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Abstract

Since the abolition of the European milk quota in 2015, there has been increasing demand from
market participants for instruments to forecast regional milk quantities, but as yet there are
none. Current approaches for milk production forecasting are mostly based on predicting the
lactation curve of individual dairy cows. This paper compares six modelling approaches from
different areas of machine learning (ML) and linear regression (OLS) that combine different
blocks of variables to include temporal trends, direct and indirect weather effects, and price
events in the prediction. For a prediction period of 21 months, a maximum coefficient of
determination of 0.92 by ML methods and a maximum of 0.77 by OLS regressions can be
obtained for north German farms. The comparison of ML algorithms reveals a difference in the

models, particularly in relation to training speeds.
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1. Introduction

Germany is the fourth largest milk-producing country in the world in terms of volume
(FAOSTAT, 2020). In the last 10 years, the volume of milk produced in the country has
increased by about 11.7 % (BLE, 2020a). Milk production plays a significant role in the
economic sector of agriculture, with the dairy sector accounting for about 18.9 % of the value
of goods produced (BMEL, 2020a). During this period the milk price has been very volatile,
with a fluctuation range of 20.6 to 42.4 ct/l (BMEL, 2020b). Since the end of the milk quota in
Europe in 2015, it has become much easier for farmers to expand their production capacities.
One consequence of this is a lack of information among market participants about the volume

of milk that will be produced in the months ahead.

Some dairies try to estimate the milk volume on the basis of voluntary self-reporting and self-
assessment by farmers. However, it is not sufficient to simply ask farmers about their
production intentions in order to build up a forecast index for predicting milk supply volumes
because not all production-relevant influences can be assessed equally correctly by all farms at
any given time (Larcher et al., 2015). Moreover, from an economic point of view, strategic
responses are to be expected in the case of self-reporting. The challenge in forecasting milk
quantities lies in the dependence on slow, biological processes (Hoehl and Hess, 2021). These
complicate farmers’ ability to fine-tune and adjust their production volumes directly. For many
years, econometric models have been estimated based on the lactation curve of individual dairy
cows and thus for an entire farm (Adediran et al., 2012). However, predictive models for a
larger number of farms or even whole regions do not yet exist or are not publicly available. In
this context, machine learning (ML) methods could offer a way of ensuring practice-relevant
forecasting based on very large datasets. Instead of building and applying a model based on
existing theory, ML reads patterns from existing data structures from which inferences about

future developments can be drawn (Mullainathan and Spiess, 2017). The focus of ML methods



is therefore less on the correlations within a historical dataset and more on prediction outside

the existing data (Storm et al., 2019).

This paper applies different forecasting approaches of ML to predict milk quantities and
compares them, using a conventional regression model as a reference. It identifies which type
of ML algorithms can be applied to predict regional milk production and how they differ from
each other. In addition, the combination and configuration of trend, weather and price variables
relevant for the forecast are of interest. The data structure and preparation are described below,
followed by an introduction to the models and methods applied. Section 4 presents and
discusses the results of the algorithms before conclusions are drawn about future forecasting

models.

2. Theoretical background

While economists usually describe aggregate dairy farm output in terms of a production
technology with milk and meat output as a function of capital, labor and land inputs, the
discipline of animal sciences has traditionally followed a different path: Production on dairy
farms is particularly determined by the lactation curve of individual dairy cows. This can be
illustrated as a mathematical formula to represent the course of milk production over time. Since
Wood (1967) first established the gamma function, a variety of models have been developed to
represent biological processes as accurately as possible. The course of the lactation curve is
mainly based on the genetic material of the animals under consideration (Briigemann et al.,
2011). Thus, a similar curve per animal can be observed over several lactation phases.
Deviations from the original curve can be caused by various factors such as grazing conditions
(Baudracco et al., 2011), seasonality (Wood, 1969), feeding conditions (Kolver and Muller,
1998), diseases (Collard et al., 2000) and other disturbances (Tekerli et al., 2000) such as heat.
While farmers and their herd management can control most factors, feed conditions depend on

weather as an additional component: Several studies show the influence of weather on pasture



and forage quality (Parsons ef al., 2019; Schlenker and Roberts, 2009). Therefore, weather can
be expected to influence milk production in the short and medium term. In addition, livestock
conditions are also related to weather. A combination of temperature, relative humidity, solar
radiation, wind speed and precipitation can cause heat stress in animals, leading to reduced milk
production in terms of quantity and quality (Mader ef al., 2006). High temperatures can also

cause increased mortality in dairy cows (Vitali ef al., 2015).

