
 
 

Give to AgEcon Search 

 
 

 

The World’s Largest Open Access Agricultural & Applied Economics Digital Library 
 

 
 

This document is discoverable and free to researchers across the 
globe due to the work of AgEcon Search. 

 
 
 

Help ensure our sustainability. 
 

 
 
 
 
 
 
 

AgEcon Search 
http://ageconsearch.umn.edu 

aesearch@umn.edu 
 
 
 

 
 
 
 
 
 
Papers downloaded from AgEcon Search may be used for non-commercial purposes and personal study only. 
No other use, including posting to another Internet site, is permitted without permission from the copyright 
owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C. 

https://makingagift.umn.edu/give/yourgift.html?&cart=2313
https://makingagift.umn.edu/give/yourgift.html?&cart=2313
https://makingagift.umn.edu/give/yourgift.html?&cart=2313
http://ageconsearch.umn.edu/
mailto:aesearch@umn.edu


Copyright 2021 by Bekele Hundie Kotu, Oyakhilomen Oyinbo, Irmgard 
Hoeschle-Zeledon, Abdul Rahman Nurudeen, Fred Kizito, and Benedict 
Boyubie. All rights reserved. Readers may make verbatim copies of this 
document for non-commercial purposes by any means, provided that this 
copyright notice appears on all such copies.  

Are Smallholder Farmers Interested in Practicing 
Sustainable Intensification? A Choice Experiment on 
Farmers' Preferences for Sustainability Attributes of 

Maize Production in Ghana

by Bekele Hundie Kotu, Oyakhilomen Oyinbo, Irmgard 
Hoeschle-Zeledon, Abdul Rahman Nurudeen, Fred Kizito, and 

Benedict Boyubie



1 
 

Are smallholder farmers interested in practicing sustainable intensification? A choice experiment on  

farmers’ preferences for sustainability attributes of maize production in Ghana 

 

 

 

Bekele Hundie Kotu1, Oyakhilomen Oyinbo2, Irmgard Hoeschle-Zeledon1, Abdul Rahman Nurudeen1, 

Fred Kizito1,3, Benedict Boyubie1 

 

 

 

 

 

1International Institute of Tropical Agriculture  

2Ahmadu Bello University, Nigeria 

3Alliance of Biodivesity and CIAT 

 

 

 

 

 

 

A paper presented at the 31st International Conference of Agricultural Economists, August 17-31, 2021, 

Online   



2 
 

Abstract 

While sustainable intensification has been aggressively promoted as an agricultural development strategy 

among smallholder farmers since the beginning of the last decade, there is a dearth of evidence on 

whether farmers are interested in practicing it and how much values they put to its different components. 

This study aims at analyzing farmers’ preferences for maize production technologies within the lens of 

sustainable intensification. Employing a discrete choice experiment to generate over 12,500 observations,  

we analyze farmers’ preferences with respect to diverse domains of sustainable intensification including 

productivity, economic, human, environmental, and social conditions. We find that farmers are favorably 

disposed to maize-based cropping systems that align with the domains of sustainable intensification over 

their current cropping practices. While farmers value all of the sustainable intensification attributes 

considered in the study, we observe substantial heterogeneities among them in the pooled sample and in 

the sub-samples between regions and gender categories. The findings suggest that sustainable 

intensification is not just a fad within the academic and research circles but it is something farmers are 

interested in and that development actions are more likely to succeed when they consider preference 

heterogeneities among farmers and adapt to local conditions.  

Key words: sustainable intensification, maize, preferences, choice experiment, Ghana 
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1. Introduction 

 

The global strategy for agricultural development has shifted from a system of putting more land under 

cultivation (extensification) to a system of using more inputs per unit of land while increasing resource 

use efficiency (intensification) since the beginning of the second half of the 20th century. This is because 

of the increasing scarcity of suitable land for agriculture (Godfray et al. 2010, Pingali 2012, Jayne et al. 

2014). Various magnitudes of investments have been made to improve the productivity of smallholder 

agriculture in many countries including the establishment of international agricultural research centers 

mandated to generate technological spillovers for countries that underinvest in agricultural research and 

to build local research capacities (Pingali 2012, Hazell 2009, Lynam and Herdt 1989). These investments 

coupled with improvements in national institutions and policies brought radical productivity changes in 

the 1960s through to the 1980s among smallholder farmers in Asia and Latin America which was termed 

as the “Green Revolution”. The Green Revolution could double the yield of staple cereals (rice, maize, and 

wheat) which in turn resulted in substantial reductions in food insecurity and poverty in many countries 

of the regions (Pingali 2012, Hazell 2009). 

 

Nevertheless, several adverse effects of the Green Revolution approach became visible over time 

including groundwater depletion, soil degradation, loss of biodiversity, and water pollution (Shiva 1991, 

Pretty and Bharucha 2014). For instance, studies conducted in Pakistan and India showed that the agro-

chemical based intensification during the Green Revolution resulted in the deterioration of soil and water 

qualities (Murgai et al. 2001, Ali and Byerlee 2002). Moreover, the focus on a few dominant cereals during 

the period adversely affected the production of nutritionally important crops contributing to malnutrition 

among smallholder farmers and beyond (Welch and Graham 1999, Pingali 2012). Other scholars argue 

that the distribution of benefit was highly skewed toward some social groups (such as male farmers and 

the better off ones) while others (such as women and the poor) did not benefit due to poor institutions 

such as insecure land rights and poorly developed markets (Hazell 2009, Pingali 2012).   

 

These limitations brought about attitudinal change among scholars over the years, some of whom 

suggested a paradigm shift in the approaches of agricultural development (Lynam and Herdt 1989, Pretty 

1997, Welch and Graham 1999). For instance,  Lynam and Herdt (1989) suggested that the Consultative 

Group for International Agricultural Research (CGIAR) would incorporate the sustainability concept into 

its research process. Moreover, in the late 1980s the compatibility of the terms “sustainability” and 

“intensification” was hinted while, in the mid-1990s, the two terms were coupled to form the concept of 

sustainable intensification (Pretty 1997, Pretty and Bharucha 2014). Since then, the concept of sustainable 

intensification (SI) has continued to spread among researchers, academia,  development practitioners, 

and others. However, it was only at the beginning of the last decade that SI began to receive widespread 

attention. Publications such as Royal Society (2009) and  FAO (2011) played a crucial role in bringing the 

concept to the attention of donor organizations, international research institutes, and development 

organizations in the recent decade while the inclusion of the term “sustainability” in the UN development 

goals has made the concept even more popular.    
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While SI is gaining more and more popularity, there are still diverse views among scholars about what the 

term entails (Cook et al. 2015, Peterson and Snapp 2015). Sustainable intensification can be defined as a 

farming trend where more and more outputs are produced from the same area of land while negative 

environmental impacts are reduced, and at the same time positive ones are enhanced (Pretty et al. 2011). 

