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Abstract 

Since the abolition of the European milk quota in 2015, there has been increasing demand from 

market participants for instruments to forecast regional milk quantities, but as yet there are 

none. Current approaches for milk production forecasting are mostly based on predicting the 

lactation curve of individual dairy cows. This paper compares six modelling approaches from 

different areas of machine learning (ML) and linear regression (OLS) that combine different 

blocks of variables to include temporal trends, direct and indirect weather effects, and price 

events in the prediction. For a prediction period of 21 months, a maximum coefficient of 

determination of 0.92 by ML methods and a maximum of 0.77 by OLS regressions can be 

obtained for north German farms. The comparison of ML algorithms reveals a difference in the 

models, particularly in relation to training speeds.  

 

Keywords:  Dairy market; milk production; predictive models; machine learning.  

  

                                                 
1 Agricultural Markets Department, University of Hohenheim, Germany;  

contact: dominik.baaken@uni-hohenheim.de  

mailto:dominik.baaken@uni-hohenheim.de


2 

1. Introduction 

Germany is the fourth largest milk-producing country in the world in terms of volume 

(FAOSTAT, 2020). In the last 10 years, the volume of milk produced in the country has 

increased by about 11.7 % (BLE, 2020a). Milk production plays a significant role in the 

economic sector of agriculture, with the dairy sector accounting for about 18.9 % of the value 

of goods produced (BMEL, 2020a). During this period the milk price has been very volatile, 

with a fluctuation range of 20.6 to 42.4 ct/l (BMEL, 2020b). Since the end of the milk quota in 

Europe in 2015, it has become much easier for farmers to expand their production capacities. 

One consequence of this is a lack of information among market participants about the volume 

of milk that will be produced in the months ahead.  

Some dairies try to estimate the milk volume on the basis of voluntary self-reporting and self-

assessment by farmers. However, it is not sufficient to simply ask farmers about their 

production intentions in order to build up a forecast index for predicting milk supply volumes 

because not all production-relevant influences can be assessed equally correctly by all farms at 

any given time (Larcher et al., 2015). Moreover, from an economic point of view, strategic 

responses are to be expected in the case of self-reporting. The challenge in forecasting milk 

quantities lies in the dependence on slow, biological processes (Hoehl and Hess, 2021). These 

complicate farmers’ ability to fine-tune and adjust their production volumes directly. For many 

years, econometric models have been estimated based on the lactation curve of individual dairy 

cows and thus for an entire farm (Adediran et al., 2012). However, predictive models for a 

larger number of farms or even whole regions do not yet exist or are not publicly available. In 

this context, machine learning (ML) methods could offer a way of ensuring practice-relevant 

forecasting based on very large datasets. Instead of building and applying a model based on 

existing theory, ML reads patterns from existing data structures from which inferences about 

future developments can be drawn (Mullainathan and Spiess, 2017). The focus of ML methods 
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is therefore less on the correlations within a historical dataset and more on prediction outside 

the existing data (Storm et al., 2019). 

This paper applies different forecasting approaches of ML to predict milk quantities and 

compares them, using a conventional regression model as a reference. It identifies which type 

of ML algorithms can be applied to predict regional milk production and how they differ from 

each other. In addition, the combination and configuration of trend, weather and price variables 

relevant for the forecast are of interest. The data structure and preparation are described below, 

followed by an introduction to the models and methods applied. Section 4 presents and 

discusses the results of the algorithms before conclusions are drawn about future forecasting 

models. 

2. Theoretical background 

While economists usually describe aggregate dairy farm output in terms of a production 

technology with milk and meat output as a function of capital, labor and land inputs, the 

discipline of animal sciences has traditionally followed a different path: Production on dairy 

farms is particularly determined by the lactation curve of individual dairy cows. This can be 

illustrated as a mathematical formula to represent the course of milk production over time. Since 

Wood (1967) first established the gamma function, a variety of models have been developed to 

represent biological processes as accurately as possible. The course of the lactation curve is 

mainly based on the genetic material of the animals under consideration (Brügemann et al., 

2011). Thus, a similar curve per animal can be observed over several lactation phases. 

Deviations from the original curve can be caused by various factors such as grazing conditions 

(Baudracco et al., 2011), seasonality (Wood, 1969), feeding conditions (Kolver and Muller, 

1998), diseases (Collard et al., 2000) and other disturbances (Tekerli et al., 2000) such as heat. 

