖 = 2  if the farmer chooses semi-

mechanized farming, and 𝐴𝑖 = 3 if the farmer chooses full-mechanized farming. We referred 

to Bourguignon et al. (2007) to determine that the probability that farm household 𝑖  with 

characteristics 𝑍𝑖 would choose the 𝑗-th mechanization strategy and can be estimated by an 

MNL model as follows: 

𝑃𝑖𝑗 = 𝑃𝑟(𝜏𝑖𝑗 < 0|𝑍𝑖) =
exp (𝑍𝑖𝛽𝑗)

∑ exp (𝑍𝑖𝛽𝑗)3
𝑗=1

, 𝑗 = 1, 2, 3 (3) 

where 𝜏𝑖𝑗 = max
𝑘≠𝑗

(𝐴𝑖𝑘
∗ − 𝐴𝑖𝑗

∗ ) . 𝑃𝑖𝑗  is the probability of choosing to adopt no-mechanized 

farming (𝑗 = 1), semi-mechanized farming (𝑗 = 2), and full-mechanized farming (𝑗 = 3). A 

maximum likelihood method can be used to estimate the parameters of the MNL model in 

Equation (3). 

2.2.2 Second stage estimation: modeling the determinants of land productivity 

The second stage of the MESR model estimates the land productivity equations, respectively, 

for no-mechanized farming adopters, semi-mechanized farming adopters, and full-mechanized 

farming adopters, using OLS regression models. We referred to Di Falco and Veronesi (2013) 

and Vigani and Kathage (2019), and the outcome equation for each possible regime 𝑗 is given 

as 

{

𝑅𝑒𝑔𝑖𝑚𝑒 1 (no − mechanized farming adopters): 𝑌𝑖1 = 𝑋𝑖𝜃1 + 𝜀𝑖1  𝑖𝑓 𝐴𝑖 = 1

𝑅𝑒𝑔𝑖𝑚𝑒 2 (semi − mechanized farming adopters): 𝑌𝑖2 = 𝑋𝑖𝜃2 + 𝜀𝑖2 𝑖𝑓 𝐴𝑖 = 2

𝑅𝑒𝑔𝑖𝑚𝑒 3 (full − mechanized farming adopters): 𝑌𝑖3 = 𝑋𝑖𝜃3 + 𝜀𝑖3 𝑖𝑓 𝐴𝑖 = 3

 (4) 

where 𝑌𝑖𝑗  (𝑗 = 1, 2, 3)  is the outcome variable (i.e. land productivity) of the 𝑖 -th farm 

household in regime 𝑗, 𝑋𝑖 represents a vector of explanatory variables (e.g. age, education, 

and household size) assumed to affect land productivity, 𝜃𝑗  (𝑗 = 1,2, 3)  refers to the 

corresponding parameters to be estimated, and 𝜀𝑖𝑗 are the error terms with conditional zero 

means. 

 The selection bias from the observable factors can be taken into account by the control 

variables 𝑋𝑖 in Equation (4). However, if there is selection bias from unobserved factors (e.g. 

farmers’ motivations to mechanize agriculture and their farm managerial skills), the effects of 

agricultural mechanization on land productivity would be inconsistently estimated. In the 

MESR model framework, the selection bias from unobservable factors is addressed by the 

inclusion of the selectivity correction terms. In particular, the selectivity correction terms, 

calculated after estimating Equation (3), are automatically included in Equation (4) as 

additional regressors. Therefore, Equation (4) can be rewritten as follows: 

{

𝑅𝑒𝑔𝑖𝑚𝑒 1 (no − mechanized farming adopters): 𝑌𝑖1 = 𝑋𝑖𝜗1 + 𝜆1𝜎1 + 𝜈𝑖1 𝑖𝑓 𝐴𝑖 = 1

𝑅𝑒𝑔𝑖𝑚𝑒 2 (semi − mechanized farming adopters): 𝑌𝑖2 = 𝑋𝑖𝜗2 + 𝜆2𝜎2 + 𝜈𝑖2 𝑖𝑓 𝐴𝑖 = 2

𝑅𝑒𝑔𝑖𝑚𝑒 3 (full − mechanized farming adopters): 𝑌𝑖3 = 𝑋𝑖𝜗3 + 𝜆3𝜎3 + 𝜈𝑖3 𝑖𝑓 𝐴𝑖 = 3

 (5) 

where 𝑌𝑖  and 𝑋𝑖  (𝑗 = 1, 2, 3)  are the aforementioned variables; 𝜗𝑗 and 𝜎𝑗  (𝑗 = 1, 2, 3) 

represent the corresponding parameters to be estimated; 𝜈𝑖𝑗 (𝑗 = 1,2, 3) refers to the error 

terms with an expected value of 0; 𝜆1, 𝜆2, and 𝜆3 refer to a vector of selectivity correction 
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terms obtained from the first stage estimation of the MSER model; they are included in 

Equation (5) to correct for unobserved selection bias issues.1 In the multinomial choice setting, 

there are 𝐽 − 1 selectivity correction terms to be included in each alternative mechanization 

strategy adoption scenario. Notably, if the coefficient of any of the selectivity correction terms 

is statistically significant, this would suggest the presence of unobservable selection bias 

(Kassie et al., 2015; Khonje et al., 2018; Tesfaye et al., 2021). Following Vigani and Kathage 

(2019), we estimate bootstrapped standard errors using Equation (5) to account for the 

heteroscedasticities from the generated regressors (𝜆𝑗). 

