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Abstract 

Low agricultural productivity in sub-Saharan Africa has been associated with poor uptake of 

modern farming technologies like improved crop varieties. However, actual adoption of improved 

crop varieties is unclear because past empirical studies have relied on subjective self-reported 

adoption status that could be inaccurate. Weak seed systems have not helped the situation as 

rampant seed adulteration is reported. Fortunately, more accurate DNA fingerprinting (DNA-FP) 

analysis is fast gaining momentum as a gold standard to assess adoption. Using household survey 

data and DNA-FP grain samples collected from smallholder groundnut farmers in Nigeria, we 

estimate adoption levels and analyze farmers’ ability to correctly identify varieties. Confusion 

matrix and multinomial logistic regression model are adopted. DNA-FP analysis showed that 

sampled households grew 35 distinct groundnut varieties of which 27 were improved. Further, 

though DNA-FP results showed an adoption spread of about 59%, farmers’ self-reported adoption 

was 44%. This 15% underreporting of adoption by farmers points to a non-trivial variety 

knowledge gap. Econometric analysis showed that access to groundnut seed and variety 

information from formal sources were critical in minimizing type I and type II errors of variety 

identification. 
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Introduction 

About 56% of people in sub-Saharan Africa (SSA) live in poverty and 80% of them are engaged 

in smallholder subsistence agriculture that is characterized by low yields (OECD, 2016). This 

unfortunate situation has been attributed to several factors including overreliance on rain fed 

agriculture, poor infrastructure, poor government policies and low usage of modern agricultural 

technologies like improved crop varieties among others (Muema, 2018). Low adoption of 

improved crop varieties has been cited as one of the main contributors to low yields which in turn 

has exacerbated poverty among rural smallholder farming households. The widely grown local 

crop varieties are highly susceptible to biotic and abiotic stresses whose frequency and intensity 

have increased in recent times due to climate change (Ojiewo et al., 2018). Fortunately, recent 

international, regional and national investments in agricultural research has led to development 

and release of many improved high yielding and well adapted modern crop varieties in many 

countries of SSA. Further investments have been put in place to promote and popularize these 

improved crop varieties among the targeted smallholder farmers in the region with the ultimate 

goal of increasing adoption and improving their welfare outcomes (Dreisigacker et al., 2019). 

However, adoption levels of these promoted modern crop varieties is not clear despite literature 

being replete with empirical adoption studies. Most of these past studies on adoption of improved 

crop varieties typically rely on breeders’ opinions, extension agent reports, seed producers and 

suppliers, and a large proportion of them are dependent on eliciting responses from sampled 

respondents in household surveys (Pannell & Zilberman, 2020). This latter and most popular 

source of data used in adoption studies (self-reported adoption) has made findings on adoption 

rates vary significantly. One main cause of this variation is recall bias caused by decay in farmers’ 

ability to correctly recall varieties planted over long periods of time (Kosmowski et al., 2019; 
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Wineman et al., 2020). Besides, weak and poorly regulated seed systems in SSA, especially for 

legumes, do not have sufficient oversight and regulatory policies that has led to rampant 

adulteration of seed even those procured from formal sources (Bold et al., 2017). This adulteration 

problem is more pronounced for quality-declared seed (QDS) that is produced under less stringent 

certification process (Andrade-Piedra et al., 2016). Compounding this adulteration problem is the 

weak and poorly resourced extension system that makes access to proper information about 

agricultural technologies difficult (Wossen et al., 2019). In addition, lack of clear morphological 

differences between different crop varieties makes it very difficult for farmers to correctly identify 

the varieties they have grown. 

These myriads of challenges lead to information asymmetry that causes misidentification of 

variety seed type that potentially skews self-reported adoption rates of crop varieties. The 

implications of these misidentifications are serious because inferential statistics drawn from such 

research may lead to flawed policy designs and suboptimal application of agronomic practices in 

farming systems where good agronomic practices are applied to improved crop varieties 

(Wineman et al., 2020). The imprecise estimates also have far reaching implications for 

agricultural research and development investments that desire to change farmers’ livelihoods 

through promoting good quality and high yielding seeds. International, regional and local 

development practitioners may also have wrong impressions on project impacts/outcomes if 

adoption and impact assessments are based on wrong identification of the adopted varieties. This 

can easily lead to misallocation of resources which could result into minimal or no impacts at all. 

To correct for these misreported adoption rates, a small but growing number of mainstream 

adoption literature is recognizing and concentrating on DNA fingerprinted (DNA-FP) data as a 

benchmark for analyzing household and or plot level variety adoption (Floro et al., 2018; Wineman 
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et al., 2020; Wossen et al., 2019).The emerging trends in the few studies conducted so far using 

DNA-FP highlight two main findings: - under-reporting and over-reporting of adoption rates. 

Maredia et al. (2016) compared farmers’ self-reported adoption rates of common bean in Zambia 

and cassava in Ghana. In Zambia, farmers’ self-reported adoption of improved common bean was 

13% while the DNA-FP results showed 16%. On the other hand, in Ghana, farmers’ self-reported 

adoption was 6% compared to 29% that was confirmed with DNA-FP results. This 

underestimation of adoption by farmers was attributed to confusion and misunderstanding of what 

constitutes an ‘improved’ or ‘modern’ variety. Similarly, Dreisigacker et al. (2019) in Afghanistan 

and Tizale et al., (2015) in Ethiopia found farmers underestimating their adoption of improved 

wheat varieties by about 4% and 36%, respectively. Also, Wossen et al. (2019), found that farmers 

underestimated adoption of improved cassava varieties in Nigeria by about 7%. On the other hand, 

Floro et al. (2018)found that farmers in Colombia overestimated adoption of improved cassava 

varieties by 8% when self-reported results were compared with DNA-FP results. 