While farmers and their herd management can control most factors, feed conditions depend on 

weather as an additional component: Several studies show the influence of weather on pasture 
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and forage quality (Parsons et al., 2019; Schlenker and Roberts, 2009). Therefore, weather can 

be expected to influence milk production in the short and medium term. In addition, livestock 

conditions are also related to weather. A combination of temperature, relative humidity, solar 

radiation, wind speed and precipitation can cause heat stress in animals, leading to reduced milk 

production in terms of quantity and quality (Mader et al., 2006). High temperatures can also 

cause increased mortality in dairy cows (Vitali et al., 2015). 

Farmers’ herd management is modelled in different ways in the literature. Dual production 

functions model the quantity of milk farms produce as a relationship between output quantities 

and input and output prices. This is based on indirect cost or profit functions that are designed 

to maximise profits. For example, Blayney and Mittelhammer (1990) use a profit function of a 

generalised Box-Cox form to calculate price elasticities of the quantity of produced milk. Thus, 

it is possible to simulate the amount by which the milk supply changes in relation to price 

changes. Bouamra-Mechemache et al. (2008) also use a dual approach and determine short and 

medium-term price elasticities for the quantity of milk produced using a normalised quadratic 

profit function. Both models illustrate the relationship between milk production and input and 

output prices. Farmers act as a profit maximiser in this relationship, making management 

decisions to adjust their milk production at given prices.   

The amount of milk produced in a region is the sum of the amount of milk produced by the 

farms located there. In the last 20 years, the number of farms in Germany has fallen by more 

than half, but the quantity of milk produced has increased by 14.4 % in the same period (BLE, 

2020a). This is caused by ongoing structural change, with smaller and less profitable farms 

ceasing production due to various factors such as economics of size and scale (Hallam, 1991) 

and natural conditions and agricultural prices in specific regions (Neuenfeldt et al., 2019). In 

contrast, larger and highly professionalised dairy farms can significantly increase their 

production through increased remounting and expansion of their facilities.  
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Figure 1 shows the relations of the determinants of milk production outlined above. For the 

forecasting models presented in this paper, the influencing factors are grouped into three main 

components: weather, time and price variables. It is assumed that milk production in a region k 

is a function depending on the production function on farm i with cows j kept and their lactation 

curve. This results in a function depending on herd performance, herd management, market 

prices and other factors. This simplified representation allows complex on-farm interactions 

and macroeconomic developments to be illustrated by so called time variables as a trend in milk 

production. 

 
Figure 1. Schematic structure of milk production 

An exact definition of the variable groups used with the specific explanation of individual 

variables is given below. 

3. Data collection 

The dataset used refers to monthly observations in the period 09/2009 to 09/2019, and thus falls 

roughly within the timeframe when the abolition of the milk quota had already been decided 

and prepared for by an annual increase in quota volumes (“soft landing”). Variables of 

individual farm milk production as well as weather and price data are included in the models. 

The data on milk production are provided by the “Landeskontrollverband Niedersachsen e.V.” 

(LKV). The association compiles a monthly milk performance test for all member farms in 

Lower Saxony (a region in northern Germany) and provides this data for 49 randomly selected 
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dairy farms. This generates data points for about 7,500 dairy cows in Lower Saxony that are 

aggregated by an average value for the respective farms. Thus, a single monthly value is 

obtained by calculating the mean milk production of the cows milked on each farm. This value 

is multiplied by 30.5 days and the number of milked animals per farm and month, corresponding 

to the average amount of milk produced per farm and month. The “energy-corrected milk yield” 

(ECM) is considered, calculated according to Sjaunja et al. (1990). The number of animals kept 

per farm varies from fewer than 30 to more than 500 animals. The mean is about 150 cows per 

farm, with the majority of farms (about 60 %) being in the size class of farms with 50-199 dairy 

cows. This roughly corresponds to the distribution of size classes in Lower Saxony. However, 

farms with more than 200 cows are overrepresented in the data with a share of almost 30 % 

compared with just under 10 % of farms in Lower Saxony (LSN, 2020). However, this is helpful 

in terms of forecasting as structural change is ongoing and the share of the size classes is 

continuously shifting towards larger farms (BLE, 2020b).  

As shown above, it must be assumed that milk production in a region is largely determined by 

short and long-term climatic influences (Hoehl and Hess, 2021). This particularly affects the 

quality of basic feed and the physiology of the animals. It would therefore appear necessary to 

include regional weather and climate data in the forecast. For weather variables, the “COSMO 

Regional Reanalysis” database of the German Weather Service (DWD) is used. In these 

numerical weather models, observations and analyses are combined so that a large number of 

parameters are available for a grid of about 6 km x 6 km resolution. 