2.3 MESR model identification 

Notably, the variables 𝑋𝑖 in Equation (5) and 𝑍𝑖 in Equation (1) are usually allowed to have 

the same explanatory variables. However, for MESR model identification purpose, at least one 

variable in 𝑍𝑖  should not be shown in 𝑋𝑖 . Therefore, the MNL equation is estimated by 

employing the same variables included in the land productivity equation and at least one 

variable serving as an identifying instrument. A valid instrument should only influence farmers’ 

decision to adopt different mechanization strategies but not directly affect land productivity. In 

this study, we employ a variable measuring the presence of a library in a village as an 

instrumental variable in Equation (1). The presence of a library in a village is hypothesized to 

affect farmers’ choice of mechanization strategies. It is rational because farmers exposed to 

information through library access tend to be more aware of the benefits associated with 

agricultural mechanization; thus, they are more likely to adopt modern technologies such as 

farm machines. However, the employed instrumental variable is not expected to affect land 

productivity. 

 To ensure the employed instrumental variable is valid, we use two strategies to test it. First, 

we refer to Di Falco and Veronesi (2013) and conduct a simple falsification test. The results 

suggest that the library variable affects farmers’ mechanization adoption significantly but not 

the outcome variables of interest. Second, a Pearson correlation analysis is used, and the results 

show that the library variable is significantly correlated with the mechanization adoption 

variable (coefficient=0.230, p-value=0.000), but it is not significantly associated with the land 

productivity variable (coefficient=0.012, p-value=0.328). The findings confirm that the library 

variable is appropriate to serve as a valid instrument. 

2.4 Estimating the average treatment effects on the treated (ATT)  

The estimations of the first and second stages of the MESR model provide a better 

understanding of the determinants of agricultural mechanization adoption and the determinants 

of land productivity. However, to analyze the treatment effects of the adoption of different 

mechanization strategies on land productivity, further calculations are required. We refer to 

Khonje et al. (2018) and Kumar et al. (2019) and estimate the average ATT by comparing 

expected outcomes for mechanization adopters and non-adopters in actual and counterfactual 

scenarios. In particular, the expected land productivity for semi- and full-mechanized farming 

adopters in an observed context is computed as 

𝐸(𝑌𝑖𝑗|𝐴 = 𝑗, 𝑋, 𝜆𝑖𝑗) = 𝜗𝑗𝑋𝑖 + 𝜆𝑗𝜎𝑗 , 𝑗 = 2, 3 (6a) 

 The expected land productivity for semi- and full-mechanized farming adopters in a 

counterfactual context is given as 

𝐸(𝑌𝑖1|𝐴 = 𝑗, 𝑋, 𝜆𝑖𝑗) = 𝜗1𝑋𝑖 + 𝜆𝑗𝜎1, 𝑗 = 2, 3 (6b) 

ATT can then be calculated as the difference between Equations (6a) and (6b): 

                                                 
1
 The selectivity correction terms were calculated as 𝜆𝑗 = ∑ 𝜌𝑗

𝑗
𝑘≠𝑗 [

𝑃𝑖�̂�𝑙𝑛 (𝑃𝑖�̂�)

1−𝑃𝑖�̂�
+ 𝑙𝑛 (𝑃𝑖�̂�)], where 𝜌𝑗 refers to the 

correlation coefficient of the error terms 𝜈𝑖𝑗  and 𝜇𝑖𝑗. 
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𝐴𝑇𝑇 = 𝐸[𝑌𝑖𝑗|𝐴 = 𝑗] − 𝐸[𝑌𝑖1|𝐴 = 𝑗] = 𝑋𝑖𝑗(𝜗𝑗 − 𝜗1) + 𝜆𝑗(𝜎𝑗 − 𝜎1), 𝑗 = 2, 3 (7) 

3. Data and descriptive statistics 

3.1 Data 

The data used in this paper are derived from the 2016 China Labor-force Dynamics Survey 

(CLDS), which is conducted by the Centre for Social Science Survey at Sun Yat-sen University 

(Guangzhou, China). Using a multistage sampling method, the CLDS survey collects data from 

29 provinces of mainland China (excluding Tibet and Hainan) and covers its western, central, 

and eastern regions. The sampling procedure ensures the collected information are nationally 

representative. The survey collects detailed information on personal and household-level 

characteristics, daily life activities of households, housing conditions, the financial performance 

of households, rural labor migration, and agricultural production and marketing. 

 The 2016 CLDS survey data comprises 14,200 samples: 8,248 rural households and 5,952 

urban households. Because this study investigates the association between agricultural 

mechanization adoption and land productivity, the samples for urban households are excluded 

from the analysis. After data cleaning, 6,447 samples of rural households are used in the 

empirical models. 

 In this study, the treatment variable refers to three agricultural mechanization strategies 

adopted by smallholder farmers: no-mechanized farming (i.e. a farm machine is not used at any 

agricultural production stage), semi-mechanized farming (i.e. a farm machine is used at some 

agricultural production stages), and full-mechanized farming (i.e. a farm machine is used at 

every agricultural production stage). The outcome variable employed in this study refers to land 

productivity, which is defined as the total value of crop output per unit of land (i.e. yuan/mu). 

We consider the value of crop output rather than crop yields mainly because of the significant 

diversity of crops on the farms. We select the control variables by referring to other studies (e.g., 

Benin, 2015; Ma et al., 2018b; Mano et al., 2020; Mottaleb et al., 2017; Paudel et al., 2019; 

Takeshima, 2018; Takeshima et al., 2018; Tesfaye et al., 2021; Zhang et al., 2019; Zheng et al., 

2021c; Zhou et al., 2020) and in consideration of data availability. In this study, we include 

variables representing age, gender and education of household heads, off-farm work 

participation status, household size, access to credit, farm size, land use certificate, irrigation 

rate, subsidies, machinery service, and location dummies as control variables. 

3.2 Descriptive statistics 

The definitions and summary statistics of the variables used in the econometric analysis are 

presented in Table 1. On average, land productivity is 822 yuan/mu. 2  The majority of 

households (61.5%) use no machines on their farms, reflecting the dominant role of traditional 

farming practices (no-mechanized farming) in China’s agricultural production. Approximately 

24.5% and 14.0% of the surveyed households have adopted the semi-mechanized and full-

mechanized farming practices, respectively. The mean age of farming household heads is 54 

years, and 60.1% are male. The education variable is specified by a category variable, and on 

average, the household heads’ education is between primary school and middle school. 

