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Abstract 

 Sustainable intensification of agriculture is considered crucial to reconcile the increasing 

demand for food, feed and fibers with the long-term integrity of the ecosystems that are often 

degraded. Innovations such as variable rate application or mechanical (including 

autonomous) weeding are expected to remedy some of these problems, but there is substantial 

uncertainty regarding the context-specific drivers of their adoption. Therefore, this study 

synthesizes the results of past adoption studies for a wide range of innovations around the 

globe. Using multi-level random effects meta regression, we provide mean global estimates 

for 50 commonly used measures used as adoption determinants such as farm size, assistance, 

access to credit. Controlling for study characteristics, remaining heterogeneity in adoption 

determinants is partially explained by innovation traits and socioeconomic context variables 

from secondary data sources. Our results show that land, capital and knowhow are generally 

more important when an innovation uses the respective factor intensively, but this effect is 

reduced when the factor is abundant in the study context. Finally, we present a set of 

guidelines to increase the reach of future adoption studies. 
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1 Introduction 

Innovations in agricultural production are considered crucial solutions to pressing issues such 

as food security, affordable and healthy diets and more sustainable use of natural resources  

(Rockström et al. 2017; Herrero et al. 2020). This study conceptualizes innovations as 

technologies and practices that, when implemented, result in a different production factor 

composition or factor productivity. Positive impacts on productivity and food security have 

been linked to the adoption of agricultural innovations in developing countries (Ogundari 

and Bolarinwa 2018; Stewart, R. et al. 2015; Gollin, Hansen, and Wingender June 2018). Along 

with other innovations under the umbrella of digitalization and smart farming, robots 

performing autonomous interventions have been hypothesized to play an important role in 

what scholars called the next agricultural revolution (Lowenberg-DeBoer 2015; Barrett, H. and 

Rose 2020; Torero 2021). Given the heterogeneous impacts farming innovations had in the past 

(Pingali 2012), a better understanding of the underlying diffusion patterns is needed. But the 

adoption of agricultural innovations by individuals depends on a wide range of interacting 

factors, such as biophysical context, farm structure, decision maker characteristics, technology 

attributes and institutions. Consequently, the literature aiming to disentangle the 

determinants of agricultural innovation adoption is rich in both theoretical and empirical 

studies from all over the world (Feder, Just, and Zilberman 1985; Knowler and Bradshaw 2007; 

Foster and Rosenzweig 2010; Prokopy, L. S. et al. 2019). However, prior reviews have been 

unable to determine an unambiguous direction and magnitude of adoption determinants 

(Knowler and Bradshaw 2007), or do so with limited generalizability in terms of geography 

and types of innovation (Baumgart-Getz, Prokopy, L. S., and Floress, K. 2012; Prokopy, L. S. 

et al. 2019; Shang et al. 2021). One reason for this is that, despite the long tradition of cross-

sectional adoption studies in the socioeconomic literature, there is no unified methodological 

approach regarding data collection, analysis and reporting of results. This has led to a large 

variety of sampling methods, conceptual frameworks that inform variable choices and 

empirical estimation methods, all of which have implications for the validity, generalizability 

and comparability of research findings. While previous reviews have emphasized the 

importance of certain independent variables, there has been little effort to use harmonized 

measurement protocols for better comparability. 

This study exploits the heterogeneity of adoption determinants across a wide range of 

innovations to better understand how determinants differ under the presence of certain traits. 

Adoption of an innovation depends on the innovation characteristics (Rogers 2003), and 



important progress towards understanding the importance of innovation traits has been made 

both theoretically and empirically (Macours 2019; Kuehne et al. 2017). While farm, operator 

and context characteristics are commonly included in adoption studies, innovation traits or 

the perception of such are rare to find in the adoption literature, although there are 

noteworthy examples (Ghimire and Huang 2015; Shiferaw et al. 2015; Fisher and SNAPP 

2014). In addition, few existing quantitative reviews have analyzed the relation between 

innovation traits and the factors that determine their adoption, likely because their focus on a 

subset of innovations did not provide sufficient variation in these traits. In addition to the role 

of innovation traits, this study exploits the variation across space to understand how 

production contexts influence innovation adoption drivers. Even though a number of primary 

studies reports results across countries (Barnes et al. 2019; Sheahan and Barrett, C. B. 2017; 

Dinis et al. 2015), most studies remain specific to the sample population that is socially and 

physically embedded in a small region, state or country. Studies with a large geographic 

coverage can control for unobserved regional effects, but studies covering just a small district 

do not have sufficient heterogeneity across space to allow for generalization of results.  