However, some criticize that this definition would draw attention only to the biophysical dimension of 

sustainability while ignoring other dimensions such as the socioeconomic elements suggesting a more 

comprehensive definition which includes three aspects of sustainability, namely ecological, economic, and 

social justice (Hayati et al. 2010, The Montpelier Panel Report 2013, Pretty and Bharucha 2014, Smith et 

al. 2017). More recently, Musumba et al. (2017) developed a framework known as the Sustainable 

Intensification Assessment Framework (SIAF) to assess sustainable intensification. SIAF builds on the 

prior three dimensions of intensification and has been applied in a few studies (e.g. Silberg et al. 

2019, Abdul Rahman et al. 2020). It encompasses five domains of sustainable intensification namely 

productivity, economic, environment, human, and social. Each of the domains has specific indicators that 

are used as a metric across different spatial scales. The metrics for each indicator are categorized across 

spatial scales: field, farm, household, and landscape. The framework entails assessing an agricultural 

technology with respect to all five domains and revealing the trade-offs which may occur between 

indicators across the domains.  

 

While SI in a broad sense entails the application of multiple technologies and management practices, 

there is no specific recipe to attain sustainability. In fact, components and optimal mixes vary depending 

on local contexts and individual farmers’ preferences (Kotu et al. 2017, Kassie et al. 2013). On the other 

hand, the adoption of promising SI technologies remains persistently low in SSA, which partly explains the 

substantial yield gap of staple crops in the region.  Previous ex-post studies documented a broad range of 

factors explaining the adoption and diffusion of agricultural technologies (e.g., see Feder and Umali 1993, 

Knowler and Bradshaw 2007 for detailed reviews, and Kassie et al. 2013, Kotu et al. 2017 for specific 

empirical analyses). These ex-post studies analyzed a wide range of farmer-related factors, including 

socioeconomic and institutional contexts, but did not provide much ex-ante insights about technology-

related factors, the trade-offs farmers are willing to make for these factors, and how the factors influence 

farmers’ adoption decisions for a portfolio of possible SI systems. 

 

Recently, more attention has been given to technology-related factors in assessing technology adoption 

among smallholder farmers, especially in an ex-ante quantitative manner (e.g., Lunduka et al. 2012, Kassie 

et al. 2017, Waldman et al. 2017, Jourdain et al. 2020). However, most of these studies focus on 

technology attributes of a single technology, especially crop variety (e.g., Lunduka et al. 2012,  Kassie et 

al. 2017, Waldman and Richard 2018). Yet, farmers’ decisions on intensification go beyond a single 

technology. Moreover, most of the previous studies did not consider sustainability in their assessments 

of farmers’ preferences for technologies or cropping systems. In this study, we used a discrete choice 

experiment to assess farmers’ technology preferences within the lenses of sustainability, drawing on the 

SIAF in northern Ghana. Specifically, we assessed whether farmers’ stated preferences for maize 

production technologies match the normative understandings of sustainable intensification among 

scholars within the context of SIAF considering possible preference heterogeneities among farmers. We 
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tested two main hypothesis (1) farmers prefer to change their current practice with regards to maize 

production to a more sustainable practice and, (2) farmers are not homogenous in terms of preferences 

of technology attributes. Our approach was not normative, however. Instead, we first explored 

smallholder farmers’ preferred technology attributes and then analyzed them using the SIAF. In so doing, 

we did not pre-determine technologies or specific mix or design components but focused on desirable 

attributes that would drive the adoption of sustainable intensification, as perceived by farmers. In line 

with Lynam and Herdt’s (1989) suggestion on how to incorporate sustainability in agricultural research 

and Cassman and Grassini (2020) on the need for effective R&D prioritization on sustainable 

intensification, the findings of this study can be useful to set an evaluation criterion in designing and 

testing technologies (or a mix of technologies) for sustainable maize production among smallholder 

farmers in northern Ghana as well as similar socio-cultural and agroecological settings. From a 

methodological perspective, our study contributes to the growing application of discrete choice 

experiments to elicit farmers’ preferences in developing country contexts and to the few studies that 

consider attribute-nonattendance and scale heterogeneity, which are possible sources of bias, and 

empirically test the performance of different discrete choice models as a basis for model selection.   

 

The rest of the paper is organized as follows: Section 2 provides a brief description of the study areas. 

Section 3 describes the methodology including the design and implementation of the discrete choice 

experiment and the economiteric models used for data analysis. Section 4 presents the results and Section 

5 discusses the findings while providing policy implications. 

 

 

2. The study area 

The study was conducted in three northern regions of Ghana namely, Northern Region, Upper West 

Region, and Upper East Region which are located in the Savannah (Figure 1). Agriculture is dominantly 

rain-fed in all three regions, but farmers use irrigation in pocket areas to produce vegetables. The rainfall 

is sometimes erratic and dry spells are common causing production shocks. Maize is the dominant crop 

followed by rice and pearl millet (Kotu et al. 2017). Legumes such as groundnut, soybean, and cowpea 

also form an important part of the farming system. Legumes are usually grown solely in rotation with 

cereals but in some cases, they are intercropped with cereals. Productivity is very low with the actual yield 

ranging from 35% (in Maize) to 55% (in Soybean) of the potential yield (MoFA 2016). As a result the living 

standard is generally lower than the southern part of the country manifested by high incidence of 

malnutrition and poverty. For instance, in 2016/17, this part of the country contributed to about two-

third of the total incidence of extreme poverty in the country (GSS, 2018). The three regions are sparsely 

populated as compared to most regions in southern Ghana, but there are differences among them. The 

Northern and Upper West regions have lower and similar population densities (35 persons/km2 and 38 

persons/km2, respectively) whereas the Upper East Region has a much larger population density  (118 

persons/km2) (MoFA 2016).  
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Figure 1: Location of the study regions in Ghana1 

 

 

We used the list of farm-households interviewed during the Ghana Africa RISING baseline survey (GARBES) 

in 2014 as a sampling framework. GARBES followed a quasi experimental design and covered a total of 

1284 households in the study regions. The detailed description of the sampling approach can be found in 

Tinonin et al. (2016) (also see annex A1). Due to budget constraint, we took about 55% of the GARBES 

samples in each community which resulted in the total sample of 700 households. The survey was 

conducted with the discrete choice experiment (DCE) framework2. We followed three steps to implement 

the experiment. First, we identified seven relevant attributes associated with SI of maize-based cropping 

systems based on a review of SI literature, expert consultations and focused group discussions with 

smallholder farmers within the study areas3. These include maize yield, legume yield, risk of crop failure, 

 
1 This map shows former regional administrative boundaries. Since 2020, the Northern Region has been 
administered under three separate regions namely, Savannah, Northern, and North East regions. 
2  DCE is a survey-based stated preference elicitation method that is applied in different fields, including 
agriculture, marketing, health, etc. The method is increasingly applied in ex-ante agricultural technology adoption 
settings to gain insights on how to better design, fine-tune and deliver demand-driven cropping systems 
technologies and management practices to meet the needs of smallholder farmers (e.g. Ortega et al. 2016, 
Waldman et al. 2018, Jourdain et al. 2020, Silberg et al. 2020). 
3 We followed these steps to select the attributes: 1) during the FGD, we requested farmers to list all attributes 
associated with a good maize production technology; (2) we requested them to rank the attributes using the pair 
ranking technique; (3) we aggregated the rankings of the attributes across different FGDs and came up with an 
overall ranking for the study areas; (4) we selected nine top ranked attributes; (5) the number of attributes was 
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soil fertility effect, nutritional value of output, labor requirement and cash requirement (Table 1). These 

are associated with different SI domains as described in SIAF (Musumba et al. 2017).  