Approximately 48.5% of household heads participated in off-farm work in 2015. The mean 

household size is approximately five persons, and on average, 33.2% of households have access 

to credit. The average farm size operated by farm households is 6.5 mu in 2015. Approximately 

51% of households have received a land use certificate, and 26.6% of them have received the 

agricultural subsidy. Table 1 also shows that 27.4% of sampled households’ village committees 

provide machinery service in the ploughing stage in 2015. 

 

                                                 
2
 Yuan is Chinese currency: 1 USD=7.00 yuan in June 2020; 1 mu=1/15 hectare. 
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Table 1 Variables definition and descriptive statistics 

Variables Definitions Mean (S.D.) 

Land productivity Total value of crop output per unit of land (1,000 

yuan/mu) a 0.822 (1.844) 

No-mechanized 

farming 

1 if household adopts no-mechanized farming, 0 

otherwise 
0.615 (0.487) 

Semi-mechanized 

farming 

1 if household adopts semi-mechanized farming, 0 

otherwise 
0.245 (0.430) 

Full-mechanized 

farming 

1 if household adopts full-mechanized farming, 0 

otherwise 
0.140 (0.348) 

Age Age of household head (years) b 53.738 (14.308) 

Gender 1 if household head is male, 0 otherwise 0.601 (0.490) 

Education Educational level of household head c 2.477 (1.386) 

Off-farm work 1 if household head works off the farm, 0 otherwise 0.485 (0.500) 

Household size Number of people residing in one household 4.704 (2.211) 

Access to credit 1 if household has access to credit, 0 otherwise 0.332 (0.471) 

Farm size Total farm size cultivated by household (mu) d 6.497 (7.961) 

Land use 

certificate 

1 if household receives a formal land use right 

certificate, 0 otherwise 
0.511 (0.500) 

Irrigation rate Ratio of irrigated land to total cultivated land (%) 0.468 (0.437) 

Subsidy 1 if household receives cash subsidy for agricultural 

production, 0 otherwise 
0.266 (0.798) 

Machinery service 1 if the village committee provides the ploughing 

machinery service, 0 otherwise 
0.274 (0.446) 

West 1 if household resides in western China, 0 otherwise 0.368 (0.482) 

Central 1 if household resides in central China, 0 otherwise 0.293 (0.455) 

East 1 if household resides in eastern China, 0 otherwise 0.368 (0.482) 

Library 1 if the village owns a library, 0 otherwise 0.766 (0.423) 
Note: a 1 USD = 7.04 yuan in December 2019; 
b Household head refers to the family member who dominates the decision-making in a household; 
c 1= illiterate; 2=primary school; 3=middle school; 4=high school; 5= vocational high school; 6=technical school; 

7= technical secondary school; 8=College; 9=bachelor; 10=postgraduate; 
d 1 mu =1/15 hectare. 

 

 Figure 1 demonstrates the relationship between the adoption of different agricultural 

mechanization strategies and land productivity by gender and shows that land productivity 

differs between male- and female-headed households. For example, among no-mechanized and 

full-mechanized farming adopters, male-headed households obtain higher land productivity 

than their female-headed counterparts do. By contrast, female-headed households adopting 

semi-mechanized farming obtain higher land productivity than their male-headed counterparts 

do by adopting the same mechanization strategy. Figure 2 illustrates the relationship between 

the adoption of different agricultural mechanization strategies and land productivity by farm 

size. The figure shows that among semi-mechanized farming adopters, those cultivating 

medium farm size (3–6 mu) have the highest land productivity (i.e. 1,319 yuan/mu), and among 

full-mechanized farming adopters, those cultivating small farm size (≤3 mu) obtain the highest 

land productivity (i.e. 1,602 yuan/mu). 
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Figure 1 Relationship between agricultural mechanization and land productivity by gender 

 

 

 

Figure 2 Relationship between agricultural mechanization and land productivity by farm size 

  

Figure 3 shows the relationship between agricultural mechanization adoption and land 

productivity by geographic locations and shows that land productivity is the highest for no-

mechanized farming adopters and full-mechanized farming adopters living in the eastern parts 

of China, and the land productivity is the highest for semi-mechanized farming adopters living 

in the central part of China. The information presented in Tables 1–3 suggests potential 

heterogeneous effects of agricultural mechanization adoption on land productivity between 

male and female-headed households, among farmers cultivating different farm sizes, and 

among those cultivating land in different geographic locations. 

 

0.590 

0.433 

1.146 

1.333 

1.525 

1.257 

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

1.60

1.80

Male Female

L
an

d
 p

ro
d
u
ct

iv
it

y
 (

1
,0

0
0
 y

u
an

/m
u
)

No-mechanized farming Semi-mechanized farming
Fully-mechanized farming

0.506 
0.616 

0.463 

1.107 

1.319 
1.235 

1.602 1.561 

1.263 

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

1.60

1.80

Small (≤3 mu) Medium (3-6 mu) Large (>6 mu)

L
an

d
 p

ro
d
u
ct

iv
it

y
 (

1
,0

0
0
 y

u
an

/m
u
)

No-mechanized farming Semi-mechanized farming

Fully-mechanized farming



 11 

 
Figure 3 Relationship between agricultural mechanization and land productivity by regions 

 

 Table 2 presents the mean differences of the selected variables by agricultural 

mechanization adoption status. The last column of Table 2 reports the F value and the 

corresponding statistical significances that examine whether the means of the variables among 

the three mechanization strategies are the same. The results demonstrate that with changing 

agricultural production from no-mechanized farming to semi-mechanized farming and then to 

full-mechanized farming, the land productivity increase from 527 to 1,221 and then to 1,416 

yuan/mu, respectively, and the group difference is significantly different at the 1% level. 

