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Abstract: Agricultural management systems of many smallholders in low and middle-income 

countries depend on services by pollinator populations. However, increased adoption of modern 

inputs and particularly the wide-spread use of agrochemicals threaten pollinators and smallholders' 

crop production. Understanding how farmers’ use of modern inputs affects pollinator communities 

is, therefore, crucial for development efforts and the design and promotion of sustainable 

agricultural practices. We contribute to the still scarce literature on pollinator communities in low 

and middle-income countries by analyzing the link between the use of agrochemicals and wild bee 

abundance and richness on 127 agricultural plots in the rural-urban interface of Bangalore, India. 

To capture temporal and spatial scaling in the relationship of agricultural management systems and 

bee populations, we explicitly model the effects of present, past, and neighboring agricultural 

management decisions in our empirical analysis. We find statistically significant negative spillover 

of pesticide use on both bee abundance and richness. Furthermore, smallholders’ decisions to use 

chemical fertilizers and pesticides on their own plots significantly decrease the number of observed 

bees. A history of intensive past management reduces both bee abundance and richness. 
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1. Introduction 1 

Pollinator communities make important contributions to agricultural production and food security 2 

(Kleijn et al., 2015; Tscharntke et al., 2012), and interest in this topic has increased with the so-3 

called ‘pollinator crisis’, the fast decline of pollinator populations on a global scale (Tylianakis, 4 

2013). While most staple crops do not rely on animal pollination, many fruit and vegetable crops 5 

do (Klein et al., 2007) and they often figure prominently in efforts to improve the incomes and 6 

living standards of smallholders in low-income countries. The commercialization of such high-7 

value production systems allows for the participation in national and international agricultural 8 

value chains and is, thus, seen as critical tools of economic development (Maertens et al., 2012). 9 

As a consequence, agricultural policy strategies in many low-income countries focus on improving 10 

farmers’ access to modern inputs and technologies to achieve more commercialized agricultural 11 

systems (Jayne et al., 2018; Minten et al., 2013). Furthermore, improved infrastructure and better 12 

access to urban centers and markets are other factors amplifying the transformation from extensive 13 

to more intensified agricultural management systems in large parts of Africa and Asia (Steinhübel 14 

& Cramon-Taubadel, 2020; Vandercasteelen et al., 2018). 15 

Despite the economic benefits for smallholders in poorer regions, there is a flipside to the greater 16 

use of modern agricultural technologies such as chemical fertilizers or pesticides. These can harm 17 

pollinator populations, with negative implications for the economic performance of production 18 

systems in the future (Brittain et al., 2010; Goulson et al., 2015). Evidence on farm-pollinator 19 

interactions in higher-income countries is vast but a study by Wenzel et al. (2020) shows that there 20 

are only a few studies from lower-income countries. Reasons are manifold, among others the 21 

account of existing pollinator species in these countries is often patchy, and collecting pollinators 22 

in (sub-)tropical climates brings own—often practical—challenges. However, since farming 23 
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systems can differ greatly between high and low-income countries, we cannot simply transfer the 24 

results from the existing literature to fully understand farm-pollinator interactions in low-income 25 

countries. For example, agricultural plots in low-income countries are often much smaller, climate 26 

and crop choices differ, and most relevant for this study, smallholders normally dependent 27 

exclusively on wild pollinator population These have been shown to substantially increase yields 28 

of pollination dependent crops (Garibaldi et al., 2016) and once gone, smallholder might not have 29 

the resources to bring in managed bee populations to substitute missing pollination services.  30 

Another challenge to analyzing farm-pollinator interactions is the combination of ecological and 31 

economic concepts and several studies have called for increased interdisciplinary analysis (Bennett 32 

et al., 2015; Collins et al., 2011; Vanbergen & Initiative, 2013; Zhang et al., 2007). This is, 33 

however, often difficult because the two disciplines work on different temporal and spatial scales. 34 

Most studies to date have been published by ecologists. In this literature, management decisions 35 

are often considered at the landscape scale in an aggregate fashion, e.g., home gardens versus 36 

natural forests (Blitzer et al., 2012; Motzke et al., 2016; Tscharntke et al., 2005; Tscharntke & 37 

Brandl, 2004). Aggregation at the landscape or habitat level is intuitive to ecologists because 38 

ecological and anthropogenic boundaries do not necessarily match – i.e., pollinators can move 39 

between agricultural plots. Thus, several articles demonstrate the importance of fragmented 40 

landscapes in defining local pollination services to account for pollinator mobility and foraging 41 

ranges (Halinski et al., 2020; Kremen et al., 2007; Tscharntke et al., 2005). From an economic and 42 

policy perspective, in contrast, the landscape scale is of limited use because decision-making 43 

typically takes place at the household or farm level. Similarly, in the economic literature, 44 

agricultural decision-making is often associated with seasons or growing cycles (i.e. it is rather 45 

short-term) (Steinhübel et al., 2020); whereas ecological studies emphasize that pollinator 46 
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communities are likely affected by the sum of subsequent management decisions through nesting 47 

and foraging possibilities (Kremen et al., 2007; Schwarz et al., 2020).  48 

The motivation of our study is, therefore, twofold. First, we want to contribute new evidence to the 49 

literature on farm-pollinator interactions in low-income countries by analyzing primary data on bee 50 

communities and farm management on 127 plots in South India. Second, in our empirical analysis, 51 

we address the spatial and temporal disconnect of ecological and economic perspectives. By 52 

specifically modeling the effect of present, past, and neighboring agricultural management choices 53 

on bee abundance and richness, we aim to answer the following research questions:  54 

