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 Using recent survey data from over 500 sample households, this study evaluates the adoption 

and welfare impacts of soil and water conservation technologies (SWCT) in Tanzania. We apply 

the endogenous switching regression (ESR) and endogenous switching probit (ESP) models to 

estimate the average impacts and the instrumental variable quantile treatment effects (IVQTEs) 

to analyses the distributional impacts of adoption. The results show that the adoption of SWCT 

increased household income by an average of 49%. Moreover, we find that adoption had a 

significant and positive effect on the food security and micronutrient consumption indicators—

household dietary diversity (HDD), household food insecurity access scale (HFIAS), 

consumption of iron and vitamin-rich foods. The IVQTEs show that the impacts of adopting 

SWCT on the outcome variables are positive and significant, although they vary significantly 

across the welfare distribution. The results also show that even though adoption benefits both the 

poor and non-poor households, the marginal impacts of adoption are larger for the households 

with the highest as compared to those with the lowest household welfare levels. The paper 

concludes with a discussion of the policy options for increasing adoption and impacts of SWCT 

in Tanzania. 
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Introduction  

 

Soil nutrient deficiency and moisture stress have been identified as the major factors limiting 

crop productivity in many parts of sub-Saharan Africa (Mueller et al., 2012). These problems are 

often exacerbated where agricultural production is predominantly dependent on seasonal rainfall 

and is characterized by low use of fertilizer and soil and water conservation technologies 

(SWCT) that would reduce soil fertility loss through erosion. The dependence on rain-fed 

agriculture exposes farmers to climatic risks such as droughts and this can dramatically reduce 

crop yields and livestock production (Schmidhuber and Tubiello, 2007), especially in semi-arid 

regions. 

In the last four decades, Tanzania has experienced a series of severe droughts and floods 

which have increased the uncertainty in seasonal rainfall prediction (FAO, 2014). This has had 

negative effects on crop productivity, especially in the semi-arid region of central Tanzania. 

Coupled with this, soil erosion resulting from inappropriate crop management practices, tillage 

and livestock grazing systems have led to reduced crop productivity due to loss of soil organic 

matter and soil nutrients. In response to these problems, the International Institute of Tropical 

Agriculture (IITA) and its partners through the Africa Research in Sustainable Intensification for 

the Next Generation (Africa RISING) program has been testing and promoting sustainable 

intensification practices to increase crop and livestock productivity, incomes, and nutrition 

among smallholder farmers while mitigating the adverse effects on the environment. One of the 

sustainable intensification practices that have been promoted to arrest declining soil fertility is 

the integrated soil fertility management (ISFM) with its local adaptations such as SWCT2. 

However, there is limited empirical evidence on the extent and impacts of the adoption of SWCT 

in Tanzania.  

While there is a large body of literature on the productivity and income effects of the 

adoption of SWCT (e.g. Di Falco et al., 2011; Di Falco and Veronesi, 2013; Kassie et al., 2008; 

Kassie et al., 2011; Abdulai and Huffman, 2014), there are relatively few studies that have 

examined the relationship between SWCT and food/nutrition security (Issahaku and Abdulai, 

2019; Habtemariam et al., 2019). Previous research has demonstrated a linkage between the 

adoption of improved crop varieties and dietary diversity/specific nutrient consumption (Mumin 

 
2 See Vanlauwe et al., (2015, 2011) for more details on ISFM. 



and Abdulai, 2021; Smale et al., 2015). However, empirical evidence on the impact of SWCT on 

micronutrient consumption among rural households is especially lacking in the literature. To our 

knowledge, the study by Kim et al. (2019) is one of the few studies that have examined the 

relationship between the adoption of sustainable intensification practices and child nutrition. 

However, this study did not consider SWCT and only used children nutritional outcomes. 

Moreover, most of the previous studies have assumed that the welfare impacts of the adoption of 

SWCT are homogenous, ignoring the fact that the returns to the adoption of most agricultural 

innovations in sub-Saharan Africa are heterogeneous (e.g. Suri, 2011; Zeng et al., 2015; Wossen 

et al., 2018b). This study aims to fill this gap in the literature by examining the average and 

distributional impacts of the adoption of SWCT on income and several indicators of food 

security and nutrient consumption i.e. household income, household dietary diversity (HDD), 

household food insecurity access scale (HFIAS), consumption of iron and vitamin A-rich foods 

and subjective food security. 