In these cases of misidentification, the classical Type I errors (false positives) and Type II errors 

(false negatives) often emerge. False positives are cases where farmers wrongly identify local 

varieties as improved varieties. On the other hand, false negatives are cases where improved 

varieties are wrongly reported as local varieties. However, with the advent of affordable DNA-FP 

technology, more precise crop variety identification is now possible upon collection of crop 

samples from the survey participating households. Therefore, using DNA-FP results generated 

from grain samples collected from smallholder groundnut farmers in northern Nigeria, we analyze 

variety identification accuracy among the sampled households and contribute to this limited but 

growing literature in two ways: - First, we use the emerging DNA-FP approach to resolve 

uncertainties around identification of groundnut varieties grown by sampled households as a 
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results of recall bias. Therefore, we generate more accurate adoption levels among the sampled 

producers. This method has not been widely used in past empirical adoption studies due to several 

reasons ranging from lack of data and cost implications that goes with collecting and analyzing 

samples. Second, to the best of our knowledge, no study has analyzed improved groundnut variety 

adoption using DNA-FP within the context of Nigeria. Yet groundnut production in Nigeria is very 

critical for reduction of food insecurity and poverty. According to 2019 statistics, the country is 

the leading producer of groundnut in west Africa, accounting for almost 44% of total production 

in the region, 23% of Africa’s production and 13% of global production (FAOSTAT, 2021). 

Further, it is estimated that about 34% of cultivated land in Nigeria is under groundnut and this 

crop contributes about 23% of total household cash income in the country (Ajeigbe et al., 2015). 

1. Data and methods  

1.1 Data 

DNA-FP is fast gaining acceptance among researchers and development practitioners, not only in 

determining the adoption rates of different varieties, but also as a standard tool for building a 

comprehensive crop variety reference library. In Nigeria, the International Crops Research 

Institute for the Semi-Arid Tropics (ICRISAT) and Institute for Agricultural Research (IAR) have 

been in the forefront of developing and releasing improved groundnut cultivars from early 1990s. 

Prior to 1992, IAR undertook most of the groundnut breeding work and about 20 groundnut 

varieties had been developed and officially released in Nigeria before ICRISAT came on board 

(Ntare et al., 2013). With Bill and Melinda Gates Foundation (BMGF) investments in TL I (2007-

2011), TL II (2012-2014) and TL III (2015-2018) projects under the leadership of ICRISAT, a 
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total of six improved groundnut varieties were developed, tested, adapted and released in Nigeria1. 

Besides, the last two phases of this BMGF investment (TL II and TL III) involved very robust 

variety awareness creation and promotional activities that aimed at increasing adoption and 

eventual impacts of improved groundnut varieties among the targeted communities. 

To estimate the adoption of promoted and other improved groundnut varieties among the target 

communities after almost 12 years of BMG investments, a household survey was commissioned 

in 2017 to collect data in five States of northern Nigeria (Bauchi, Jigawa, Kano, Katsina and 

Kebbi). Multi-stage sampling design was used to select survey units (households). First, the five 

States were purposively selected because these were the sites that TL III project activities were 

implemented. The second stage involved stratified sampling of Local Government Areas (LGAs) 

in each of the selected State where three LGAs were randomly selected in each State except for 

Kebbi that had two. The third stage involved random sampling of 42 villages within the selected 

LGAs. Finally, 1,470 households were randomly selected based on the list that was provided by 

area leadership with the help of extension officers. The actual data collection was conducted by 

trained and experienced enumerators who used a semi-structured questionnaire programmed in 

tablets. 

During the household interviews, groundnut grain samples for DNA extraction were collected 

from each of the surveyed household. Each sample had a unique identification number that linked 

it to specific household that it was collected from. In total, 1470 samples were collected – one 

                                                           
1 The six varieties are: SUMNUT24 (ICIAR19BT) released in 2011; SAMNUT25 (ICGX-SM-00020/5/P10) released in 2013; 

SAMNUT26 (ICGX-SM-00018/5/P15/P2) released in 2013; SAMNUT27 (ICGV-IS 07999) released in 2018; SAMNUT28 

(ICGV-IS 09926) released in 2018; SAMNUT29 (ICGV 01276) released in 2018 
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sample from each of the sampled households. The DNA samples were shipped to Australia-based 

Diversity Arrays Technology (DArT) for DNA extraction and analysis. Fingerprinting was 

conducted to determine the degree of similarity between samples from the surveyed households 

against varieties in the reference library. DArTseq techniques that combines DArT complexity 

reduction and next generation sequencing methods were used for genotyping (Jaleta et al., 2020). 

1.2 Methods 

Descriptive and econometric approaches were used to analyze variety identification and adoption 

among sampled households. To understand farmers’ knowledge of different groundnut varieties 

that they had grown, confusion matrix (CM) model was used to categorize and compare farmers’ 

self-reported adoption rates and the more accurate DNA-FP results. Further, in order to understand 

the determinants of variety identification among sampled households (type I or type II error), 

multinomial logit regression model (MNL) was used. 

