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Multiple Agents, and Agricultural
Nonpoint-Source Water Pollution
Control Policies

Rodney B.W. Smith and Theodore D. Tomasi

Assuming asymmetric information over farmer profits and zero transaction costs, prior

literature has suggested that when regulating nonpoint source water pollution, a tax on

management practices (inputs) can implement full-information allocations and is superior to a

tax on estimated runoff. Using mechanism design theory under asymmetric information, this

paper shows that under the same assumptions, management practice taxes and taxes on

estimated runoff are equally efficient.

Griffin and Bromley (G-B) examined the relative
efficiency of four pollution control policies: a tax
on estimated runoff, a tax on farm management
practices (i.e., a tax on inputs), runoff standards,
and farm management practice standards. In their
multiple-farmer model, high measurement costs
prohibited the regulatory agency from observing
the amount of pollution runoff from a farm; a dis-
tinguishing feature of NPS pollution. The regulator
could, however, monitor each farmer’s input levels
and knew each farmer’s profit structure. Then, us-
ing a model of fate and transport of pollutants (an
estimated runoff function), the regulator inferred
levels of pollution runoff from the farm. 1 Given
perfect information on farmer technologies and no
transaction costs, they found that (when suitably
specified) the four policies were equally efficient
as least-cost pollution control devices.

Shortle and Dunn (S-D) examined the relative
efficiency of the four policies under asymmetric
information. In their single farm model, the
farmer had private information concerning his or
her own profit structure. In their paper it was
shown that despite the lack of information on the
part of the regulator, a management practice tax
existed that could induce the farmer to choose ex-
arzte efficient levels of polluting inputs. The S-D
management practice tax was a nonlinear function
of the inputs used, with the tax being equal to the
expected environmental damages caused by the
runoff (plus a constant). They argued that unless
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estimated runoff is linear in inputs, the S-D tax on
estimated runoff will be unable to provide the
farmer with incentives to choose ex-ante efficient
input levels. It was concluded that management
practice taxes typically would be preferred to rtm-
off standards, management practice standards, and
taxes on estimated runoff.

To understand the potential consequences of
transaction costs, Smith and Tomasi (S-T) exam-
ined the effects that a tax-induced deadweight cost
(a form of transaction cost) might have on the ef-
ficiency of management practice taxes, Using a
single farm model similar to S-D, S-T found that,
given transaction costs, a management practice tax
is not always superior and is (second-best) optimal
only in special circumstances: if transaction costs
are high enough management practice taxes are
less efficient than management practice standards.
As in S-D, S-T found that with zero transaction
costs management practice taxes implement ex-
ante efficient input allocations. Also, not surpris-
ingly, S-T show that full-information allocations
are not implementable in the presence of tax re-
lated deadweight costs.

Although most of the S-D discussion was con-
cerned with the single-farmer case, they discussed
briefly the problem of regulating multiple farmers
under asymmetric information. They concluded
that with two or more farmers, neither the S-D
management practice tax (nor the tax on estimated
runoff) would be unable to implement full-
information allocations. However, Shortle and
Abler (S-A) revisited the multiple farmer problem
and showed that without transaction costs when
“communication” between the regulator and farm-
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ers is possible, a Groves (1973) version of the S-D
management practice tax could, in principle,
implement full-information allocations. S-A, how-
ever, said nothing about the properties of a tax on
estimated runoff, nor did they inform the reader
that Groves’ result requires at least three agents.

This paper revisits S-D and argues that optimal
management practice taxes and estimated runoff
taxes are equivalent in that they can both imple-
ment ex-ante efficient input choices. This result
holds for the multiple farmer case where each
farmer’s profit structure is his or her private infor-
mation. Furthermore, as in S-D there are no trans-
action costs.