1) Which farmer management decisions affect bee communities, and to what extent?  55 

2) Do management decisions taken by one farmer affect bee communities on other farmers’ plots 56 

– i.e., do spillover effects of management decisions extend beyond the boundaries of management 57 

units? 58 

3) How do past management decisions affect current bee communities? 59 

By considering different scales and by looking into the use of different agricultural inputs, our 60 

results provide a detailed picture of farm-pollinator interactions. This can help to better target 61 

extension and policy measures to regulate the use of agricultural inputs that can harm bee 62 

communities and simultaneously support sustainable agricultural growth in low-income countries.  63 

2. Methods 64 

2.1 Study area and survey design 65 

Our empirical analysis is based on data from two study areas that extend from urban Bangalore 66 

roughly 40 km into the surrounding rural-urban interface, one to the north and the other to the south 67 

and west. We refer to these areas as research transects (Fig. 1). Although it is heavily influenced 68 
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by the rapidly growing city of Bangalore (the last official census in 2011 recorded 9.6 million 69 

inhabitants and average yearly growth rates of about 8 percent (Directorate of Census Operations 70 

Karnataka, 2011), the rural-urban interface is dominated by smallholder agriculture and 71 

agricultural land use is highly fragmented. Bangalore and several satellite towns offer a variety of 72 

marketing possibilities to farmers and connect them to local, national, and even international 73 

markets. Expanding infrastructure also improves farmers’ access to input markets, especially for 74 

chemical fertilizers and pesticides. As a consequence, agricultural production is becoming 75 

increasingly commercial and many farmers are shifting from subsistence production of staple crops 76 

to high-input fruit and vegetable production. The agricultural production systems in the rural-urban 77 

interface of Bangalore thus exemplify the dilemma that we discuss in the introduction: smallholders 78 

are shifting to more pollinator-dependent production systems and simultaneously increasing the 79 

use of potentially pollinator-harming inputs.  80 

To capture potential spatial heterogeneity induced by the urban center of Bangalore, the selection 81 

of farm households and plots for data collection followed a two-step approach. Based on the Survey 82 

Stratification Index (SSI) introduced by Hoffmann et al. (2017), all villages in the two research 83 

transects were classified into three strata (rural, peri-urban, urban). In the first step, ten villages 84 

were randomly selected in each stratum in each transect (60 villages in total). Using household lists 85 

provided by preschool teachers in the selected villages, we randomly drew an average of 20 86 

households per village (weighted by village size). The resulting 1,275 households were subjected 87 

to a detailed baseline socio-economic survey that was carried out between December 2016 and 88 

May 2017. About half of these households (638) were farm households, i.e., they managed at least 89 

one plot in 2016. For these households, the baseline survey included data on agricultural 90 

management in the agricultural year 2016/2017 and recall data for the years 2012 to 2015. 91 
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In the second, step we drew a random subsample of 24 of the 40 villages located in the peri-urban 92 

and rural strata, twelve in each transect.6 In these randomly selected villages, all households that 93 

had been identified as farm households in the first step (N=127) were selected for pan trap 94 

experiments (described below) and a second survey, which was carried out in February and March 95 

2018.7 This second survey covered information on agricultural management decisions in the 96 

2017/18 season. Combining data from both surveys provided us with a continuous record of the 97 

management history of each of the 127 farm households extending back to 2012. 98 

For the pan traps experiments, we randomly selected one plot from each of the 127 farm households 99 

in the subsample (Fig. 1). We collected information on the direct neighborhood of each selected 100 

plot, as well as the GPS-coordinates of its centroid. Four pan traps were placed on each of these 101 

plots. The pan traps were 500 ml bowls sprayed with yellow UV-bright color and filled with 102 

unscented soapy water. To ensure that we captured as many pollinators as possible, all four pan 103 

traps were placed near flower-rich patches, with a minimum distance of approximately 10 m 104 

between traps to minimize interactions between them. The traps were collected after 48 hours, and 105 

all traps were installed and collected between the hours of 10 am and 2 pm. This is a standard 106 

sampling method to record pollinator communities (Meyer et al., 2015; Westphal et al., 2008). 107 

Unfortunately, some traps failed; they spilled or were taken away by passers-by. As a consequence, 108 

some plots had fewer than four successful pan traps; we introduced dummy variables in our later 109 

                                                 
6 Because only few agricultural households are located in the urban stratum, we excluded the 20 villages in this stratum 

from the subsample.  

7 Robust inference on spatial spillovers among farm plots requires a sufficient number of observations (plots) within a 

potential interaction radius of one another. We therefore drew a random subsample of villages rather than households, 

to ensure that the individual observations (plots) are spatially clustered. See the zoomed-in areas in Fig. 1. 

Unfortunately, there were 4 villages in the peri-urban strata of the southern transect with only one farm household. 