Milk prices are provided by the Federal Ministry of Agriculture and Food (BMEL) and refer to 

conventionally produced cow’s milk in Lower Saxony at actual fat and protein content. For 

feed prices, the index for purchase prices of agricultural enterprises determined by the Federal 

Statistical Office is used.  

For further analysis, the dataset is divided into a training set and a test set. This allows the 

models and algorithms to learn the patterns of the data in the training set. In a second step, the 
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prediction precision of the algorithms can be evaluated by applying them to the test set. A 

typical split of about 80 % training data and 20 % test data is used, such that all data prior to 

2018 is considered as the training set and from 01/2018 is considered as the test period. 

4. Methods 

This section presents the different models used to predict milk production in the region of 

Lower Saxony. The basic model is a multiple linear regression based on the ordinary least 

squares (OLS) estimator. Compared with this basic model, a number of machine learning (ML) 

models are set up to compare the difference to the econometric approach and between the 

different ML algorithms for the prediction of milk production. 

The considered farms can be divided into two classes based on their annual growth rate of milk 

produced. To account for the different types of farms, an indicator function is introduced before 

the algorithms are applied to the dataset. This indexed distinction allows the algorithms to learn 

the patterns in the data more effectively and generalise to new data. The indicator function is 

defined as follows: 

𝐼𝐼𝐺𝐺𝐺𝐺(𝑥𝑥) = �1 𝑖𝑖𝑖𝑖 𝑥𝑥𝑖𝑖 ≤ 𝐺𝐺𝐺𝐺
0 𝑖𝑖𝑖𝑖  𝑥𝑥𝑖𝑖 > 𝐺𝐺𝐺𝐺        (1) 

where 𝑥𝑥𝑖𝑖 is the average growth rate of milk production for farm 𝑖𝑖 and 𝐺𝐺𝐺𝐺 = 𝑄𝑄0,8(𝑥𝑥). By making 

this split based on the 0.8 quantile, for all model specifications 𝑘𝑘 a sub-model is formed for 

group a with 𝑥𝑥𝑖𝑖 > 𝐺𝐺𝐺𝐺 and for group b with 𝑥𝑥𝑖𝑖 ≤ 𝐺𝐺𝐺𝐺. In the results section, both groups are 

combined for each model 𝑘𝑘, resulting in a complete model. 

The majority of farms (80 %) show an annual change in milk quantity of between approximately 

-1.5 % and 9 %. In contrast, the remaining farms are growing at an annual rates of around 14 

%, with noticeable jumps in the monthly volume produced (Fig. 2). This suggests that these 

farms are growing not only through on-farm remounting, but through larger investments based 

on purchased animals. The farms can therefore be divided into two groups based on their growth 
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rate. The resulting different development in the produced milk volume over time is shown in 

Figure 2a. The trend line illustrates that the production volume increases more quickly in group 

a (rapidly growing farms) than in group b (moderately growing farms). 

 
Figure 2a: Milk production over time       Figure. 2b: Histogram growth rates 

4.1. Basic model: Forecast of monthly milk production amounts 

The basic model assumes that the milk production of farm 𝑖𝑖 can be explained by an interaction 

of economic and climatic conditions in month 𝑡𝑡 and previous months (lags). Economic effects 

can be divided into price effects for inputs and outputs and farm-specific management factors. 

The influence of weather on milk yield can be divided into direct and indirect effects. Direct 

weather effects typically include heat stress for dairy cows and impairment of their metabolism 

(Hill and Wall, 2017). Indirect weather effects result from quality and quantity differences in 

feeding (Harder et al., 2019).  

The basic model can be described as follows: 

𝑦𝑦𝑖𝑖𝑖𝑖 = 𝑇𝑇𝑡𝑡 + 𝑊𝑊𝑖𝑖𝑖𝑖 + 𝑃𝑃𝑡𝑡 + 𝜇𝜇𝑖𝑖 + 𝜀𝜀𝑖𝑖𝑖𝑖        (2) 

where 𝑦𝑦𝑖𝑖𝑖𝑖 = average monthly quantity of milk [kg ECM] produced by farm 𝑖𝑖 at time (month) 𝑡𝑡, 

𝑇𝑇𝑡𝑡 = time variables, 𝑊𝑊𝑖𝑖𝑖𝑖 = weather variables, 𝑃𝑃𝑡𝑡 = price variables, 𝜇𝜇𝑖𝑖 = dummy for farm 𝑖𝑖 and 