Compared with the no-mechanized farming adopters, the semi- and full-mechanized farming 

adopters are more educated and are more likely to receive an agricultural subsidy. We find that 

in the shift in agricultural production from no-mechanized to semi-mechanized and then to full-

mechanized farming, the farm sizes monotonically increase from 5.17 to 7.73 and then to 10.17 

mu, respectively. Generally, the results in Table 2 show that no-mechanized farming adopters, 

semi-mechanized farming adopters, and full-mechanized farming adopters are notably different 

in observed characteristics. The findings potentially indicate the presence of selection bias 

associated with the voluntary adoption of different agricultural mechanization strategies. Thus, 

a rigorous econometrics approach such as the MESR model should be estimated to analyze the 

unbiased effects of the adoption of three types of mechanization strategies on land productivity. 
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Table 2 Mean differences of the variables by agricultural mechanization status 

Variables 
No-mechanized 

farming 

Semi-mechanized 

farming 

Full-mechanized 

farming 
F statistics 

Land productivity 0.527 (1.719) 1.221 (1.838) 1.416 (2.094) 140.20*** 

Age 54.197 (15.066) 52.523 (13.120) 53.840 (12.683) 7.77*** 

Gender 0.602 (0.490) 0.602 (.4896875) 0.593 (0.492) 0.14 

Education 2.427 (1.420) 2.557 (1.359) 2.562 (1.266) 6.95*** 

Off-farm work 0.494 (0.500) 0.479 (0.500) 0.455 (0.498) 2.47* 

Household size 4.625 (2.196) 5.022 (2.318) 4.494 (2.024) 23.03*** 

Access to credit 0.331 (0.471) 0.347 (0.476) 0.312 (0.464) 1.65 

Farm size 5.169 (6.721) 7.725 (8.284) 10.17 (10.50) 179.96*** 

Land use 

certificate 
0.502 (0.500) 0.482 (0.500) 0.599 (0.490) 17.54*** 

Irrigation rate 0.473 (0.429) 0.495 (0.443) 0.402 (0.458) 13.54*** 

Subsidy 0.111 (0.701) 0.468 (0.708) 0.592 (1.106) 214.79*** 

Machinery service 0.238 (0.426) 0.343 (0.475) 0.312 (0.464) 35.22*** 

Library 0.749 (0.433) 0.793 (0.406) 0.795 (0.404) 8.24*** 

West 0.390 (0.488) 0.247 (0.431) 0.277 (0.448) 62.13*** 

Central 0.295 (0.456) 0.308 (0.462) 0.254 (0.435) 4.29** 

East 0.314 (0.464) 0.445 (0.497) 0.469 (0.499) 65.92*** 
Note: Standard deviation is in parentheses; * p < 0.1, ** p < 0.05, *** p < 0.01; F value shows the tests for 

differences across the three mechanization strategies. 
 

4. Empirical results 

4.1 Results of the MESR model estimation 

4.1.1 Determinants of mechanization strategy adoption 

Table 3 presents the results for the factors that affect farmers’ decision to adopt different 

mechanization strategies, estimated using the MNL model and Equation (3). Because the 

magnitudes of the coefficients estimated from the MNL model are not straightforward, we 

calculate and present the marginal effects of the variables to provide a direct interpretation. In 

particular, the results presented in Columns 2, 3, and 4 show the significant variables that affect 

farmers’ decision to adopt no-mechanized farming, semi-mechanized farming, and full-

mechanized farming, respectively. 

 The marginal effects of the age variable are positive and statistically significant in the no-

mechanized and full-mechanized farming specifications and negative and significant in the 

semi-mechanized farming specification. The findings suggest that a one-year increase in age 

increases the probabilities of adopting both no-mechanized farming and full-mechanized 

farming by 0.1%. On the one hand, elder household heads usually have extensive farming 

experience and farm management ability; thus, they are more favorable to cultivating farmland 

by relying on their experience rather than adopting modern technologies such as farm machines. 

On the other hand, elder farmers may have poorer health conditions than younger farmers; thus, 

they rely on farm machines to maintain or enhance land productivity (Zhang et al., 2019). Age 

decreases the likelihood of adopting semi-mechanized farming by 0.2%. The marginal effect of 

the gender variable in Column 2 of Table 3 is positive and statistically significant, and that in 

Column 4 is negative and significant. The findings suggest that male household heads are 1.9% 

more likely to adopt no-mechanized farming and their female counterparts are 2.0% more likely 

to adopt full-mechanized farming. When men stay at home, compared with women, they are 

less likely to adopt mechanized farming potentially because the household probably has no 

labor shortage. However, when male household heads migrate, women are more likely to adopt 
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full-mechanized farming to maintain farm productivity and save farm labor time (e.g. the saved 

time can be used for other household activities such as child care (Kansanga et al., 2019; Ma et 

al., 2018b).   

 

Table 3 Margins effects of the variables affecting adoption of agricultural mechanization 

strategies: First stage of MESR model estimates 

Variables 
No-mechanized 

farming 

Semi-mechanized 

farming 

Full-mechanized 

farming 

Age 0.001 (0.000)*** -0.002 (0.000)*** 0.001 (0.000)** 

Gender 0.019 (0.010)* 0.000 (0.010) -0.020 (0.009)** 

Education -0.005 (0.004) -0.001 (0.003) 0.005 (0.003) 

Off-farm work 0.010 (0.012) -0.013 (0.010) 0.003 (0.009) 

Household size -0.006 (0.002)** 0.012 (0.002)*** -0.006 (0.002)*** 

Access to credit -0.014 (0.012) 0.020 (0.011)* -0.006 (0.009) 