Farmers’ herd management is modelled in different ways in the literature. Dual production
functions model the quantity of milk farms produce as a relationship between output quantities
and input and output prices. This is based on indirect cost or profit functions that are designed
to maximise profits. For example, Blayney and Mittelhammer (1990) use a profit function of a
generalised Box-Cox form to calculate price elasticities of the quantity of produced milk. Thus,
it is possible to simulate the amount by which the milk supply changes in relation to price
changes. Bouamra-Mechemache et al. (2008) also use a dual approach and determine short and
medium-term price elasticities for the quantity of milk produced using a normalised quadratic
profit function. Both models illustrate the relationship between milk production and input and
output prices. Farmers act as a profit maximiser in this relationship, making management

decisions to adjust their milk production at given prices.

The amount of milk produced in a region is the sum of the amount of milk produced by the
farms located there. In the last 20 years, the number of farms in Germany has fallen by more
than half, but the quantity of milk produced has increased by 14.4 % in the same period (BLE,
2020a). This is caused by ongoing structural change, with smaller and less profitable farms
ceasing production due to various factors such as economics of size and scale (Hallam, 1991)
and natural conditions and agricultural prices in specific regions (Neuenfeldt et al., 2019). In
contrast, larger and highly professionalised dairy farms can significantly increase their

production through increased remounting and expansion of their facilities.



Figure 1 shows the relations of the determinants of milk production outlined above. For the
forecasting models presented in this paper, the influencing factors are grouped into three main
components: weather, time and price variables. It is assumed that milk production in a region k
is a function depending on the production function on farm i with cows j kept and their lactation
curve. This results in a function depending on herd performance, herd management, market
prices and other factors. This simplified representation allows complex on-farm interactions

and macroeconomic developments to be illustrated by so called time variables as a trend in milk

production.
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Figure 1. Schematic structure of milk production

An exact definition of the variable groups used with the specific explanation of individual

variables is given below.

3. Data collection

The dataset used refers to monthly observations in the period 09/2009 to 09/2019, and thus falls
roughly within the timeframe when the abolition of the milk quota had already been decided
and prepared for by an annual increase in quota volumes (“soft landing”). Variables of

individual farm milk production as well as weather and price data are included in the models.

The data on milk production are provided by the “Landeskontrollverband Niedersachsen e.V.”
(LKV). The association compiles a monthly milk performance test for all member farms in

Lower Saxony (a region in northern Germany) and provides this data for 49 randomly selected



dairy farms. This generates data points for about 7,500 dairy cows in Lower Saxony that are
aggregated by an average value for the respective farms. Thus, a single monthly value is
obtained by calculating the mean milk production of the cows milked on each farm. This value
is multiplied by 30.5 days and the number of milked animals per farm and month, corresponding
to the average amount of milk produced per farm and month. The “energy-corrected milk yield”
(ECM) is considered, calculated according to Sjaunja ef al. (1990). The number of animals kept
per farm varies from fewer than 30 to more than 500 animals. The mean is about 150 cows per
farm, with the majority of farms (about 60 %) being in the size class of farms with 50-199 dairy
cows. This roughly corresponds to the distribution of size classes in Lower Saxony. However,
farms with more than 200 cows are overrepresented in the data with a share of almost 30 %
compared with just under 10 % of farms in Lower Saxony (LSN, 2020). However, this is helpful
in terms of forecasting as structural change is ongoing and the share of the size classes is

continuously shifting towards larger farms (BLE, 2020b).

As shown above, it must be assumed that milk production in a region is largely determined by
short and long-term climatic influences (Hoehl and Hess, 2021). This particularly affects the
quality of basic feed and the physiology of the animals. It would therefore appear necessary to
include regional weather and climate data in the forecast. For weather variables, the “COSMO
Regional Reanalysis” database of the German Weather Service (DWD) is used. In these
numerical weather models, observations and analyses are combined so that a large number of

parameters are available for a grid of about 6 km x 6 km resolution.