We contribute to the growing literature on SWCT in the following ways. First, unlike 

previous studies e.g. Kassie et al. (2011, 2008) and Abdulai and Huffman (2014), we estimate 

the impact of adoption on HDD, HFIAS, consumption of iron and vitamin A-rich foods and 

subjective food security in addition to the income indicator. These indicators measure the 

quantity and quality of food access at the household level and also have an element of household 

nutrition. For example, HDD is associated with diet quality since it helps ensure adequate intake 

of essential nutrients and promotes good health (Leroy et al., 2015). The HFIAS is based on 

subjective responses to questions which capture universal aspects of the experience of food 

insecurity, information on food shortage, food quantity and quality of diet to determine the status 

of a given household’s access to food (Carletto et al., 2013). The consumption of iron and 

vitamin A-rich foods are two additional outcome indicators we use to test the relationship 

between adoption of SWCT and nutrition. Deficiencies in these micronutrients are responsible 

for major health problems in developing countries (Ogutu et al., 2019). For the last measure of 

food security, we use respondents’ perceptions about their food security status as an additional 

subjective food security indicator. The use of subjective food security indicators helps to check 

for consistency of the other indicators with farmers’ assessment of their food security status 

during the whole year, after accounting for seasonal shocks (Shiferaw et al., 2014). Second, we 

examine the distributional effects of the adoption of SWCT using the instrumental variable 



unconditional quantile treatment effects (IVQTEs) model. Most of the previous studies have 

either used conditional quantile treatment effects (QTEs) (e.g. Issahaku and Abdulai, 2019; 

Ogutu and Qaim, 2019) or unconditional treatment effects without controlling for unobservable 

characteristics (e.g. Ainembabazi et al., 2018; Mishra et al., 2015). According to Frölich and 

Melly (2013, 2010), unlike the conditional QTEs which changes with the set of conditioning 

covariates, the unconditional QTEs don’t depend on other covariates to be consistently 

estimated. The second advantage of unconditional effects is that they can be estimated 

consistently without any parametric restrictions, which is not possible for conditional effects. We 

also complement the IVQTEs results with the SD method which only accounts for observed 

factors to examine how treatment effects vary with the propensity to adopt SWCT. 

The rest of the article is organized as follows: The next section describes the data and 

descriptive statistics, while section 3 presents the empirical framework. Section 4 presents the 

results and discussion, and the last section draws conclusions and policy recommendations. 

 

1. Data and descriptive statistics 

The data used in this paper come from a survey of 580 sample households conducted between 

September and October 2020 in the semi-arid districts of Kiteto and Kongwa in central Tanzania. 

A survey questionnaire was prepared and designed in Surveybe, a computer-assisted personal 

interviewing (CAPI) software, and administered by trained enumerators who collected data from 

households through personal interviews.  

A multistage random sampling procedure was used to select sample households. In the 

first stage, five wards (Oluboloti, Njoro, Mlali, Nghumbi and Sagara) were purposively selected 

from the two Africa RISING project districts where there has been active testing and promotion 

of SWCT. In the second stage, five villages from the five wards were selected using probability 

proportional to size sampling (PPS). With the help of the ward extension agents, and Tanzania 

Agricultural Research Institute (TARI), a sampling frame was developed by listing all 

households (including adopters and non-adopters of SWCT). In the final stage, 120 households 

were randomly selected from each village resulting in 240 households from Kiteto district and 

360 households from Kongwa district. However, 340 households were interviewed in Kongwa 

district because the remaining 20 households could not be traced. 



Detailed information was collected on demographic and socioeconomic characteristics 

(e.g. household head’s age, sex, and education; livestock ownership), farm characteristics (e.g. 

farm size, farmers’ perception of the slope and fertility of their land), and household income. 

Table 1 shows the definition and summary statistics of the variables used in this study. The 

results show that, on average, 22% adopted SWCT in 2019/2020 growing season. In this paper, 

we define SWCT as either tied ridging or fanya-juu terraces. A farmer is considered to have 

adopted if they used SWCT in the 2019/2020 growing season. Tied ridging is an in-situ 

rainwater harvesting technique that collects rainwater in the field to facilitate water infiltration, 

subsequently increasing crop productivity (Habtemariam et al., 2019). It involves blocking ridge 

furrows with earth ties spaced at a fixed distance apart to form a series of micro-catchment 

basins in the field (Wiyo et al., 2000). The use of fanya-juu terracing system also has the 

potential to reduce water runoff, soil erosion, and siltation of rivers, lakes and dams and thus 

improves soil infiltration, fertility and crop yields (Saiz, et al. 2016; Kassie et al., 2011). Fanya-

juu’ terracing system consists of constructing embankments along a slope by digging out 

trenches following contour lines and depositing the soil uphill of the trench to form a mound.  

We use four outcome variables; household income, HDD, HFIAS and subjective food 

security to proxy household welfare. Household income is a reliable indicator of economic well-

being among smallholder farmers and includes income from crops, livestock and livestock 

products, and off-farm income (e.g. salaries, remittances, farm labour wage income, pension 

income and income from businesses).  