Farm size -0.006 (0.001)*** 0.002 (0.001)** 0.004 (0.001)*** 

Land use certificate 0.004 (0.012) -0.031 (0.011)*** 0.027 (0.008)*** 

Irrigation rate -0.010 (0.014) 0.034 (0.011)*** -0.024 (0.010)** 

Subsidy -0.354 (0.064)*** 0.227 (0.041)*** 0.127 (0.023)*** 

Machinery service -0.095 (0.011)*** 0.069 (0.011)*** 0.026 (0.008)*** 

Central -0.005 (0.016) 0.033 (0.014)** -0.027 (0.013)** 

East -0.140 (0.014)*** 0.092 (0.013)*** 0.049 (0.010)*** 

Library -0.054 (0.014)*** 0.024 (0.012)* 0.030 (0.010)*** 

Observations 3,964 1,577 906 
Note: Standard errors are in parentheses; * p < 0.1, ** p < 0.05, *** p < 0.01; The reference region is west. 

 

 We show that the marginal effects of the household size variable are negative and 

statistically significant in Columns 2 and 4 but positive and significant in Column 3. These 

findings suggest that a one-member increase in a household would decrease the probabilities of 

adopting both no-mechanized farming and full-mechanized farming by 0.6% but increase the 

likelihood of adopting semi-mechanized farming by 1.2%. To some extent, a larger household 

size means either a higher or a lower dependency ratio. On the one hand, households with a 

higher dependency ratio usually have capital constraints because of high living burdens in rural 

areas; thus, they may be unable to fully afford farm machines in agricultural production; on the 

other hand, a lower dependency ratio may indicate more labor endowments that can be allocated 

to income-generating off-farm activities, and this allows farm households to invest in farm 

machines or purchase machinery services. Access to the credit variable only has a significant 

impact on the choice of semi-mechanized farming. Our results show that households with credit 

access are 2.0% more likely to adopt semi-mechanized farming. Credit access helps release 

capital constraints of rural households and supports them to adopt farm machines in some 

production stages such as land ploughing. The finding is in line with the finding of Mottaleb et 

al. (2017), who showed that credit access promotes farmers’ decisions to adopt machinery in 

Bangladesh. 

 The significant marginal effects of a land use certificate for semi- and full-mechanized 

farming adopters suggest that farm households with a land use certificate are 3.1% less likely 

to adopt semi-mechanized farming but 2.7% more likely to adopt full-mechanized farming. A 

land use certificate secures farmers’ land use rights, enhancing the level of agricultural 

mechanization. A high irrigation rate tends to increase the probability of adopting semi-

mechanized farming by 3.4% but reduces the likelihood of adopting full-mechanized farming 

by 2.4%. Agricultural subsidies play a critical role in promoting mechanization. Our results 

indicate that farm households receiving an agricultural subsidy are 22.7% and 12.7% more 
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likely to adopt semi- and full-mechanized farming practices, respectively. The positive 

association between subsidy and mechanization has also been reported in other studies (Benin 

et al., 2013; Diao et al., 2014). Consistent with the findings in the literature (Van Loon et al., 

2020; Wang et al., 2016a), our results indicate that access to a machinery service promotes 

agricultural mechanization. In particular, we show that farm households who have access to a 

machinery service provided by the village committee are 6.9% and 2.6% more likely to adopt 

semi- and full-mechanized farming, respectively. 

 Compared with farmers residing in the western part of China (reference division), their 

counterparts living in the central part of China are 3.3% more likely to adopt semi-mechanized 

farming but 2.7% less likely to adopt full-mechanized farming. Relative to farmers in western 

China, those in eastern China are 9.2% and 4.9% more likely to adopt semi- and full-

mechanized farming practices, respectively. These findings suggest that location-fixed effects 

also influence farmers’ decisions to mechanize agriculture. Finally, the positive and statistically 

significant marginal effects of the library variable indicate that the existence of a library in a 

village increases farmers’ probabilities to adopt semi- and full-mechanized farming practices. 

Because the library variable serves as an instrumental variable in this study, we expect it has a 

nonsignificant impact on land productivity. 

4.1.2 Determinants of land productivity 

The estimates for the factors that affect the land productivity of no-mechanized farming 

adopters, semi-mechanized farming adopters, and full-mechanized farming adopters are 

respectively presented in Columns 2, 3, and 4 of Table 4. Our results show that the coefficients 

of the age variable are negative and statistically significant in Columns 2 and 3, suggesting that 

elder household heads adopting both no-mechanized farming and semi-mechanized farming 

obtain lower land productivity. Compared with younger farmers, elder farmers usually have 

poorer health and few advanced production skills, which constrain their benefits from 

agricultural production. The coefficient of the gender variable is positive and statistically 

significant in Column 2 of Table 4, but negative and significant in Column 3. The findings 

suggest that relative to female household heads, male household heads obtain higher land 

productivity through adopting no-mechanized farming but lower land productivity by adopting 

semi-mechanized farming. Male household heads traditionally dominate agricultural 

production. In female-dominated households, farm machines enable and empower rural women 

to obtain higher land productivity (Fischer et al., 2018). The negative and significant 

coefficients of the off-farm work variable in both the no-mechanized and full-mechanized 

farming specifications suggest that off-farm work participation decreases land productivity. The 

findings are in line with the so-called lost labor effect (Feng et al., 2010). That is, allocating 

more labor time to off-farm work would reduce the time allocated to farm work, which reduces 

farm economic performance. 

 The coefficients of the household size variable are positive and statistically significant in 

the no-mechanized farming specification but negative and significant in the semi-mechanized 

farming specification. The findings suggest that larger households adopting no-mechanized 

farming obtain higher land productivity, a finding that highlights the positive relationship 

between farm labor use and land productivity. The adoption of semi-mechanized farming means 

that farm machines are adopted in some production stages; however, this practice may reduce 

land productivity if labor and farm machines are misallocated. 