Milk prices are provided by the Federal Ministry of Agriculture and Food (BMEL) and refer to
conventionally produced cow’s milk in Lower Saxony at actual fat and protein content. For
feed prices, the index for purchase prices of agricultural enterprises determined by the Federal

Statistical Office is used.

For further analysis, the dataset is divided into a training set and a test set. This allows the

models and algorithms to learn the patterns of the data in the training set. In a second step, the
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prediction precision of the algorithms can be evaluated by applying them to the test set. A
typical split of about 80 % training data and 20 % test data is used, such that all data prior to

2018 is considered as the training set and from 01/2018 is considered as the test period.

4. Methods

This section presents the different models used to predict milk production in the region of
Lower Saxony. The basic model is a multiple linear regression based on the ordinary least
squares (OLS) estimator. Compared with this basic model, a number of machine learning (ML)
models are set up to compare the difference to the econometric approach and between the

different ML algorithms for the prediction of milk production.

The considered farms can be divided into two classes based on their annual growth rate of milk
produced. To account for the different types of farms, an indicator function is introduced before
the algorithms are applied to the dataset. This indexed distinction allows the algorithms to learn
the patterns in the data more effectively and generalise to new data. The indicator function is

defined as follows:

(1 ifx <GR
lor() = g if x; > GR M

where x; is the average growth rate of milk production for farm i and GR = @ g(x). By making
this split based on the 0.8 quantile, for all model specifications k a sub-model is formed for

group a with x; > GR and for group b with x; < GR. In the results section, both groups are

combined for each model k, resulting in a complete model.

The majority of farms (80 %) show an annual change in milk quantity of between approximately
-1.5 % and 9 %. In contrast, the remaining farms are growing at an annual rates of around 14
%, with noticeable jumps in the monthly volume produced (Fig. 2). This suggests that these
farms are growing not only through on-farm remounting, but through larger investments based

on purchased animals. The farms can therefore be divided into two groups based on their growth



rate. The resulting different development in the produced milk volume over time is shown in
Figure 2a. The trend line illustrates that the production volume increases more quickly in group

a (rapidly growing farms) than in group b (moderately growing farms).
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Figure 2a: Milk production over time Figure. 2b: Histogram growth rates
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4.1. Basic model: Forecast of monthly milk production amounts

The basic model assumes that the milk production of farm i can be explained by an interaction
of economic and climatic conditions in month ¢ and previous months (lags). Economic effects
can be divided into price effects for inputs and outputs and farm-specific management factors.
The influence of weather on milk yield can be divided into direct and indirect effects. Direct
weather effects typically include heat stress for dairy cows and impairment of their metabolism
(Hill and Wall, 2017). Indirect weather effects result from quality and quantity differences in

feeding (Harder et al., 2019).
The basic model can be described as follows:

YVie =Te + Wi + P+ + &3¢ (2)
where y;; = average monthly quantity of milk [kg ECM] produced by farm i at time (month) ¢,
T, = time variables, W;; = weather variables, P, = price variables, y; = dummy for farm i and
g;¢ = error term. The time variables are divided into date, year and factor variables for each
month. The weather variables section contains ten different weather aspects at time t, which

can be assigned to the coordinates of farm i. These are precipitation [mm], minimum

temperature [°C], maximum temperature [°C], mean temperature [°C], soil temperature [°C],



relative humidity [%], sunshine duration [h], cloud cover [%], wind speed [km/h] and
temperature-humidity index (calculated according to Mader et al. (2006)). The monthly milk

prices for Lower Saxony [ct/l] and a feed price index at time t are used as price variables.

Table 1 shows the combination of variable groups for each model, presenting the differences

between the models as an overview.