To measure food security, we generated HDD scores and constructed the HFIAS. HDD 

was initially developed as an indicator of the quantity and quality of food access at the household 

level (Leroy et al., 2015). Apart from being a measure of household access to a variety of foods, 

it is also a proxy for diet quality. Some studies ( e.g. Magrini and Vigani, 2016), have used HDD 

to measure the food utilization dimension of food security. In this study, we used HDD scores 

(HDDS) as an indicator of HDD (Kennedy et al, 2010). During the survey, households were 

asked to mention the food items they consumed in the 24 hours, and these included Cereals, 

white roots and tubers, vitamin A-rich vegetables and tubers, dark green rich vegetables, other 

vegetables, vitamin A-rich fruits, other fruits, organ meat, flesh meats, eggs, fish and seafood, 

legume, nuts and seeds, milk and milk products, oil and fats, sweets and spices. Following 

Kennedy et al. (2010), we combined the vegetables, meats and fruits such that we had 12 food 



groups, each with a score of 1 if they consumed a food item. The HDDS were then constructed 

by summing these food groups such that the scores ranged from 0-12. The HFIAS uses a set of 

questions that represents universal domains and subdomains of experiencing household food 

insecurity and lack of access to food (Leroy et al., 2015). The scale was developed through the 

Food and Nutrition Technical Assistance Project (FANTA) and details on how it is constructed 

are outlined in Coates et al. (2007). The HFIAS ranges from 0-27, so that the higher the score, 

the more food insecurity the household experienced, and the lower the score, the less food 

insecurity a household experienced. From the food groups mentioned above, we categorized 

iron-rich foods as organ meat, flesh meat, or fish and vitamin A-rich foods like organ meat, eggs 

or milk and milk products following Kennedy et al. (2010). Finally the subjective binary food 

security measure was generated using the respondents’ perception of their food security 

situation. Respondents were asked how they perceived their food security situation in the year 

before the survey, based on their food production, food purchases, and aid from different 

sources. The respondents categorized their household food security status in either food secure or 

food insecure. 

Table 1 also shows several demographic and socio-economic variables that are 

hypothesized to affect the adoption of SWCT. Household characteristics such as age, sex and 

education of the household head; and socio-economic characteristics such as access to credit, 

livestock ownership, access to off-farm income and labour are important determinants of 

agricultural innovations (Feder and Umali, 1993; Feder et al., 1985; Kassie et al., 2013). The 

number of years a household head has lived in the village, having friends or relatives in 

leadership positions and membership in farmer organizations are meant to capture social capital 

and networking (Kassie et al., 2013; Abdulai and Huffman, 2014 ). Farm characteristics which 

have been shown to affect the adoption of SWC technologies include farm size, adoption of 

improved crop varieties, perceptions on the slope and soil fertility of the land (Abdulai and 

Huffman, 2014; Amsalu and de Graaff, 2007; Kassie et al., 2008). We also constructed a rainfall 

index following Teklewold et al. (2013) and Kassie et al. (2013) based on questions such as 

whether rainfall came and stopped on time, whether there was enough rain at the beginning and 

during the growing season, and whether it rained at harvest time in the preceding three seasons. 

We constructed the rainfall index using principal component analysis (PCA). We specifically 

used the first principal component since it explains the most variance in the data as opposed to 



multiple components. The factor scores from the first component were used as weights for each 

question to construct the indices for each household. 

  

Table 1: Variable names, definitions, and descriptive statistics for the sample 

Variables Definition Mean SD 

Treatment variable    

Adoption  1= If a household adopted SWCT, 0 otherwise 0.218 0.413 

Outcome variables    

Household income Household income per capita (Tsh) 223,560 227,222 

HDDS Household Dietary Diversity Scores (number) 6.289 2.203 

HFIAS Household food insecurity access scale 

(number) 

3.759 5.260 

Iron  1 if households consumed organ meat, flesh meat, or 

fish, 0 otherwise 

0.420 

 

0.413 

Vitamin A If households consumed organ meat, eggs or milk 

and milk products, 0 otherwise  

0.219 0.494 

Subjective food security  1 = Household is food secure, 0 otherwise 0.443 0.497 

Independent variables    

Age Age of the household head (years) 49.15 13.42 

Sex 1= Household head is male, 0 otherwise 0.752 0.432 

Education Education of the household head (years) 1.321 2.788 

Farm size Total land owned by the household (ha) 2.889 4.805 

Household size Total household size (number) 5.568 2.199 

Contacts Number of contacts with extension agents 5.955 11.76 

Credit 1= Received credit, 0 otherwise 0.0487 0.215 

Livestock Livestock ownership in Tropical Livestock Units 

(TLU) 

1.085 2.664 

Off-farm 1= Access to off-farm income, 0 otherwise 0.385 0.487 

Leadership 1= Household has friends/relatives in leadership 

position, 0 otherwise 

0.365 0.482 

Labour Hired labour in man-days 59.15 179.9 

Years Years the household head has lived in the village 36.97 17.00 

Improved variety 1= proportion of households who used improved 

crop variety, 0 otherwise 

14.600 0.353 

Slope The proportion of land on a steep slope (%) 2.95 0.169 

Soil fertility The proportion of land with fertile soils (%) 19.8 0.399 

Rainfall  Rainfall index -0.001 1.399 

Distance capital Distance in walking minutes to the district capital  241.7 53.60 

Instrumental variables    

Membership 1= Member of an a formal/informal farmer group 0.282 0.451 

Neighbor 1= Neighbor/friend is an adopter of SWC 

technologies 

0.847 0.360 

 

Table 2 presents the descriptive statistics for our sample, disaggregated by whether or not 

households adopted SWCT along with balancing tests. We find statistically significant 

differences between adopters and non-adopters for most of the control variables. Adopters tend 

to have larger household sizes and more contacts with extension agents than non-adopters. 