 

Table 1: Attributes and attribute levels used in the choice experiment 

Note: 1Ghc = ͌0.175 USD during the time of the survey. 

*We captured the social dimention indirectly through a gender disaggregated analysis. 
 

Second, we developed the experimental design, which entails combining the various attributes and 

attribute levels into different pairs of mutually exclusive hypothetical options of maize-based 

intensification systems (i.e. choice sets). We used a Bayesian efficient design to minimize the D-error and 

improve the precision of parameter estimates (Rose and Bliemer 2009). Following Scarpa et al. (2013), we 

first generated an orthogonal design and implemented a pilot DCE survey among 56 farmers. We used the 

pilot data to estimate a multinomial logit model and used the parameter estimates as Bayesian priors in 

generating the Bayesian efficient design. We used the Ngene software to generate the design, resulting 

in 12 paired choice sets (Db-error = 0.015). The choice sets were randomly grouped into two blocks of six 

choice sets to minimize the cognitive burden of evaluating several choice sets (Hensher et al. 2015). We 

constructed 12 laminated choice cards from the choice sets, and  each card consisted of two unlabeled 

hypothetical options of maize-based intensification systems (options A and B) and an opt-out (option C). 

A sample of the cards is presented in Figure 1. The opt-out option represents the current maize-based 

cropping practice of farmers – i.e. the ‘status quo’ option. Inclusion of the opt-out option helps to avoid 

possible bias associated with forcing farmers to choose options A and B, as farmers should have the option 

of retaining their current practice if it offers more utility over options A and B (Hensher et al. 2015).  

 

 
reduced to seven based on expert opinion and literature; (6) the final attributes were again discussed with farmers 
for validation.   

Attributes SI domain* Attribute levels 

Maize yield  Productivity 8, 12, 16, 20 100kg-bags per acre  

Legume yield Productivity 0, 2, 4 100kg-bags per acre  

Risk (occurrence of crop 

failure) 

Productivity 0 in 5 years, 1 in 5 years, 2 in 5 years, 3 in 5 years 

Soil fertility effect Environment Negative, neutral, positive 

Nutritive value of output Human condition Low, high 

Labor requirement Economic 25, 50, 75, 100 person-days  per acre 

Cash requirement  Economic 150, 300, 450, 600 Ghc per acre 
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Figure 1: Example of a choice card used in the choice experiment  

 

 

Third, prior to the DCE implementation, we randomly assigned the farmers to one of the two blocks of 

choice cards. A detailed explanation was provided to the farmers before commencing the DCE, including 

the purpose of the DCE, the attributes and attribute levels, and the hypothetical setting. In the DCE 

implementation, each farmer was presented six choice cards, one after the other in a random order to 

avoid ordering effects, and was asked to choose the most preferred option. The farmers evaluated the 

attribute levels of each option on the choice cards and freely made a choice on each of the six choice 

occasions. This allowed us to infer an indirect utility function based on the different attributes and 

attribute levels of the DCE. At the end of the DCE, the farmers were asked follow-up questions, including 

attributes ignored, perceptions of the choice tasks and other questions related to the attributes and the 

DCE in general. The survey was implemented in June 2020 via a face-to-face interview by trained 

enumerators and supervisors using a computer-assisted personal interviewing approach – Open Data Kit 

application on tablets to improve the efficiency of data collection. 

 

 

3.2 Econometric analysis 

Analysis of data from the DCE was based on random utility theory (McFadden 1974). The theory assumes 

that the utility of farmer 𝑖 choosing alternative 𝑗 among hypothetical alternatives of maize-based 

 

Card 1 OPTION A OPTION B OPTION C 

MAIZE YIELD 

                                                                          20 bags                                              8 bags 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Neither A nor B 
 

I prefer my 
current cropping 

practice 

LEGUME YIELD 

                                                                            0 bag                                              4 bags 

RISK 
 

 

 

 

   0 in 5 

 

 
 

 

 

                                                         3 in 5 

SOIL FERTILITY   
 
 
 
 

                                                      Negative 

                                         
 

                                                                                       
Positive 

NUTRITIVE 
VALUE OF 
OUTPUT         High                                                  Low 

LABOUR 
REQUIREMENT 

 

                             20 man-days 

 

 50 man-days 

CASH 
REQUIREMENT 

 

 

 

         300 GH₵ 

 

 
 

                                                450 GH₵ 

 

I choose option    
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intensification systems offered in choice set 𝑠 is given by an indirect utility, which consists of deterministic 

and stochastic components expressed as:  

𝑈𝑖𝑗𝑠 = 𝐴𝑆𝐶 + ∑ 𝛽𝑖𝑘𝑥𝑖𝑗𝑘𝑠

6

𝑘=1

+ 𝜀𝑖𝑗𝑠    𝑖 = 1, … . , 𝑁;  𝑗 = 1, … . , 𝐽;  𝑠 = 1, … . , 𝑆                          (1) 

Where 𝑈𝑖𝑗𝑠  is the 𝑖𝑡ℎ farmer’s indirect (latent) utility, 𝐴𝑆𝐶 is the alternative-specific constant representing 

preferences for the opt-out option, 𝒙𝑖𝑗𝑠 is a vector of seven attributes describing alternative 𝑗 with 

associated preference parameters 𝜷𝑖, the stochastic component 𝜀𝑖𝑗𝑠 is assumed to be independent and 

identically distributed (iid). 

We estimated three different models namely the Multinomial Logit (MNL), the Mixed Logit (MXL) and the 

Latent Class Logit (LCL4) models. The purpose of estimating the three models was to select the best-fit 

model to fix our discussion as the performance of discrete choice models varies depending on the 

situation on the ground with regards to heterogeneities (both preference and scale) within the target 

population (Greene and Hensher 2003, Shen 2009). The MNL model assumes homogeneous preferences 

among individuals. This model has been used as a base model in many DCE studies. The MXL model is the 

most flexible as it allows parameters associated with the attributes to vary across individuals with a known 

population distribution (Greene and Hensher 2003, Train 2009). Hence it performs better than the MNL 

model in the context of preference heterogeneity, but it requires specification about the distribution of 

the parameters.  