The Induced Innovation Hypothesis (IIH) first proposed by Hicks (1932) represents a useful 

point of departure for an attempt to generalize from a large number of adoption studies. The 

IIH states that technology adoption occurs to make better use of the relatively more expensive 

production factors. Boserup (1965) described the theory for the context of agriculture and 

Hayami and Ruttan (1971) provided first empirical evidence for a relationship between factor 

abundance and technology biased productivity growth in the United States and Japan. Since 

then, a number of studies have analyzed the IIH in agriculture both empirically and 

theoretically (Turner and Ali 1996; Muyanga and Jayne 2014; Becker and Angulo 2019; Pardey 

et al. 2007). Jayne et al. (2019) and Goldman (1993) theorized the diffusion potential of 

agricultural innovations across two gradients of population density and economic dynamism, 

highlighting the subnational heterogeneity in factor endowments. This study contributes to 

the debate by analyzing the relationship between context-specific production factor 

endowments and the adoption determinants of those innovations that use this production 

factor intensively. Departing from the production factors land, labor, capital, and knowhow, 

a set of propositions was derived, namely: P1) The extent to which the farm size determines 

the adoption of land-intensive innovations is moderated by the relative land-abundancy in 

the study context; P2) The extent to which labor availability determines the adoption of labor-

intensive innovations is moderated by the relative labor-abundancy in the study context; P3) 



The extent to which capital availability determines the adoption of capital-intensive 

innovations is moderated by the relative capital-abundancy in the study context; and P4) The 

extent to which knowhow determines the adoption of knowhow-intensive innovations is 

moderated by the relative knowhow-abundancy in the study context. 

This research has three objectives. First, to provide average magnitude estimates of farm-level 

innovation adoption determinants. Second, to evaluate the effect that selected innovation 

traits and the geographic context have on the adoption determinants. This is achieved by 

decomposing and explaining the variances of aggregated effect sizes using innovation factor 

intensity and geographic factor abundance. Third, to establish an evidence-driven minimum 

standard for future adoption studies with respect to the inclusion and definition of 

independent variables as well as reporting guidelines of research findings. This is done by 

taking stock of the empirical adoption literature in order to identify the most commonly used 

independent variables that are used to explain adoption. In the following section we describe 

the process of identifying and coding primary studies, before specifying the empirical 

framework and secondary data. In Section 3 the results of the meta analysis are presented. 

Section 4 discusses implications and limitations of our research findings, before Section 5 

provides the guidelines for future studies along with concluding remarks. 

2 Materials & Methods 

2.1 Primary data collection 

We closely followed the guidelines for meta-analysis in economics by Havránek et al. (2020). 

For this study, a database containing agricultural innovation adoption determinants from 

prior studies was created in five steps. First, we gathered and assessed eligibility of 1.423 

adoption studies from the reference lists of prior reviews. Second, we followed Grames et al. 

(2019) and used text mining on the eligible studies to derive a data-driven systematic search 

string before retrieved a total of 27.043 peer-reviewed articles from three literature databases, 

namely Web of Knowledge, EBSCOhost and AgEcon. Third, with the support of automation 

tools to prioritize relevant abstracts and titles, we screened all unique records according to the 

eligibility criteria presented in Table 1. We sorted records by the number of eligible studies 

published in the respective journal, and by the number of relevant multi-word expressions in 

the abstract. Furthermore, we prioritized studies from countries with less than five eligible 

studies in an attempt to balance the geographic distribution.  



Table 1: PICOS inclusion criteria 

Item Include Exclusion criteria 

Population Crop farming firms 
and households 

- Purely non-crop farmers, greenhouse operations, 
actors beyond farm gate (processors, consumers...) 
- Aggregated units (e.g. village or municipality) 

Intervention Agricultural 
production 
innovation 

- Program- or group-participation (e.g. 
Certification/ labelling, Conservation schemes, 
Local groups/ cooperatives, market access, 
marketing strategies 
- Exclude irrigation 

Comparison Non-adopters - Estimates are not based on a reference group of 
non-adopters  

Outcome Discrete farm level 
innovation 
adoption levels 

- Continuous outcomes (e.g., intensity of adoption), 
disadoption, ex-ante indicators such as willingness 
to pay/accept or intention to adopt 

Study design Ex-post empirical 
multiple-regression 
analysis 

- purely qualitative assessments, quantitative results 
without measure of uncertainty (e.g. standard error, 
confidence interval, p-value, t-/z-statistic or 
significance codes such as ***) 
- Exclude analysis such as ANOVA, naïve means 
comparison 

 

Fourth, we extracted and coded the results of 475 randomly selected primary studies along 

with meta data into a detailed spreadsheet, following Stanley and Doucouliagos (2012) and 

strongly building upon the work done by Floress, K. M. et al. (2019). Similar to Oca Munguia 

and Llewellyn, R. (2020), we base our analysis on a representative subset of the innovation 

adoption literature. Apart from the estimated adoption coefficients and their precision 

estimates, sample characteristics such as sample size, mean and standard deviation of 

independent variables, distribution of adopters/non-adopters, information about empirical 

specifications (e.g., logit, probit), and dependent variable characteristics (e.g. scale and 

innovation description) were collected. Fifth, we categorized all innovations and adoption 

determinants and extended the work by Floress et al. (2019) by including detailed information 

on measurement units, for example whether farm size was measured as total farm size or area 

cultivated, measured in hectares, acres or a (non-)linear transformation of the same.  