Furthermore, most of the adopters of SWCT have better access to credit (10%), grow improved 



crop varieties (4%), and have more networks and social capital as compared to non-adopters. 

Results show that adopters are also distinguishable in terms of farm characteristics. They 

perceive their land to be steeper (7%) and more fertile (3%) as compared with the non-adopters. 

Although these results show significant differences, they do not account for observed and 

unobserved characteristics, an issue we address in the subsequent sections.  

 

Table 2: Descriptive statistics by adoption status of SWCT and balance tests  

Variable Adopted SWCT? Difference 
No Yes 

Household income 287206.3 273961.5  

 (11069.034) (19483.840)  

HDDS 6.302 6.246  

 (0.104) (0.193)  

HFIAS 3.680 4.040  

 (0.246) (0.479)  

Iron 

0.416 

(0.023) 

0.444 

(0.044)  

Vitamin A 

0.20 

(0.018) 

0.294 

(0.041) 

** 

 

Subjective food security  0.436 0.468  

 (0.023) (0.045)  

Age 48.863 50.167  

 (0.640) (1.138)  
Sex 0.778 0.659 *** 

 (0.020) (0.042)  
Education 1.242 1.603  

 (0.128) (0.267)  

Farm size 2.935 2.724  

 (0.233) (0.377)  
Household size 5.443 6.016 *** 

 (0.099) (0.222)  
Contacts 3.783 13.730 *** 

 (0.437) (1.408)  
Credit 0.036 0.095 *** 

 (0.009) (0.026)  
Livestock 1.007 1.363  

 (0.123) (0.252)  

Off-farm 0.388 0.373  

 (0.023) (0.043)  
Leadership 0.334 0.476 *** 

 (0.022) (0.045)  
Labour 59.778 56.897  

 (8.892) (12.832)  

Years 36.773 37.675  

 (0.788) (1.612)  
Improved variety 0.064 0.437 *** 

 (0.012) (0.044)  
Slope 0.022 0.056 * 

 (0.007) (0.020)  
Soil fertility 0.171 0.294 *** 



 (0.018) (0.041)  
Rainfall  0.068 -0.247 ** 

 (0.059) (0.160)  
Distance capital 239.820 247.032  

 (12.587) (13.050)  
Membership 0.202 0.571 *** 

 (0.019) (0.044)  
Neighbour 0.820 0.944 *** 

 (0.018) (0.020)  
Note: *** p<0.01, ** p<0.05, * p<0.1. Standard errors appear in parentheses. t-tests are the differences in the means 

across the groups.  

 

To gain further insight into the distribution of the continuous outcome variables, figure 1 shows 

violin plots by the adoption status. Violin plots combine the basic summary statistics of a box 

plot with the visual information provided by a local density estimator to reveal the distributional 

structure in a variable. Figure 1 shows significant heterogeneity with groups of households 

clustering in upper and lower tails of the distributions, suggesting that adoption of SWCT might 

unduly affect less productive and underprivileged households. This justifies the use of IVQTE to 

further explore the distributional impacts of the adoption of SWCT in section 4.  

 

 

 



 

Figure 1: Violin plots of household income, HDDS and HFIAS 

 

2. Conceptual and empirical frameworks 

3.1 The endogenous switching probit model 

The frequent occurrence of droughts and floods affects crop production, lives, health, 

livelihoods, assets and infrastructure that contribute to food insecurity and poverty among 

smallholder farmers in sub-Saharan Africa (Shiferaw et al., 2014). The adoption of SWCT offers 

a potential solution to these problems by reducing water runoff and soil erosion, and increasing 

soil fertility thereby enhancing crop productivity and farm incomes of smallholder farmers. It is 

therefore expected that the adoption of SWCT will lead to an increase in crop yields and 

consequently the availability of more diversified food for the household. Then again, crop 

productivity increases through the adoption of SWCT will increase the marketable surplus which 

is expected to increase household income. Ultimately, it is envisioned that this will result in 

increased expenditure on diverse, high calorie and protein foods, finally leading to improvement 

in household food security and nutrition. As mentioned earlier, the impact of SWCT on crop 

productivity is well established in the literature, both from on-farm trials and plot-level surveys ( 

e.g. Kassie et al., 2008; Kato et al., 2011; Tsubo et al., 2005). In this study, we envisage that the 

adoption of SWCT will mainly increase household incomes, food security and nutrition through 

the crop productivity impact pathway. 

 The challenge, therefore, is to estimate the causal effect of the adoption of SWCT on 

household income and food security, as this is not trivial, especially with non-experimental data. 