These households were not considered in the empirical analysis of this study. 
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analysis to control for the number of successful traps per plot (see Table A.1). Pan traps were placed 110 

in the field only on sunny, windless, and dry days. Collecting took place from January 9 to February 111 

11, 2018, and thus during the winter months. 112 

 113 

Fig. 1. Research area and location of sampled villages and plots along the rural-urban interface of 114 

Bangalore, South India (𝑁 = 127).  115 

Note: Panels on the right show zoomed-in representations of the grey shaded squares in the large 116 

map. Village and plot coordinates were collected during the household survey in 2018. All other 117 

map features were downloaded from OpenStreetMap and visualized with QGIS. 118 
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After collection, all insects caught in the traps were treated with 70% ethanol, pinned, and identified 119 

to species or genus level. Most of the captured insects were bees along with a few other pollinating 120 

insect taxa (e.g., beetles, butterflies, flies, wasps). Since pollinator groups differ greatly in their 121 

ecological characteristics (Gagic et al., 2015), we decided to consider only bees in our analysis to 122 

avoid inconclusive results. In the remainder of this article ‘species’ refers to the lowest taxonomic 123 

rank identified. To the best of our knowledge, beekeeping is not common in the research transects. 124 

None of our sampled households reported keeping bees. Therefore, we assume that most of the 125 

bees caught in the pan traps originate from wild colonies.  126 

We used the number of bees caught per plot as a proxy for bee abundance and the number of 127 

different bee species as a proxy for bee richness. We are aware that these are only rough indicators 128 

for pollination services and that pan traps might oversample smaller species (see e.g. Baum & 129 

Wallen, 2011). Nevertheless, both are frequently used in the ecological literature (Holzschuh et al., 130 

2007; Kremen et al., 2002, 2004) and hence our results can easily be compared with previous 131 

studies. Since bee abundance and richness are highly correlated in our sample (𝜌 = 0.919), we do 132 

not use both in the same model specification to avoid problems with multicollinearity.  133 

2.2 Empirical analysis 134 

We implemented a Poisson generalized linear model (GLM) to account for the count data of the 135 

dependent variables—abundance and richness—, and we were mainly interested in how they are 136 

affected by the use of chemical fertilizers, irrigation, and pesticides. Chemical fertilizers and 137 

irrigation are commonly used to quantify the intensity of agricultural management in low and 138 

middle-income countries (see e.g. Asfaw et al., 2016; Vandercasteelen et al., 2018), whereas 139 

pesticides do not only signal intensification but can be directly harmful to bees (Brittain et al., 140 

2010; Tuell & Isaacs, 2010). To incorporate the different spatial and temporal scales discussed 141 
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before, we do not only estimate the effects of farm practices used on the plot under observation but 142 

also past management of the plot and farm practices used on plots in the neighborhood. 8 Therefore, 143 

bee abundance or richness 𝑦 on plot 𝑖 are given by the predictor 𝜂𝑖: 144 

𝑦𝑖 ~ 𝑃𝑜(𝜆𝑖), 𝑤𝑖𝑡ℎ  𝑙𝑜𝑔(𝜆𝑖)  =  𝜂𝑖  =  𝒛𝑖𝜶 +  𝒑𝑖𝜸 +  𝒉𝑖𝜽  +  𝒙𝑖𝜷   (1) 145 

where 𝒛𝒊 is a row vector of dummies for irrigation, chemical fertilizer, and pesticide use on plot 𝑖 146 

in 2018 (present management)9; 𝒑𝒊 is the number of years either of the three inputs have been used 147 

on plot 𝑖 since 2012 (past management); 𝒉𝒊 is the agricultural management of plots in the 148 

neighborhood of plot 𝑖 in 2018 (neighboring management); and 𝒙𝑖 is a set of control variables 149 

including a constant (i.e. first element equals 1). The parameter vectors 𝜶, 𝜸, 𝜽, and 𝜷 are to be 150 

estimated. Technically speaking 𝒉𝑖 in equation (1) can be understood as spatially lagged (SLX) 151 

variables of 𝒛𝑖. That means that we used so-called (non-negative) spatial weight matrices 𝑾 of 152 

dimension 𝑛 × 𝑛 to define interactions between plot 𝑖 and any plot 𝑗 in its neighborhood. We 153 

dropped 𝑾 in equation (1) for a simpler notation (𝒉𝑖 = 𝒘𝑖𝒁). Since 𝒉𝑖 is only concerned with the 154 

neighborhood of plot 𝑖, the main diagonal of 𝑾 (when 𝑖 = 𝑗) was set to zero. Thus, the weight 155 

matrix was composed of known scalars that represent a priori assumptions about the spatial 156 

                                                 
8 We also tested for spatial autocorrelation using Moran I tests. Test statistics were not significant and we, thus, did 

not include an autoregressive parameter in our model. 

9 For the years 2017 and 2018, we have data on quantities of fertilizer and pesticide applied on the sample plots. 

Nonetheless, we refrained from including input quantities as explanatory variables because we also wanted to include 

information on past plot management decisions in our analysis, and for earlier years (2012 to 2016) we only have data 

on the numbers of inputs used, not quantities. When surveying the producers in our sample, we did not collect data on 

the quantities of inputs used in past years because these producers rarely keep records and their recollection of the 

quantities of inputs used in past cropping seasons would be increasingly unreliable and possibly biased as the recall 

period grows. Furthermore, even if we had information on input quantities, it is not clear how to aggregate these 

without additional information on application concentrations and relative toxicities. Hence, we used dummies for 

consistency.  
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interdependence between observations 𝑖 and 𝑗 where 𝑖, 𝑗 ∈ {1, … , 𝑁} (Lee, 2004). We can assume 157 

that spatial interdependence ends beyond a certain distance, i.e. the corresponding weights in 𝑾 158 

equal zero. In the present case, this cut-off distance was determined by the bee foraging distance, 159 