The next section describes the basic economic
environment and characterizes the properties of
full-information allocations. The third section dis-
cusses direct revelation mechanisms and the re-
lated notions of incentive compatibility and volun-
tary participation. The fourth section shows that a
(nonlinear) tax on estimated runoff can implement
full information allocations. We also outline the
steps involved in establishing similar results for a
(nonlinear) tax on management practices, and dis-
cuss why our results differ from those of S-D. The
last section concludes.

The Basic Problem

There are n farmers indexed by i = 1, . . . . N. In
the absence of regulation, a representative profit-
maximizing farmer i chooses input vector xi 6Rm to
maximize

II(xi,oi) = Ewii(xi,w,oi)

Here, w is an ex-post realization of a random vari-
able that is unknown to the farmer at the time xi is
chosen; EW is the expectations operator with re-
spect to w; and Oi is a scalar index of farmer prof-
itability (called the farmer’s “type”) known to the
farmer, but not to the regulator. If the farmer’s
profitability in~ex is 13i,then we say he is a type-6i
farmer. Here II (Xi,W,(li) is the profit a type-~i,
farmer generates if hg uses input vector xi, and
state w occurs, and II(xi,(3i) is that farmer’s ex-
pected profit. To simplify subsequent notation we
assume the regulator believes each ei follows the
uniform distribution, with support given by the in-
terval @ = [0,1].

Assumption 1: For i = 1, . . . ,n and j =
1,.. .,rnandforall(3i:

(i) ~ (xi,t3i) >0, (ii) ~ (xi,Oi) 20,
L v

Here xv is the jth input of farmer i. In other words,
expected profits are (i) increasing in farmer type,
(ii) increasing and strictly concave in inputs (over
the relevant range), and (iii) expected marginal
profits are increasing in farmer type.

The relationship between an input vector, xi and
the runoff that vector causes is represented by a
stochastic runoff function, gi;RN+2 + R, with run-
off levels denoted by ri = gi(xi, w,p,). Here, p is a
random variable representing the regulator’s un-
certainty about actual runoff. The agency’s joint
density for p, and w is given by ~(w,~). The ex-
pected runoff generated by the vector xi is

;i(xi) =
SS gi(xi>w)e)flw~e)~w~e.

Runoff causes water quality damage, D(rl ,r2, . . . . r.).
We assume that D is convex and twice continu-
ously differentiable in each ri(xi). The expected
damage caused by input vectors x = (xl, . . . . x.)
is

D(X1,X2, . . . . Xn)=

SS
D(gl(xl ,w,e), g2(x2,w,e), . . . . gn(xn,w,e))

fiw,e)dwde.

If the regulator knew each farmer’s type and in-
curred no transaction costs, then the full-
information (ex-post efficient)2 choice of input
vectors, x* = (x~, , . . , x%), maximizes

~H(xi,oj)‘D(x~,x’2, x ). . ..n.

And hence, simultaneously solves the set of (n x
m) first-order conditions:

—

~ (Xi,O~)– ~ (X1,X2>. ..> ‘.)=0,
lJ ~

i=l ,. ... n,
j=l, . . ..m.

The full-information problem can be viewed as one
where the regulator observes each farmer’s private
information costlessly and tells each one that if he
or she does not choose the socially optimal input
bundle he or she will be assessed an extremely
large fine.3

Direct Revelation Incentive Schemes
Regulating Input Use

In what follows we assume that Oiis known only to
farmer i, (t3i is the private information of farmer i).
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In such a case fines such as the one described
above are unavailable. Using a truthful direct rev-
elation (TDR) mechanism (see Guesnerie and Laf-
font, Laffont and Tirole, or Myerson) we develop
the properties of an optimal ex-post efficient in-
centive scheme.5 The direct revelation mechanism
we consider operates as follows: (i) each farmer is
offered an incentive :cheme (tax schedule), de-

noted {Ti(~i(xi(6))),xi(0) ]tje~, composed of an es-
timated runoff tax function and an input function.
The tax schedules are a fqnctio~ 9f the vector of
types rqported by farmers: 8 = (6i,8_J; where each
scaky 13iis ~he profit index report~d by farmer i,
and O_i = ((31,. . . . Oj_l,Oi+l, . . . . 6,J is the vector
of profit indices reported by the n-1 other farmers.
After observing the tax schedule, each farmer re-
ports a (li tp the regulator. The regulator observps
~he vec~o~ 0 and offers @rper i the contra$t Jti((3i,