In the ensuing sections, we use “household welfare” to mean household income and food 

security. One way to achieve this would be to regress the adoption variable on the welfare 

indicator variables with household and farm characteristics added as controls. Yet, because 

farmers actively self-select into the adoption category based on their potential gains, endogeneity 

problems may arise leading to biased estimates (Abadie and Cattaneo, 2018; Alene and 

Manyong, 2007). If the assumption is that the adoption of SWCT has an average impact on 

household welfare, then instrumental variable (IV) regression which measures intercept shifts, 

i.e. average effects, can be used to account for endogeneity. However, household and farm 

characteristics can also lead to an improvement in household welfare by way of slope shifts in 

the household welfare production function. These effects are not captured by an IV type of 

regression. To properly account for endogeneity and the differential effects on adopters and non-

adopters, we use the endogenous switching regression (ESR) and endogenous switching probit 

(ESP) models (Lokshin and Sajaia, 2011; Fuglie and Bosch, 1995; Lee, 1978). In this approach, 

the adoption decision is modelled using a probit model, while two separate outcome equations 

for adopters and non-adopters are specified. Since the modelling of the ESR and ESP models is 

similar, we only present the details for the ESP model3. 

  To set the stage for our estimation strategy, we view the decisions of a farmer to adopt 

SWCT in a given period to be derived from the maximization of expected utility subject to land 

availability, credit, and other constraints (Feder et al., 1985). A farmer will adopt if  = > , 

where  is the expected utility arising from the adoption of SWCT and  is the utility of non-

adoption .  is a latent variable that captures the expected benefits from the adoption choice 

and is determined by a set of exogenous variables,  and the error term : 

 

       1 

 

where  is a binary indicator variable that equals 1 if a farmer adopts SWCT and zero otherwise 

and  is a vector of parameters to be estimated. Given that farmers choose to either adopt the 

 
3 The ESR model has been widely used in the literature, unlike the ESP model. For more details on the ESR model 

see, Abdulai and Huffman (2014) and Alene and Manyong, (2007) who give a good exposition of the model. 



technology or not adopt it, the two outcome equations, conditional on adoption can be written as 

follows: 

 

Regime 1 (Adopters):       if       2a 

Regime 1 (Non-Adopters):  if      2b 

 

Where  and  are the binary outcome variables (Iron, Vitamin A and subjective food 

security) for adopters and non-adopters respectively.  and  are vectors of weakly 

exogenous covariates, while  and  are parameters to be estimated for the adopter and non-

adopter regimes respectively. 

For the ESP model to be properly defined identified, the Z variables in the adoption 

model need to contain an instrument in addition to those automatically generated by the non-

linearity of the selection model of adoption. The requirements for a valid instrument are that it 

significantly affects the adoption of SWCT conditional on covariates (relevance condition) and 

that it affects household welfare only through D, but not directly (exclusion restriction). We use 

neighbours’ adoption decisions and group membership (Abdulai and Huffman, 2014; Bandiera 

and Rasul, 2006; Krishnan and Patnam, 2013) as identifying instruments. We checked whether 

our instruments were correlated with the adoption status (relevance condition) and the reported 

results in Table 2 show that the instruments are relevant. Several previous studies have used 

these instruments (e.g. Abdulai and Huffman, 2014; Kabunga et al., 2012; Wossen et al., 2018a, 

2018b; Tufa et al., 2019).  

  The three error terms  ,  and  from equations 1, 2a and 2b are assumed to have a 

joint normal distribution with mean vector zero and correlation matrix: 

 

=                  (3) 

 

Where  and  are the correlations between the error terms  ,  and  ,  and is the 

correlation between of  and . We assume that =1 since α is estimable only up to a scalar 

factor.  is not defined because  and  are not observed simultaneously. This implies that 



the expected values of  and  conditional on sample selection are non-zero because the error 

term in the selection equation is correlated with the error terms in equations 2a and 2b and probit 

model estimates of coefficients  and  are biased. Sample selection bias arises when factors 

unobserved by the researcher but known to the farmer affect both the choice of technology and 

other decision variables (Fuglie and Bosch, 1995). Finally, the selection and outcome equations 

are estimated jointly using Full Information Maximum Likelihood (FIML) estimation procedure.  

Following Aakvik et al. (2005) and Lokshin and Sajaia (2011), we can estimate the 

impact of adoption on the outcome variables for those who adopted SWCT —i.e. the average 

treatment effect on the treated (ATT) as follows: 

 

  

 

=                               (4) 

 

where  is the cumulative function of a bivariate normal distribution and  is the cumulative 

function of the univariate normal distribution.  

The ESP model described above can only be used for binary outcome variables, hence, to 

estimate the impact of adoption on the income, HDD and HFIAS, we use the ESR model. In the 

ESR, instead of estimating the outcome equations in 2a and 2b using a probit model, we use 

ordinary least squares regression (OLS) 

 

3.2 The instrumental variable unconditional quantile treatment effects 

The violin plots presented above suggest that the welfare effects of adoption are likely to be 

conditional on adopters’ observed and unobserved characteristics. To estimate the distributional 

or heterogeneous effects of adopting SWCT, we use the IVQTE following Frölich and Melly 

(2013, 2010). The estimation of quantile treatment effects (QTE) is important to evaluate the 

effect of a variable on different points of the outcome distribution and therefore allows for the 

identification of effects even in situations where the mean of the outcome variable remains 

unchanged. Let  and be the continuous potential welfare outcomes of household i. Hence, 

 would be realized if individual i were to adopt SWC technologies (D =1), and  would be 



realized otherwise. Following Frölich and Melly (2013, 2010), the unconditional QTE (for 

quantile τ) can generally be given by: 

 

          5 

where  is the quantile for  and  is th quantile of . 