1.2.1 Confusion Matrix (CM) 

Following Chicco & Jurman (2020), we used confusion matrix (CM) model to compare farmers’ 

self-reported adoption rates and DNA-FP results. The CM is used to evaluate and describe the 

accuracy of classification or identification predictions based on confirmed true values of those 

predictions. In this case, it is known that farmers had identified/predicted groundnut varieties based 

on their own knowledge while a DNA-FP analysis was used to confirm/verify farmers self-

reported identification. Therefore, there are two sources of binary predictions – from farmers’ self-

reported adoption and DNA-FP results based on genetic analysis of the grain samples collected 

from the same farmers. In this case, CM is an important approach that can be used to classify these 

binary predictions (identifications/classifications) based on expected true values from DNA-FP 

results. 
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In binary responses like the ones under this study, the CM has four main components (Table 1). 

First, true positives (TP) are values of improved groundnut varieties that were correctly identified 

by farmers when they self-reported their adoption status (𝜆11 in Table 1). Second, false positive 

(FP) are local varieties that were incorrectly self-reported by farmers as improved groundnut 

varieties (𝜆01 in Table 1). This 𝜆01 constitute what is called Type I error (Wineman et al., 2020). 

Third, false negative (FN) are confirmed improved groundnut varieties that farmers incorrectly 

self-reported as local varieties (𝜆10 in Table 1). This erroneous identification of improved varieties 

as local varieties (𝜆01) is referred to as Type II error (Wineman et al., 2020). Fourth, true negative 

(TN) are local varieties that were correctly self-reported as local groundnut varieties by the 

sampled households (𝜆00 in Table 1). Therefore, using farmers self-reported adoption outcomes as 

predictions and DNA-FP as actual or true variety identification, we find that the total number of 

true improved groundnut variety adopters in the sample is 𝜑11 (Eqn 1) and the true total number 

of non-adopters (local groundnut variety growers) is 𝜑00 (Eqn 2). Therefore, the total sample size 

is 𝛷 (Eqn 3). 

𝜑11 = 𝜆11 + 𝜆10                                                              Eqn (1) 

𝜑00 = 𝜆01 + 𝜆00                                                                   Eqn (2) 

𝛷 = 𝜑11 + 𝜑00 = 𝜆11 + 𝜆10 + 𝜆01 + 𝜆00                                                  Eqn (3) 

Table 1. The Confusion Matrix (CM) 

Actual: DNA-

FP analysis 

Predicted: Farmers’ self-reported identification 

P=Positive N=Negative Row total 

P=Positive TP=𝜆11 FN=𝜆10 𝜑11 = 𝜆11 + 𝜆10 
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N=Negative FP=𝜆01 TN=𝜆00 𝜑00 = 𝜆01 + 𝜆00 

Column total 𝜏1 = 𝜆11 + 𝜆01 𝜏0 = 𝜆10 + 𝜆00 𝛷 = 𝜑11 + 𝜑00 = 𝜆11 + 𝜆10 + 𝜆01 + 𝜆00 

From Eqn. 1 – Eqn. 3, we find that the total number of confirmed households that had adopted 

improved varieties based on DNA-FP analysis was 𝜑11 out of the total sampled households, 𝛷. 

Therefore, from CM model (Table 1), seven key descriptive metrics can be derived to evaluate the 

accuracy of self-reported variety identification among the sampled farmers when the DNA-FP 

results are used as the true identification benchmark (Eqn. 4 – Eqn. 10). Eqn. 4 gives the accuracy 

rate with which the sampled households can correctly identify the groundnut variety they are 

growing regardless of whether it is improved or local. From Eqn. 5, we get the probability of the 

household misidentifying the variety that it is growing (the converse of Eqn. 4). This is also called 

the error rate or misidentification rate and it can also be derived as 1 – Eqn. 4. Further, the 

probability of the sampled households to correctly identify an improved variety if indeed they are 

growing improved groundnut variety is given by Eqn. 6. This is the true positivity rate and it is 

also called sensitivity or recall rate in the literature. On the other hand, the probability of the 

sampled households wrongly identifying a local variety as an improved variety is given by Eqn. 

7. This Eqn. 7 is the rate of committing Type I error in the sample. The probability of households 

correctly identifying local varieties if indeed they are growing local groundnut varieties is given 

by Eqn. 8 (also called specificity rate). Besides these statistics, the precision rate is computed using 

Eqn. 9 and it is the probability that what was identified as improved variety by the sampled 

households is indeed an improved variety – it is a variant of the accuracy rate with the former 

targeting the true positives only. Finally, the prevalence rate that is derived from Eqn. 10 measures 

the true adoption rate among the sampled households based on the DNA-FP results. 
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𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 𝑟𝑎𝑡𝑒 =
(𝜆11+𝜆00)

𝛷
        (Eqn. 4) 

𝑀𝑖𝑠𝑖𝑑𝑒𝑛𝑡𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛 𝑟𝑎𝑡𝑒 =
(𝜆10+𝜆01)

𝛷
       (Eqn. 5) 

𝑇𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 𝑟𝑎𝑡𝑒 =
𝜆11

𝜑11
        (Eqn. 6) 