𝜀𝜀𝑖𝑖𝑖𝑖 = error term. The time variables are divided into date, year and factor variables for each 

month. The weather variables section contains ten different weather aspects at time 𝑡𝑡, which 

can be assigned to the coordinates of farm 𝑖𝑖. These are precipitation [mm], minimum 

temperature [°C], maximum temperature [°C], mean temperature [°C], soil temperature [°C], 
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relative humidity [%], sunshine duration [h], cloud cover [%], wind speed [km/h] and 

temperature-humidity index (calculated according to Mader et al. (2006)). The monthly milk 

prices for Lower Saxony [ct/l] and a feed price index at time 𝑡𝑡 are used as price variables. 

Table 1 shows the combination of variable groups for each model, presenting the differences 

between the models as an overview. 

Table 1 
Overview model specifications 

Equation Model Weather Interaction term 
weather and 

monthly dummy 
(MD) 

Weather lags Interaction term 
weather lags and 
monthly dummy 

(MD) 

Prices Dummy 
per farm 

  𝑊𝑊𝑖𝑖𝑖𝑖 𝑊𝑊𝑖𝑖𝑖𝑖 ∗ 𝑀𝑀𝑀𝑀𝑚𝑚 𝑊𝑊𝑖𝑖;𝑡𝑡−𝑛𝑛 𝑊𝑊𝑖𝑖;𝑡𝑡−𝑛𝑛 ∗ 𝑀𝑀𝑀𝑀𝑚𝑚−𝑛𝑛 𝑃𝑃𝑡𝑡 𝜇𝜇𝑖𝑖 

2 A X    X X 

3 B  X   X X 

4 C    X X X 

5 D  X  X X X 

6 E X X X X X X 

 

The basic model represents direct weather effects only. For the other models, an interaction 

term between the direct weather variables and a dummy 𝑀𝑀𝑀𝑀𝑚𝑚 is introduced for each month 𝑚𝑚 

with 𝑚𝑚 = {𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽, … ,𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷). This interaction term is included in equation (3) in the 

model specification B: 

𝑦𝑦𝑖𝑖𝑖𝑖 = 𝑇𝑇𝑡𝑡 + 𝑊𝑊𝑖𝑖𝑖𝑖 ∗ 𝑀𝑀𝑀𝑀𝑚𝑚 + 𝑃𝑃𝑡𝑡 + 𝜇𝜇𝑖𝑖 + 𝜀𝜀𝑖𝑖𝑖𝑖      (3) 

To model indirect weather effects, lags in the weather variables are added to equation (3), while 

the direct effects term is omitted. This leads to the following equation:  

𝑦𝑦𝑖𝑖𝑖𝑖 = 𝑇𝑇𝑡𝑡 + 𝑊𝑊𝑖𝑖;𝑡𝑡−𝑛𝑛 ∗ 𝑀𝑀𝑀𝑀𝑚𝑚−𝑛𝑛 + 𝑃𝑃𝑡𝑡 + 𝜇𝜇𝑖𝑖 + 𝜀𝜀𝑖𝑖𝑖𝑖      (4) 

where 𝑊𝑊𝑡𝑡−𝑛𝑛 = weather variables at time 𝑡𝑡 − 𝑛𝑛 and 𝑀𝑀𝑀𝑀𝑚𝑚−𝑛𝑛 = dummy for month 𝑚𝑚 − 𝑛𝑛, where 

𝑛𝑛 = {1, … ,6}. All other variables are defined as in the basic model. 
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These two models of direct and indirect effects are also combined into one model as a 

combination of both effects, so that the model is constructed as follows: 

𝑦𝑦𝑖𝑖𝑖𝑖 = 𝑇𝑇𝑡𝑡 + 𝑊𝑊𝑖𝑖𝑖𝑖 ∗ 𝑀𝑀𝑀𝑀𝑚𝑚 + 𝑊𝑊𝑖𝑖;𝑡𝑡−𝑛𝑛 ∗ 𝑀𝑀𝑀𝑀𝑚𝑚−𝑛𝑛 + 𝑃𝑃𝑡𝑡 + 𝜇𝜇𝑖𝑖 + 𝜀𝜀𝑖𝑖𝑖𝑖    (5) 

The final model combines all of the different model types into one model for all of the variables 

created, which is shown as follows:  