2.2 Effect sizes 

The primary data for this study are estimated log odds ratios of adoption 

determinants, which can be used in meta-analysis without further standardization (Cooper, 

Hedges, and Valentine 2009; Stanley and Doucouliagos 2012). They were directly given as 

estimated beta coefficients by from studies employing logit models and were derived from 



probit model coefficients using a scaling factor (Wooldridge 2013). The comparison of 

coefficients from non-linear probability models such and logit and probit is not always 

appropriate because of a sample-specific scaling factor, and multiple (partial) standardization 

methods have been proposed (Allison 1999; Breen, Holm, and Karlson 2014; Breen, Karlson, 

and Holm 2018). However, after confirming a strong correlation between raw and partially 

standardized coefficients for a small subset where standardization was possible, we rely on 

the raw log odds ratios, since we are specifically interested in unobserved context 

characteristics, so the presence of a sample-dependent scaling factor is desired in our analysis 

(Buis 2017). As a measure of precision, this study used the variance of the log odds ratio, 

calculated from the standard errors, t-statistics, p-values or p-significance thresholds 

(typically coded as stars) depending on availability. 

Meta-regression relies on the assumption that outcomes (effects) are measured in a 

homogeneous manner, so one cannot directly aggregate, say, the effect of an additional year 

of education with the effect of having obtained a high school degree or the (frequently used) 

natural logarithm of years of education. First, because the scales are different (continuous 

versus binary). Second, because the measurement units are different, and in this example not 

even a linear scalar of the other. Nevertheless, some scales, measures and units are commonly 

used and can be compared, when properly controlling for these differences (Stanley and 

Doucouliagos 2012). For example, whether the measurement unit of total farm size was 

hectares or acres should relate to the true effect size by a fixed scalar. Similarly, capital 

availability measured as “access” to formal credit versus the slightly more precise “use” of 

formal credit (both binary variables), can be expected to be highly correlated. On the other 

hand, this study refrains from combining effect sizes relating to different scales or 

measurement units that are not used by a sufficiently large amount of studies. Effects relating 

to continuous variables that have been recoded into discrete variables (for example: age below 

25, 25, 50 years with respective dummy-variables), were not considered. Finally, by selecting 

only effects that relate to categorical adoption outcomes (binary or multivariate with a 

reference group of non-adopters), this study makes sure that the scale of the dependent 

variable in the primary studies is consistent. This implies excluding linear probability models, 

tobit specifications and second stage (i.e. Heckman or double hurdle) intensity of adoption 

models as well as parametric duration models of innovation adoption. Due to these thorough 

restrictions, the original number of observations is reduced by more than 70%. We only 

analyzed determinants with a minimum of twenty effect sizes from at least five different 



studies representing at least three different innovations. This approach of not analyzing rarely 

reported measures was taken to reduce the potential for false interpretations. An extended 

PRISMA diagram (Page et al. 2020) with the number of studies that were excluded at each 

stage of the screening process along with the filtering process of comparable effect sizes is 

presented in Figure 1. 

 

Figure 1: Extended PRISMA diagram of included studies and effect sizes 

2.3 Empirical Framework 

2.3.1 Aggregation of dependent effect sizes 

When primary studies contribute several effects for the same outcome, as a result of multiple 

model specifications, such effect sizes can be expected to be strongly correlated and would 

bias the overall estimate towards studies that report many model specifications. To avoid this 

source of bias, this study aggregated within-study observations of the same effect for the same 

innovation category along with their variances into a composite effect size assuming a high 

correlation of 0.9 (Borenstein 2009; Hoyt and Del Re 2018). We used the log odds ratios as the 

outcome measure and fitted a multi-level random effects model to the data to account for 

different sources of heterogeneity (Borenstein et al. 2009). The random effects model assumes 

that there is a distribution of true effect sizes, from which each study may deviate not only by 

its sampling error, but also via a study-specific random effect. The resulting distribution of 

effects has a variance 𝜏2, which we estimated using the restricted maximum-likelihood 

estimator (Viechtbauer 2005). A second source of bias may occur, when studies provide 

multiple composite effect sizes relating to the adoption of several different innovations. Since 

the adopters are typically compared to the same (or at least strongly overlapping) group of 

non-adopters, the sampling errors within a study are no longer independent (Cheung 2015). 



We used the robust variance estimation method (Hedges, Tipton, and Johnson 2010; Tanner-

Smith, Tipton, and Polanin 2016), assuming a correlation of 0.3 between observations and of 

0.9 for estimates from different model specifications relating to the same innovation within 

studies. The multi-level random effects model for multiple correlated observations within a 

study is given by Hedges, Tipton, and Johnson (2010) 

𝑦𝑖𝑗 = 𝛽0 + 𝑢𝑗 + 𝑒𝑖𝑗 (1) 

Where 𝑦𝑖𝑗 is the ith effect size (innovation) in study j (i=1…m, j=1…k),  𝛽0 is the average 

population effect with a study-level random effect with variance 𝜏2 (between study variance) 

and 𝑒𝑖𝑗 are the known variances of the respective effect sizes. The inverse variance weights to 

aggregate correlated effect sizes are given by Hedges, Tipton, and Johnson (2010) as 

𝑤𝑖𝑗 =
1

𝑔𝑗(𝑣𝑗 + 𝜏2)
 

(2) 

Where 𝑣𝑗 is the mean of the within-study variances for effect sizes in study j and g is the 

number of effect sizes in study j. 