9_i),xi(0i,&i))where ti(6i,0_j) = 7’i(7i(xi(6i,6-i))).
Given truth- telling by all others, if it is optimal for
farmer i to report his true type, then we refer to the
mechanism as a (Bayesian) truthful direct revela-
tion mechanism.5

Note that the direct revelation mechanism de-
scribed above is a dynamic, two-staged game of
imperfect information. In the first stage the regu-
lator chooses an instrument (tax scheme). In the
second stage the farmers choose a type to report.
The subgame-perfect Bayesian-Nash equilibrium
of this game is arrived at via backwards-induction:
(i) the regulator first determines the farmers’ opti-
mal response to the tax scheme, (ii) she then in-
corporates the best responses functions into her
objective function and chooses the optimal tax
scheme.

Incentive Compatibility

The farmers’ best response to any arbitrary con-
tract schedule is summarized in the incentive com-
patibility, or truthtelling, constraints, Let 6 =
(0,,02, . . . . 6.) denote a vector of farmer types.
Given each other farmer repqrts his type honestly,
a type-(3i farmer reporting Oi earns an expected
profit equal to

T(6i,6i;0_i) = E~_JH(Xi(6i$O_i),0j)- ti(6i,0_j)}.

Incentive compatibility-reporting Oi truthfully is
optimal for each farmer-satisfies

The incentive compatibility (IC) constraint gives
us the optimal relationship between the input vec-
tor as a function of 13,and the tax as a function of
t3, Guesnerie and Laffont show that the incentive

compatibility condi~ion holds if the following two
conditions hold at 8i = Oi.

dt..
-+ (6i,0_i)1}=o,

– (Ni

(For a proof see Guesnerie and Laffont, or Laffont
and Tirole.) Here, m~, (.”) la,= ~, the partial deriva-
tive of T wit~ respect to farmer i’s reported type
(evaluated at Oi = 6,), is the first-order condition
for truthtelling. By equation (2) the input and (es-
timated runoff) tax functions must be chosen so the
expected marginal benefit from ~misrepresenting
his type a Iittle—e.g., reporting Oi = Eli+ A—is
just offset by the expected marginal cost of doing
so (where A is some small constant). The expected
marginal benefit is Ee, {~~~1 (dH)/(dxij) (dxij)/
(W!i)} and the expected marginal cost is Ee_, {dti/
IY3i).Equation (3) is the second order condition for
truthtelling. Combined with Assumption 1, a suf-
ficient condition for equation (3) is the following
monotonicity condition:

j=l, . . ..m.

Given farmer i’s profits increase in Oi, equation (4)
says that if marginal net profits are increasing (de-
creasing) in farmer type, the farmer should be al-
located more (less) of the input.

Voluntaiy Participation

In addition to satisfying incentive compatibility,
we assume the tax schedule must also satisfy a
voluntary participation constrtiAnt, and not force a
farmer out of business: i.e., V 0i,8i ● 0,

Without loss of generality we set R equal to 0.6
Since the voluntary participation constraint must
hold for all possible farmer types, equation (5)
must hold for all possible (3.This set of rationality
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constraints can be replaced by a single constraint as
follows. For a given (3,farmer i’s profit is given by

fi~(o) = lI(X~(O~,O-i),Oi)– ‘~(”i,o-i).

Given Oi, represent farmer i’s expected profit by

(6) ~i(6i) = Ee_~~i(oi,O--i)}

= E&jll(X,(6i,&l),01) - tJOi,O-,)}.