Table 1

Overview model specifications

Equation Model Weather Interaction term Weather lags Interaction term Prices Dummy

weather and weather lags and per farm
monthly dummy monthly dummy
(MD) (MD)
Wit VVit * MDm VVi;t—n Wi;t—n * MDm—n Pt Hi
2 A X X X
3 B X X X
4 C X X X
5 D X X X X
6 E X X X X X X

The basic model represents direct weather effects only. For the other models, an interaction
term between the direct weather variables and a dummy MD,, is introduced for each month m
with m = {January, ..., December). This interaction term is included in equation (3) in the
model specification B:

Yie = Tp + Wie ¥ MDyy + P + 1 + €3¢ A3)
To model indirect weather effects, lags in the weather variables are added to equation (3), while
the direct effects term is omitted. This leads to the following equation:

Vit = Te + Wiye—n * MDyyyp + Pr + i + &4 4)

where W, _,, = weather variables at time t — n and MD,,,_,, = dummy for month m — n, where

n = {1, ...,6}. All other variables are defined as in the basic model.



These two models of direct and indirect effects are also combined into one model as a

combination of both effects, so that the model is constructed as follows:
Yie =T + Wig * MDyy + Wigp g ¥ MDDy + Pe + i + €3¢ (5)

The final model combines all of the different model types into one model for all of the variables

created, which is shown as follows:
YVie =Te + Wig + Wi x MDyyy + Wie p + Wisey * MDpyyy + P + 14y + &5¢ (6)

Lags in the price variables do not need to be included since price trends and price expectations

are included in the farm-specific growth rate and the trend variable T.

4.2. Machine Learning Models

The model specifications presented in the previous section are applied to the dataset by means
of different estimation methods, comparing conventional regressions® (OLS) with so-called
“supervised learning” machine learning (ML) methods. In ML, the variables are called features.
As there is a number of supervised ML approaches, the analysis here is limited to three different

model types: regularised regression, tree-based methods and a neural network approach.

4.2.1. Regularised regression

Regularisation is based on the addition of a penalty term to a linear regression that shrinks the
coefficients towards zero. Consequently, coefficients with low explanatory power are
“penalised” and thus forced out of the model (James et al., 2013). This procedure is particularly
effective for datasets with a large number of explanatory variables, as only coefficients that
differ from zero and contribute substantial predictive power are included in the model as well
(Storm et al., 2019). The best-known regularisation methods are LASSO and Ridge Regression.

Their optimisation functions are represented by minimising the sum of squares of risks (RSS)

2 No fixed effects model is estimated as this could correct the model for an individual effect of farms. This is not
necessary here, since the paper is primarily investigating predictive accuracy rather than causality.
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in (7) and an additional penalty term, as in equations 8 (LASSO) and 9 (Ridge), according to

James et al. (2013). Here, the coefficients ,[?j are minimised:

RSS =YL (yi — Bo — Zﬁ?:l Bjxij)? (7)
rrflgiln(RSS +238_1185]) (8)
nllgi'n(RSS + 2 Z;’zl B )

Both regularisation methods use a tuning parameter A, which can be determined by the data
using cross-validation. The influence of the regularisation increases with increasing A (James
et al., 2013). The methods differ in the configuration of their penalty terms, also called L;-
(LASSO) and L,-term (Ridge). The elastic net (EN) penalty term is shown in equation 10 and

forms a combination of both penalty terms with a € [0,1] (Zou und Hastie, 2005).

(1 - )AY|B;| + ar X ; B} (10)
The EN uses automatic variable selection via the L;-part, which improves the prediction by
inducing a grouping effect during variable selection so that highly correlated features are

reduced (Ogutu ef al., 2011). In the present case, @ = 0.5 is assumed and the tuning parameter

A 1s validated with a 10-fold cross-validation.

4.2.2. Decision trees

Decision trees are used to divide a dataset into maximally homogeneous subgroups based on
existing features (Storm et al., 2019). Thus, a so-called “Classification and Regression Tree”
(CART) creates binary splits in each case (Breiman et al., 1984). For the Random Forest
algorithm, the dataset is randomly split into subgroups of observations and features, with each
subgroup differing only slightly. For each subgroup, a decision tree is created, from which the
algorithm forms an average and, based on that, a prediction (Breiman, 2001). Another way to

optimise the predictive power of decision trees is the method of boosting. This involves using

11



the residuals of the previous models so that the subsequent tree can specialise in them (Schapire,
1990). For the prediction of milk production here, two boosting algorithms are applied: Xtreme
Gradient Boosting (XGB) and Gradient Boosting Machine (GBM). For both, the following
hyperparameters are selected: number of trees = 2000; learning rate = 0.01; maximum depth =

5; proportion subgroup = 0.65; 10-fold cross-validation.