𝑦𝑦𝑖𝑖𝑖𝑖 = 𝑇𝑇𝑡𝑡 + 𝑊𝑊𝑖𝑖𝑖𝑖 + 𝑊𝑊𝑖𝑖𝑖𝑖 ∗ 𝑀𝑀𝑀𝑀𝑚𝑚 + 𝑊𝑊𝑖𝑖;𝑡𝑡−𝑛𝑛 + 𝑊𝑊𝑖𝑖;𝑡𝑡−𝑛𝑛 ∗ 𝑀𝑀𝑀𝑀𝑚𝑚−𝑛𝑛 + 𝑃𝑃𝑡𝑡 + 𝜇𝜇𝑖𝑖 + 𝜀𝜀𝑖𝑖𝑖𝑖 (6) 

Lags in the price variables do not need to be included since price trends and price expectations 

are included in the farm-specific growth rate and the trend variable 𝑇𝑇. 

4.2. Machine Learning Models 

The model specifications presented in the previous section are applied to the dataset by means 

of different estimation methods, comparing conventional regressions2 (OLS) with so-called 

“supervised learning” machine learning (ML) methods. In ML, the variables are called features. 

As there is a number of supervised ML approaches, the analysis here is limited to three different 

model types: regularised regression, tree-based methods and a neural network approach. 

4.2.1. Regularised regression 

Regularisation is based on the addition of a penalty term to a linear regression that shrinks the 

coefficients towards zero. Consequently, coefficients with low explanatory power are 

“penalised” and thus forced out of the model (James et al., 2013). This procedure is particularly 

effective for datasets with a large number of explanatory variables, as only coefficients that 

differ from zero and contribute substantial predictive power are included in the model as well 

(Storm et al., 2019). The best-known regularisation methods are LASSO and Ridge Regression. 

Their optimisation functions are represented by minimising the sum of squares of risks (RSS) 

                                                 
2 No fixed effects model is estimated as this could correct the model for an individual effect of farms. This is not 
necessary here, since the paper is primarily investigating predictive accuracy rather than causality. 
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in (7) and an additional penalty term, as in equations 8 (LASSO) and 9 (Ridge), according to 

James et al. (2013). Here, the coefficients 𝛽̂𝛽𝑗𝑗 are minimised: 

𝑅𝑅𝑅𝑅𝑅𝑅 = ∑ (𝑦𝑦𝑖𝑖 − 𝛽𝛽0 − ∑ 𝛽𝛽𝑗𝑗𝑥𝑥𝑖𝑖𝑖𝑖
𝑝𝑝
𝑗𝑗=1 )²𝑁𝑁

𝑖𝑖=1        (7) 

min
𝛽𝛽𝑗𝑗
�𝑅𝑅𝑅𝑅𝑅𝑅 + 𝜆𝜆 ∑ �𝛽𝛽𝑗𝑗�

𝑝𝑝
𝑗𝑗=1 �        (8) 

min
𝛽𝛽𝑗𝑗

(𝑅𝑅𝑅𝑅𝑅𝑅 + 𝜆𝜆∑ 𝛽𝛽𝑗𝑗2
𝑝𝑝
𝑗𝑗=1 )        (9) 

Both regularisation methods use a tuning parameter 𝜆𝜆, which can be determined by the data 

using cross-validation. The influence of the regularisation increases with increasing 𝜆𝜆 (James 

et al., 2013). The methods differ in the configuration of their penalty terms, also called 𝐿𝐿1- 

(LASSO) and 𝐿𝐿2-term (Ridge). The elastic net (EN) penalty term is shown in equation 10 and 

forms a combination of both penalty terms with 𝛼𝛼 𝜖𝜖 [0,1] (Zou und Hastie, 2005). 

(1 − 𝛼𝛼)𝜆𝜆∑ �𝛽𝛽𝑗𝑗�𝑗𝑗 + 𝛼𝛼𝜆𝜆∑ 𝛽𝛽𝑗𝑗2𝑗𝑗         (10) 

The EN uses automatic variable selection via the 𝐿𝐿1-part, which improves the prediction by 

inducing a grouping effect during variable selection so that highly correlated features are 

reduced (Ogutu et al., 2011). In the present case, 𝛼𝛼 = 0.5 is assumed and the tuning parameter 

𝜆𝜆 is validated with a 10-fold cross-validation. 

