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Evaluation of Alternative Risk
Specifications in Farm
Programming Models
Stephen A. Ford, Beth Pride Ford, and Thomas H. Spreen

The use of alternative probability density functions to specify risk in farm programming
models is explored and compared to a traditional specification using historical data. A method
is described that compares risk efficient crop mixes using stochastic dominance techniques to
examine impacts of different risk specifications on farm plans. Results indicate that a
traditional method using historical farm data is as efficient for risk averse producers as two
other methods of incorporating risk in farm programming models when evaluated using
second degree stochastic dominance. Stochastic dominance with respect to a function further
discriminates among the distributions, indicating that a density function based on the historic
forecasting accuracy of the futures market results in a more risk-efficient crop mix for highly
risk averse producers. Results also illustrate the need to validate alternative risk specifications
perceived as improvements to traditional methods.

The management of risk is an important issue in techniques of risk specification which lead to so-
the study of decision-making in agriculture. lutions that are different from those of other tech-
Sources of risk in farm planning arise through un- niques, and are therefore better (McCarl and Ap-
certainty in farm level prices and yields. Tradi- land). Rather than rely on this approach, it is pro-
tional modelling efforts have been based on histor- posed that stochastic dominance techniques be
ical data which may not accurately reflect the risk used to evaluate the relative robustness of crop
faced by farmers in farm planning decisions for a mixes resulting from alternative methods of incor-
single, specific year when market conditions are porating risk in farm programming models. These
known. It seems logical, then, that the prescriptive techniques are demonstrated for a simple MOTAD
use of risk programming models for crop planning farm planning model in the following sections.
decisions should incorporate risk specifications
that are conditional on current, rather than histor-
ical, market information. Evaluation of the Robustness of Different

The objective of this paper is to evaluate alter- Risk Specifications
native methods of incorporating risk in farm pro-
gramming models to determine if the use of a par- A method is needed to discriminate between farm
ticular method results in a more efficient produc- plans resulting from programming models using
tion plan. The alternative risk specification alternative risk specifications. Let RH represent a
methods considered in this paper are based on his- risk specification based on historical information
torical, futures, and futures options data, respec- and let X be the solution vector of optimal crop
tively. Previous research compares the efficiency activities obtained from the programming model.
of alternative risk specifications only through gen- Then let X(RH) represent the distribution of net
eral descriptive discussions of the resulting crop returns from crop plan X. Similarly, let Rc repre-
mixes. These models have relied on "improved" sent a risk specification based on conditional or

current information and let Y be the resulting op-
timal crop mix from the programming model. Let

The authors are, respectively, Assistant Professor and Project Assistant, YR be the distribution of net returns from crop
Department of Agricultural Economics and Rural Sociology, The Penn- plan Y. The risk efficiency of crop plans X and Y
sylvania State University and Professor, Food and Resource Economics can be compared through their distributions of re-
Department, University of Florida. The authors wish to acknowledge rn, () and Y in tc tic d i
the helpful comments of Wesley N. Musser and three anonymous re- H) and Y ), ing t ast
viewers. nance analysis. Stochastic dominance is well-
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defined in the literature (King and Robison, 1981) is uncertain but a particular crop mix is robust
and requires only mild assumptions about agent across all reasonable specifications, more confi-
preferences. First degree stochastic dominance re- dence can be ascribed to a prescription using that
quires only that agents prefer more to less. Second risk management strategy.
degree stochastic dominance additionally requires
that agents be risk averse. Stochastic dominance
with respect to a function (Meyer, 1977) further Risk Specification Issues
evaluates risky outcomes at different intervals of
risk aversion. However, care must be taken in a The problem of proper risk specification received
comparison of the distributions of returns, X(RH) much attention through the 1980s. Risk specifica-
and Y(Rc). Because the crop plans, X and Y, are tions in farm programming models are usually
determined based on different risk specifications, based upon expected net returns and higher mo-
they should be compared under the same risk spec- ments characterizing the net returns distribution. If
ification distribution, R*, to avoid bias in the com- the primary objective of risk-programming analy-
parison; e.g., X(R*) should be compared to Y(R*). sis is descriptive in nature (ex post), then a risk