4.2.3. Neural networks

Typical neural networks (NNs) or multilayer perceptrons (MLPs) are structured as shown in
Figure 3. They consist of several connected layers, each with multiple neurons. Their goal is to
approximate a function f that learns from input values x to define an output vector y. NNs are
basically a mapping of y = f(x; w), where the weights w are continuously updated until they
generate the best approximation of the function (Goodfellow et al., 2016). The weights and
neurons in the centre of the network cannot be observed directly, so they are called the hidden

layer (Hastie et al., 2017).

Input Hidden Layer Output

X; zZ; = O'( Wji X; + 19}) v = Z W; Z;
j

Figure 3. Schematic structure of a neural network

The strength of the connection between neurons is represented by the weights, which are
multiplied by the input values and added to a constant J that acts as the initial value for the
optimisation (Athey and Imbens, 2019). The sum of these products is fed to the hidden layer
via the activation function ¢ of the rectified linear units (ReLu) type (see Equation 11 and
Fig. 3).

0(z) = max{0, z} (11)
12



In the specific case of Figure 3, the activated values are then fed into the output layer, although
this serves only as a simplification. NNs are called nets because of their interconnection of

different functions. In this case, three hidden layers are used so that a chain structure in the form
of f(x) = f®F®@ ( f m(x))) occurs. The weights are updated and optimised by a loss

function, similar to the optimisation of a linear regression (Goodfellow et al., 2016). The
following hyperparameters are chosen for the application of the NN for milk quantity
forecasting: three hidden layers with 200, 100 and 50 neurons; optimisation with
backpropagation; 150 epochs; stopping criterion = RMSE; minimum batch size = 32; 10-fold

cross-validation.

4.2.4. Stacking

As suggested by its name, the stacking method combines several algorithms via a so-called
“super-learner”. The aim is to improve the prediction by the best possible combination of
different models. The learning algorithm can be chosen arbitrarily, but the application of the
super-learner requires each of the previous models to be trained with the same V-fold cross-
validation. The resulting predicted values of the base learner L are now combined into a matrix
with dimension V' X L, which serves as the data basis for the super-learner (van der Laan et al.,
2007). For this reason, the stacking method is also referred to as a refined version of cross-
validation that improves the winner-takes-all principle of cross-validation (Wolpert, 1992). In
this case, a random forest algorithm is used to combine the EN, GBM and NN. The XGB model
is not included in the stacking model here because the learning is very similar to that of the

GBM and hence would be of limited added value.

5. Results and discussion

To evaluate the different algorithms and models, the trained algorithms are applied to the test

set. Based on the most recent observations from 01/2018 to 09/2019, the monthly milk
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production for all farms in this time horizon is predicted for the test dataset. Through this
approach, different values for the relative and absolute measure of accuracy of the models can
be observed. Therefore, the coefficient of determination (R?) is compared to measure the
relative error (Fig. 4) and the root mean square error (“RMSE”) for an absolute error value (Fig.
5). The adjusted R* does not need to be calculated in this instance because the explanatory
power of specific variables is not primarily of interest; instead the focus is on the overall

forecast accuracy, without giving consideration to degrees of freedom.

Figure 4 shows the differences of R? in the comparison between the algorithms, but also the
influence of the feature selection by the difference between the models. The names of the
models correspond to the abbreviations given in Table 1. It is noticeable that both linear
approaches of OLS and EN show a significantly lower coefficient of determination (maximum
0.77 for OLS in model A) compared with the non-linear approaches. This difference is
particularly prominent in Model E, where all variables are included. With RMSE of about 3.2
%, the linear model has no explanatory power for predicting milk production. This indicates
that the model is overfitting due to an excessive number of variables, and thus cannot predict
or can only predict poorly with out-of-sample data from the test set. Preventing this is the task
of the EN, which uses a penalty term to give less weight to less relevant variables. The results
in Figure 4 suggest that this penalty term is heavily weighted in models A to E, resulting in
underfitting. Comparing the non-linear approaches, there are only slight differences in the R?
for the respective algorithms and between models A to E. With the exception of model E,
algorithm GBM has the highest coefficient of determination (maximum 0.92 in model C).
Comparing this with the schematically similar algorithm XGB, only small differences of up to
3 % R? can be seen. This can be explained by the same hyperparameter selection and the similar
learning mechanism. The neural network has the lowest coefficient of determination of the non-
linear algorithms in all models. The combination of the models as a stacking algorithm does
show any significant improvement with regard to the R? of the other algorithms.