The LCL model assumes that a heterogeneous population of farmers belongs to a discrete number of 

latent classes, and preferences are assumed to be homogeneous within each latent class but differ across 

classes (Greene and Hensher 2003, Hensher et al. 2015). The choice probability is expressed as: 

𝑃𝑖𝑗𝑠|𝑔 =  ∏
exp(𝜷𝑔

′ 𝑥𝑖𝑗𝑠)

∑ exp(𝜷𝑔
′ 𝑥𝑖𝑡𝑠)𝐽

𝑡=1

𝑆

𝑠=1

                                                                                                          (2) 

Where each farmer 𝑖 gets assigned with a certain probability to a latent class 𝑔, 𝜷𝑔 is the vector of class-

specific parameter estimates.  

The LCL model is more flexible than the MNL model as it captures preference heterogeneity between 

members of different latent classes, but it is less flexible than the MXL model as it assumes homogeneity 

of preferences within members of a specific latent class (Shen 2009). Thus, the selection between the MXL 

model and the LCL model is not straightforward but requires subtle diagnosis. Following Greene and 

Hensher (2003) and Shen (2009), we used various approaches to compare the two models including 

estimated model parameters, kernel density estimators, McFadden’s (1979) overall prediction success 

index, and Ben-Akiva and Swait’s (1986) test on non-nested choice models. Furthermore, we performed 

 
4 As a robustness check to LCL model, we estimated Scale Adjusted Latent Class Model (SALC). SALC accounts for 
scale heterogeneity, which is a potential source of bias if not addressed (Louviere and Eagle 2006; Vermunt and 
Magidson 2014). However, the results are not different from the standard LCL. Thus, we only report the results of 
the LCL to save space. 
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the test on non-nested choice models based on the AIC proposed by Ben-Akiva and Swait (1986). The test 

statistic comparing two non-nested choice models (Model 1 and Model 2) was computed as follows: 

 

𝜌𝑗
2 = 1 −

𝐿𝑗−𝐾𝑗

𝐿(0)
,   j = 1,2          (3) 

 

Where L(0) is the initial loglikelihood and Lj is the final loglikelihood of the Model j, and Kj is variables 

included in Model j5. If we assume that Model 2 is the true model, the probability that 𝜌2
2 > 𝜌1

2 is 

asymptotically bounded by the following equation:  

 

Pr (|𝜌2
2 − 𝜌1

2| ≥ 𝑍) ≤ Φ(−√−2𝑍𝐿(0) + (𝐾1 − 𝐾2))      (4) 

 

Where Φ is the standard normal cumulative distribution function and Z is the difference between the 

fitness measure of the two models.  

 

We estimated two models to account for attribute non-attendance (ANA), a situation where respondents 

do not consider all the attributes of the alternatives in making their choices (Alemu et al. 2013, Scarpa et 

al. 2013). This is often considered a potential source of bias to parameter estimates of DCE. Following 

Caputo et al. (2018), we used self-reported data on attributes ignored to estimate stated ANA models – 

conventional and validation ANA models, as robustness checks to the basic MXL model. In the 

conventional ANA model, parameters of attributes ignored (𝜏) by some farmers were constrained to zero 

in the utility function, as a way to account for ANA.  

𝑈𝑖𝑗𝑠 = 𝐴𝑆𝐶 + ∑ 𝛽𝑖𝑘𝑥𝑖𝑗𝑘𝑠

6−𝜏

𝑘=1

+ 𝜀𝑖𝑗𝑠                                                                                                        (5) 

While the conventional ANA model assumes a zero-marginal utility for an ignored attribute, it is likely that 

respondents did not completely ignore an attribute, but rather attached a lower weight to such attribute 

(Hess and Hensher 2010, Alemu et al. 2013).  This motivated the estimation of the validation ANA model, 

where two parameters were estimated for each attribute, conditional on whether the attribute was 

reported to be ignored or considered by farmers in making their choices (Hess and Hensher 2010, Scarpa 

et al. 2013; Alemu et al. 2013, Caputo et al. 2018, Oyinbo et al. 2020). This model also helped to validate 

the stated ANA responses of the farmers. The utility coefficients conditional on attendance were denoted 

with the superscript 1 (𝛽𝑖
1) and those conditional on non-attendance with superscript 0 (𝛽𝑖

0) in the utility 

function: 

𝑈𝑖𝑗𝑠 = 𝐴𝑆𝐶 + ∑ 𝛽𝑖𝑘
1 𝑥𝑖𝑗𝑘𝑠

6−𝜏

𝑘=1

+ ∑ 𝛽𝑖𝑘
0 𝑥𝑖𝑗𝑘𝑠

𝜏

𝑘=1

+ 𝜀𝑖𝑗𝑠                                                                              (6) 

 

 
5 K1=K2 in our case while the two models (MXL and LCL) are functionally different. 
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Finally, we estimated MXL models with subsamples of farmers to explore heterogeneity in preferences 

and tradeoffs, with respect to two policy-relevant variables for intensification, gender and region, based 

on theoretical and empirical literature (Ortega et al. 2016, Waldman et al. 2017, 2018). The consideration 

of gender differences allowed us to partly capture the social domain of the SIAF, as described in Musumba 

et al. (2017). The aim of the region-based disaggregation was to capture the socio-economic, 

agroecological, and institutional differences among the three regions which might have shaped farmers’ 

technology preferences. 

 

3. Results 

3.1. Descriptive results 

  

Tables 2 shows summary statistics for farmers’ characteristics by region and by gender of the household 

heads. The mean age was about 54 years which implies that the household heads are likely well 

experienced in farming. About 54% of the household heads did not have post-primary education. A typical 

household had about ten members out of which six were adults. About 28% of the households had 

institutional support such as social safety net and crop insurance. Most of them perceived that the 

integration of legumes into the maize production system would good for their farms in terms of enhancing 

soil fertility (91%), suppressing weeds (89%), and mitigating crop failure (90%). About 71% of the 

households encountered weather-related shocks such drought, insect pest infestations, and floods at 

least once in the past five cropping seasons, perhaps which resulted in crop failures. A typical farmer 

considered that he/she had encountered crop failure if grain yield decreased by at least 42%.  This high 

threshold level could be associated with the fact that northern Ghana is prone to weather-related shocks. 