𝐹𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 𝑟𝑎𝑡𝑒 =
𝜆01

𝜑00
        (Eqn. 7) 

𝑇𝑟𝑢𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑖𝑡𝑦 𝑟𝑎𝑡𝑒 =
𝜆00

𝜑00
        (Eqn. 8) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑟𝑎𝑡𝑒 =
𝜆11

𝜏1
         (Eqn. 9) 

𝑃𝑟𝑒𝑣𝑎𝑙𝑒𝑛𝑐𝑒 𝑟𝑎𝑡𝑒 =
𝜑11

𝛷
        (Eqn. 10) 

1.2.2 Determinants of groundnut variety identification 

From Table 1, we find four mutually exclusive possible variety identification outcomes (TP; FP; 

FN and TN) that could form a set of dependent variables (𝑌). We analyze the probability of a 

household falling into one of the four mutually exclusive variety identification outcomes (Table 

1) using the multinomial logistic (MNL) regression model. This model is an extension of the binary 

logistic regression model where the dependent variable is nominal (dependent variable has more 

than two outcomes or categories that are not ordered). Therefore, the MNL approach is used to 

analyze the probability of a case (household) falling in any of the more than two dependent variable 

categories conditional on a set of predicators. These categories are mutually exclusive, and each is 

defined by a binary outcome (1=yes; 0=otherwise). If the dependent variable has 𝑗 categories, 

where 𝑗 is a positive integer and 𝑗 ≥ 3, then MNL model is used with one category designated as 

the base or reference group/category. In this study, there are four mutually exclusive possible 
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variety identification outcomes (TP; FP; FN and TN in Table 1) that form the dependent variables 

set (𝑌) and each of these outcomes is measured on a binary scale (1=if yes; 0=otherwise). On the 

other hand, the independent variables set (𝑋) are household characteristics that have been 

hypothesized to condition the probability of the household identifying groundnut variety correctly 

(improved or local) or incorrectly (type I error or type II error). With the four mutually exclusive 

unordered dependent variables, the MNL model is specified as follows: - 

𝑃𝑖𝑗 = 𝛽𝑖𝑋𝑖 + 𝑒𝑖         (Eqn. 11) 

Where 𝑃𝑖𝑗 is the probability of household 𝑖 correctly (improved or local) or incorrectly (type I error 

or type II error) identifying the variety of the groundnut variety grown. Subscript 𝑗 in 𝑃𝑖𝑗 denotes 

the four variety identification categories (TP, FP, TN and FN). The 𝑋𝑖 are household characteristics 

that determine the ability of the household to identify the groundnut variety correctly (TP and TN), 

make type I error (FP) or make type II error (FN). On the other hand, 𝑒𝑖 are the error terms that 

are assumed to be normally distributed with a mean of zero and constant variance. Therefore, the 

probability of a household identifying the groundnut variety that it grew is specified as follows: - 

𝑃𝑟𝑜𝑏 (𝑃𝑖 = 𝑗) =
𝑒𝑧𝑗

∑ 𝑒𝑧𝑘
𝑗
𝑘=0

        (Eqn. 12) 

Where 𝑧𝑗 is the self-reported groundnut variety that the farmer made and 𝑧𝑘 are the other alternative 

variety reporting that the farmer could have reported (3 options). Given that there are alternative 

reporting options for the farmer, the log odds ratio is computed as follows: - 

ln (
𝑃𝑖𝑗

𝑃𝑖𝑘
) = 𝛼 + 𝛽𝑖𝑋𝑖 + 𝑒𝑖        (Eqn. 13) 
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Where 𝑃𝑖𝑗 is the probability of the farmer identifying the variety as self-reported and 𝑃𝑖𝑘 are 

probabilities for alternative variety identification reporting. ln (
𝑃𝑖𝑗

𝑃𝑖𝑘
) is the natural log of probability 

of reporting the variety as 𝑗 relative to the probability of other variety reporting, 𝑘. The constant 

in Eqn. 13 is 𝛼 while 𝛽 is a vector of parameters to be estimated in the model. Since the coefficients 

of the MNL model only gives the direction of influence of the independent variable on the 

dependent variable (correlates), marginal effects of each independent variable are usually 

computed to give the actual magnitude of the effect of the independent variable on the dependent 

variable. These marginal effects from the MNL model are computed as follows: - 

𝛿 =
𝜕𝑃𝑖

𝜕𝑋𝑖
= 𝑝𝑖(𝛽𝑗 − ∑ 𝑃𝑖𝛽𝑘

𝑗
𝑘=0 ) = 𝑃𝑖(𝛽𝑗 − 𝛽)      (Eqn. 14) 

2. Results and Discussions 

2.1 Adoption rates of groundnut varieties 

After extensive further data cleaning, a total of 1428 samples out of 1470 were fit for the final 

analysis in this study. The average percentage purity for the extracted material was 99% with a 

0.93 classification confidence. The DNA-FP sample analysis revealed that about 35 distinct 

groundnut varieties were grown by sampled households (Table 2). Out of these 35 varieties, about 