 The coefficient of the farm size variable is negative and statistically different from 0 in the 

semi-mechanized farming specification. This finding suggests that households cultivating a 

larger farm size tend to obtain lower land productivity. The finding of the inverse farm size-

productivity relationship is supported by the findings in the literature (Kagin et al., 2016; 

Newman et al., 2015). The significant and statistically significant coefficient of the land use 
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certificate variable in Column 3 suggests that a land use certificate contributes to an increase in 

land productivity. This finding is consistent with the finding of Deininger and Jin (2009), who 

found that better-enforced tenure of land use security increases farmers’ incentives to invest in 

productivity-increasing inputs (e.g. fertilizers, pesticides, and improved seeds) to obtain higher 

land productivity. Irrigation rate is observed to have a positive and significant impact on land 

productivity for both no-mechanized and full-mechanized farming adopters, a finding echoed 

by Chaudhry and Barbier (2013). Access to irrigation increases the absorption of farm inputs 

such as fertilizers, contributing to an increase in land productivity. 

 The subsidy variable appears to have a positive and significant impact on the land 

productivity of no-mechanized farming adopters. In their study on Nigeria, Wossen et al. (2017) 

also showed that the implementation of a mobile phone-based input subsidy program initiated 

in Nigeria, which provided fertilizer and improved seed subsidies through electronic vouchers, 

increases land productivity in maize production. The differences in land productivity also exist 

among different survey regions. We show that relative to farmers in the western part of China, 

no-mechanized farming adopters in eastern China obtain higher land productivity, whereas 

semi-mechanized farming adopters in both central and eastern China obtain higher land 

productivity. The findings suggest location-based heterogeneities (e.g. differences in climate 

conditions, soil quality, and institutional arrangement) that may also influence land productivity. 

 The lower parts of Table 4 present the coefficients of the selectivity correction terms. We 

show that the coefficients of 𝜆2 and 𝜆3 in Column 2 of Table 4 are statistically significant, 

suggesting the presence of unobservable selection bias (Di Falco and Veronesi, 2013; Khonje 

et al., 2018; Vigani and Kathage, 2019). Thus, the MESR approach is preferred to estimate the 

impacts of the adoption of different mechanization strategies on land productivity because, in 

essence, it enables us to address the selection bias issue arising from the observed and 

unobserved characteristics. 

4.1.3 ATT estimations 

The analyses presented in Sections 4.1.1 and 4.1.2 enable us to better understand the factors 

that affect farmers’ decisions to adopt different types of mechanization strategies and the factors 

that influence land productivity. To understand the effects of the adoption of different 

agricultural mechanization strategies on land productivity, we further calculated the average 

ATT by using Equation (7). These ATT estimates take into account both observable and 

unobservable selection bias. 

 The ATT results, presented in Table 5, reveal that the adoption of both semi-mechanized 

and full-mechanized farming increases land productivity. In particular, we show that the 

adoption of semi-mechanized farming increases land productivity by 60%, and the adoption of 

full-mechanized farming tends to increase land productivity by 82%.3 Our ATT results in Table 

5 also show that relative to the adoption of semi-mechanized farming, the adoption of full-

mechanized farming has a larger effect on land productivity. The use of machines on farms 

relaxes peak-season labor constraints and enhances farm efficiency, contributing to an 

improvement in land productivity. A positive relationship between agricultural mechanization 

and land productivity has also been found by Ma et al. (2018b) for China and Paudel et al. 

(2019) for Nepal. 

                                                 
3
 Here, we show that agricultural mechanization increases land productivity. To identify whether farmers with 

higher land productivity are more likely to be those adopting mechanized farming, by referring to Vigani and 

Kathage (2019), we used the Hausman test to examine the reverse causality between agricultural mechanization 

and land productivity. First, we estimate Equation (4) using the OLS regression model and calculate the residual. 

Next, we estimate Equation (1) using an MNL model that includes the residual predicted from the first stage as a 

regressor. The t test of residual variable is not statistically significant (p-value=0.683). Hence, we conclude that 

there is no reverse causality between agricultural mechanization and land productivity. 
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Tables 4 Determinants of land productivity by mechanization status: Second stage of the 

MESR model estimates 

 Dependent variable = Land productivity 

Variables No-mechanized 

farming 

Semi-mechanized 

farming 

Full-mechanized 

farming 

Age -0.025 (0.007)*** -0.012 (0.006)* -0.016 (0.010) 

Gender 0.198 (0.119)* -0.182 (0.110)* 0.217 (0.183) 

Education -0.004 (0.042) 0.021 (0.041) -0.047 (0.057) 

Off-farm work -0.271 (0.110)** -0.095 (0.111) -0.497 (0.185)*** 

Household size 0.129 (0.052)** -0.079 (0.042)* -0.039 (0.061) 

Access to credit 0.213 (0.135) -0.074 (0.104) -0.132 (0.154) 

Farm size -0.008 (0.010) -0.021 (0.013)* -0.013 (0.013) 

Land use certificate -0.156 (0.130) 0.354 (0.147)** 0.283 (0.236) 

Irrigation rate 0.464 (0.187)** 0.165 (0.159) 0.589 (0.215)*** 

Subsidy 2.724 (0.663)*** -0.053 (0.132) 0.021 (0.125) 

Machinery service 0.774 (0.187)*** -0.111 (0.111) -0.188 (0.168) 

Central 0.286 (0.196) 0.540 (0.183)*** 0.089 (0.262) 

East 0.769 (0.216)*** 0.281 (0.157)* -0.025 (0.232) 

𝜎2 39.851 (26.106) 3.370 (2.404) 6.428 (4.039) 

𝜆1  0.229 (0.365) 0.434 (0.267) 

𝜆2 1.156 (0.208)***  -0.707 (0.483) 

𝜆3 -0.855 (0.303)*** -0.179 (0.595)  

Constant 2.122 (0.507)*** 2.259 (0.549)*** 1.367 (1.630) 

Observations 3,964 1,577 906 
Note: Standard errors are in parentheses; * p < 0.1, ** p < 0.05, *** p < 0.01; The reference region is west. 