i.e. which other plots could a bee have visited that was caught on plot 𝑖. Previous studies indicate 160 

bee foraging distances up to several kilometers (Zurbuchen et al., 2010). Accordingly, we created 161 

a weight matrix with a two-kilometer10 and one with a four-kilometer cut-off. To model the strength 162 

of interdependence (i.e. the weights in 𝑾) between different plots we tested two approaches. One 163 

is the simple share of neighboring plots using a respective agricultural input. A value of 1 in 𝑾 164 

simply indicates that a plot is within the cut-off distance and 𝑾 was normalized by the row sums 165 

of 𝒘𝑖. In the second approach, we assumed that the strength of spatial interdependence between 166 

plots 𝑖 and 𝑗 is proportional to the inverse distance between them. The calculation of 𝒉𝑖 is the same 167 

as in the first approach only that the normalization is achieved by dividing by the maximum inverse 168 

distance. We estimated the model in equation (1) with either of the two specifications of 𝒉𝑖. Since 169 

all other parameter estimates were robust to the two different specifications, for reasons of simpler 170 

interpretation only the 𝒉𝑖 based on the first approach was included in the subsequent analysis. 171 

However, estimation results for the second approach are included in Table A.2. Descriptive 172 

statistics for the dependent variables and the present, past, and neighboring management variables 173 

are presented in Table 1.  174 

  175 

                                                 
10 Unfortunately, we only have data from 127 plots. That means, we do not have data of the complete neighborhood of 

every plot. In order to still be able to capture the neighborhood of each plot, the minimum cut-off distance must be 

chosen such that at least a few neighboring plots of every plot 𝑖 are observed. Two kilometers is the minimum for our 

data set, where we have, on average, information on seven neighboring plots (min: 2, max:14). For the four-kilometer 

cut-off we observe an average of 13 neighboring plots (min: 4, max: 24). 
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Table 1 Descriptive statistics for the dependent variables and agricultural input use (𝑛 = 127) 176 

Variable  Mean Std. Dev. Min Max 

Dependent variables  
    

Bee abundance (number of bees per plot)  4.68 4.44 0 22 

Bee richness (number of bee species per plot)  2.78 2.35 0 11 
 

 
    

Agricultural input use      

Chemical fertilizer – on plot  0.78    

Irrigation – on plot  0.39    

Pesticides – on plot  0.26    

Chemical fertilizer since 2012 (years)  3.87 2.02 0 5 

Irrigation since 2012 (years)  1.63 2.28 0 5 

Pesticide use since 2012 (years)  0.35 1.19 0 5 

Chemical fertilizer – 2km neighborhood (share)  0.78 0.19 0.36 1 

Irrigation – 2km neighborhood (share)  0.38 0.25 0 1 

Pesticides – 2km neighborhood (share)  0.26 0.24 0 0.8 

Chemical fertilizer – 4km neighborhood (share)  0.77 0.13 0.5 1 

Irrigation – 4km neighborhood (share)  0.38 0.18 0 0.71 

Pesticides – 4km neighborhood (share)  0.26 0.13 0 0.57 

Besides agricultural input use, we consider 25 control variables at the landscape and local scale 177 

(for a list and descriptive statistics see Table A.1). At the landscape scale, we used the GPS-178 

coordinates of each plot to calculate its distance from Bangalore city center. This variable allows 179 

us to control for exogenous spatial heterogeneity induced by the rural-urban gradient. In addition, 180 

we included a dummy for the Southern transect to control for any transect-specific effects. Based 181 

on satellite images, we estimated the build-up area of every village, i.e., the area covered by 182 

infrastructure and, thus, habitat availability within a 1 km radius of the village center (for details 183 

see Hoffmann et al., 2017).  184 
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At the plot level, we used information on the direct neighborhood of each plot to create several 185 

dummies that describe the land use pattern surrounding it. Furthermore, we included several 186 

variables that are related to the pan traps and their placement and might, therefore, influence bee 187 

abundance. These variables are the number of successful pan traps per plot and meteorological 188 

variables such as cloud cover, temperature, and wind conditions when the pan traps were in place. 189 

Since the cropping systems in the Bangalore area are very diverse, we also controlled for different 190 

crops. On the 127 pan trap plots, 40 different crops were grown. This crop diversity gives rise to 191 

two main issues. First, different crops serve bee communities in different ways and certain 192 

management practices might be strongly correlated with certain crops. Second, different crops have 193 

different growing schedules. As a consequence, some plots had already been harvested when the 194 

pan traps were placed, while others were at various earlier stages of development. Cropping seasons 195 

have become even more fluid with the increasing availability of irrigation, and there is no time of 196 

year when all agricultural plots are in a comparable state. We used different variables to test and 197 

control for these issues. We introduced a dummy variable that indicates whether the plot was 198 

already harvested and thus has been fallow for several weeks. In addition, we controlled for 199 

functional groups of crops, namely flowers, fruits, staples, tree crops, and vegetables on the plots 200 

(see Table A.3 for detailed information). We restrained from adding crop-specific dummies 201 

because given 40 different crops this would have severely reduced the degrees of freedom for 202 

estimation. We also created a dummy variable indicating whether a crop classifies as a forage crop 203 

for bees; this variable represents the forage quality of the plot in the current season. Furthermore, 204 

we used the recall data from the baseline survey to measure the number of years since 2012 in 205 

which a plot had been planted with bee forage crops. Finally, we estimated the number of flowers 206 

of the focal crop on the plot when the pan traps were in place and the number of flowers within a 207 