By (1) and the envelope theorem, truthtelling im-
plies:

Integrating (7) between zero and Oi yields

{J

Oj5H,
(8) Ti(Oi) = ITi(0) + E@_, 1,~(X,(dii),s)ds,1
and given assumption 1, it follows that Ti(Elj) is
increasing in 0iV8i e 0. It follows that equation (5)
is satisfied as long as

(9) ITi(o)= 0.7

The Optimal Tax Schedule under
Asymmetric Information

This section develops the regulator’s optimal in-
centive scheme given asymmetric information over
the farmer’s type. We proceed by first setting up
the regulator’s optimization problem. We then de-
velop the optimal input function and end with a
characterization of the optimal tax function.

For a given 6, the expected net social benefits
associated with an arbitrary tax schedule is

B(X,(3)= ~ {rqxi(e),f$) - ti(ci) + ti(e)} - @x(o))
j=1

= ~n(xi(o),oi)-‘(x(e))
j=1

Note that B is the objective function associated
with the full-information problem. Since II is
strictly concave in x and D is convex in x, it fol-
lows that B(x,O) is strictly concave in x. Then the
regulator’s problem is to choose {x(~), t(6))8e@Nto
solve:

(10) max{X[8)}{E,{B(x(6),0)};

subject to (4), (7), and (9)}.

To further simplify the problem we impose the
following restriction on B.

Assumption 2 requires that the change in marginal
net social benefits associated with a change in
farmer type is not too small, Later we show that
invoking assumption 2 ensures that the monotonic-
ity condition, equation (4), is satisfied. Given as-
sumption 2, program (1O) is a pointwise optimiza-
tion problem. Specifically, in the appendix we
show that (10) is equivalent to the following opti-
mization problem:

(11)
-)

m={.(e)} % p !rI(xi((3),f)i) - D(X(E))) ,
&I

subject to

{
(12) ‘e_i {ti(ej,e-i)}= ‘e_, ‘(xi(oi,o-j),ei)

- (1 - Oi) 1#(Xi(ei,[
i=l, . . ..n.

In principle, the regulator could solve the optimi-
zation problem given by (11) and (12) by first
choosing, for each 9 e x~=l @, the optimal input
vector x* (0) maximizing (11) and then construct
the corresponding tax (12) according to expression
(15) found in the appendix.

The necessary conditions for an optimum in-
clude: For each O E x~=l@, #=1 or @N

—

~ (x~(e),oi, = & (x”(e)),’13) dxij(e)
~=1 “,. ... n, j=l, . . ..rn

(14) 7’i(ri(x~(6))) = ti(t))
= ll(x:,ei)

- (1 - 0,): (x;, 6,),
1

i=l ?. ... n,

Hence, as revealed in (13), the optimal contract
scheme chooses the full-information input vectors.
The corresponding tax satisfies expression (14).8
Without regulation the profit-maximizing farmer
chooses input levels so mar&nal net profits are
equal to zero. Hence, when dD/tlxij = O farmers’
input choices will be efficient. However, when d~/
dxti >0 the level of input j chosen by farmer i will
be too high. The reader can take the totrd derivative
of (13) with respect to Oi to verify that if assump-



Smith and Tomczsi Nonpoint-Source Water Pollution Control 41

tion 2 holds, then the monotonicity condition (4)
holds.

For any input vector satisfying (13), equation
(14) gives the estimated runoff tax that implements
that input vector. In other words, consider an input
vector xi(e) satisfying expression (13). Equation
(14) defines the corresponding tax ri(6) tha~ in-
duces the farmer to choose xi(6), i.e., report f3i =
~i. The optimal tax is equal to the difference be-
tween the farmer’s net profit level and the incre-
ment in profit associated with a small change in
farmer type (weighted by the likelihood of the
farmer having a higher type9). Of course the dif-
ference may be positive or negative.