4.2.2. Decision trees  

Decision trees are used to divide a dataset into maximally homogeneous subgroups based on 

existing features (Storm et al., 2019). Thus, a so-called “Classification and Regression Tree” 

(CART) creates binary splits in each case (Breiman et al., 1984). For the Random Forest 

algorithm, the dataset is randomly split into subgroups of observations and features, with each 

subgroup differing only slightly. For each subgroup, a decision tree is created, from which the 

algorithm forms an average and, based on that, a prediction (Breiman, 2001). Another way to 

optimise the predictive power of decision trees is the method of boosting. This involves using 
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the residuals of the previous models so that the subsequent tree can specialise in them (Schapire, 

1990). For the prediction of milk production here, two boosting algorithms are applied: Xtreme 

Gradient Boosting (XGB) and Gradient Boosting Machine (GBM). For both, the following 

hyperparameters are selected: number of trees = 2000; learning rate = 0.01; maximum depth = 

5; proportion subgroup = 0.65; 10-fold cross-validation. 

4.2.3. Neural networks 

Typical neural networks (NNs) or multilayer perceptrons (MLPs) are structured as shown in 

Figure 3. They consist of several connected layers, each with multiple neurons. Their goal is to 

approximate a function 𝑓𝑓 that learns from input values 𝑥𝑥 to define an output vector 𝑦𝑦. NNs are 

basically a mapping of 𝑦𝑦 = 𝑓𝑓(𝑥𝑥;𝑤𝑤), where the weights 𝑤𝑤 are continuously updated until they 

generate the best approximation of the function (Goodfellow et al., 2016). The weights and 

neurons in the centre of the network cannot be observed directly, so they are called the hidden 

layer (Hastie et al., 2017). 

 
Figure 3. Schematic structure of a neural network 

The strength of the connection between neurons is represented by the weights, which are 

multiplied by the input values and added to a constant 𝜗𝜗 that acts as the initial value for the 

optimisation (Athey and Imbens, 2019). The sum of these products is fed to the hidden layer 

via the activation function 𝜎𝜎 of the rectified linear units (ReLu) type (see Equation 11 and 

Fig. 3). 

𝜎𝜎(𝑧𝑧) = max {0, 𝑧𝑧}         (11) 
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In the specific case of Figure 3, the activated values are then fed into the output layer, although 

this serves only as a simplification. NNs are called nets because of their interconnection of 

different functions. In this case, three hidden layers are used so that a chain structure in the form 

of 𝑓𝑓(𝑥𝑥) = 𝑓𝑓(3)(𝑓𝑓(2) �𝑓𝑓(1)(𝑥𝑥)�) occurs. The weights are updated and optimised by a loss 

function, similar to the optimisation of a linear regression (Goodfellow et al., 2016). The 

following hyperparameters are chosen for the application of the NN for milk quantity 

forecasting: three hidden layers with 200, 100 and 50 neurons; optimisation with 

backpropagation; 150 epochs; stopping criterion = RMSE; minimum batch size = 32; 10-fold 

cross-validation. 

4.2.4. Stacking 

As suggested by its name, the stacking method combines several algorithms via a so-called 

“super-learner”. The aim is to improve the prediction by the best possible combination of 

different models. The learning algorithm can be chosen arbitrarily, but the application of the 

super-learner requires each of the previous models to be trained with the same 𝑉𝑉-fold cross-

validation. The resulting predicted values of the base learner 𝐿𝐿 are now combined into a matrix 

with dimension 𝑉𝑉 × 𝐿𝐿, which serves as the data basis for the super-learner (van der Laan et al., 

2007). For this reason, the stacking method is also referred to as a refined version of cross-

validation that improves the winner-takes-all principle of cross-validation (Wolpert, 1992). In 

this case, a random forest algorithm is used to combine the EN, GBM and NN. The XGB model 

is not included in the stacking model here because the learning is very similar to that of the 

GBM and hence would be of limited added value. 

5. Results and discussion 

To evaluate the different algorithms and models, the trained algorithms are applied to the test 

set. Based on the most recent observations from 01/2018 to 09/2019, the monthly milk 
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production for all farms in this time horizon is predicted for the test dataset. Through this 

approach, different values for the relative and absolute measure of accuracy of the models can 

be observed. Therefore, the coefficient of determination (R²) is compared to measure the 

relative error (Fig. 4) and the root mean square error (“RMSE”) for an absolute error value (Fig. 

5). The adjusted R² does not need to be calculated in this instance because the explanatory 

power of specific variables is not primarily of interest; instead the focus is on the overall 

forecast accuracy, without giving consideration to degrees of freedom. 