The appropriateness of using stochastic domi- specification based upon historical data may cor-
nance techniques to evaluate MOTAD solutions is rectly capture the risk faced by a producer. Objec-
a cause of some concern (Robison). King and Ro- tive probability distributions derived from histori-
bison (1984) have shown that conflicting ordering cal data have traditionally been used in program-
can arise between MOTAD and stochastic domi- ming models (Musser, Mapp, and Barry; Boisvert
nance. More recently, however, Meyer and and McCarl). However, Young (1984) notes that
Rasche have shown that the inconsistent ordering there are no well-defined procedures for correctly
is likely of the order that would be provided by estimating parameters of objective probability dis-
sampling error in specifying a probability distribu- tributions, including distributions of net returns
tion to represent risky outcomes; a concern shared used in risk programming models.
by Buccola regarding the consistency of mean ab- Another use of risk programming analysis, how-
solute deviation models with expected utility ever, is as a tool in production planning. Often,
(Johnson and Boehlje, 1981 and 1982). Meyer and objective distributions based on historical data are
Rasche concluded that mean-standard deviation used to determine the optimal cropping patterns
rankings can be consistent with expected utility producers could use to manage risk in the long run.
rankings beyond the strict location-scale condi- This approach assumes that future returns are dis-
tions usually necessary for consistent rankings be- tributed the same as historical returns. However,
tween these two approaches (Meyer, 1987). producers follow agricultural commodity markets

Because MOTAD is a close approximation to and have subjective price expectations based on
mean-standard deviation models (Thomson and information in addition to historical prices (Young,
Hazell; Boisvert and McCarl) and stochastic dom- 1980). A risk specification based upon subjective
inance analysis requires only mild assumptions probability distributions derived from current or
about agent preferences, it seems reasonable to use conditional market information may better reflect
these techniques to evaluate choice of risk speci- the risk faced by a producer than a specification
fication in programming models. However, a strict based upon historical or unconditional data. Cur-
theoretical link has not been made. Consequently, rent market information available to a producer
MOTAD results are compared to resulting mean- might include carryover inventories, prices for fu-
standard deviation rankings for consistency, and tures contracts, and premiums for commodity op-
the location and scale condition (Meyer, 1987) is tions at specified strike prices.
examined for consistency with expected utility. While previous research has called for the use of

More importantly, it is not the model solutions subjective probability distributions in risk pro-
or the specific risk programming method that are gramming models (Adams, Menkhaus, and Wool-
being evaluated in this research so much as the ery; Anderson, Dillon, and Hardaker; Lins and
robustness of these solutions to different risk spec- Sonka; Mapp and Helmers; Musser, Mapp, and
ifications. The comparisons of these solutions can Barry), the use of subjective probability distribu-
also be viewed as an analysis of optimal and near- tions of outcomes offers its own set of problems.
optimal solutions which can also have value in Farmers may not have fully defined subjective
farm management applications (Schurle and Er- probabilities because of incomplete knowledge of
ven) or as an analysis of diversified portfolios de- current and past events. Further, there is no guar-
veloped for comparison with stochastic dominance antee that the subjective probability elicited is an
(McCarl, et al.). If the choice of risk specification accurate specification of the risk actually faced on
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the farm, or that it would lead to risk-efficient farm pected returns over variable costs are maximized
plans. It must still be determined whether current subject to resource constraints and a constraint on
or conditional information better describes the risk total negative deviations from net revenue. The
faced by a producer than does information derived mathematical formulation of the model is:
from historical data.

A second issue that has received attention con- 3 12

cers the sensitivity of optimal solutions to model (1) max E CjXj - rL - Epwi
specification in the form of technical and resource j=1 i=
constraints in general, and risk specification in par-
ticular. Many of the authors cited above describe subject to
the sensitivity of results to the length of time series
used to specify the probability distribution of out-
comes, detrending methods, and the adjustment of (2) djtxj + Yt -0 t = 1, .. ,15
prices to real levels. Although the sensitivity of j=1
programming models to alternative specifications
is not unique to risk analysis, solution results used 1

to describe farm decision-making behavior or to (3) E Yt X = 0 Xmax

prescribe farm strategies may be inaccurate. Meyer t= 
and Rasche point out the sampling error that is
inherent in the specification of risk in such models. 3

The sensitivity of optimal solutions to the risk (4) E aijxj- i - gi i = 1 .. , 12
specification and the constraint matrix formulation j=l
implies that the model solutions may not reflect the
true risk faced by the farm. Consequently, optimal 3

farm plans resulting from model solutions may not (5) L
clearly dominate other "sub-optimal" or "near-j - L E
optimal" plans. 