2 m radius of the pan traps.  208 
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Considering the 127 observations in our sample, including all explanatory variables likely leads to 209 

over-parametrization of the model (equation (1)). Therefore, we applied an adaptive selection 210 

algorithm based on the improved Akaike information criterion (iAIC), which evaluates the 211 

contribution of every term to the model fit. Variables that do not improve the model were dropped 212 

(for details see Belitz & Lang, 2008; Umlauf et al., 2015). 213 

3. Results and discussion 214 

Overall, we caught 613 bee individuals and identified 31 species belonging to three different 215 

families (Apidaea, Halictidae, and Megachile, Table A.4). The most abundant species were Apis 216 

florea, Lasioglossum sp. 1, and Apis cerana (160, 83, and 79 individuals respectively). Chao 1 217 

species richness estimators (Chao, 1984) indicate that we sampled 88 percent of the regional bee 218 

species pool, and the species accumulation curve in Fig. A.1 confirms that our sampling effort was 219 

sufficient to detect most bee species in the study region.11 Moreover, the levels of bee abundance 220 

and species richness that we found in the rural-urban landscape around Bangalore are comparable 221 

to those found in other studies conducted in tropical agricultural landscapes (Hass et al., 2018; 222 

Hoehn et al., 2008). Still, the number of captured bee individuals was relatively small at the plot 223 

level. This might be due to unusually dry and hot weather conditions in early 2018. For longer 224 

sampling periods covering multiple seasons, catches might be higher. Nonetheless, as our design 225 

was strictly standardized (Meyer et al., 2015), we are confident that our bee data are robust and 226 

show sufficient variation for our study.  227 

                                                 
11 Since all pan trap catches from a given plot were combined in the field for easier logistics, we are unable to present 

a species accumulation curve at the pan trap level. 
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Table 2 presents the results based on the selection algorithm and the estimation of the model in 228 

equation (1). We do not present coefficient estimates but calculated effects as percentage changes 229 

on the mean rate of bee abundance and richness to facilitate interpretation. 230 

3.1 Effects of agricultural input use on bee communities 231 

Our results show a general pattern of a negative association between agricultural intensification 232 

and bee communities in the rural-urban interface of Bangalore. If a farmer applies chemical 233 

fertilizers or pesticides on his/her plot, this significantly decreases bee abundance by about 20 234 

percent. Also, the use of pesticides by other smallholders in the 2-kilometer neighborhood has a 235 

significantly negative association with the bee abundance on the plot under observation. With every 236 

additional percent of pesticide use in a smallholder’s neighborhood (=0.01 share), the number of 237 

bee individuals on his/her plot decreases by 0.68 percent. Considering that on average 25 percent 238 

(maximum of 80 percent) of neighboring farmers apply pesticides (Table A.1), other smallholders’ 239 

management decisions (in particular regarding pesticides) seem to be just as important to bee 240 

abundance as those of the smallholder managing the plot. As for the past management, we find that 241 

with every additional year of irrigation of the same plot, bee abundance on that plot decreases by 242 

8.1 percent. Originally, the selection algorithm suggested to include both past irrigation and 243 

pesticide use. However, since these two variables are strongly correlated (𝜌 = 0.405 (p-244 

value<0.001)), we decided to drop one of them to avoid issues with multicollinearity. 245 

Consequently, the effect of past irrigation should rather be interpreted as an effect of past intensity 246 

of agricultural management. For the relationship between agricultural management and bee 247 

richness, we find similar results, except for the effect of the present use of chemical fertilizers and 248 

pesticides. These do not show any statistically significant associations with bee richness. In 249 
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contrast, past and neighboring agricultural management show significant negative effects on bee 250 

richness of nearly the same magnitude as for bee abundance. 251 

Table 2 Estimation results (𝑛 = 127) 252 

Variable 
Effects as percentage changes 

Abundance Richness 

Agricultural input use     

Chemical fertilizer – on plota -22.2 (0.026) -4.9 (0.709) 

Pesticides – on plota -20.4 (0.087) -12.9 (0.396) 

Irrigation since 2012 (years) -8.1 (<0.001) -7.0 (0.011) 

Pesticides – neighborhood (share) -67.8 (<0.001) -41.6 (0.043) 

     

Landscape scale     

Distance to Bangalore (km)   2.4 (0.001) 

Southern transect (dummy) -29.7 (0.001)   

Village build-up area (percentage) -4.7 (<0.001)   

     

Local / Plot scale     

Forest in direct neighborhood (dummy) 35.5 (0.037)   

Building in direct neighborhood (dummy) -18.2 (0.086)   

Road in direct neighborhood (dummy) -16.5 (0.046)   

Successful pan traps (number) – ref. 4     

1 -20.1 (0.522) 
  

2 39.2 (0.034) 
  

3 46.4 (<0.001) 
  

Clouds at time of pan trap placement (Okta scale) 
  

22.5 (0.071) 

Plot fallow or harvested at time of pan trap placement 

(dummy) 

16.3 (0.148) 22.6 (0.095) 

Tree crop (dummy) -40.3 (0.019) 
  

Vegetable crop (dummy) -18.3 (0.031) 
  

Flowers present in focal crop 2018 (number, logarithmic 

scale) 

29.4 (<0.001) 25.5 (<0.001) 

Pollinator forage crops since 2012 (years) -3.3 (0.065) 
  