 

 

 

Table 5 Results of the treatment effects estimations 

Mechanization 

strategies 

Mean land productivity 
ATT t-value Change (%) 

Adopters Non-adopters 

Semi-mechanized 

farming 
1.221 (0.010) 0.762 (0.009) 

0.459 

(0.010)*** 
45.463 60.236 

Full-mechanized 

farming 
1.416 (0.018) 0.779 (0.015) 

0.637 

(0.019)*** 
34.147 81.772 

Note: Standard errors are in parentheses; *** p < 0.01; Land productivity is measured at 1,000 yuan/mu; The 

values of land productivity for adopters are estimated by using Equation (6a) in an observed context, and the 

values of land productivity for non-adopters are estimated by using Equation (6b) in a counterfactual context.  
 

 

 Figure 4 illustrates the kernel densities of predicted land productivity distributions by 

mechanization adoption status. The figure shows that the kernel density of land productivity for 

both semi- and full-mechanized farming adopters is further to the right than that for no-

mechanized farming adopters. The findings further demonstrate that agricultural mechanization 

increases land productivity, and farmers adopting full-mechanized farming tend to benefit more 

than their counterparts adopting semi-mechanized farming. 
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4.2 Heterogeneous effects estimations 

 

The information presented in Figures 1–3 suggests that land productivity for no-mechanized 

farming adopters, semi-mechanized farming adopters, and full-mechanized farming adopters 

are different in gender, farm size, and geographic location. Here, we empirically test the 

heterogeneous effects of agricultural mechanization adoption to improve our understanding. 

 The upper parts of Table 6 show the results of the heterogeneous effects estimations by 

gender. The results show that relative to female-headed households adopting semi-mechanized 

farming, male-headed households adopting the same mechanization strategy obtain lower land 

productivity. For male and female-headed households, the adoption of semi-mechanized 

farming increases land productivity by 33% and 109%, respectively. Regarding the adoption of 

full-mechanized farming, male-headed households perform physically better than their female-

headed counterparts, but the female-headed households obtain a higher increment in land 

productivity changes. We show that the adoption of full-mechanized farming increases land 

productivity by 79% for male-headed households, and it increases land productivity by 109% 

for female-headed households. Our findings are well in line with the literature of agricultural 

feminization and women empowerment of agricultural mechanization (de Brauw et al., 2013; 

Mukhamedova and Wegerich, 2018).     

 The middle parts of Table 6 show the results of the heterogeneous effects estimations by 

farm size. With increasing farm sizes from small (≤ 3 mu) to medium (3–6 mu) and then to 

large (>6 mu), land productivity for semi-mechanized farming adopters is monotonically 

increasing, whereas that for full-mechanized farming adopters exerts a U-shaped relationship 

between farm size and land productivity changes. For example, when switching farm sizes from 

small to medium and then to large, the treatment effects of the adoption of full-mechanized 

farming on land productivity decrease from 212% to 154% and then increase to 177%, 

respectively. This finding is largely consistent with the argumentation in Kagin et al. (2016), 

who stated that farmers cultivating small farms in Mexico are more likely to operate closer to 

their technical efficiency frontier than large farms are. Given this reason, small farms intend to 

obtain high land productivity. 

 The lower parts of Table 6 present the results of the estimation of the heterogeneous effects 

by geographic locations. Our results reveal that among the farm households located in western, 

central, and eastern China, those cultivating land in central China obtains the highest land 

productivity by adopting semi-mechanized farming or full-mechanized farming. This 

  
Figure 4 Kernel density distribution of land productivity by agricultural mechanization status 
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difference can be partially explained by the favorable agricultural production conditions (e.g. 

better natural resources, climate conditions, and appropriate typography for machine use) in 

central China, the major grain-producing region. 

4.3 Robustness check 

For the robustness check, we also estimate the impact of the adoption of different agricultural 

mechanization strategies on land productivity by using the MVTE model. The results, presented 

in Table A1 in the Appendix, show that shifting from the adoption of no-merchanded farming 

to the adoption of semi-mechanized and full-mechanized farming increases land productivity 

significantly, which further confirms the positive association between agricultural 

mechanization and land productivity. However, our results indicate that the MVTE model tends 

to overestimate the treatment effects of agricultural mechanization adoption. In particular, the 

ATT estimates in the MVTE model show that the adoption of semi-mechanized farming and 

adoption of full-mechanized farming increase land productivity by 113% and 167%, 

respectively, and the values are 60% and 82% in Table 5. The findings are not implausible 

because the MVTE model cannot mitigate the selection bias from unobserved factors (e.g. 

farmers’ innate abilities and motivation to mechanize agriculture) (Linden et al., 2016; Ma et 

al., 2018a), and the findings of the significant selectivity correction terms (𝜆2  and 𝜆3 ) in 

Column 2 of Table 4 suggest the presence of selection bias from unobserved factors. 