Figure 4 shows the differences of R² in the comparison between the algorithms, but also the 

influence of the feature selection by the difference between the models. The names of the 

models correspond to the abbreviations given in Table 1. It is noticeable that both linear 

approaches of OLS and EN show a significantly lower coefficient of determination (maximum 

0.77 for OLS in model A) compared with the non-linear approaches. This difference is 

particularly prominent in Model E, where all variables are included. With RMSE of about 3.2 

%, the linear model has no explanatory power for predicting milk production. This indicates 

that the model is overfitting due to an excessive number of variables, and thus cannot predict 

or can only predict poorly with out-of-sample data from the test set. Preventing this is the task 

of the EN, which uses a penalty term to give less weight to less relevant variables. The results 

in Figure 4 suggest that this penalty term is heavily weighted in models A to E, resulting in 

underfitting. Comparing the non-linear approaches, there are only slight differences in the R² 

for the respective algorithms and between models A to E. With the exception of model E, 

algorithm GBM has the highest coefficient of determination (maximum 0.92 in model C). 

Comparing this with the schematically similar algorithm XGB, only small differences of up to 

3 % R² can be seen. This can be explained by the same hyperparameter selection and the similar 

learning mechanism. The neural network has the lowest coefficient of determination of the non-

linear algorithms in all models. The combination of the models as a stacking algorithm does 

show any significant improvement with regard to the R² of the other algorithms. 
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Figure 4. Coefficient of determination for all applied algorithms and models 

The RMSE results in Figure 5 are similar to the R² shown in Figure 4. Figure 5 highlights that 

there is also a difference between linear and non-linear approaches in the observed RMSE. 

However, unlike the relative measure of the coefficient of determination, here the RMSE of the 

OLS and the EN are closer together. Looking at the value of the linear regression for model E, 

the problem of overfitting can also be observed in Figure 5. Figure 5 confirms that there is only 

a slight difference between the non-linear algorithms. Here, the RMSE of the NN stands out 

since the distance to the other models seems to be larger in relative terms here than in the R² 

comparison and is approximately at the mean between the values of the linear and non-linear 

models. 

 

Figure 5. RMSE for all applied algorithms and models 

One explanation for the difference in the results for R² and RMSE in linear and non-linear 

approaches could be the splitting of the dataset by the indicator function into moderately and 

rapidly growing farms. Figure 6 depicts the coefficient of determination for the respective 

groups for models A and C as examples to consider this relationship. The columns grouped side 
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by side show that in all combinations of model and algorithm, the R² of the group of fast-

growing farms (group a) is lower in the linear approaches (OLS, EN). In particular, compared 

with the non-linear approaches, the R² in these respective groups is significantly lower, with a 

maximum value of 0.68 (OLS a, model A). This could be caused by investments as a driving 

factor of growth in group a. Milk production in this group does not increase linearly, but partly 

in step changes due to investments in new barn constructions and/or expansion. This 

development can be explained more effectively by a non-linear algorithm. Thus, these 

algorithms show an opposite distribution in that the group of rapidly growing farms can be 

predicted better than the other group. The minimum coefficient of determination of “group b” 

is 0.77 (XGB b, model A) and thus above the maximum value from the comparison group of 

linear models. 

 
Figure 6. Coefficient of determination in the comparison of farm groups a and b 

Summing observed and predicted values of milk production allows a graphical view to be given 

of the actual and predicted milk quantity over time for the dataset. Figure 7 shows the monthly 

milk quantity in ECM t for the period 01/2018 to 09/2019. It should be noted that only 11 data 

points are available for each year and farm. Significant drops in milk volume, such as in 

07/2018, can also be related to this data distribution. 
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Figure 7. Predicted values in total in the test period (01/18 – 09/19) 

The graph above shows that the predicted values of model A and E differ only slightly in their 

sum. The actual observed milk volume is shown as a black line, while the prediction of the 

models is shown in grey. Again, the differences within the models between the algorithms are 

marginal. In contrast, the shape of the OLS regression in model E (dotted line) is remarkable. 

As already evident in the results of R² and RMSE, the model is overfitted by too many variables, 

and thus becomes useless for prediction purposes. It is interesting to note that all the models 

tend to underestimate the amount of milk. However, overall it can be stated that all the applied 

models roughly represent the trend of milk production. 