27 (77%) were improved. The overall household level adoption rate of improved groundnut 

varieties based on DNA-FP results was about 59% compared to 44% that was reported by farmers 

in their own self-identification of the varieties they had grown. The 15% underestimation of 

adoption means that there are farmers growing improved groundnut varieties without knowing that 

they are indeed improved (type II error), and this is a clear indication that there exists a non-trivial 

variety knowledge gap among sampled households. 
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Table 2. DNA-FP and Farmer Self-reported Variety Classification (% households) 

Variety name 

DNA Fingerprinted 

(N=1428) 

Farmers self-reported 

(N=1428) 

Local Improved Total Local Improved Total 

55-437(Yardakar) 0.00 5.11 5.11 1.96 3.15 5.11 

BAHI DISTRICT NGOGO 0.28 0.00 0.28 0.14 0.14 0.28 

DODOMA 0.14 0.00 0.14 0.00 0.14 0.14 

Fleur 11 0.00 0.28 0.28 0.07 0.21 0.28 

ICG 12991 0.00 3.36 3.36 0.84 2.52 3.36 

ICG 8326 0.00 1.47 1.47 1.26 0.21 1.47 

ICGV 01276 0.00 0.56 0.56 0.21 0.35 0.56 

ICGV-IS-96894 0.00 0.21 0.21 0.07 0.14 0.21 

ICGV-SM 01711 0.00 0.91 0.91 0.42 0.49 0.91 

ICGV-SM 01731 0.00 1.26 1.26 0.77 0.49 1.26 

ICGV-SM 93530 0.00 1.05 1.05 0.84 0.21 1.05 

ICGV-SM-08501 0.00 0.28 0.28 0.21 0.07 0.28 

ICGX-SM-00018/5/P15/P 0.00 0.21 0.21 0.21 0.00 0.21 

ICGX-SM-00020/5/P10 0.00 1.26 1.26 0.42 0.84 1.26 

ICIAR 19BT 0.00 12.61 12.61 3.15 9.45 12.61 

JL 24 0.00 0.07 0.07 0.07 0.00 0.07 

JOHARI 0.00 0.21 0.21 0.21 0.00 0.21 

Jargyada(Local name) 19.40 0.00 19.40 12.54 6.86 19.40 

LOCAL 1 12.54 0.00 12.54 11.13 1.40 12.54 
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M-572.801 0.00 2.52 2.52 0.91 1.61 2.52 

M576-79 0.00 0.07 0.07 0.07 0.00 0.07 

MAIBARGO (LOCAL 

NAME) 

7.56 0.00 7.56 5.46 2.10 7.56 

MAMBOLEO UYUI 0.14 0.00 0.14 0.00 0.14 0.14 

MANIPINTAR 0.00 0.91 0.91 0.49 0.42 0.91 

MWARABU 0.49 0.00 0.49 0.07 0.42 0.49 

Manipintar 0.00 0.07 0.07 0.07 0.00 0.07 

NYOTA 0.56 0.00 0.56 0.07 0.49 0.56 

Nkatiesari 0.00 0.42 0.42 0.35 0.07 0.42 

QH 243C 0.00 4.55 4.55 1.61 2.94 4.55 

RED KAHAMA 0.00 0.84 0.84 0.35 0.49 0.84 

RMP 91 0.00 17.44 17.44 10.43 7.00 17.44 

RMP-91 0.00 1.54 1.54 0.98 0.56 1.54 

RRB (resistant red bull) 0.00 0.21 0.21 0.00 0.21 0.21 

SGV 99031 0.00 0.35 0.35 0.14 0.21 0.35 

SH 470P 0.00 0.07 0.07 0.00 0.07 0.07 

Shitaochi 0.00 0.35 0.35 0.28 0.07 0.35 

TS 32-1 0.00 0.35 0.35 0.14 0.21 0.35 

UGA-2 0.00 0.35 0.35 0.21 0.14 0.35 

Total 41.11 58.89 100.00 56.16 43.84 100.00 

At individual variety level, the DNA-FP results showed that the most widely adopted improved 

groundnut varieties were RMP 91 (17%) and ACIAR 19BT (13%). The 17% adopters of RMP 91 
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constituted 10% who correctly identified the variety as improved and 7% who erroneously 

identified this improved variety as local (type II error). On the other hand, the 13% confirmed 

adoption of ACIAR 19BT constituted 3% who correctly identified it as improved and almost 10% 

who misidentified this improved variety as local (type II error). Similar analysis of DNA-FP results 

revealed that the most widely grown local groundnut varieties were Jargyada (19%) and Local 2 

(13%). The 19% adoption of Jargyada constituted 12% who correctly identified this variety as 

local and 7% who made type I error of misidentifying this local variety as improved (Table 2). We 

also find that the 13% who adopted Local 1 variety composed of 11% who accurately identified it 

as local with about 2% making type I error of misclassifying this variety as improved. Therefore, 

these results showed a mismatch between farmers’ identification of groundnut varieties that they 

had grown and the confirmed DNA-FP results. However, given that some of the grown varieties 

had very low observations to support further individual variety specific analysis (Table 2), we 

merged improved varieties into one group and local varieties into another for subsequent analysis. 