Plot size (acre) 8.9 (0.003) 7.8 (0.028) 

     

Intercept 668.8 (<0.001) -56.5 (0.072) 

Note: p-values given in parentheses, anot chosen by the selection algorithm in the Richness 253 

model. 254 

Since abundance and richness are common indicators of pollination services in the literature 255 

(Holzschuh et al., 2007; Kremen et al., 2004), we might also suspect that these negative effects 256 
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hold for biodiversity and ecosystem services like pollination. Such a negative relationship has been 257 

highlighted in the literature before (Matson, 1997; Tilman et al., 2002; Winfree et al., 2009). 258 

However, since we did not measure outcomes such as fruit set, we cannot draw direct conclusions 259 

but rather deduce from other studies. A sufficient number of pollinators (abundance) is necessary 260 

to guarantee full pollination services (Kremen et al., 2002). Other studies highlight specialized 261 

plant-pollinator relationships and the importance of bee richness for a complete fruit set (Klein et 262 

al., 2003). Thus, effects on both indicators have to be taken into consideration in evaluating the 263 

effects of farmers’ decision-making on pollination services.  264 

Furthermore, bee communities (in terms of abundance and richness) in our research area are 265 

susceptible to negative spatial spillovers of smallholders’ management decisions, particularly from 266 

pesticide use. Several studies have analyzed the effect of pesticides on bee communities, but the 267 

results are not consistent. Whereas Tuell and Isaacs (2010) find significant negative effects, 268 

Kremen et al. (2004) and Shuler et al. (2005) do not find any interactions. However, these studies 269 

do not consider spatial scaling, which seems important in the light of our estimation results. Studies 270 

that consider spatial dimensions normally only consider effects of aggregated farming systems on 271 

bee populations of surrounding plots or the influence of distance to natural habitats (Holzschuh et 272 

al., 2007; Motzke et al., 2016). Therefore, a key advantage of our modeling approach is that it can 273 

identify spatial spillovers of specific farming practices, i.e. different agricultural inputs. This 274 

enables us to quantify the link between a farmer’s decision to use pesticides and resulting 275 

externalities on other plots. Even if a farmer was to reduce pesticide use to protect pollinator 276 

populations and their services, he/she might still face decreased provision of pollination services 277 

due to pesticide use by neighbors. In the worst case, the farmer could end up with only pests and 278 

no pollinators on his/her plots. At the other extreme, a free-riding problem might arise. If only one 279 

farmer applies pesticides while all others refrain in an effort to protect pollinators, then this farmer 280 
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will face lower pest rates and also benefit from intact pollination services. Thus, our results suggest 281 

that cooperative behavior among smallholders or other approaches such as pesticide regulations 282 

may be necessary to guarantee pollination services for all farmers. This is in line with other 283 

ecological studies (Goldman et al., 2007; Stallman, 2011) that refer to the prisoners’ dilemma 284 

affecting pollinator maintenance (Rapoport, 1989). Note that this might be even more relevant in 285 

low-income countries. While in the global north intensified agriculture often takes place on large 286 

fields, in the global south agriculture is still dominated by farmers managing small landholding. In 287 

our study, the average plot size is about 1.33 acres (Table A.1). This means that a bee community 288 

in Bangalore is likely to be affected by more individual agricultural management decisions than a 289 

bee population in Europe or North America, for example.  290 

Nevertheless, in contrast to our results for pesticides, the negative effects of chemical fertilizers 291 

and intensive past plot management are limited to the plot level and do not show any significant 292 

spillovers. Intensively managed plots likely offer less forage and nesting opportunities to bee 293 

populations since natural vegetation is reduced compared with extensively managed plots. This 294 

explains the local negative effect of chemical fertilizer and past intensive plot management on bee 295 

populations. Furthermore, several authors have emphasized the importance of time in determining 296 

pollinators’ access to species-specific forage and nesting resources (Kremen et al., 2007; Tuell & 297 

Isaacs, 2010). Note, however, that farmers applied chemical fertilizers on 78 percent of plots in our 298 

sample. Thus, we already observe a relatively high density of intensified agriculture and we might 299 

just not have enough spatial variation of chemical fertilizer use in our sample to detect spillovers.  300 

3.2 Other factors influencing bee communities  301 

Looking at the control variables, it requires more explanatory variables to explain the variation in 302 

bee abundance than richness, particularly on the local scale. The selection algorithm only indicates 303 
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three control variables that are positively associated with both bee abundance and richness. These 304 

are the dummy controlling whether a plot was already harvested before installing the pan trap (only 305 

statistically significant for bee richness), the presence of flowers in the focal crop, and the plot size. 306 

Among these, the presence of flowers appears to be most important with relatively large effect size 307 

and high statistical significance. This strong association is logical as bees feed on flowers and has 308 

been shown in the literature before (Motzke et al., 2016). 309 

On the landscape scale, the distance to the urban center of Bangalore appears to be an important 310 

factor for the number of present bee species. With every additional kilometer away from the city, 311 

bee richness increases by 2.4 percent. In contrast, bee abundance is negatively associated with 312 

build-up area, which is an indicator of urbanization as well. However, it is not necessarily 313 

connected to a continuous rural-urban gradient such as the distance to Bangalore. In the vicinity of 314 

Bangalore, several smaller towns produce urbanization patterns as well (Steinhübel & Cramon-315 