The three regions are significantly different from each other in terms of most of the variables considered 

in the descriptive analysis. The three regions are different with respect to most of the variables as 

indicated by the F and Chi-square statistics. However, comparison between household categories in terms 

of gender did not show much variability. In fact, male-headed and female-headed households were 

different only in terms of age of household head, education of household head and household size while 

they are similar in terms of all other variables considered in the analysis.  
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Table 2: Summary statistics (percent, mean, and std dev.) of farm households by region and gender 

 
 Regions  F 

value/Chi-

sq. value 

Gender of Household Head Total 

NR UWR UER  MHHs FHHs t-value / Chi-

sq. value 

Age of household head  54.78 

(13.51) 

51.95 

(14.83) 

53.65 

(15.61) 

2.73* 52.81 

(14.18) 

59.79 

(14.58) 

-4.13*** 53.61 

(14.39)  

HH head has no post-primary education  89% 85% 69% 25.01 83% 93% 4.75** 84% 

Number of adults in a HH  6.73 

(3.60) 

5.40 

(2.38) 

4.79    

(1.78) 

25.09*** 6.00 

(3.02) 

5.40 

(3.31 

1.66* 5.93 

(3.06) 

Number of children in a HH   4.6  

(3.35) 

3.20 

(2.01)  

2.05     

(1.65) 

46.40*** 3.78 

(2.79) 

2.96  

(3.36) 

2.40** 3.68         

(2.89) 

Total number of HH members 11.35 

(6.26) 

8.60 

(3.36) 

6.84    

(2.59) 

45.86*** 9.78 

(5.04) 

8.36 

(6.17) 

2.30** 9.62 

(5.20) 

Did your HH have crop insurance 

coverage in the last cropping season? 

1% 2% 11% 28.06*** 3% 5% 1.02 3% 

Did your HH participate in contract 

farming in the last cropping season?  

24% 5% 13% 40.76*** 15% 16% 0.33 15% 

Did you receive support from social 

safety net programs in the past 12 

months? 

22% 18% 61% 84.40*** 27% 30% 0.29 28% 
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Are you aware of the potential of MLI in 

soil fertility improvement?  

95% 88% 95% 24.21*** 91% 91% 0.02 91% 

Are you aware of the potential of MLI in 

reducing weed infestation?  

89% 83% 93% 2.91 89% 89% 0.01 89% 

Are you aware of the potential of MLI in 

mitigating total crop failure? 

90% 84% 99% 19.85*** 90% 93% 0.70 90% 

Did your HH experience drought, flood, 

etc.in the past five year? 

78% 55% 84% 49.50*** 71% 74% 0.28 71% 

How much yield loss of a HH’s usual 

yield (%) in a normal year is perceived to 

be a crop failure?  

44.95 

(0.32) 

43.43 

(0.33) 

29.92 

(0.25) 

71.28*** 42.08 

(13.36) 

39.81 

(12.94) 

1.43 41.82 

(13.20) 

Did your HH experience a crop failure in 

the past five years?  

96% 88% 92% 12.24*** 92% 93% 0.02 92% 

Are you aware of biofortified maize 

cultivars?  

53% 22% 69% 87.46*** 45% 45% 0.02 45% 

Did your HH cultivate a biofortified 

maize in the last cropping season?  

20% 12% 36% 29.14*** 20% 19% 0.00 20% 

Did your HH consume biofortified maize 

in the past 12 months? 

26% 12% 42% 40.30*** 23% 29% 0.07 24% 

N 336 242 121  619 80  699 

 Notes: HH= household head, MHHs = Male-headed households, FHHs = Female-headed households, MLI = maize-legume intercropping 

*,**,*** show statistical significance at 10, 5%, and 1% levels 

 Figures in parenthesis are standard deviations for continuous variables. t-values are for continuous variables only. 
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3.2. Comparison of the DCE models 

 

The results of the three models are displayed in Table 3. The Wald Chi-square is highly significant in all the 

models implying that the attributes considered for the analysis taken together are important to explain 

the choice behavior of farmers regarding sustainable intensification of maize production. Most of the 

parameters show consistency in signs across the three models suggesting that any of the models can be 

used to explain the choice behaviors of the farmers although the robustness of the results may vary among 

the models. The LCL model has two latent classes having 57% of the respondents in LCL1 and the 

remaining in LCL2. The significance of the standard deviations in the MXL model and the differences 

observed between the two latent classes in the LCL model show that there exists preference 

heterogeneity among the target population with respect to the selected technology attributes which, in 

turn, implies that the MXL and the LCL models are superior to the MNL model in explaining farmers’  

preferences.  

 

The estimated model parameters showed some similarities and differences between the MXL model and 

the LCL model. Most of the parameters showed consistent signs across the two models. Moreover, most 

of the significant variables in the MXL model were also significant in the LCL model. However, there were 

substantial differences between the two models as well. The MXL model showed that farmers were 

heterogenous in preferences with respect to maize yield, risk, soil fertility, nutrition, and legume yield. 

However, the LCL model showed that the preference of farmers in the two latent classes varied in maize 

yield, positive soil fertility effect, and labor requirement.  

 

 

Table 3: Parameters estimates of MNL, MXL, and LCL Models 

 MNL MXL LCL 

  Mean Std. Dev. LCL1 LCL2 

Class probability - -  57% 43% 

ASC -3.6844*** 

(0.4301) 

-4.6763*** 

(0.5589) 
 

-3.3015*** 

(1.1640) 

-4.4306*** 

(0.6833) 

Maize yield 0.0991*** 

(0.0065) 

0.1458*** 

(0.0133) 

0.1045*** 

(0.0148) 

0.2076*** 

(0.0431) 

0.0282 

(0.0196) 

Legume yield 0.0681*** 

(0.0144) 

0.0897*** 

(0.0200) 

0.1503*** 

(0.0463) 

0.1276** 

(0.0569) 

0.0584* 

(0.0302) 
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Notes: ***, **, and * denote any variable significant at 1%, 5%, and 10% levels respectively. Standard 

errors reported between parentheses. 

 

 

The kernel density estimator of the ratios of the two models is displayed in Figures A2a-c in the annex. It 

shows that the distribution concentrates around one for the two hypothetical options associated with 

new practices (option A, option B6), implying that the two models are not different in terms of predicting 

choice probabilities (Figure A2a and A2b). However, the MXL predicted larger choice probabilities relative 

to LCL for the opt-out option (Figure A2c). The two models are similar in terms of the overall prediction 

success which is about 30%. The AIC based test as proposed by Ben-Akiva and Swait (1986) for non-nested 

choice model show that the MXL model has superior performance to the LCL model.  Overall, taking 

together the outcomes of the above comparison, we focus on the results of the MXL model in our result 

presentation.  