Farmers’ self-reported adoption of improved groundnut varieties and DNA-FP results were further 

analyzed using the confusion matrix model (Table 3). While farmers self-reported results showed 

an adoption rate of about 44%, the DNA-FP analysis showed a higher adoption rate of almost 59% 

(Table 2; Table 3). This underreporting of adoption rates in our current study is consistent with 

past empirical studies (Wossen et al., 2019); though it is also in contrary to other studies that found 

over reporting of adoption levels (Floro et al., 2018; Wineman et al., 2020). Besides, Wossen et 

al. (2019) demonstrated that this self-misreporting of adoption status (type I or type II errors) leads 

to significantly biased estimation of research impacts which may lead to misdiagnosis and 

ineffective policy options. The low self-reported adoption rates in this current study were due to 

higher proportion of sampled households making type II error i.e. mistaking improved varieties 
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for local varieties compared to type I error of incorrectly identifying local as improved varieties. 

The results showed that about 45% of the surveyed farmers made type II error while 28% made 

type I error (Table 3). Therefore, only 55% of the 59% DNA-FP confirmed adopters had correctly 

identified the varieties they were growing as improved compared to about 72% of the 41% DNA-

FP confirmed non-adopters that were able to correctly identify the local varieties that they were 

growing (Table 3). The former (55%) is what is called true positivity rate or recall rate (Eq. 6) 

while the latter (72%) is called true negativity rate (Eqn. 8). 

These results show that there is a significant proportion of smallholder groundnut growers in 

northern Nigeria who are growing improved groundnut varieties that they mistakenly consider as 

local. Such wrong perception of the type of groundnut variety grown (lack of information) is likely 

to have implications on how accompanying agronomic practices are adopted on plots where these 

varieties are grown. If sub-optimal agronomic practices are adopted on an improved variety plot 

because the farmer wrongly thinks that it is a local variety, then the productivity potential of that 

improved variety is likely to be compromised, thereby undermining the envisaged genetic gain 

from improved varieties. The overall improved variety identification precision rate among the 

sampled households was about 73% (Eqn. 9). Therefore, to improve precision rate, the true 

positivity (recall) rate should be as high as possible. 

Table 3. Comparison of farmers’ self-reported and DNA-FP adoption results (confusion matrix) 

Actual: DNA-FP analysis 

Predicted: Farmers self-reported identification 

Improved (N=626) Local (N=802) Total (N=1428) 

Improved (N=841) TP=54.58 FN=45.42 58.89 

Local (N=587) FP=28.45 TN=71.55 41.11 
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Total (N=1428) 43.84 56.16 100 

Further, analysis of farmers self-reported adoption and DNA-FP results showed that the variety 

identification accuracy rate (Eqn. 4) among the sampled households is about 62%. This means that 

the probability of a household to correctly identify the variety that it is growing (whether improved 

or local) is about 62% with the remaining 38% being the probability of misidentification or error 

rate (Eqn. 5). If indeed farmers significantly adopt good agronomic practices like fertilization, 

spacing, weeding etc. based on their own perceived crop variety that they are growing, then this 

38% misidentification rate is not trivial and calls for concerted efforts to address it. This 

misidentification is likely to compromise the genetic potential of improved varieties that normally 

need better agronomic practices to achieve their yield potentials. It could also lead to misallocation 

of resources if high input resources are used on plots with local varieties that are genetically low 

yielding – leading to low returns per unit of inputs used. A combination of these two potential 

misidentification outcomes (compromised yield and resource misallocation) could dissuade 

farmers from adopting improved varieties. Therefore, analyzing determinants of variety 

misidentification among smallholder farmers is critical for designing interventions that are likely 

to induce increased adoption of improved varieties which will lead to increased productivity and 

better welfare impacts of agricultural research. 

2.2 Determinants of groundnut variety identification 

The MNL model coefficients are presented in Annex A while marginal effects are in Table 4. We 

present, interpret and discuss marginal effects because coefficients from MNL model only indicate 

the direction of the effect but not the magnitude by which the independent variables affect the 

dependent variable – something that marginal effects address (Dung, 2020). The marginal effects 

results show that gender of the household head has a negative and significant effect on the 
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probability of the household making type I error. Compared to female headed households, male 

headed households were almost 7% less likely to commit type I error (Table 4). This means male 

headed households were less likely to mistake a local groundnut variety for an improved variety 

compared to their female counterparts. The finding could be associated with the possibility that it 

is easier for male household heads to access information about improved groundnut varieties 

through different forums like trainings and participation in other technology promotional activities 

- field days, seed fairs etc. (Ankrah et al., 2020; Lamontagne-Godwin et al., 2018). Further, 

education of the household head was negatively associated with type II errors. An increase in 

formal education of the household head by one year has a potential of reducing type II error by 

about 1%. Therefore, households with more educated heads are more likely to correctly identify 

improved groundnut varieties that they grew (not to mistake an improved variety for a local 

variety). 