2.3.2 Induced Innovation: meta-regression framework 

To test the propositions outlined in Section 1, interaction terms between the country- and time-

specific factor endowments and innovation-specific factor intensities were used. Table 2 

provides an overview of the dependent variables (adoption determinants), the factor 

intensities assigned as binary variables to each innovation and the factor abundancy proxies 

used in the analysis. For the binary trait-indicators, we developed a coding scheme with 

predefined criteria to assign factor intensities. Four reviewers independently assigned all 

innovation traits to all innovations based on the coding scheme, reaching a final inter-coder 

agreement of 96% (see SI for further details). 

In the first step, mixed-effects models without intercept including fixed effects for the 

innovation traits were estimated to explain factor-related differences between innovations. To 

reduce unobserved variable bias arising from a given study context, random effects were 

estimated for each innovation within each study. The estimated model was 

𝑦𝑖𝑗 = 𝛽0𝑇𝑖𝑗 + 𝑢𝑗 + 𝑒𝑖𝑗 (3) 

 

Where 𝑇 is a dummy variable taking the value of one if the factor of interest is intensively 

used and zero otherwise (see Table 2 for details), 𝛽 is the estimated intercept for the 



innovations where factor T is intensively used (i.e. equal to one), 𝑢𝑗 are study-level fixed 

effects and 𝑒𝑖𝑗 innovation-level random effects within each study. 

In the second step, a set of moderators was included to explain between-study variation across 

countries. The variance term still contained study-level random effects, but the innovation-

level random effects were omitted since these effects are expected to be explained by the 

moderators. The model can be written as 

𝑦𝑖𝑗 = 𝛽0 + 𝛽1𝑇𝑖𝑗 + 𝛽2𝑋𝑐𝑜𝑢𝑛𝑡𝑟𝑦 + 𝛽3𝑋𝑐𝑜𝑢𝑛𝑡𝑟𝑦 ∗ 𝑇𝑖𝑗 + 𝛽4𝑋𝑐𝑜𝑛𝑡𝑟𝑜𝑙 + 𝑢𝑗 + 𝑒𝑖𝑗 (4) 

Where 𝛽0 is an intercept, 𝛽1 the estimated coefficient for the factor intensity dummy T, 𝛽2 the 

coefficients for country-level moderator variables 𝑋𝑐𝑜𝑢𝑛𝑡𝑟𝑦 (factor abundances), 𝛽3the 

coefficient of the interaction between factor abundance and factor intensity, 𝛽4 the coefficients 

for additional control variables 𝑋𝑐𝑜𝑛𝑡𝑟𝑜𝑙, 𝑢𝑗 and 𝑒𝑖𝑗 are study- and observation-level random 

effects.  

2.3.3 Robustness checks and publication bias assessment 
The aggregated effect was considered significant when its estimated 95% confidence interval 

did not include zero. To better interpret the magnitude, the aggregated log odds ratios were 

transformed to odds ratios. In the random effects model, true population effects may differ 

even in the absence of sampling error. We therefore tested within each outcome, whether the 

effect sizes belong to different populations by testing the significance of the Q statistic using 

a 𝜒2 distribution (Hedges and Olkin 1985). Following the approach of including the standard 

error of the effect size as a predictor by Habeck and Schultz (2015), we tested for the presence 

of publication bias using Egger’s regression test with a significance threshold of p=0.10 (Egger, 

M. et al. 1997; Sterne and Egger, M. 2005). Results of all regressions after excluding influential 

observations are reported as robustness checks. Potentially influential observations were 

identified using Cook’s distances; Studies with a Cook’s distance larger than four standard 

deviations are considered to be influential. We tested whether results were sensitive to the 

choice of context-indicator by replacing the context moderators in an alternative model 

specification.  

The analysis was conducted using the metafor package (Viechtbauer 2010) and clubSandwich 

package (Pustejovsky 2020) for R (R Core Team 2020). Further information including a full list 

of included studies, summary statistics, variable descriptions, robustness checks, and 

publication bias assessment is available as supplementary material upon request. 



Table 2: Definition of dependent and independent variables 

Dependent variables Independent variables 

Adoption 
determinant 

Scale & measuring units Innovation factor intensity Geographic factor 
abundancea 

Land Continuous variables: hectares or 
acres of total farm size or area under 
cultivation 

Land intensity (i.e. 1 for contour farming, buffer strips, 
agroforestry, conservation practices, organic farming, 0 for all 
other) 

Log of Land abundance 
(hectares of cropland 
equivalent per worker)  

Labor Continuous variables: number of 
women, men, adults or household 
members 

Labor intensity (i.e. 1 for permanent cover, contour farming, 
buffer strips, agroforestry, conservation practices, fertilizer, 
non-chemical pest control, nutrient intensity optimization, 
organic farming, soil analysis, 0 for all other) 

Labor abundance (workers 
per hectare of cropland 
equivalent) 