 

 
6 Since our choice experiment is not labelled, the results do not have any intuitive interpretation.  

Risk  -0.2500*** 

(0.0243) 

-0.3826*** 

(0.0435) 

0.3266*** 

(0.0596) 

-0.3819*** 

(0.1061) 

-0.3162*** 

(0.0495) 

Positive soil fertility 

effect  

0.6266*** 

(0.0712) 

0.8014*** 

(0.1084) 

0.5024** 

(0.2020) 

-0.5259 

(0.4988) 

1.2034*** 

(0.1947) 

Neutral soil fertility 

effect 

0.1782** 

(0.0791) 

0.2968*** 

(0.1152) 

0.0203 

(0.0622) 

-1.5661** 

(0.7805) 

1.0311*** 

(0.2589) 

High nutritional value 1.2570*** 

(0.0896) 

1.8506*** 

(0.1633) 

1.3257*** 

(0.1573) 

1.9530*** 

(0.6589) 

1.6909*** 

(0.2276) 

Labor requirement 0.0027 

(0.0020) 

-0.0044 

(0.0032) 

0.0160 

(0.0088) 

0.0198** 

(0.0091) 

-0.0116** 

(0.0047) 

Cash requirement -0.0006*** 

(0.0001) 

-0.0009*** 

(0.0002) 

0.0004 

(0.0003) 
-0.0024*** 

(0.0009) 

-0.0006*** 

(0.0002) 

Wald Chi-sq (9) 1263.7*** 269.6*** 

-1805.6 

3645.1 

3771.6 

12,582 

 

-1811.0 

3660.1 

3801.4 

12,582 

Loglikelihood -1847.5 

AIC 3713.0 

BIC 3780.0 

N 12,582 
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The self-reported information on ANA showed that about 29% of the farmers ignored at least one of the 

attributes during the choice experiment suggesting that ANA should be taken care of in our analysis (see  

Table A3). Therefore, we ran two additional MXL models (conventional ANA and validation ANA models) 

to control for ANA. However, the ANA models were not found to be superior to the standard MXL models 

as indicated by AIC and BIC values suggesting that the standard MXL model was robust to possible ANA 

bias and its results are valid (see Table A4). Most of the ignored attributes in the validation model are 

significant which indicates that respondents did not totally ignore the attributes but likely attached lower 

weights in their choice behavior.  

 

 

3.3. MXL results 

 

The opt-out (ASC) coefficient is negative, which means that, on average, farmers perceived that they 

would derive utility from improvements in the existing maize production practices. Except the labor 

requirement attribute all attributes considered in the model are significant and with expected signs which 

shows that they are important factors in influencing farmers’ decisions regaring sustainable intensification 

of maize production. Farmers paid much attention to the nutritional outcomes as indicated by the 

relatively large coefficient associated with high nutritional value. In fact, farmers gave weight to 

nutritional attribute about ten times more than they did to maize grain yield attribute and about twice 

more than they did to the soil fertility attribute. Maize grain yield received more weight than legume yield. 

Farmers preferred technologies having either positive or neutral soil fertility effects to technologies having 

negative soil fertility effects. However, a technology which had a positive soil fertility effects was valued 

by the farmers about four times more than a technology which had a neutral soil fertility effects. Risk of 

crop failure is the most important attribute which negatively affected the potential adoption of new maize 

production technologies. It negatively affected technology adoption choices much more than the cash 

requirement attribute, which suggests that while the farmers have positive preferences for high yield, 

they are very much interested in more stable yields. Except for labor and cash requirements, there is 

substantial heterogeneity in preferences for the attributes.     

 

 

  



17 
 

 

 

We conditioned the choice probabilities with a region-specific variable to explore spatial heterogeneity of 

farmer’s preferences for technology attributes. The results show that there are considerable similarities 

and differences among the three regions in terms of preferences for SI technologies (Table 4). High labor 

requirement reduced the chance of maize production technology to be chosen by farmers in NR. However, 

high labor requirement was desirable in UER while this attribute was not an important evaluation criterion 

in UWR. The positive coefficient associated with labor requirement in UER could be due to the relatively 

high population density in this region which may have induced labor abundance (MoFA 2016). Farmers in 

NR and UWR preferred technologies having positive or neutral effects on soil fertility while farmers in UER 

give attention only to those technologies having positive effects on soil fertility. While legume yield was 

associated with positive preferences in all regions, the relative importance of legumes over maize was 

lower in NR than UWR as well as UER. Again, the difference could be associated with the heterogeneity 

between the regions in terms of soil fertility and other agroecological factors. While nutritional value of 

output received the highest weight among all other attributes in all regions, farmers in NR attached 

relatively higher value on nutrition as compared to farmers in UWR and UER. While farmers in all regions 

preferred technologies producing stable yields, those in UWR were more willing to accept yield reduction 

for more stable yield compared to farmers in NR and UER. Across the three regions, cash requirement had 

a significant negative effect on the adoption of new maize-based intensification options, which is 

consistent with a priori expectations. The estimated standard deviations show that farmers in NR were 

the most heterogeneous in preferences; they had heterogeneous preferences with respect to all, but the 

neutral soil fertility effect attribute. On the contrary, farmers in UER showed homogenous preferences 

with respect to most of the attributes. Farmers in the UWR had modest preference heterogeneity.  

 

 

Table 4: Parameters estimates of MXL model, by region 

 Northern Upper West Upper East 

 Mean Std. Dev. Mean Std. Dev. Mean Std. Dev. 

ASC -4.455*** 

(0.746) 

 -18.627*** 

(0.487) 
 

-2.836* 

(1.504) 
 

Maize yield 0.157*** 

(0.024) 

0.102*** 

(0.027) 

0.116*** 

(0.019) 

0.113*** 

(0.021) 

0.206*** 

(0.034) 

0.077*  

(0.046) 

Legume yield 0.039 

(0.030) 

0.170** 

(0.086) 

0.104*** 

(0.032) 

0.136* 

(0.071) 

0.195*** 

(0.051) 

0.094     

(0.145) 

Risk  -0.427*** 

(0.079) 

0.382*** 

(0.104) 

-0.358*** 

(0.063) 

0.317*** 

(0.090) 

-0.422*** 

(0.121) 

0.253     

(0.172) 
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Notes:  

 Asterisks ***, **, and * denote any variable significant at 1%, 5%, and 10% levels respectively.  

Standard errors reported between parentheses. 

 

 

We also estimated the MXL model for male-headed and female-headed households separately to capture 

gender differences in terms of technology preferences (Table 5). Most of the attributes are consistent 

with earlier results in terms of statistical significance and directions of relationship with farmers’ choice 

behavior. The ASC is negative and significant for both male-headed and female-headed households which 

indicates that both categories of households would improve their utility by changing their existing 

cropping practices to cropping practices that aligns with the domains of sustainable intensification. There 

are preference heterogeneities among farmers within each household category, but with preference 

heterogeneity for more attributes in the case of male-headed households. While both categories of 

households showed strong positive preferences for maize yield and legume yield, the relative importance 

of legumes over maize was much higher in female-headed households. Male-headed households showed 

strong positive preferences for technologies having either positive or neutral soil fertility effects while 

female-headed households showed weakly significant but positive preferences for technologies having 

positive soil fertility effects only. Female-headed households paid more value to the nutrition outcomes 

of a technology than to the soil fertility outcomes and this was supported by the much higher weight they 

Positive soil 

fertility effect  

0.641*** 

(0.173) 

0.625* 

(0.323) 

0.938*** 

(0.170) 

0.277 

(0.344) 

0.885*** 

(0.304) 

0.645     

(0.407) 

Neutral soil 

fertility effect 

0.400** 

(0.193) 

0.086 

(0.145) 

0.430** 

(0.179) 

-0.202 

(0.626) 