Table 4. Determinants of groundnut variety identification (MNL model marginal effects) 

Variables True Positive 

False 

Positive 

(Type I 

error) 

False 

Negative 

(Type II error) 

True 

Negative 

Household head sex (1=male; 

0=female) 

-0.036 

(0.039) 

-0.069** 

(0.029) 

0.077 

(0.048) 

0.027 

(0.045) 

Household head age (years) 

-0.001 

(0.001) 

0.001 

(0.001) 

0.000 

(0.001) 

0.001 

(0.001) 

Household head formal 

education level (years) 

0.002 

(0.002) 

-0.001 

(0.002) 

-0.008*** 

(0.002) 

0.007 

(0.002) 
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Improved seed available in 

the village (1=yes; 0=no) 

0.255*** 

(0.025) 

0.006 

(0.024) 

-0.085** 

(0.035) 

-0.175 

(0.035) 

Number of groundnut plots 

-0.005 

(0.005) 

0.003 

(0.003) 

-0.001 

(0.004) 

0.003 

(0.004) 

Household head farm labour 

participation (1=full time; 

0=otherwise) 

-0.023 

(0.026) 

-0.013 

(0.020) 

0.029 

(0.032) 

0.007 

(0.031) 

Source of groundnut seed 

(1=formal; 0=informal) 

0.131*** 

(0.022) 

0.088*** 

(0.019) 

-0.126*** 

(0.033) 

-0.093 

(0.033) 

Household members engaged 

in agricultural technology 

training (1=yes; 0=no) 

0.044* 

(0.026) 

0.035* 

(0.021) 

-0.198*** 

(0.035) 

0.119 

(0.033) 

Sources of groundnut variety 

information (1=formal; 

0=informal) 

0.015 

(0.031) 

0.036 

(0.027) 

0.005 

(0.040) 

-0.057 

(0.042) 

Membership to farmer groups 

(1=yes; 0=no) 

0.014 

(0.022) 

0.014 

(0.018) 

0.017 

(0.026) 

-0.046 

(0.026) 

Visited by agricultural 

extension staff (1=yes; 0=no) 

0.075*** 

(0.026) 

-0.056*** 

(0.021) 

0.052** 

(0.025) 

-0.071 

(0.025) 

TL III project target village 

(1=yes; 0=no) 

0.080*** 

(0.025) 

0.004 

(0.021) 

0.023 

(0.026) 

-0.107 

(0.026) 

Jigawa (1=yes; 0=otherwise) 

-0.045 

(0.043) 

-0.067*** 

(0.024) 

0.089* 

(0.046) 

0.023 

(0.047) 
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Kano (1=yes; 0=otherwise) 

-0.098** 

(0.042) 

0.155*** 

(0.038) 

0.002 

(0.035) 

-0.058 

(0.035) 

Katsina (1=yes; 0=otherwise) 

-0.097** 

(0.038) 

0.066** 

(0.031) 

0.020 

(0.038) 

0.012 

(0.039) 

Kebbi (1=yes; 0=otherwise) 

-0.241*** 

(0.039) 

-0.056** 

(0.026) 

0.218*** 

(0.044) 

0.080 

(0.042) 

*** p<0.01, ** p<0.05, * p<0.1; values in parenthesis show standard errors 

On the other hand, we find that households found in villages where there is an improved seed seller 

were more likely to correctly identify improved variety and unambiguously less likely to commit 

type II in variety identification (mistake an improved variety for a local variety). Households in 

villages that have improved groundnut seed sellers were about 26% more likely to correctly 

identify improved groundnut varieties that they have grown compared to those found in villages 

without improved groundnut seed sellers (Table 4). Consistently, households in villages with 

improved groundnut seed sellers were almost 9% less likely to commit type II error in identifying 

the groundnut variety that they grew.  This confirms the importance of formal seed dealers in 

disseminating information about improved agricultural technologies like seed. In fact, closely 

related to this finding on formal seed dealers is the positive and significant correlation between 

formal sources of groundnut variety information and the likelihood of households correctly 

identifying improved groundnut varieties that they grew. Households that accessed information on 

groundnut varieties from formal sources were about 13% more likely to correctly identify 

improved varieties that they grew and similarly, 13% less likely to commit type II error of variety 

identification (Table 4). However, they were also almost 9% more likely to commit type I error of 

mistaking a local variety for an improved variety. This latter finding shows that sampled 
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households are more certain about local varieties than improved varieties. Similar trends were also 

observed on the effect of engaging households in agricultural technology training where it was 

found that those engaged in these trainings were more likely to correctly identify improved 

groundnut varieties and less likely to commit type II error but more likely to commit type I error, 

just like households who received groundnut variety information from formal sources. Compared 

to otherwise, those engaged in agricultural technology training were 4% more likely to correctly 

identify improved varieties that they grew and 20% less likely to make type II error in groundnut 

variety identification though they were about 4% more likely to commit type I error (Table 4). 

Also, visits of agricultural extension staff to households had a positive and significant association 

with the likely of a household correctly identifying improved groundnut variety and unambiguous 

negative association with the likelihood of making type I error. Households that were visited by 

an agricultural extension staff were almost 8% more likely to correctly identify the improved 

varieties that they grew compared with those that were not visited. Similarly, unlike households 

that were not visited by agricultural extension staff, those visited were about 6% less likely to 

make type I error of variety identification (Table 4). However, we also find a positive and 

significant association between visits by agricultural extension staff and the likelihood of making 

type II error. Those households that were visited by agricultural extension staff were about 5% 

more likely to make type II error of mistaking an improved groundnut variety for local variety. 

We also find a positive and significant association between TL II project intervention villages and 

the likelihood of a household correctly identifying improved groundnut variety. This latter finding 

points to the importance of development projects in disseminating agricultural technology 

information to target rural farming households. 