(6) xj, L, wi, Yt O 0

Empirical Framework
where

Three MOTAD models (Hazell) were developed to
evaluate the use of different risk specifications. cj = expected returns over variable costs for
The models were used to identify optimal crop three crop activities
mixes for 1989 given historical price and yield xj = number of acres of crop activity j
observations and futures market information at that r = rental price of land
time. Planning for 1989 offers an excellent test of L = acres rented
different probability distributions for net returns P = wage rate for hired labor
because of the effect of the 1988 drought on ex- wi = labor hired in month i
pected commodity prices. The three models differ dj, = deviation of activity j returns in year t
only in the coefficients used for net returns for crop from expected returns
activities in the objective function and in the coef- Yt = negative deviation in year t
ficients used in the deviation constraints. The al- X = level of negative deviations summed over
ternative risk specifications are based upon histor- 15 years (t = 1, ... , 15)
ical price and yield data and two methods which ai = labor required by activity j in month i
incorporate conditional information into the farm gi = owner labor available in month i
model. The two conditional methods use empirical LE = owned acres of land.
distributions derived from futures market informa-
tion. Thus, the conditional methods use informa- The models were solved for five risk levels: X =
tion which is not included in the historical data. 50,000, X = 100,000, X = 150,000, X =
The approaches using futures market information 200,000, and X = 999,999 (unconstrained).
can also be thought of as "collective" subjective The model farm is a hypothetical north Florida
probability approaches because they reflect market crop farm. The model formulation is simplified in
expectations. order to clearly illustrate results of the analysis. It

The MOTAD farm planning models follow the is assumed that the farm consists of 600 acres of
approach found in Anderson, et al., where ex- nonirrigated cropland. An additional 500 acres can
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be rented for $20 per acre. Up to 320 hours of defined as the difference between the historical re-
labor can be hired each month for $5 per hour in alized gross return and the fifteen-year average his-
addition to the owner's available labor. Corn, soy- torical gross return:
beans, and cotton can be grown on the farm. No
government program participation is assumed in 1
the farm model. When farmers participate in gov- (8) dyj = PjtYjt - 1/15 PjtYjt 
ernment farm programs, the resource allocation _t=
problem among crops may become trivial since
farmers are generally locked into planting their Futures MOTAD Specification
ASCS crop bases. The exclusion of farm program
participation from consideration in the farm model The futures MOTAD specification differs from the
should not unduly bias the analysis as it reflects the historical specification only through how expected
situation in North Florida where there are generally net returns in the objective function and the devi-
low levels of participation in these programs (Ford ations are specified. Crop prices used in calculat-
and Hewitt). Also, the primary purpose of this re- ing ci and dj, for the futures specification were
search is to explore the choice and relative perfor- based on market information at planning, as op-
mance of alternative risk specifications rather than posed to historical prices used in the historical
the adoption of specific cropping plans. However, specification. Futures prices in the planning month
if future agricultural legislation continues to move for contracts nearest harvest are the local market's
toward a market-oriented agricultural sector, re- expected cash price at harvest when adjusted for
source allocation and farm planning problems for expected basis. The planning month for this model
those farmers participating in farm programs may is assumed to be February of the planning year.
become more important. The futures contract months are September, No-

vember, and December for corn, soybeans, and
Historical MOTAD Specification cotton, respectively.

Harvest period futures prices at a planning date
The historical MOTAD specification defines ex- do not reflect cash prices received at harvest with
pected net returns for crop j in the objective func- certainty. One measure of the accuracy of futures
tion (ci) for the planning year as the fifteen-year prices as price forecasts is an evaluation of their
average of historical gross returns from that crop performance over time. Therefore, a fifteen-year
activity less expected variable costs of production series of differences between the cash price re-
for the planning year: ceived at harvest in year t and the futures price

from the first Tuesday of the preceding February in
15 year t was calculated using the farm level data

(7) cj = 1/15 PjtyjP - E[vcj] from 1974-88. These differences can be thought of
[Z=l _ Evas the risk context in which to place the futures

prices used for planning in February, 1989. The
where p,. and yj, are the historical price and yield, resulting distribution of these differences can be
respectively, for crop j in year t. E[vcj] is the ex- thought of as the distribution of the historic fore-
pected variable production cost per acre for crop j casting accuracy of the futures market; the "col-
for the planning year. Expected variable produc- lective" subjective probability distribution of the
tion costs were taken from 1989 extension plan- market.
ning budgets for North Florida field crops The differences were added to the futures prices
(Hewitt). Expected variable costs of production for corn, soybeans, and cotton in the planning
were used rather than historical costs because of month (February, 1989) to generate a distribution
the prescriptive focus of the analysis. Price and of fifteen observations around the futures prices for
yield data over the period from 1974 to 1988 were the respective commodities. This relationship can
collected from a farm in North Florida for corn, be expressed as (pj, - Fj,) + Fj* = pj,* where pj,
soybeans, and cotton. Crop yields were detrended is the harvest price of commodity j observed in
by regressing yields on a constant and a linear year t, Fj, is the harvest futures price at planning
trend, with the only statistically significant trend for cropj in year t, Fj* is the 1989 harvest futures
occurring in cotton yields. Therefore, detrended price at planning, and pit* defines the distribution
yields for cotton and actual yields for corn and of prices based on historic differences of futures
soybeans were used in the MOTAD model. His- and realized prices.
torical prices were not detrended. The deviation A set of fifteen correlated prices and yields were
for year t (d,,) in the historical MOTAD model is drawn for each commodity from the distributions
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created from the futures prices and the same yield expected variable costs of production for each crop
distributions used in the historical MOTAD model. activity:
The simulated draws were based on correlations
among the harvest and futures price deviations and 1
observed yields for the 1974-1988 period. The (11) cj = 1/15 p jytjt -E[vcl],
simulated draws of prices and yields were then _t=
used to calculate expected net returns in the objec-
tive function as where Pij and Yjt are the simulated draws from the