As mentioned above, the decision to adopt is endogenous, hence the identification can 

only be achieved through an IV, Z. The treatment effects are allowed to be arbitrarily 

heterogeneous, such that the effects can only be identified for the population that responds to a 

change in the value of the instrument, i.e. compliers (Frölich and Melly, 2013). Therefore, we 

focus on the QTEs for the compliers: 

 

          6 

The unconditional IVQTE for compliers proposed by Frolich and Melly (2013) can be defined as 

a bivariate quantile regression estimator with weights: 

 

      7 

where denote the weights proposed by Frolich and Melly (2008, 2013). 

, where  is the asymmetric absolute loss function or check function 

(Wooldridge, 2010). The weights are defined as: 

                  8 

where  is a binary instrumental variable and  are the propensity scores4.  

As a key robustness check for the distributional impacts of adoption, we also estimate 

treatment heterogeneity by conditioning on a full set of covariates but without controlling for 

unobserved heterogeneity following Brand and Xie, (2010) and Xie et al. (2012). Besides, the 

QTEs described above are only valid for continuous outcomes, implying that it is not possible to 

estimate the heterogeneous effects for the micronutrient consumption and subjective food 

 
4 In the IVQTE model, only one instrument can be used, hence we use group membership as an identifying IV in the 

income and HDDS equations and; neighbours adoption decisions in the HFIAS equation. 



security measures. Following Xie et al. (2012), we use the SD method to analyse how treatment 

effects vary with the propensity to adopt SWCT. In summary, the method follows three steps: 

First, we estimate the propensity scores using the same covariates (V) described in equation 1. 

Second, we fit separate, non-parametric regressions of the welfare variables on the propensity 

score for the adopters and non-adopters. Third, we estimate the difference in the non-parametric 

regression line between the adopters and non-adopters at different levels of the propensity score. 

This enables one to obtain ta pattern of treatment effect heterogeneity as a function of the 

propensity score. 

 

3. Results and discussion 

4.1 Determinants and impacts of the adoption of SWCT 

The FIML estimates of the determinants of adoption of SWCT are shown in Table 3. These are 

the results emanating from the estimation of equation 1 using a probit model. For the sake of 

brevity, we do not present the second stage results but are availbe on request.  

Consistent with Issahaku and Abdulai (2019), results show that female-headed 

households are more likely to adopt SWCT compared with male-headed households. The results 

also indicate that educated farmers are more likely to adopt SWCT as they might acquire new 

knowledge and process information more easily (Abdulai and Huffman, 2014; Adegbola and 

Gardebroek, 2007). We find that household size increases the probability of the adoption of 

SWCT by smallholder farmers in Tanzania. This is a common finding in studies investigating the 

adoption of labour-intensive technologies is that the size of the household is associated with an 

increase in the rate of adoption of such technologies (Kassie et al., 2008; Ojo and Baiyegunhi, 

2020; Di Falco and Veronesi, 2013). One explanation advanced for this finding is that household 

size is a proxy for household labour endowments, especially in developing countries.  

  We also find that farm households with more contacts with extension agents have a 

higher propensity to adopt SWCT. In developing countries, extension agents are essential in the 

provision of information regarding improved agricultural technologies and therefore play an 

important role in determining farmers’ decisions to adopt (Di Falco et al., 2011; Di Falco and 

Veronesi, 2013). The results further reveal that the adoption of SWCT increases with the 

adoption of improved crop varieties, a finding consistent with that of Abdulai and Huffman 

(2014). Most of the SWCT activities are concentrated in Kongwa district, implying that farmers 



in this district receive relatively more support services such as extension, group membership and 

other farmers who have adopted these technologies. This evidenced by the significant coefficient 

on the Kongwa dummy which shows that farmers in Kongwa are more likely to adopt SWCT 

compared to those in Kiteto district. The neighbours' adoption decisions and membership in a 

farmer’s organization increase the probability of adopting SWCT and this also shows that they 

are relevant instruments in identifying our ESR/ESP models. According to Krishnan and Patnam 

(2013), social learning (through neighbours) is a powerful force for adopting new technologies 

which may be far more persistent than learning from extension agents. Membership in farmer 

groups reflect the intensity of contacts with other farmers (Adegbola and Gardebroek, 2007) and 

may also indicate exposure to information on the SWCT. 