Taubadel, 2020). Thus, the negative effect of build-up area on bee abundance is not necessarily 316 

located only around Bangalore but can also occur around smaller towns. These findings match 317 

previous literature on the linkage of urbanization and pollinator decline (Wenzel et al., 2020). 318 

Physical infrastructure can impede biodiversity and ecosystem services due to changes in physical 319 

parameters (e.g., temperature) or reduction of habitat size and connectivity (Faeth et al., 2011; 320 

Pickett et al., 2011; Turrini & Knop, 2015). Furthermore, Banaszak-Cibicka and Zmihorski (2012), 321 

for example, show that ground-nesting pollinators have bigger problems with urbanization than 322 

cavity-nesting species. This might explain why we find that bee richness is affected by larger-scale 323 

patterns, whereas bee abundance is rather influenced by local factors. Further evidence of such 324 

local influence on bee abundance is provided by the statistically significant effects of adjacent plot 325 

use. A road or building reduces bee abundance by 18.2 and 16.5 percent respectively, whereas a 326 

forest right next to an agricultural plot leads to an increase of more than 35 percent. Especially the 327 
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positive relationship between forests and pollinator communities or benefits from silvoarable 328 

systems have been emphasized in the literature before and might be also useful insight for the 329 

Bangalore area (Motzke et al., 2016; Staton et al., 2019). 330 

4. Conclusion and policy implications 331 

The goal of this study is to evaluate the effects of agricultural management practices on bee 332 

communities and to provide new evidence for low-income countries based on primary data from 333 

the rural-urban interface of Bangalore. In our empirical analysis, we considered both ecological 334 

factors at the landscape and local scale as well as farmers’ decisions to use different agricultural 335 

inputs at the plot scale. To account for spatial and temporal scaling, we applied a model that allows 336 

for spatial spillovers and considers past plot management.  337 

Overall, we find a statistically negative effect of agricultural intensification on the bee population 338 

in the Bangalore area. However, there are some differences between the two proxies. While bee 339 

abundance is negatively affected by present, past, and neighboring farming decisions, bee richness 340 

only shows significant interactions with past and neighboring agricultural management. Thus, it 341 

seems that larger-scale patterns are more important in defining the pool of observed bee species. 342 

This also matches our results regarding urbanization effects on bee communities. For bee 343 

abundance, we find that local build-up area is an important factor decreasing the number of 344 

observed bee individuals, while for bee richness the overall rural-urban gradient of Bangalore is 345 

more relevant. This highlights the necessity to consider spatial as well as temporal dimensions 346 

when analyzing farm-pollinator interactions.  347 

Our results suggest that strategies to protect pollination services by wild bee communities could 348 

include the regulation of pesticide use, but also the provision of incentives for cooperative behavior 349 

among farmers to foster landscape-level improvements in pollinator habitats. This is particularly 350 
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important in smallholder land-use systems, where plot sizes are relatively small and pollinator 351 

populations are affected by a multitude of individual management decisions. In addition, extension 352 

services that increase farmers’ understanding of the importance of pollinators and how to protect 353 

them could have positive effects. After all, we also show that an on-plot reduction chemical 354 

fertilizer and pesticide use can benefit bee abundance. Since past plot management decisions affect 355 

current bee abundance and richness, rotation of intensive and extensive management practices 356 

might help to maintain sufficient forage and nesting opportunities to support healthy and diverse 357 

bee communities.  358 

Our study shows that there are negative interactions between increasing agricultural intensification 359 

and wild bee communities in low-income countries. To ensure sustainable agricultural and 360 

economic growth in these regions, we need more and larger samples from different countries in the 361 

Global South. This will increase the statistical validity and precision of the estimates that we report. 362 

Furthermore, data from other regions with fewer cultivated crops might reduce the correlation 363 

among variables and allow for more specific conclusions concerning the effects of different 364 

agricultural practices. Finally, to improve our understanding of economic implications and to 365 

inform the design of effective policies, research is required that measures the relationships between 366 

bee abundance and richness on the one hand, and pollination outcomes such as fruit set on the 367 

other.  368 
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Appendix 546 

 547 

 548 

Fig. A.1. Species accumulation curve of bees, mean values (lines), and standard deviations 549 

(polygon) from 100 permutations of 127 sampled plots are shown. 550 

  551 
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Table A.1 Descriptive statistics for the control variables (𝑛 = 127) 552 

Variable  Mean Std. Dev. Min Max 

Landscape scale      

Distance to Bangalore (km)  31.1 8.15 16.8 45.73 

Southern transect (dummy)  0.45 0.5 
  

Village build-up area (percentage)  1.12 5.41 0.80 25.59 

      

Local / Plot scale      

Agricultural plot in direct neighborhood (dummy)  0.85    

Fallow plot in direct neighborhood (dummy)  0.49    

Forest in direct neighborhood (dummy)  0.10    

Building in direct neighborhood (dummy)  0.28    

Road in direct neighborhood (dummy)  0.38    

Waterbody in direct neighborhood (dummy)  0.12    

Successful pan traps (number)  
   

 

1  0.02  
 

 

2  0.11  
 

 

3  0.28  
 

 

4  0.61  
 

 

Clouds at time of pan trap placement (Okta scale)  2.65 0.51 2 4 

Temperature at time of pan trap placement (°C)  26.94 1.12 23 29 

Wind at time of pan trap placement (Beaufort scale)  2.15 0.36 2 3 

Plot fallow or harvested at time of pan trap placement 

(dummy) 