Another approach to compare the models focuses on the time required for training the 

algorithms. This is especially interesting for potentially extending the dataset by a larger 

number of farms in future. The differences between the non-linear approaches can be seen in a 

comparison of the training time of the models in Table 2. Here, the XGB algorithm, with an 

average training time of about 47.5 seconds for the respective models, is clearly ahead of the 

NN, GBM and stacking method, which require about 30 to 55 times the training time on 

average. Stacking also takes longer than the other methods since it adds the training times of 

the combined methods and its own execution time. Meanwhile, the training times of the linear 

models are considerably faster at about 4.6 seconds (EN) and 0.5 seconds (OLS). 
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Table 2 
Training time of the algorithms in seconds 

 OLS EN NN XGB Stack GBM 

Model A 0.05 0.43 387.30 12.70 571.74 184.01 

Model B 0.05 1.63 405.00 16.15 606.74 200.11 

Model C 0.20 1.94 840.42 27.86 1814.90 972.54 

Model D 0.28 2.30 934.50 32.68 2037.62 1100.82 

Model E 0.92 7.52 1263.12 53.07 3072.74 1802.10 

Mean 0.50 4.61 1276.78 47.49 2701.25 1419.86 

 

In addition to the prediction accuracy and speed of the models, it is also of interest to identify 

which variables have the greatest relative influence on the prediction of milk quantity 

production. There are different methods for measuring the importance of each variable. In this 

case, a standardised variable importance procedure using “partial dependence plot” (PDP) 

according to Greenwell et al. (2018) is applied. Representing the estimation methods used, 

OLS, XGB, and NN are compared. When calculating variable importance for OLS, the values 

correspond to the absolute values of the t-statistic. For XGB, the percentage increase in MSE 

is calculated when a particular variable is included in the overall model. The variable 

importance of a neural network is calculated based on the weights of the connected neurons. 

Figure 8 presents a comparison of these three algorithms for model A. For clarity, only the top 

15 variables are listed by importance, and the importance of the dummies per farm is excluded. 

The absolute values of the respective algorithms cannot be compared; instead their relative 

distribution is considered. First it is noticeable that for all algorithms one of the time variables 

is significant. Especially for the XGB model, the variable “date” has a significant influence on 

the prediction compared with the other variables. This corresponds to the time trend by the 

combination of the variables “year” and “month”. For the OLS regression, the variables “year” 

and the different months are of greater importance. The variable “year” is also highly relevant 
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for the NN for the forecast, and some weather variables such as “wind” and “precipitation” are 

essential for the prediction. Thus, the NN differs somewhat from the OLS in its order of variable 

importance and from the XGB in its relative relationship. In all three cases, the milk and feed 

price variables are of relatively little importance as predictors within the models. 

 
Figure 8. Variable importance for prediction in model A 

However, when considering Figure 8, it should be noted that the comparison of feature 

importance is not equivalent to the statistical significance found in a linear regression model. 

While the values listed in Figure 8 are important for prediction, they are not a precise measure 

of the variable’s influence on the results. For example, a variable may be of low importance for 

prediction due to a high correlation with another variable (e.g. minimum and maximum 

temperature), but still be a weighted as a determinant for the dependent variable (Ifft et al., 

2018). 

6. Conclusions 

The comparison of different methods of ML with each other and with OLS regressions provides 

information about which of these methods may be particularly suitable for forecasting regional 

milk production. Four non-linear approaches (XGB, GBM, NN, stacking) and two linear 

approaches (OLS, EN) are compared. The difference between the two approaches is evident in 

both relative and absolute indicators of model selection: the non-linear algorithms considered 

each have higher coefficients of determination and lower RMSE. The specification of the 
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models with respect to variable and lag structure is less important for prediction quality than 

the choice of the estimation approach. The comparison of the importance of the variables to the 

prediction of the models shows that the small differences between the models A to E are due to 

the greater importance of time and trend variables compared with weather variables. These 

include unrecorded weather effects and management decisions, which cannot be directly 

accounted for with the available data. The time trend can be explained better by non-linear 

approaches, especially for the group of more rapidly growing farms. The comparison of non-

linear algorithms with respect to the accuracy of their prediction only shows a difference with 

respect to the time required to train the models. A balance needs to be struck here between 

greater accuracy (GBM) and faster computational performance (XGB). This decision is highly 

relevant, especially for forecasts based on large datasets. In conclusion, an appropriately large 

dataset in connection with the algorithms mentioned above allows a geographical analysis to 

be undertaken for the entire federal state of Lower Saxony, meaning that forecasts can be 

produced not only for the milk quantity of individual farms, but for individual municipalities 

and districts as well. For this geographical approach, the indicator function used could easily 

consider further effects of regional structural change. 
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