options price and yield distributions for crop j and
_15- _^~ -]observation t. Deviations were specified in the op-

(9) _j = 1/15 pj* E[vcj], tions MOTAD model as:

Lt=1 15

where put and yj, are the simulated price and yield (12) djt = Pt - 1/15 P ptYt .
draws, respectively, for crop j and observation t. t=1

Deviations used in the constraint matrix were cal-y solutions to
The relative risk efficiency of the solutions to

culated using the three MOTAD specifications was analyzed us-
ing stochastic dominance analysis. The perfor-

_ 1 mance of each crop mix from the MOTAD solu-
(10) djt = ptyft - 1/15 pjYf . tions was evaluated under the three different risk

_t=l specification distributions to gain insight into the
choice of risk specification. The method used is
described in more detail in a later section.

Options MOTAD Specification

The options MOTAD specification uses futures MOTAD Model Solutions
options premiums in calculating net returns distri-
butions. Options premiums that the market is will- Solutions to the three MOTAD models at each risk
ing to pay at different strike prices indicate the level are presented in Table 1. As expected, the
perceived variability of expected prices (futures value of the objective function increased in all
prices) at planning time. Thus, options premiums models as risk became less constraining. Soybean
and strike prices generate information about expec- acreage remained relatively constant at all risk lev-
tations of price volatility (Black; Gardner), and can els of the three models, while corn and cotton acre-
be used to construct non-parametric representa- age changed substantially depending on the model
tions of commodity price distributions (King and used and the risk level. The strength of soybeans in
Fackler). These non-parametric price distributions the crop mix of each model is interesting, espe-
provide a measure of price risk consistent with that cially since soybean acreage had declined substan-
which is perceived by commodity markets. tially in North Florida over the previous decade.

The Agricultural Risk Management Simulator High expected soybean prices may account for the
(ARMS) developed by King, et al. was used to strength of soybeans in the futures model and op-
develop price and yield distributions for 1989 from tions model results, as would the weight of ex-
futures options market information. The options tremely high prices experienced in 1988 in the his-
contracts used for corn, soybeans, and cotton har- torical model. Corn and cotton acreage increased
vest periods were the same as for the futures MO- as risk constraints were relaxed in the historical
TAD model. Crop yields used were the same as in model. In the futures model, corn acreage failed to
the historical and futures MOTAD specifications. enter the solution, while cotton acreage increased
Fifteen correlated prices and yields were drawn substantially as risk constraints were relaxed.
from the ARMS distributions for each crop to be However, corn acreage increased and cotton acre-
consistent with the number of historical observa- age declined to zero as risk decreased in the op-
tions available. Correlations for the random draws tions model. The result for cotton in the options
were based on historical relationships. Gross re- model is due primarily to a low expected return in
turns for these fifteen "years" were calculated as the objective function of that model specification.
if these prices and yields were actually observed. One can see that the choice of risk specification
Expected net returns in the objective function were in these MOTAD models results in significantly
defined as the average simulated gross returns less different crop mixes. The model based on histori-
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Table 1. Solution Results to Three MOTAD Models

Risk Constraining Levels of Lambda
k = A = X =

X = 50,000 100,000 150,000 200,000 Unconstrained

------------------------------------ acres planted ------------------------------------

Model 1-Historical Specification
Corn 21 147 153 216 476
Cotton 96 145 261 332 411
Soybeans 202 240 228 221 213
Total Acres 319 532 642 769 1100
Objective Function $14,567 $22,777 $26,954 $28,883 $32,237

Model 2-Futures Specification
Corn 0 0 0 0 0
Cotton 65 186 282 369 384
Soybeans 185 235 226 217 216
Total Acres 250 421 508 586 600
Objective Function $14,586 $21,386 $23,307 $24,911 $25,186