-0.234 

(0.332) 

0.049     

(0.091) 

High nutritional 

value 

2.157*** 

(0.297) 

1.666*** 

(0.300) 

1.541*** 

(0.217) 

-0.945*** 

(0.268) 

1.592*** 

(0.424) 

0.779*  

(0.463) 

Labor 

requirement 

-0.014** 

(0.006) 

0.027** 

(0.011) 

-0.004 

(0.005) 

-0.001 

(0.004) 

0.014* 

(0.008) 

0.002     

(0.007) 

Cash 

requirement 

-0.001** 

(0.0003) 

0.0004 

(0.0007) 

-0.001*** 

(0.0003) 

-0.0003 

(0.0009) 

-0.002*** 

(0.001) 

0.0002 

(0.0003) 

Wald Chi-sq (9) 96.84***  3149.88  51.97***  

Loglikelihood -875.65  -642.43  -254.44 

AIC 1785.3  1318.85  542.88 

BIC 1899.3  1427.30  639.54 

N 6048  4356  2178 



19 
 

placed on legumes relative to the male-headed households. Both groups required higher yield and lower 

risk to adopt new maize-based intensification options. However,  in terms of maize yield-risk tradeoffs, 

the male-headed households were more willing to accept a yield reduction for a  more stable yield 

compared with the female-headed households, i.e. they required a much higher expected maize yield to 

adopt new sustainable intensification options associated with more risk. This result is quite surprising 

given that male-headed households are often considered as having more access and control over 

resources, which allows them to take on more risky investments.  

 

Table 5: Parameters estimates of MXL, by gender category 

 Male-headed households Female-headed households 

 Mean Std. Dev. Mean Std. Dev. 

ASC -4.6786*** 

(0.6247) 

 -5.7409** 

(2.5110) 
 

Maize yield 0.1440*** 

(0.0154) 

0.1043*** 

(0.0170) 

0.2432*** 

(0.0897) 

0.1490  

(0.0944) 

Legume yield 0.0877*** 

(0.0212) 

-0.1047 

(0.0641) 

0.1694 (0.1038) 0.5624** 

(0.2665) 

Risk  -0.3889*** 

(0.0507) 

-0.3278*** 

(0.0707) 

-0.4972** 

(0.2278) 

0.5099** 

(0.2341) 

Positive soil fertility effect  0.8219*** 

(0.1166) 

0.4349* 

(0.2329) 

0.8858* 

(0.5057) 

1.3768  

(0.8941) 

Neutral soil fertility effect 0.3768*** 

(0.1266) 

0.0362 

(0.1458) 

-0.3618 

(0.5055) 

-0.2420 

(1.1395) 

High nutritional value 1.8220*** 

(0.1740) 

1.3161*** 

(0.1757) 

2.3709*** 

(0.7102) 

-1.5858* 

(0.9290) 

Labor requirement -0.0045 

(0.0035) 

-0.0201** 

(0.0087) 

-0.0097 

(0.0119) 

-0.0054 

(0.0068) 

Cash requirement -0.0006*** 

(0.0002) 

0.0001 

(0.0003) 

-0.0044*** 

(0.0014) 

-0.0006 

(0.0010) 

Wald Chi-sq (9) 204.92***  17.24**  

Loglikelihood -1600.59  -192.21  

AIC 3235.19  418.41  

BIC 3359.60  508.05  
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Notes: ***, **, and * denote any variable significant at 1%, 5%, and 10% levels respectively.  

Standard errors reported between parentheses. 

 

 

4. Discussion and policy implications of findings 

Our findings show that farmers are favorably disposed to maize-based cropping systems that align with 

the domains of sustainable intensification over their current cropping practices. This lends credence to 

the emerging research, development and policy interests on sustainable intensification of cropping 

systems. Farmers place value on high yield, a component of the productivity domain. Their choices are 

consistent across gender categories and regions, and are also consistent with the findings of empirical 

studies that show that maize farmers strongly consider high yield technological trait in considering 

adoption of new technologies (Ortega et al. 2016, Kassie et al. 2017, Silberg et al. 2020). This could be 

because of the relatively low average actual maize yield as compared to the potential yield (MoFA 2016). 

Farmers place high value on legume yield as indicated by the positive coefficients corresponding to the 

legume yield attribute. This could be because legumes are commonly integrated into the maize system in 

Northern Ghana and hence the findings suggest yield improvement strategies should consider both crops. 

However, our results show that farmers place higher value on maize yield than legume yield which is 

consistent with the findings of Ortega et al. (2016) and Waldman et al. (2017), but at variance with the 

findings of Silberg et al. (2020).  

 

Declining soil fertility is a major bottleneck of crop production in Ghana (Bationo et al 2018). The 

government of Ghana has been subsidizing industrial fertilizers for many years so that farmers increase 

application rates. However, the subsidy program has not been effective and much of the production 

growth still comes from expansion of farmland (Fearon et al. 2015). This has raised sustainability concerns 

on the subsidy programs. The findings of this study suggests that a more integrated approach could bring 

a more sustainable outcome in maize production than focusing merely on chemical fertilizers. The 

integration of legumes into the maize system, as preferred by the farmers, can have both productivity and 

environmental implications raising the sustainability scores of the farming ecology. Our result supports 

earlier studies which show that farmers consider soil fertility as an important factor in their adoption 

decisions (Waldman et al. 2017, Jourdain et al. 2020, Silberg et al. 2020). There is slight difference between 

women and men in terms of the soil fertility attribute. Women showed interest in technologies having 

positive soil fertility effects while male farmers showed interest in technologies havening at least neutral 

soil fertility effect. This could be because women in general cultivate less fertile plots and hence, they may 

perceive that only technologies having positive soil fertility effects would be useful in their context.  

 

We found that farmers place high value to technologies which reduce risk of crop failure. This could be 

because of the high vulnerability of farming systems in Northern Ghana to weather-related shocks. Studies 

in Northern Ghana show that integrating legumes into maize cultivation through intercropping or rotation 

N 11,142  1,440  
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with legumes can reduce the risk of encountering crop failure and financial losses (Kermah et al. 2017, 

Abdul Rahman, et al. 2020). This is because of the difference between legumes and maize in terms of 

stress tolerance levels and the synergy created between them in terms of agroecological processes such 

as soil nitrogen fixation and soil moisture conservation (Kermah et al. 2017, Silberg et al. 2019, Vanlauwe 

et al. 2019). Risk can also be reduced through genetic means by introducing stress-tolerant varieties and 

early maturing varieties. In Ghana, varieties such as Omankwa, Aburohemaa, and Abontem are 

characterized as drought- and striga-tolerant7 (DTMA 2013), but they are not widely cultivated (Poku et 

al. 2018). Furthermore, the introduction of weather-index crop insurance schemes which are tailored to 

smallholder farmers can enhance the risk-aversion level of the farmers thereby enhancing their 

willingness to try diverse technologies. 