 0.47    

Flower crop (dummy)a  0.04    

Fruit crop (dummy)a  0.19    

Staple crop (dummy)a  0.77    

Tree crop (dummy)a  0.05    

Vegetable crop (dummy)a  0.50    

Pollinator forage crop (dummy)  0.81    

Flowers present in focal crop 2018 (number, logarithmic 

scale) 

 1.12 1.55 0 5 

Flowers in 2m proximity of bowls (number, average all  

     bowls per plot, logarithmic scale) 

 2.50 1.50 0 8 

Pollinator forage crops since 2012 (years)  3.41 2.40 0 6 

Plot size (acre)  1.33 1.37 0.001 10 

Slope      

1: Flat  0.23    

2: Moderate  0.57    

3: Steep  0.20    

Soil quality   
    

1: Poor  0.05    

2: Middle  0.46    

3: Very good  0.49    

Note: aSee Table A.3 for corresponding crops; for dummies and categorical variables shares, are 553 

presented.   554 
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Table A.2 Estimation results, 2nd approach for neighborhood construction, (𝑛 = 127) 555 

Variable 
Effects as percentage changes 

Abundance Richness 

Agricultural input use     

Chemical fertilizer – on plota -23.4 (0.019) -4.4 (0.741) 

Pesticides – on plota -24.4 (0.037) -16.9 (0.250) 

Irrigation since 2012 (years)b -8.2 (<0.001) -7.4 (0.008) 

Pesticides – neighborhood (weighted by inverse 

distance) 

-95.3 (0.191) -39.6 (0.845) 

     

Landscape scale     

Distance to Bangalore (km)   2.3 (0.002) 

Southern transect (dummy) -23.6 (0.013)   

Village build-up area (percentage) -3.1 (0.005)   

     

Local / Plot scale     

Forest in direct neighborhood (dummy) 39.5 (0.019)   

Building in direct neighborhood (dummy) -26.7 (0.006)   

Road in direct neighborhood (dummy) -15.2 (0.067)   

Successful pan traps (number) – ref. 4     

1 -18.7 (0.562) 
  

2 36.7 (0.044) 
  

3 48.7 (<0.001) 
  

Clouds at time of pan trap placement (Okta scale) 
  

20.9 (0.094) 

Plot fallow or harvested at time of pan trap placement 

(dummy) 

22.0 (0.069) 28.0 (0.051) 

Tree crop (dummy) -44.1 (0.009) 
  

Vegetable crop (dummy) -9.8 (0.263) 
  

Flowers present in focal crop 2018 (number, logarithmic 

scale) 

31.5 (<0.001) 26.4 (<0.001) 

Pollinator forage crops since 2012 (years) -3.4 (0.062) 
  

Plot size (acre) 8.2 (0.008) 7.2 (0.043) 

     

Intercept 375.0 (<0.001) -59.9 (0.053) 

Note: p-values given in parentheses, anot chosen by the selection algorithm in the Richness 556 

model.  557 



 

32 

 

Table A.3 Observed crops sorted by functional groups. 558 

Categories Crops 

Vegetable and pulses Avare/Lablab, Beans, Brinjal/Eggplant, Capsicum, Castor, Chilli, 

Coriander, Cowpea, Cucumber, Groundnut, Horse Gram, 

Ladiesfingers/Okra, Mustard, Spinach, Tomato, Tur/Arhar 
 

Fruits Banana, Coconut, Grapes, Guava, Jackfruit, Lemon, Mango, Ridge 

gourd, Sapota, Tamarind 
 

Flowers Chrysanthemum, Jasmine, Marigold, Rose 
 

Staples and grasses Jowar, Maize, Maize (Baby Corn), Mulberry/silk, Napier grass, 

Paddy, Ragi, Turf/grass 
 

Tress Eucalyptus, Neem 

  559 
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Table A.4 Total number of individuals per bee species sorted by family. 560 

Family Species Author Abundance 
Number of plots 

where present 

Apidae Amegilla sp. 1   3 2 

 Amegilla sp. 2  3 2 

 Apis cerana Fabricius 79 43 

 Apis dorsata Fabricius 16 11 

 Apis florea Fabricius 160 66 

 Ceratina binghami Cockerell 58 30 

 

Ceratina 

heiroglyphica Smith 6 5 

 

Ceratina 

heiroglyphica  Smith 34 18 

 Ceratina smaragdina Smith 9 7 

 Ceratina unimaculata Smith 11 9 

 Xylocopa latipes Drury 1 1 

 Xylocopa sp. 1  1 1 

Halictidae Austronomia sp. 1  2 2 

 Hoplonomia sp. 1  1 1 

 Lasioglossum sp.1  83 28 

 Lasioglossum sp.2  39 20 

 Lasioglossum sp.3  58 29 

 Lasioglossum sp.4  22 14 

 Lasioglossum sp.5  22 17 

 Lasioglossum sp.6  15 9 

 Lasioglossum sp.7  6 3 

 Leuconomia sp. 1  1 1 

 Nomia westwoodi Gribodo 2 1 

 Pachynomia sp. 1  2 2 

 Seladonia sp. 1  29 18 

 Seladonia sp. 2  17 11 

 Sphecodes sp. 1  9 7 

 Sphecodes sp. 2  3 2 

Megachilidae Coelioxys confusa Smith 1 1 

 Megachile disjuncta Fabricius 1 1 

  Megachile lanata  Fabricius 2 2 

 561 