14
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Figure 4. Coefficient of determination for all applied algorithms and models

The RMSE results in Figure 5 are similar to the R? shown in Figure 4. Figure 5 highlights that
there is also a difference between linear and non-linear approaches in the observed RMSE.
However, unlike the relative measure of the coefficient of determination, here the RMSE of the
OLS and the EN are closer together. Looking at the value of the linear regression for model E,
the problem of overfitting can also be observed in Figure 5. Figure 5 confirms that there is only
a slight difference between the non-linear algorithms. Here, the RMSE of the NN stands out
since the distance to the other models seems to be larger in relative terms here than in the R?
comparison and is approximately at the mean between the values of the linear and non-linear

models.

140,000
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80.000
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40,000
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0
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OLS mEN ENN BXGB ®Stack mGBM

RMSE

Figure 5. RMSE for all applied algorithms and models

One explanation for the difference in the results for R? and RMSE in linear and non-linear
approaches could be the splitting of the dataset by the indicator function into moderately and
rapidly growing farms. Figure 6 depicts the coefficient of determination for the respective

groups for models A and C as examples to consider this relationship. The columns grouped side
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by side show that in all combinations of model and algorithm, the R? of the group of fast-
growing farms (group a) is lower in the linear approaches (OLS, EN). In particular, compared
with the non-linear approaches, the R? in these respective groups is significantly lower, with a
maximum value of 0.68 (OLS a, model A). This could be caused by investments as a driving
factor of growth in group a. Milk production in this group does not increase linearly, but partly
in step changes due to investments in new barn constructions and/or expansion. This
development can be explained more effectively by a non-linear algorithm. Thus, these
algorithms show an opposite distribution in that the group of rapidly growing farms can be
predicted better than the other group. The minimum coefficient of determination of “group b”
is 0.77 (XGB b, model A) and thus above the maximum value from the comparison group of

linear models.

0.80 ﬁ :{%
. 0.60 % %
0.40 / %
0.20 ﬁ %
0.00 % .'5."; % .'5.";
Modell A Modell C
OLSa »OLSb mEN a mEN b eNNa BNNb mXGB a ®XGB b mStack a m Stack b mGBM a @ GBM b

Figure 6. Coefficient of determination in the comparison of farm groups a and b

Summing observed and predicted values of milk production allows a graphical view to be given
of the actual and predicted milk quantity over time for the dataset. Figure 7 shows the monthly
milk quantity in ECM t for the period 01/2018 to 09/2019. It should be noted that only 11 data
points are available for each year and farm. Significant drops in milk volume, such as in

07/2018, can also be related to this data distribution.
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Figure 7. Predicted values in total in the test period (01/18 — 09/19)

The graph above shows that the predicted values of model A and E differ only slightly in their
sum. The actual observed milk volume is shown as a black line, while the prediction of the
models is shown in grey. Again, the differences within the models between the algorithms are
marginal. In contrast, the shape of the OLS regression in model E (dotted line) is remarkable.
As already evident in the results of R? and RMSE, the model is overfitted by too many variables,
and thus becomes useless for prediction purposes. It is interesting to note that all the models
tend to underestimate the amount of milk. However, overall it can be stated that all the applied

models roughly represent the trend of milk production.