 

We included two indicators to capture the economic dimension of sustainability: i.e. cash requirement 

and labor requirement. Farmers were sensitive to cash outlays and, ceteris paribus, select technologies 

having lower cash requirement. This was expected given the severe cash constraint among most 

smallholder farmers and their limited access to institutional credit (Awunyo-Vitor and Al-Hassan 2014, 

Denkyirah et al. 2016). Labor requirement of the technology did not affect the preferences of farmers for 

intensification technologies in the pooled sample. However, a closer look at the data showed that 

preferences varied by region which could be because of the difference in labor availability between 

regions. In Northern and Upper West regions, which are characterized by low population density, farmers 

were interested in labor-saving technologies. On the contrary, in Upper East Region, where population 

density is relatively high and labor is cheaply available, farmers were willing to adopt labor-intensive 

technologies. This shows that sustainability concerns with respect to labor are location specific, which can 

inform better targeting of labor-intensive (or saving) technologies to meet the needs of various locations.  

 

Positive nutritional gain was an aspect that farmers strongly considered in technology adoption. While 

both women and men prefer technologies with positive nutritional outcome, women placed higher value 

to such technologies than men which could be related to their responsibility to feed their households. 

Diversification of cropping systems is one way of addressing the nutritional needs of smallholder farmers. 

Studies in northern Ghana indicate that households who have diversified their cropping system enjoy 

better nutrition than those who exercise specialized cropping (Signorelli et al. 2017, Bellon et al. 2020). 

This suggests that promoting diversified production systems in lieu of specialized ones can be a suitable 

policy intervention to enhance nutrition. Biofortification is another way of improving household nutrition 

and can be suitable for households who have limited land access to meet their nutrition needs through 

crop diversification. In Ghana, quality protein maize (QPM) is produced but not all households have access 

to the seeds. Our analysis showed that about 45% of the sample farmers were aware of biofortified maize 

but only about 20% were aware of cultivating it. Therefore, improving the access of the farmers to seeds 

of existing QPM varieties and introducing more biofortified varieties is necessary to improve nutrition 

among the smallholder farmers.  

 
7 Obatanpa variety is susceptible to Striga (DTMA 2013).  
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In summary, the following messages can be drawn from our findings. First, sustainable intensification is 

not just a fad within the academic and research circles, but it is something that farmers are interested in. 

Second, while farmers value all of the sustainable intensification attributes considered in the study, they 

are not homogennuous in their preferences but vary in the pooled sample and in the sub-samples 

between regions and gender categories suggesting that development actions are more likely to succeed 

when they consider such heterogeneities and adapt to local conditions. Third, it is useful to adopt 

multidimensional assessment frameworks to identify best-fitting sustainable intensification practices in 

lieu of the conventional technology assessment approaches which emphasize a single attribute at a time. 

In this regard, the SIAF can be used to set evaluation criteria in designing and testing technologies (or a 

mix of technologies) having high probabilities of adoption among smallholder farmers.  
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Annexes 
 
A1. Sampling of Ghana Africa RISING Baseline Survey 
 

The survey was conducted in May 2014 to establish a baseline for the project “Africa, Research 

In Sustainable Intensification for the Next Generation-Africa RISING”. The survey covered 25 

project intervention communities and 25 control communities. Sampling of the survey 

households took two steps. The first step of the sampling strategy consisted in the stratification of the 

communities on the lines of the development domains at the district level. The second stage randomly 

selected households within each community. In particular, a constant number of control households 

(n=20) was randomly selected in each of the 25 control communities for a total of 500 control 

households. In regard to the 25 intervention communities, the sampling strategy was to randomly select 

a constant number of households (n=8) not directly benefitting from AR intervention and a constant 

number of 6 households interested in joining the program in 2014. Finally, 462 households that directly 

benefitted from the AR 2013 program were selected to participate to the survey. The total sample size 

1,284 households, of which 784 households in intervention communities and 500 in control 

communities. Household interviews were guided by a structured questionnaire which was 

administered using Computer Assisted Personal Interviewing (CAPI) supported by Survey CTO 

software on tablets. 
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Figure A2: Kernel density estimator of the ratios of LCL and MXL models for three technology options 

 

Table A3: Self-reported information on ANA – serial stated ANA 

No. of ignored 

attributes 

Share of farmers (%) Ignored attributes Share of farmers (%) 

0 71.2 Maize yield  0.1 

1 13.5 Legume yield 9.3 

2 10.0 Risk 12.4 

3 4.9 Soil fertility effect 2.6 

4 0.1 Nutritional value 2.9 

5 0.3 Labor requirement 17.3 

  Cash requirement  5.4 

 

 

Table A4: Results of MXL models showing farmers’ preferences for sustainable intensification controlling 

for ANA 

 Conventional ANA Validation ANA 

  Considered attributes Ignored attributes 

 Mean Std. Dev. Mean Std. Dev. Mean Std. Dev. 

ASC -4.516*** 

(0.540) 

 -4.696*** 

(0.564) 

   

Maize yield 0.138***  

(0.011)   

0.010*** 

(0.014) 

0.147*** 

(0.013) 

0.104*** 

(0.015) 

0.356*** 

(0.042) 

0.0001 

(0.002) 

Legume yield 0.082*** 

(0.020)       

0.141*** 

(0.047) 

0.085*** 

(0.021) 

0.151*** 

(0.049) 

0.160** 

(0.069) 

0.137 

(0.199) 

Risk -0.390*** 

(0.041)     

0.323*** 

(0.058) 

-0.416*** 

(0.047) 

0.349*** 

(0.061) 

-0.182** 

(0.078) 

0.028 

(0.115) 

Positive soil fertility 

effect 

0.852*** 

(0.106) 

0.511*** 

(0.174) 

0.856*** 

(0.111) 

0.586*** 

(0.168) 

-0.104 

(0.452) 

0.020 

(0.025) 

Neutral soil fertility 

effect 

0.327*** 

(0.114) 

0.036 

(0.209) 

0.337*** 

(0.121) 

0.054 

(0.099) 

0.013 

(0.419) 

0.024 

(0.032) 

High nutritional value 1.906*** 

(0.152) 

1.326*** 

(0.150) 

1.862*** 

(0.161) 

1.323*** 

(0.158) 

2.153*** 

(0.784) 

1.714** 

(0.869) 

Labor requirement -0.004 

(0.003) 

0.0001 

(0.003) 

-0.005 

(0.003) 

0.002 

(0.016) 

-0.001 

(0.007) 

0.037*** 

(0.010) 
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Cash requirement -0.001*** 

(0.0002) 

 -0.001*** 

(0.0002) 

 0.002** 

(0.0007) 

 

N 12582 12582 

Log likelihood -1811.96 -1790.03 

AIC 3655.90 3642.10 

BIC 3757.40 3838.60 

Notes: *** and ** denote any variable significant at 1% and 5% levels respectively.  

Standard errors reported between parentheses.  

 

 