Note that to model the characteristics of a man-
agement practice tax under asymmetric informa-
tion one needs only to reinterpret the tax Ti. For
example, define a tax as the function of the input
vector xi, say ti(0) = ~i (xi(~)) and substitute ~ into
all expressions containing ti(ff). The reader can
verify that after making all appropriate substitu-
tions, the objection function (SB) and the neces-
sary condition (13) remain the same. For all intents
and purposes, expression (14) is unchanged also,
and equivalent results follow, Hence consistent
with Shortle and Abler’s discussion, a management
practice tax also implements the full-information
allocations,

In short, we conclude management practice and
estimated runoff taxes are equivalent and can (in
principle) implement full information allocations
under asymmetric information, even when there
exist multiple polluters. Why do our results differ
from those of S-D? In the mechanism design ap-
proach the regulator first ascertains the farmers’
best responses to any possible policy-expression
(2). Armed with this information, the regulator
uses equation (13) to define the full-information
vector profile that links the farmer’s prollt struc-
ture directly to the damage function. The regulator
then uses equations (2) or (14) to link the optimal
tax function with the optimal input vector. The
result being that it can implement full-information
allocations under asymmetric information. On the
other hand, in S-D the regulator makes no use of
the farmers’ likely reaction to proposed policies
and instead links the tax directly to the damage
function (with the tax equal to the damage function
plus a constant). Such behavior by the regulator
would be analogous to a Stackelberg leader con-
templating an output level and not trying to infer
the likely output decisions of its followers. Hence,
the mechanism design approach incorporates more
information in the decision process than that uti-
lized in S-D.

The S-D analysis is restricted to a more narrow

class of potential tax schemes than the analysis
presented here. Although jior the type of tax ana-
lyzed in the S-D model management practice taxes
generally outperform estimated runoff taxes, this
result does not hold for the larger class of potential
tax schemes that mechanism design theory admits.
Viewed another way, in S-D the tax schemes are
chosen exogeneously and then checked to see if
they can implement full-information allocations;
given farmer and regulator preferences. However,
here the properties of a tax scheme are chosen
endogenously as a function of farmer and regulator
preferences.

One implication of the above result is that in-
stead of attempting to monitor the input (or output)
decisions of one or more polluters, in principle the
regulator could achieve the same results by mea-
suring ambient pollution levels. As an example,
say a firm was composed of several production
plants and was the sole source of water pollution in
a watershed. Then instead of monitoring and regu-
lating the input levels of each plant, the regulator
might achieve similar results by applying appro-
priate penalties to measured ambient pollution lev-
els.

Conclusion

This paper revisits the papers of Shortle and Dunn,
and Smith and Tomasi, and examines the problem
of controlling nonpoint water pollution from mul-
tiple sources in the presence of adverse selection.
We argue that both estimated runoff taxes and
management practice taxes can implement full in-
formation allocations, hence, management practice
schemes and taxes on estimated runoff are equiva-
lent mechanisms.

The problem of controlling NPS pollution con-
tinues to challenge policy-makers because of the
diversity of informational deficiencies involved.
Yet, given that NPS pollution remains a major
source of environmental degradation, the problem
is deserving of investigation. An important next
step in addressing the NPS pollution problem is
that of designing actual policies that embody prop-
erties of first- and second-best instruments like
those considered here.
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Notes

1. In an earlier paper, Griffin and Bromley also
examined the implications of using an estimated
runoff function in design of policy to control ag-
ricultural pollution. S-D extend the Griffin and
Bromley model to include a stochastic element in
the runoff function, as well as asymmetric infor-
mation between regulator and firm.
2. In Shortle and Abler, as in this paper, there are
two different classes of uncertainty. One type is
based on the uncertainty of future weather condi-
tions and the uncertainty imbedded in the expected
runoff function. The other uncertainty is based on
the farmers’ private information. In the (scant)
multiple-agent adverse selection literature (see
Laffont and Tirole, 1991) there are two types of
revelation mechanisms. A mechanism is ex-post

efficient if it implements full information alloca-
tions after types are revealed. In such a case, from
the agents’ standpoint if two or more agents are
being regulated, the mechanism is stochastic. In
other words, in such a case the regulator will not
know how much each agent should produce, retire,
etc, until after the agents’ types are revealed.