3. Summary and conclusions 
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Majority of the poor in sub-Saharan Africa (SSA) live in rural areas and mainly derive their 

livelihood from agriculture that is characterized by low productivity. This low agricultural 

productivity has been associated with poor uptake of available modern farming technologies 

especially improved crop varieties among many other factors. However, the actual adoption levels 

of improved crop varieties is not clear since most of the past empirical investigations have relied 

on farmers’ self-reported adoption status that is likely to be inaccurate due to recall bias caused by 

decay in farmers’ ability to remember. The seed systems in SSA where quality assurance and 

control are not strong has not helped the situation because seed adulteration has been reported in 

several countries in the region. Therefore, dependence on farmers self-reported adoption status is 

likely to lead to erroneous conclusions on adoption levels of improved varieties. However, in 

recent past, there is an emerging trend in approaches used to estimate crop variety adoption levels 

where crop samples are collected from farmers and subjected to DNA fingerprinting (DNA-FP) 

analysis to confirm the true variety identity. We adopted this innovative DNA-FP approach in our 

current study to estimate the adoption levels of improved groundnut varieties in northern Nigeria 

and analyzed the determinants of farmers’ ability to correctly identify the groundnut varieties that 

they have grown on their farms. 

In order to understand the level of variety knowledge among sampled households, confusion 

matrix (CM) was used to compare farmers self-reported adoption status and the confirmed DNA-

FP analysis results. Further, multinomial logistic (MNL) regression model was adopted to analyze 

the determinants of households’ ability to correctly identify the variety that had been grown. 

Descriptive statistics from DNA-FP analysis showed that sampled households grew a total of 35 

distinct groundnut varieties of which 27 were improved varieties. However, in terms of adoption, 

DNA-FP results revealed that the adoption rate of improved groundnut varieties in northern 
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Nigeria was about 59% though farmers’ self-reported adoption rate was 44%. This 15% 

underreporting of adoption by farmers points to a non-trivial variety knowledge gap that need to 

be addressed. Further, econometric analysis showed that availability of groundnut seed dealers in 

villages, formal sources of groundnut seed and groundnut variety information, engaging farmers 

in technology trainings and increased visits by agricultural extension staff are critical in ensuring 

that farmers who grew improved groundnut varieties correctly identifies them. Type I errors of 

variety identification could be minimized with increased visits of agricultural extension staff while 

type II errors will be minimized if formal education of the household is creased, more seed dealers 

are established in the villages, farmers obtain variety information from formal sources and they 

are also engaged in agricultural technology trainings. 
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Annex 

Annex A. Determinants of groundnut variety identification (MNL model coefficients): True 

Positive as reference group 

Variable 

False Positive 

Model (Type I 

error) 

False Negative 

Model (Type II 

error) 

True 

Negative 

Model 

Household head sex (1=male; 0=female) 

-0.426 

(0.351) 

0.630* 

(0.362) 

0.416 

(0.337) 

Household head age (years) 

0.013 

(0.008) 

0.005 

(0.007) 

0.011 

(0.007) 

Household head formal education level 

(years) 

-0.017 

(0.020) 

-0.041** 

(0.019) 

0.015 

(0.017) 

Improved seed available in the village 

(1=yes; 0=no) 

-1.201*** 

(0.292) 

-1.932*** 

(0.255) 

-2.284*** 

(0.257) 

Number of groundnut plots 

0.049 

(0.041) 

0.020 

(0.038) 

0.037 

(0.037) 

Household head farm labour participation 

(1=full time; 0=otherwise) 

-0.002 

(0.246) 

0.277 

(0.238) 

0.190 

(0.227) 

Source of groundnut seed (1=formal; 

0=informal) 

0.125 

(0.225) 

-1.442*** 

(0.220) 

-1.290*** 

(0.222) 

Household members engaged in agricultural 

technology training (1=yes; 0=no) 

0.145 

(0.252) 

-1.093*** 

(0.258) 

0.140 

(0.235) 
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Sources of groundnut variety information 

(1=formal; 0=informal) 

0.227 

(0.311) 

-0.137 

(0.273) 

-0.362 

(0.287) 

Membership to farmer groups (1=yes; 0=no) 

0.042 

(0.217) 

-0.046 

(0.193) 

-0.284 

(0.196) 

Visited by agricultural extension staff 

(1=yes; 0=no) 

-0.859*** 

(0.257) 

-0.179 

(0.213) 

-0.676*** 

(0.213) 

TL III project target village (1=yes; 0=no) 

-0.375 

(0.254) 

-0.419** 

(0.212) 

-0.919*** 

(0.209) 

Jigawa (1=yes; 0=otherwise) 

-0.909** 

(0.456) 

0.717** 

(0.346) 

0.435 

(0.350) 

Kano (1=yes; 0=otherwise) 

1.255*** 

(0.346) 

0.308 

(0.321) 

0.077 

(0.303) 

Katsina (1=yes; 0=otherwise) 

0.866** 

(0.341) 

0.522* 

(0.316) 

0.495 

(0.301) 

Kebbi (1=yes; 0=otherwise) 

0.371 

(0.495) 

2.445*** 

(0.363) 

2.032*** 

(0.356) 

Constant 

-0.333 

(0.506) 

0.165 

(0.484) 

0.819* 

(0.450) 

Model description:    

Number of observations 1,428 

LR chi2(48) 833.310 

Prob > chi2 0.0000 

Pseudo R2 0.220 
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Log likelihood -1480.386 

*** p<0.01, ** p<0.05, * p<0.1; values in parenthesis show standard errors 

 