Capital Binary variables: access or use of 
formal credit 

Capital intensity (i.e. 1 for buffer strips, agroforestry, fertilizer, 
non-chemical pest control, chemical pest control, soil analysis, 
mechanization, precision farming analysis support, precision 
farming interventions, improved seeds, GMOs, crop insurance, 
0 for all other) 

Log of Capital abundance 
(value of machinery and 
inputs per hectare of 
cropland equivalents) 

Knowhow Binary variables: access and use of 
extension services, consultants or 
agricultural trainings 

Knowhow intensity (i.e. 1 for permanent cover, agroforestry, 
reduced tillage, conservation practices, non-chemical pest 
control, nutrient intensity optimization, chemical pest control, 
organic farming, soil analysis, analysis support for precision 
farming, contract farming, crop insurance, 0 for all other)  

Human capital abundance 
(Government Expenditure 
On Education, Total (% Of 
GDP)) 

 

a Country-level indicators were obtained for the year of data collection of the primary study. Land-, labor- and capital-abundance was obtained 

from Fuglie (2012) and FAO (2020), while Government Expenditure On Education, Total (% Of GDP) stem from The World Bank (2020).



3 Results 

The database query resulted in 27043 peer-reviewed articles. Due to the large number of 

studies, 13276 publications in journals from disciplines other than social and agricultural 

science were filtered out. In addition, 1423 studies were identified from other sources, 

primarily from prior reviews. After removing duplicates, 13920 studies were included for 

abstract screening. Based on abstract, 1495 were found eligible. Due to the large number of 

studies, a non-random subset of studies was selected for fulltext information retrieval. 

Journals were sorted by the frequency of studies and full-text information retrieval was 

conducted prioritizing journals with high numbers of relevant publications. Complementary, 

publications from countries with few included studies were purposefully prioritized. A total 

of 400 studies were excluded based on the full text. 

This study synthesizes a total of 4607 estimates beta coefficients belonging to 21 different 

innovation adoption determinants. They originate from 304 unique publications, out of which 

256 report results for a specific region, 46 on country level, and 2 across countries. Figure 2 

illustrates the geographic distribution of studies. The size of the dots indicates the number of 

studies per country, while the color of the dots indicates the number of different innovations 

that have been studies in the country. The largest number of studies comes from the United 

States, which hints towards a potential language selection bias. Several Sub-Saharan 

countries, predominantly Ethiopia, also have substantial adoption literature. On the other 

hand, Latin America, Europe and Oceania are weakly represented in the dataset.

 

Figure 2: Geographic distribution of comparable studies and innovations 

3.1 Effect size aggregation 
Figure 3 and Figure 4 show the average odds ratios for comparable categories of binary and 

continuous adoption determinants respectively along with their 95% confidence intervals for 



each measuring unit. The columns on the right indicate the number of effect sizes used for the 

estimate (N), the number of studies from which these effects were extracted (S) and the p-

value indicating whether the estimated intercept significantly differed from zero. Odds ratios 

can be interpreted as changes in the odds of adopting the innovation against the reference of 

one, all else being equal. For example, binary variables indicating that extension services were 

received have an average odds ratio of 1.672, which translates to an increase of 67.2% (95% CI: 

37.0-103.9%) in the odds of adoption. Similarly, binary variables indicating access to and use 

of formal credit were grouped together in the FULL model specification, resulting in an 

average increase in the odds of adoption by 43.7% (95% CI: 15.4-78.9%). 

 

Figure 3: Mean odds ratios for binary adoption determinants by measuring unit 



 

Figure 4: Mean odds ratios for continuous adoption determinants by measuring unit 

The only adoption determinants that are consistently (i.e. for all measuring units) and 

significantly (i.e. p<0.1) differed from zero were Assistance.B, Capital.B, Tenure.B, 

Education.C, Assistance.C, Experience, Livestock, while farm size was rather inconsistent. 

Other commonly used determinants such as age and gender were not found to significantly 

differ from zero on average. Binary measures tended to have larger magnitudes than related 

continuous measures. For example, having graduated from a university increases the odds of 

adoption by 36.9% (95% CI: 14.7-63.5%), while one additional year of education has an effect 

of 5.1% (95% CI: 3.2-7.0%). At the same time, variables measured on a continuous scale have 

a much lower variance. Binary measures should be interpreted with great caution and not be 

used to draw conclusions about the relative magnitudes, since studies did not always clearly 

indicate reference categories. If tertiary school attainment is compared to secondary school 

attainment, one can expect a lower magnitude than when it is compared to another baseline 



category, for example, having received no primary education at all, which may be the case in 

developing countries. Notably, even within the relatively fine-grained outcome measures, all 

estimates still have significant residual heterogeneity (p<0.01) (reported in Table S5, 

supplementary material). The next subsection therefore presents the results of the meta-

regression analysis in order to assess whether moderators can explain this heterogeneity. 

3.2 Factor intensity intercepts 
Figure 5 presents the results from the mixed effects factor intensity model without intercept 

term (Eq. 3). On the left, the factor intensity dummies are listed, while the grey boxes indicate 

the adoption determinants. The blue points with 95% confidence intervals indicate that the 

adoption determinant was larger when the associated factor was used intensively by the 

innovation.  