Another approach to compare the models focuses on the time required for training the
algorithms. This is especially interesting for potentially extending the dataset by a larger
number of farms in future. The differences between the non-linear approaches can be seen in a
comparison of the training time of the models in Table 2. Here, the XGB algorithm, with an
average training time of about 47.5 seconds for the respective models, is clearly ahead of the
NN, GBM and stacking method, which require about 30 to 55 times the training time on
average. Stacking also takes longer than the other methods since it adds the training times of
the combined methods and its own execution time. Meanwhile, the training times of the linear

models are considerably faster at about 4.6 seconds (EN) and 0.5 seconds (OLS).
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Table 2

Training time of the algorithms in seconds

OLS EN NN XGB Stack GBM
Model A 0.05 0.43 387.30 12.70 571.74 184.01
Model B 0.05 1.63 405.00 16.15 606.74 200.11
Model C 0.20 1.94 840.42 27.86 1814.90 972.54
Model D 0.28 2.30 934.50 32.68 2037.62 1100.82
Model E 0.92 7.52 1263.12 53.07 3072.74 1802.10
Mean 0.50 4.61 1276.78 47.49 2701.25 1419.86

In addition to the prediction accuracy and speed of the models, it is also of interest to identify
which variables have the greatest relative influence on the prediction of milk quantity
production. There are different methods for measuring the importance of each variable. In this
case, a standardised variable importance procedure using “partial dependence plot” (PDP)
according to Greenwell et al. (2018) is applied. Representing the estimation methods used,
OLS, XGB, and NN are compared. When calculating variable importance for OLS, the values
correspond to the absolute values of the t-statistic. For XGB, the percentage increase in MSE
is calculated when a particular variable is included in the overall model. The variable
importance of a neural network is calculated based on the weights of the connected neurons.
Figure 8 presents a comparison of these three algorithms for model A. For clarity, only the top
15 variables are listed by importance, and the importance of the dummies per farm is excluded.
The absolute values of the respective algorithms cannot be compared; instead their relative
distribution is considered. First it is noticeable that for all algorithms one of the time variables
is significant. Especially for the XGB model, the variable “date” has a significant influence on
the prediction compared with the other variables. This corresponds to the time trend by the
combination of the variables “year” and “month”. For the OLS regression, the variables “year”

and the different months are of greater importance. The variable “year” is also highly relevant
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for the NN for the forecast, and some weather variables such as “wind” and “precipitation” are
essential for the prediction. Thus, the NN differs somewhat from the OLS in its order of variable
importance and from the XGB in its relative relationship. In all three cases, the milk and feed

price variables are of relatively little importance as predictors within the models.

Top 150LS Top 15 XGB Top 15NN
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month
month Fe
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month
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solltemperature

01 0.2 L 04 00

Variable importance Variable importance Variable importance

Figure 8. Variable importance for prediction in model A

However, when considering Figure 8, it should be noted that the comparison of feature
importance is not equivalent to the statistical significance found in a linear regression model.
While the values listed in Figure 8 are important for prediction, they are not a precise measure
of the variable’s influence on the results. For example, a variable may be of low importance for
prediction due to a high correlation with another variable (e.g. minimum and maximum
temperature), but still be a weighted as a determinant for the dependent variable (Ifft et al.,

2018).

6. Conclusions

The comparison of different methods of ML with each other and with OLS regressions provides
information about which of these methods may be particularly suitable for forecasting regional
milk production. Four non-linear approaches (XGB, GBM, NN, stacking) and two linear
approaches (OLS, EN) are compared. The difference between the two approaches is evident in
both relative and absolute indicators of model selection: the non-linear algorithms considered

each have higher coefficients of determination and lower RMSE. The specification of the
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models with respect to variable and lag structure is less important for prediction quality than
the choice of the estimation approach. The comparison of the importance of the variables to the
prediction of the models shows that the small differences between the models A to E are due to
the greater importance of time and trend variables compared with weather variables. These
include unrecorded weather effects and management decisions, which cannot be directly
accounted for with the available data. The time trend can be explained better by non-linear
approaches, especially for the group of more rapidly growing farms. The comparison of non-
linear algorithms with respect to the accuracy of their prediction only shows a difference with
respect to the time required to train the models. A balance needs to be struck here between
greater accuracy (GBM) and faster computational performance (XGB). This decision is highly
relevant, especially for forecasts based on large datasets. In conclusion, an appropriately large
dataset in connection with the algorithms mentioned above allows a geographical analysis to
be undertaken for the entire federal state of Lower Saxony, meaning that forecasts can be
produced not only for the milk quantity of individual farms, but for individual municipalities
and districts as well. For this geographical approach, the indicator function used could easily

consider further effects of regional structural change.
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