  

Table 3: Full information ESR/ESP results for the adoption of SWCT (first stage results) 
 Variable Selection equation 
Age -0.002 

 (0.006) 
Sex -0.380** 

 (0.166) 
Education 0.044* 

 (0.025) 
Farm size -0.025 

 (0.023) 
Household size 0.108*** 

 (0.034) 
Contacts 0.027*** 

 (0.006) 
Credit 0.187 

 (0.315) 
Livestock -0.003 

 (0.028) 
Off-farm 0.241 

 (0.157) 
Leadership -0.240 

 (0.171) 
Labour 0.000 

 (0.001) 
Years -0.005 

 (0.005) 
Improved variety 1.003*** 

 (0.190) 
Slope -0.008 

 (0.390) 
Soil fertility 0.080 

 (0.174) 
Rainfall index -0.045 

 (0.051) 
Distance capita -0.000 

 (0.000) 
Kongwa 0.773*** 

 (0.177) 
Membership 0.874*** 

 (0.174) 
Neighbour 0.472* 



 (0.256) 
Constant -2.437*** 

 (0.455) 
N 575 

Note: *** p<0.01, ** p<0.05, * p<0.1. Standard errors appear in parentheses 

 

4.2 Impacts on household welfare 

 

The estimates for the average treatment effects on the treated (ATT) from the ESR/ESP models, 

which show the effects of SWCT adoption on household welfare, are presented in Table 4. These 

results are different from the simple mean differences presented in Table 2. The added 

contribution of adopting SWCT towards per capita household income was estimated at Tsh 

51,328. In other words, the income of adopters that can be attributed solely to the adoption of 

SWCT was 49% higher than that of non-adopters. The results also show that the adoption of 

SWCT significantly increased HDDS by 77% and reduced food insecurity by 13%. Adoption also 

increased the probability of consuming iron and vitamin A-rich foods by 12% and 23% 

respectively. Finally, the probability of being food secure is 27% higher, on average, for adopting 

households than for non-adopting households when we consider the subjective food security 

indicator. The impact estimates are largely consistent with studies on climate-smart agricultural 

practices and SWCT (Abdulai and Huffman, 2014; Kassie et al., 2008; Di Falco et al., 2011; 

Issahaku and Abdulai, 2019). 

 

Table 4: Impact of adoption of SWCT on household income, HDDS, HFIAS and subjective food 

security 
Outcome variables Mean of outcome variables ATT 

To adopt SWC  Not to adopt SWC 

Household income 156793.900 105465.400 51328.440*** 

(9916.926) 

HDDS 6.246 3.535 2.711*** 

(0.098) 

HFIAS 4.040 4.626 -0.586 ** 

(0.207) 

Iron   0.225*** 

(0.020) 

Vitamin A   0.119*** 

(0.024) 

Subjective food security   0.271*** 

(0.0391) 

Note: *** p<0.01, ** p<0.05, * p<0.1. Standard errors appear in parentheses 

 

 



4.3 Distributional impacts of the adoption of SWCT 

Table 5 reports the estimated IVQTEs of the adoption of SWCT on the continuous indicators of 

household welfare for the 0.1–0.9 quantiles. The 0.1 quantile includes the households with the 

lowest welfare, while the 0.9 quantile includes the sample households with the highest household 

welfare. Unlike previous studies which report unconditional quantile treatment effects based on 

observed characteristics, results in Table 5 also account for unobserved characteristics to ascribe 

a causal interpretation to the results. Contrary to the results found by Issahaku and Abdulai 

(2019), our results generally show that even though adoption benefits the poor and wealthy 

households alike, the marginal impacts of adoption are larger for the households with the highest 

household welfare and smaller for the households with the lowest welfare levels. The results are 

however in agreement with those found by Manda et al. (2017) and Wossen et al. (2018b) for 

improved crop varieties in Zambia and Nigeria.  

Considering household income, the adoption effects are positive and significantly 

different from zero across most of the distribution. The adoption of SWCT exerts a significant 

positive and increasing effect on household income as we move from the 0.3rd (Tsh 89,857.141) 

to the 0.8th (Tsh 476,190.453) quantile. We can infer from these results that the increase in 

income associated with the adoption of SWCT tends to grow as income increase. The 

distributional impacts of SWCT on HDDS are slightly different as the effects are only significant 

in the lower quantiles of the HDDS distribution, even though the effects also increase as we 

move from lower to larger quantiles. The results also reveal that the food insecurity reducing 

effects of adopting SWCT are only significant in the 8th and 9th quantiles as shown in column 3. 

This implies that adoption mainly benefits households at the highest welfare levels.  

 

Table 5: Unconditional quantile treatment effects of the adoption of SWCT on income and food 

security 
Quantile (1) (2) (3) 

Household income HDDS HFIAS 

0.1 47857.143 1.000 -3.000 

 (46903.902) (0.609) (13.474) 

0.2 64000.000 2.000*** -4.000 

 (50438.592) (0.623) (9.163) 

0.3 89857.141* 1.000 -6.000 

 (50792.735) (0.762) (5.802) 

0.4 85571.422 2.000** -7.000 

 (54725.501) (0.854) (5.872) 

0.5 137642.859** 1.000 -9.000 

 (61525.485) (1.041) (7.025) 



0.6 210416.656** 2.000* -8.000** 

 (92247.781) (1.174) (3.866) 

0.7 294142.859** 1.000 -8.000** 

 (147449.368) (1.525) (3.502) 

0.8 476190.453** 1.000 -7.000 

 (207054.190) (1.676) (4.444) 

0.9 369750.000 1.000 -2.000 

  (490032.387) (1.663) (3.675) 

Note: *** p<0.01, ** p<0.05, * p<0.1. Standard errors appear in parentheses 

 

The IVQTEs results may be sensitive to the assumptions that come with the identification 

of the model, hence we also estimated the distributional effects of SWCT using the SD method 

based on observed factors.Second, unlike the IVQTEs results, we also estimated the effects for 

binary outcome variables (consumption of iron and vitamin A rich foods and food security). 