 

Figure 5: Factor intensity intercepts of selected adoption determinants 

The positive and significant associations between the adoption determinant and the respective 

factor intensity of the innovation indicates that the variable has a higher influence on adoption 

when the factor is intensively used by the innovation. For example, a unit increase in farm 



size (as a proxy of land) increased the odds of adoption by 16.2% (95% CI: 3.7%-30.3%) when 

the innovation was land intensive, but when the technology was not land intensive its effect 

was not significantly different from zero. Similarly, access to formal credit increased the odds 

of adopting capital intensive innovations by 33.7% (95% CI: 10.8%-61.4%), while access to 

extension increased the odds on average by 40.5% (95% CI: 6.4%-85.6%). The determinants 

assistance and farm size were also higher when the innovation was capital intensive. This is 

not surprising, given that farm size and capital endowments typically correlate and extension 

services often provide access to credits and capital-intensive inputs. Lastly, we did not find 

indications that labor availability became a more important adoption determinant when the 

innovation was labor intensive. 

3.3 Induced Innovation Hypothesis 
The meta-regressions results presented in Error! Reference source not found. show the 

interaction effects between innovation specific factor intensity and country specific factor 

abundance for the four adoption determinants land, labor capital and knowhow. The 

corresponding innovation traits T1-T4 refer to a binary variable taking the value of one of the 

innovation uses the respective factor intensively (see Table 2 for details). All regressions were 

conducted by iteratively adding control variables; the reported result include the full set of 

controls. 

We find consistently negative interaction terms for the four proxies of land, labor capital and 

knowhow, but these were only significant (p<0.1) for the binary adoption determinants 

(Credit and Assistance access). The results suggest that the extent to which a factor influences 

whether a farmer adopts an innovation increases when the innovation requires the respective 

factor intensively, and especially so when factor is relatively scarce in the geographic context. 

We do not find a significant interaction effect on labor, but considering that the between-study 

heterogeneity in true effects (𝜎1
2) was estimated to be almost zero, it is unlikely that country-

level moderators can explain this variation.  

The results for the four outcomes shown in Table 3 remain stable for a different set of context 

variables and after the exclusion of potentially influential studies identified via cook’s 

distance (see SI). The QE-test for residual heterogeneity remained highly significant after the 

inclusion of all moderators, indicating that the moderators included in this analysis can only 

explain a part of the variation in true effects.  

  



Table 3: Interaction effects of factor intensity and factor abundance for Land, Labor, Capital and Knowhow 

 Farmsize Capital.B Labor Assistance.B 

intercept 0.59 . 1.05 . 0.19 ** -0.25 

 (0.15) (0.62) (0.09) (0.57) 

log_land_abundance 0.05 -0.21 0.01 0.04 

 (0.08) (0.33) (0.03) (0.41) 

T1_land 0.14 * 0.13 -0.00 0.15 

 (0.06) (0.12) (0.02) (0.17) 

log_cap_abundance 0.00 0.20 0.01 0.19 ** 

 (0.05) (0.11) (0.01) (0.11) 

gov_educ_spending_percent 0.01 -0.01 0.00 0.13 

 (0.03) (0.13) (0.01) (0.13) 

labor_abundance 0.03 -0.14 0.02 0.08 

 (0.06) (0.33) (0.03) (0.22) 

T2_labor -0.13 * 0.05 0.00 -0.17 

 (0.08) (0.14) (0.02) (0.23) 

T3_capital -0.01 0.15 -0.04 . 0.16 

 (0.06) (0.19) (0.03) (0.20) 

T4_knowhow -0.11 ** 0.03 0.03 0.18 

 (0.06) (0.14) (0.02) (0.13) 

log_land_abundance:T1_land -0.14 .    

 (0.09)    

log_cap_abundance:T3_capital  -0.18 *   

  (0.10)   

labor_abundance:T2_labor   -0.01  

   (0.02)  

gov_educ_spending_percent:T4_knowhow    -0.37 ** 

    (0.13) 

Regression Type Yes Yes Yes Yes 

Measurement Units Yes Yes Yes Yes 

Model Specification Yes Yes Yes Yes 

sigma2.1 0.04 0.47 0.00 0.06 

sigma2.2 0.08 0.23 0.02 0.51 

cochran.qe 9667.64 4559.04 4355.05 4680.54 

p.value.cochran.qe 0 0 0 0 

cochran.qm 27.98 22.62 22.93 31.55 

p.value.cochran.qm 0.22 0.21 0.35 0.05 

df.residual 281 171 318 194 

logLik -156.04 -188.76 91.85 -245.53 

deviance 312.09 377.53 -183.71 491.06 

AIC 364.09 419.53 -135.71 537.06 

BIC 458.69 485.50 -45.42 612.22 

AICc 369.62 425.73 -131.61 543.55 

nobs 305 190 340 215 

Note: Innovation traits (T1-T4) refer to binary variables indicating land intensive, labor intensive, 
capital intensive, and knowhow intensive, respectively (see Table 2 for details). A set of control 
dummies accounts for model specifications in primary studies: regression type (logit, probit), scale of 
dependent variable (binary and multivariate), whether the original model controlled for other 
independent variable categories or not, observation level (plot or farm), and spatial level (regional or 
national). Brackets contain cluster robust standard errors. The sigmas refer to estimated variation 
components between studies (𝜎1

2) and within study (𝜎2
2). 