Hence, the agents will not know, for example, how
many units of an input to use and the correspond-
ing tax rate until after everyone has reported their
type (see Smith and Shogren). A mechanism is
ex-aizteefficient if for each agent the mechanism
implements a full-information allocation given ex-
pectations of all other agents’ types, From the
agent’s standpoint, an ex-ante efficient mechanism
is deterministic. Hence, what S-A defines as first-
best (or ex-ante efficiency) is typically referred to
as ex-post efficiency, while the S-A definition of
second-best would be viewed as ex-ante efficiency.
3, This type of instrument is often referred to as a
kn~e-edged instrument.
4. The information requirements for implementing
a direct-revelation scheme are potentially demand-
ing. For instance, to implement the direct revela-
tion tax scheme considered here, the government
must know the structure of the profit function and
the distribution of 8i.
5. Several authors have shown that nothing is lost
when modeling a mechanism as a TDR mechanism
(see Dasgupta, Hammond, and Maskin; Myerson,
198 1). This observation—called the revelation
principle—says that for any equilibrium of any
good mechanism there exists an equivalent direct-
revelation mechanism that involves trttthtelling.
6. It is, of course, possible that the optimum in-
volves driving the farmer out of business, but we
do not consider this degenerate case further.
7. The farmer can always say he is a type-~i
farmer and earn an expected profit equal to:

T(OjOj,O_i) = E&J{H(.’Yi(O,”_i)>ei)– ‘i(”,o-i) }
2 ‘(IJ{‘(xi(o,e-i)!o) – ‘i(”!e-i) 1
= 7r(o,o;0_i).

8. Strictly speaking, after the set of all possible
input vectors are chosen the expected tax is chosen
to satisfy expression (12).
9. The term (1 – Oi) is actually the inverse of the
hazard rate where 9i is the probability distribution
function associated with a random variable that is
uniformly distributed between zero and one. In a
more general case, given a distribution function
F(Oi), the term (1 – Oi), would be equal to 1 –
F(6i)/j(Oi), where ~(ei) is the probability distribu-
tion function.

Appendix

Here we show that constraints given by expressions
(7), and (9) can be collapsed into expression ( 12).
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First, combining equations (6) and (8) gives

{

‘,’’(e)’=E,{:H(x(e)e)}

~H(x,(0),O,)E6_~ti(6i>f3-i)}= EO-i ,=1

{

~ drl

s]
‘ds dOi– E6_i ~e ~ (xi(~,e-i),s) 6,

-J

8, dII 1~~(xi(~,~-i),s)ds,1 ‘E{$@4
i=l ,. ... n.

{

all
– EQ_i~~ (1 – Oi) ~ (xi(~i>e–i)toi)dei

Taking the expectation of the above expression 1 1
with respect to tli gives

=Ee ~~(Xi(6),8i)

{:1 } ‘:”~ }

Ee~~e_~~i(ei,e-i)}}=E~#~_i ~~(xi(e),ei)

-(l- Oi)~(xi(ei,e_i),oi) .

{J

t),till 1
1‘E13tELi~~(xi(s,e-i),s)d

‘E@{2H(x@)J
Or, for each &

{

(15) ‘,(e) = ‘(x,( o),o,) - (1 - ‘,) # (Xi(o),o,),

e “aH(xi(s,O_i),s)ds
- ‘% JJO ~ 1 1

i=l, . . ..n.

Applying Fubini’s theorem (see Buck, pages 186- Finally, taking the expectation of (15) with respect
188) to the double integral term above gives to O_i gives expression (12).