Following the approach described in section 3.2, the difference in the non-parametric regression 

line between the adopters and non-adopters at different levels of the propensity score is depicted 

in figure 2. The x-axes indicate estimated propensity for the adoption of SWCT, and the y-axes 

show the matched differences between adopters and non-adopters. The results generally show a 

steady and increasing income, HDDS, consumption of iron and vitamin A rich foods and 

subjective food security response to different levels of the estimated propensity scores, 

suggesting that farmers with a higher propensity to adopt, benefit the most from the adoption of 

SWCT. We observe a similar trend with the HFIAS curve, which shows a negative slope, 

indicating a reduction in food insecurity as the propensity to adopt increases. Results in figure 2 

suggest that farmers self-select into adoption based on their comparative advantage (positive 

selection), consistent with Suri (2011). The smoothing-differencing results are there largely 

consistent with and lend credence to the ESR/ESP and IVQTEs results presented above.  



 

Figure 2: Smoothing-differencing heterogeneous SWCT adoption effects on income, HDDS, 

HFIAS, Iron, Vitamin A and subjective food security  

Note: Solid lines show the average treatment effect (local polynomial fit); dashed lines pertain to 

95% confidence interval 

 

4.  Summary and Conclusions 

The central region of Tanzania is predisposed to frequent droughts and significant erosion of the 

topsoils which has negatively affected the productivity of many crops in the country. Previous 

studies show that the adoption of soil and water conservation technologies (SWCT) is a potential 

solution to some of these problems by reducing drought and soil erosion risks, and; increasing 

crop yields and incomes. Nevertheless, in most of these studies, much attention has been given to 

the assessment of the impact of the adoption of SWCT on crop yields and net farm returns, with 



a few of them analysing the effect on household income and food security/nutrition. Moreover, 

empirical evidence on the distributional effects of the adoption of SWC technologies is still thin. 

This paper contributes to the empirical literature in this area by examining the average and 

distributional impacts of the adoption of SWCT on household incomes and food security 

(HDDS, HFIAS and subjective food security) and micronutrient consumption in central 

Tanzania. We use the endogenous switching probit (ESP), endogenous switching regression 

(ESR) and the instrumental variable unconditional quantile treatment effects (IVQTE) models, 

coupled with a recent household survey data from a sample of over 500 households to achieve 

our objective.  

 Consistent with previous adoption studies, our results indicate that the main factors 

influencing the adoption of SWCT are sex and education of the household head, household size, 

contacts with extension agents, farmers’ group membership and neighbours’ adoption decisions. 

Regarding the impact of adoption on household welfare, the results show that the adoption of 

SWCT significantly increases household income and food security. This underscores the 

importance of adopting SWCT in mitigating the adverse effects of climate change such as 

frequent droughts and soil erosion, common in the semi-arid regions of central Tanzania. 

 The IVQTEs complimented with the SD heterogenous results offer a more nuanced 

description of the relative effects of adopting SWCT over the entire household welfare 

distribution. Unlike the average treatment effects from the ESR/ESP models, the quantile 

treatment effects mainly show that the marginal impacts of adoption are larger for the households 

at the highest household welfare and smaller for the households at the lowest welfare levels, 

indicating that the effects are not uniform but heterogeneous.  

The significance of contacts with extension agents and social networks (membership in a 

farmers’ organization and neighbours’ adoption decisions) implies that exposure to information 

on SWC technologies is essential to increase the adoption of these technologies. The results, 

therefore, suggest the need for policies and strategies which promote farmer organizations and 

effective extension services for greater adoption of soil enhancing and water harvesting 

technologies. Similarly, policies which centre on a farmer and his/her neighbours or farmer to 

farmer extension can go a long way in increasing the adoption and diffusion of SWCT. 

Interventions which centre on promoting interactions among farm households such as self-help 

groups and farmer field-days can increase the effectiveness of social networks in promoting the 



adoption of agricultural technologies (Mumin and Abdulai, 2021).  

Finally, even though the link between the adoption of SWCT and crop productivity is well 

established in the literature, very few studies have quantified the impact of these technologies on 

labour outcomes. Although the results of this study have shown that labour is an important 

determinant of adoption, further research that explicitly examines the labour (family and hired) 

implications of the adoption of SWCT is important to design and develop technologies that are 

suitable for resource-poor farmers in developing countries. 
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