4 Discussion 

We found large and significant positive average effects for binary adoption determinants 

related to assistance, credit access, group affiliation and education. In addition, we found 

smaller, but statistically significant positive average effects for continuously measured 

determinants related to years of formal education, livestock ownership and experience. 

Meanwhile, we find that evidence for age, gender, labor endowment, farm size, risk 

preferences, tenure status are mixed and do not statistically differ from zero for at least some 

measuring units. Instead, some but not all of these factors could be shown to matter under on 

a selected set of contextual conditions and related technology traits.   

While we find no evidence for publication bias, the Q-statistic indicated significant 

heterogeneity in the true effects for all estimated average effects, which we attribute to 

differences in innovation, sample and study characteristics. This means that even though the 

average effect is significantly above zero, the distribution of true effects estimated by the 

random effects model may include effects smaller than zero.  We partially decomposed this 

variation by including moderator variables, but many unobserved characteristics could not 

be accounted for due to missing data. The positive effects of capital and extension are in line 

with the findings by Baumgart-Getz, Prokopy, L. S., and Floress, K. (2012), who synthesized 

adoption determinants for best management practices in the United States. In contrast, we 

found a significant effect of education, mixed results for farm size, but cannot confirm their 

significant negative effect of age. This is not surprising, given the regional focus and subset of 

innovations studied. The findings highlight that agricultural extension plays an important 

role in the innovation adoption process, even though a lack of accountability and performance 

gaps have been highlighted in the literature on agricultural knowledge systems (Anderson, 

Feder, and Ganguly May 2006). 

With respect to innovation characteristics as a source of heterogeneity, we found that the 

magnitude of the adoption determinants credit access, farm size and assistance increased 

when the innovation was capital-, land-, and knowhow intensive respectively. Similarly, 

Rubas (2004) found that education was more important for the adoption of information 

technologies as opposed to physical input innovations. Also Baumgart-Getz, Prokopy, L. S., 

and Floress, K. (2012) grouped innovations into thematic management groups, but did not 

report how this categorization explained adoption determinants. Going a step further and 

abstracting to innovation traits, Arslan et al. (2020) hypothesized that wealth-related variables 

should more often be significant and positive determinants for the adoption of innovations 



that require upfront investments, than for innovations that do not require capital. Using a 

vote-count analysis restricted to Africa, they find that credit access, wealth, land, and livestock 

assets are more often positively associated with inorganic fertilizer adoption, than what could 

be expected by chance. These results strengthen the notion that innovations can be 

characterized, distinguished, and their adoption determinants be related to certain traits, such 

as factor intensities. More importantly, our results point towards potential transferability of 

past research findings to future innovations, such as in the field of sensing and robotics, with 

known (or assumed) combination of such traits. Interacting innovation characteristics and the 

affinity of the innovator towards these characteristics has been proposed as a mediation 

mechanism in the ADOPT model by Kuehne et al. (2017; 2011). For the ex-ante diffusion 

assessment of new technologies, a trait-based uncertainty reduction of adoption determinants 

could provide important insights.  

Regarding the interaction effect of factor intensity and factor abundance, we found indications 

that the propositions motivated by the induced innovation hypothesis may explain some of 

the variation in true effects across countries and innovations. Although the direction of 

estimates consistently pointed into the direction that we expected, our analysis may have been 

statistically underpowered to make more robust inference, especially for the decomposition 

of very small variations in true effects. The extent to which credit access and use determines 

adoption of capital intensive innovations was strongly moderated (reduced) by the capital 

abundance in the country. But this result must be interpreted with caution because the 

available observations are limited to non-OECD countries, which is not surprising given that 

capital markets can be expected to work well in OECD countries. However, our finding 

implies that a change in access to formal credit has a smaller effect on the adoption decision 

in capital abundant contexts (e.g. OECD countries), which is consistent with the propositions. 

The available data did not allow to test the effect on adoption determinants such as debt-asset-

ratio, which was more commonly measured in capital abundant countries.  

We find a statistically insignificant interaction effect for the factor labor. However, household 

size related variables are typically included in adoption studies as a proxy for farm labor 

usage in the presence of imperfect labor markets. Under functioning labor markets, the size 

of the household is not expected to have any influence on the farm labor usage, since labor 

supply and labor demand of the farm household are separable (Benjamin 1992). Instead of 

cheaper labor inducing a reduction on the role of farm labor to innovate, labor supply may 

actually be low due to imperfect markets, even though the country is labor abundant. Thus, 



the findings may point towards the discrepancy between labor abundancy and actual labor 

supply. Additionally, neither the country-level labor abundancy indicator nor the household 

level adoption determinants contained information on seasonal fluctuations in labor 

availability, potentially masking out some true effects. Again, the available data did not allow 

to test the hypothesis using other farm labor indicators such as number of employees, which 

is more common in labor scarce contexts.  