 

Table 6 Results of the heterogeneous effects estimations 

 
Mechanization 

strategy 

Mean land productivity 

ATT t-value 
Change 

(%) Adopters 
Non-

adopters 

Disaggregated analyses by gender     

Male 
Semi-

mechanized 

1.146 

(0.014) 

0.864 

(0.011) 

0.282 

(0.013)*** 
21.954 32.639 

 Full-mechanized  
1.525 

(0.063) 

0.854 

(0.031) 

0.671 

(0.025)*** 
27.400 78.571 

Female 
Semi-

mechanized 

1.333 

(0.015) 

0.637 

(0.015) 

0.696 

(0.018)*** 
37.769 109.262 

 Full-mechanized  
1.257 

(0.026) 

0.668 

(0.022) 

0.589 

(0.035)*** 
16.624 88.174 

Disaggregated analyses by farm size     

Small  

(≤3 mu) 

Semi-

mechanized 

1.107 

(0.002) 

0.516 

(0.002) 

0.591 

(0.004)*** 
132.243 114.535 

Full-mechanized  
1.602 

(0.120) 

0.513 

(0.034) 

1.089 

(0.002)*** 
605.239 212.281 

Medium 

(3–6 mu) 

Semi-

mechanized 

1.319 

(0.000) 

0.613 

(0.002) 

0.707 

(0.002)*** 
451.139 115.334 

Full-mechanized  
1.561 

(0.006) 

0.615 

(0.002) 

0.946 

(0.003)*** 
286.077 153.821 

Large  

(>6 mu) 

Semi-

mechanized 

1.235 

(0.008) 

0.460 

(0.001) 

0.775 

(0.007)*** 
109.612 168.478 

Full-mechanized  
1.263 

(0.003) 

0.456 

(0.002) 

0.807 

(0.002)*** 
451.753 176.974 

Disaggregated analyses by geographic locations    

West 
Semi-

mechanized 

0.923 

(0.025) 

0.649 

(0.023) 

0.274 

(0.023)*** 
11.791 42.219 
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 Full-mechanized  
1.262 

(0.063) 

0.506 

(0.031) 

0.756 

(0.052)*** 
14.674 149.407 

Central 
Semi-

mechanized 

1.371 

(0.016) 

0.540 

(0.031) 

0.831 

(0.030)*** 
27.389 153.889 

 Full-mechanized  
1.453 

(0.039) 

0.496 

(0.040) 

0.957 

(0.047)*** 
20.287 192.944 

East 
Semi-

mechanized 

1.281 

(0.019) 

1.103 

(0.022) 

0.178 

(0.020)*** 
8.981 16.138 

 Full-mechanized  
1.487 

(0.023) 

1.178 

(0.033) 

0.309 

(0.039)*** 
7.883 26.231 

Note: Standard errors are in parentheses; *** p < 0.01; Land productivity is measured at 1,000 yuan/mu; The 

values of land productivity for adopters are estimated by using Equation (6a) in an observed context, and the 

values of land productivity for non-adopters are estimated by using Equation (6b) in a counterfactual context.  

 

5. Conclusions 

Although several studies have demonstrated the importance of agricultural mechanization in 

boosting farm economic performance and rural development, no other studies have considered 

how the adoption of different mechanization strategies affects land productivity. In response to 

this gap, this study investigated the determinants and impacts of the adoption of no-mechanized 

farming, semi-mechanized farming, and full-mechanized farming on land productivity. The 

MESR model was used to address the self-selection issue associated with farm machine use 

and analyze nationally representative data derived from the 2016 CLDS. 

 The results of the first stage estimation of the MESR model show that age, household size, 

farm size, land use certificate, irrigation rate, subsidies, and machinery service are major factors 

that affect farmers’ decision to adopt semi-mechanized and full-mechanized farming practices. 

In addition, our results estimated from the second stage of the MESR model suggest that a land 

use certificate, irrigation rate, and agricultural subsidies are the major factors that positively 

determine land productivity. 

 Our results indicated the presence of an unobserved selection bias issue. After controlling 

for the selection bias, we provided evidence that the adoption of both semi- and full-mechanized 

farming practices increases land productivity. Specifically, our treatment effects estimates show 

that the adoption of semi-mechanized farming increases land productivity by 60%, and the 

adoption of full-mechanized agriculture increases land productivity by 82%. The disaggregated 

analyses show that female-headed households adopting semi-mechanized farming obtain 

higher land productivity than their male-headed counterparts who adopt the same 

mechanization strategy, and male-headed households adopting full-mechanized farming 

perform better than their female-headed counterparts. There is a positive relationship between 

farm size and land productivity for semi-mechanized farming adopters, but that relationship is 

negative for adopters of full-mechanization farming. Semi- and full-mechanized farming 

adopters living in central China obtain higher land productivity relative to their counterparts 

residing in western and eastern China. 

 Our findings have important implications for sustainable agricultural production and food 

security. The finding that agricultural mechanization increases land productivity suggests that 

encouraging smallholder farmers to adopt machines on their farms can facilitate sustainable 

production and ensure food security. Small farm size and land fragmentation have been 

identified as two major obstacles to agricultural mechanization in rural China (Wang et al., 

2018). In this study, we also show that farm size is also a critical driver of agricultural 

mechanization. Thus, the government should support the development of scale-appropriate 

mechanization. Additionally, rural development programmed that target sustainable land use 

should consider consolidating plots to form a larger operational plot, and further developing 
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family farms through land transfer would result in any observable difference. The positive and 

statistically significant impacts of variables including access to credit, a subsidy, and a 

machinery service on the adoption of semi- and full-mechanized farming suggest that 

government efforts that relax farm households’ financial constraints through improving rural 

households’ access to credit provide agricultural subsidies and facilitate the development of 

machinery service markets at the regional levels could enhance farmers’ adoption of 

agricultural machines, which would increase land productivity and food security.  
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Appendix A 

Table A1 ATT estimates the impact of agricultural mechanization adoption on land 

productivity: MVTE model estimates 

Outcomes Mechanization strategy ATT z-value Change (%) 

Land productivity 
From no-mechanized farming 

to semi-mechanized farming 

0.647 

(0.057)*** 
11.36 112.730 

Land productivity 
From no-mechanized farming 

to full-mechanized  

0.958 

(0.096)*** 
9.93 167.018 

Note: Standard errors are in parentheses; *** p < 0.01; The reference mechanization strategy is no-mechanized 

farming; Land productivity is measured at 1,000 yuan/mu; The ATT estimates of MVTE model are calculated 

using the inverse-probability- weighted regression-adjustment estimator. 
 