Both farm size and assistance as drivers of land- and knowhow intensive innovations were 

moderated by the land and knowhow abundancy in the study context, respectively. 

Complementary analysis of the continuous knowhow indicators experience and years of 

schooling did not exhibit the same effect, although this may be due to the small variation in 

true effects for these indicators (results reported in SI). 

The main policy lesson of our study is that the cost-efficiency of extension schemes could be 

improved by concentrating innovation diffusion efforts not only on the target group, but also 

consider the larger socioeconomic production context. Considering heterogeneous factor 

tradeoffs across different target groups, developers of new technologies may tailor them better 

to meet local needs. Finally, given the temporal dynamics of context factors, a structural 

understanding of the embeddedness of production systems can help to design policies with a 

longer time horizon.  

This evidence synthesis of past research findings was mainly obstructed by the diversity of 

empirical strategies, (partially) unreported results and most of all by the lack of consistency 

in the measurement of commonly used adoption determinants. Overcoming comparability 

related issues by rigorously filtering out non-comparable observations and controlling for the 

exact measurement units lead to spatial imbalance of our dataset. Our categorization of 

innovations and consecutive assignment of factor intensities did not account for potential 

heterogeneity of factor intensities, especially when endogenously influenced by the 

geographic context. In addition, there may be a geographic publication bias with respect to 

the type of innovation (and thus factor intensities), which’s adoption is studied. The same 

holds true for the measurement units. For example, Capital was commonly measured as 

access to credit in developing countries, but proxied by debt-asset ratio in industrial countries. 

Similarly, Farmsize was commonly measured in acres in the United States, but in hectares in 

most other places, so the related unit control dummy could potentially mask out geographic 

context effects. 



5 Conclusion 

This study quantitatively synthesized evidence on the direction, magnitude and variation of 

adoption determinants from 262 studies of diverse agricultural innovations across the world. 

Using a multi-level mixed effects meta model, we found that the variation in adoption 

determinants can be partially explained by innovation characteristics (factor intensities) and 

context characteristics (factor abundancies). Our findings show particularly the importance 

assistance and credit access play for the adoption of agricultural innovations knowhow- and 

capital-restricted contexts. A priority of decision makers should therefore be the design of 

policies and interventions that improve technical knowledge, skills, and capital access. 

Future studies should explore, to what extent network meta-analysis may be suitable to 

accommodate the large variability in the way independent variable constructs were measured 

in primary studies. Finally, the abstraction from specific innovations to innovation traits 

demands closer attention both in meta-analysis and primary studies, because they facilitate 

transferability of research findings. Future evidence synthesis would benefit from 

mainstreaming a number of best practices in the design and documentation of primary 

adoption studies. Below we provide a non-exhaustive list of recommendations towards this 

goal: 

1. All estimated effects should be reported in tabular format along with a measure of 

their sampling error independent of their significance. 

2. Variables that were used in the regression, but omitted in the results table to save space 

should be clearly indicated. 

3. Any (non-)linear transformation of variables should be clearly indicated. 

4. The number of observations should be reported for each regression. Especially for data 

structures with multiple observations per individual (e.g. panel data, multiple plots), 

the unit of observation should be clearly indicated. 

5. Summary statistics should be provided in tabular format and include at least the mean 

of all dependent and independent variables for the entire sample. In addition, the 

standard deviation should be reported for continuous variables. Additional summary 

statistics for different subgroups (e.g. adopters and non-adopters) are a desirable 

supplementary information. 

6. Each study should provide a description of (a) the study area(s), (b) the innovation(s) 

considered, such as claimed advantages, historical adoption levels, and (c) the sample 



characteristics in terms of market orientation (e.g. subsistence vs. commercial), 

product specialization (e.g. rice farmers, mixed livestock farmers etc.) 

7. Continuous independent variables should be used as such and not be recoded into 

categorical, ordered or binary scales 

8. If categorical independent variables are present, they should be recoded as binary 

variables and listed as such in the summary statistics 

9. Where possible, independent variables should be measured in or converted to the 

International System of Units (i.e. hectares, tons, years). 

Innovation in agricultural production remains one of the most important strategic pillars in 

the transformation towards sustainable food systems. Despite a large number of existing 

adoption studies worldwide, however, we still poorly understand why apparently beneficial 

agricultural technologies suffer from low or stagnating uptake. We systematically take stock 

of the existing mostly context-specific knowledge and find that agricultural knowledge and 

extension systems, especially in the developing world may deserve more attention than they 

currently receive. Our findings also suggest that established minimum standards for 

agricultural adoption studies are needed to extract further generalized lessons from this 

important subfield in agricultural economics.   

 

Supplementary Information 

Additional information including details on study selection, coding, summary statistics, 

description of variables, a full list of included studies, publication bias assessment, alternative 

model specifications and all robustness checks is provided in the supplementary material 

available from the author upon request. 
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