Model 3-Options Specification
Corn 117 399 597 795 846
Cotton 73 0 0 0 0
Soybeans 247 254 254 254 254
Total Acres 437 653 851 1049 1100
Objective Function $25,998 $36,640 $41,255 $45,640 $46,709

cal data has resulting crop mixes that are diverse advisable under the market conditions facing the
and have significant acreage in each crop. The re- producer. For example, at X = 100,000, the op-
sults of the model based on a risk specification timal crop mix under the historic specification con-
from the futures market include no corn acreage at sists of 532 acres of which 240 acres are in soy-
all risk levels and a substantially lower total acre- beans with the remaining acreage split between
age planted. The results of the model using the corn and cotton. Under the futures specification at
options risk specification include no cotton except that risk level, only 421 acres are planted with 235
at the lowest risk level. in soybeans and the remainder in cotton. No corn

The choice of risk specification obviously is planted. When the options specification is used,
greatly affects recommendations of crop mix given the solution consists of 653 total acres of which
current market conditions. As expected, the spec- 254 are planted in soybeans and 399 acres are
ification based on historical data alone results in a planted in corn. No cotton is planted under this
diverse crop mix reflecting first and second mo- specification. The differences in the alternatives
ments of the historical patterns of yields and offered by these different risk specifications are
prices. Essentially, the crop mix is designed to not minor.
account for the average risk for these crops. The The question remains as to which strategy would
optimal crop mixes from the futures and options be optimal for the crop year in question. Conse-
specifications, however, reflect the market signals quently, the individual crop mix solutions are not
faced by producers. The risk specifications were as interesting as the proper choice of risk specifi-
conditional on the current market conditions at that cation. Such a determination of an appropriate
time. No corn is planted under the futures specifi- specification of the future risk faced by producers
cation reflecting the relative high prices of cotton would then lead to a prescribed crop mix. The crop
and soybeans, but also the relative historic predic- mixes at any specific risk level must be compared
tive accuracy of futures market prices for these under common assumptions about risk since they
three commodities. The current market confidence were derived using different assumptions about the
in futures predictions, however, leads to a crop proper way to specify risk in the planning year.
mix in the options specifications that excludes cot-
ton in favor of corn. The market is more sure, as
reflected by options premiums, about future corn Empirical Evaluation of Solution Robustness
prices than future cotton prices, or alternatively,
the market is more sure about low cotton prices. After obtaining solutions for the three MOTAD

The solution crop mixes are very different for models at five different risk levels (a total of fif-
each X level and it is unclear which crop mix is teen crop mixes), stochastic dominance techniques
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were used to evaluate the robustness of solution crop from the historical risk specification distribu-
crop mixes to alternative risk specifications. To tion (King; King, et al.; Bosch and Johnson). The
correctly compare the efficiency of alternative so- dominant set of crop mixes was then determined
lutions (at each risk level), total net returns for the for the three MOTAD models at the specified risk
optimal crop plans were calculated using prices level. Next, the three crop mixes were compared at
and yields drawn from the distributions used for the specified risk level under the futures risk spec-
each risk specification method (historical, futures, ification distribution, and then the options risk
options). Otherwise, results would be biased in specification distribution. In this way, no crop mix
favor of one of the three methods. Thus, a new set would have an advantage over the others because
of 100 correlated price and yield draws for each of the choice of risk specification.
crop was taken from each of the risk specification First degree stochastic dominance analysis of
distributions (historical, futures, and options) and the solution crop mixes evaluated under the three
used to calculate net returns for each crop mix risk specification distributions did not discriminate
solution. A total of forty-five net returns distribu- among the crop mixes at each risk level. Second
tions (each with 100 observations) were calculated degree stochastic dominance analysis also showed
(three crop mix solutions x five risk levels x three little discrimination among the crop mixes. Results
risk specification distributions). The resulting dis- of this analysis are presented in Table 2. When net
tributions of net returns for each crop mix solution returns for each of the 15 crop mixes were calcu-
were then compared to solutions from the other lated with draws from the historical price and yield
risk specifications at the same level of risk (X) distributions, second degree stochastic dominance
using first and second degree stochastic domi- did not discriminate among the crop mixes derived
nance. Further evaluation of the risk-efficiency of from the three MOTAD specifications at the high-
the solutions was performed using stochastic dom- est risk constrained level. For less constraining
inance with respect to a function (Meyer, 1977; levels of allowable risk, the crop mixes from the
King and Robison, 1981). options MOTAD specification were dominated by

Crop mixes from each of the three MOTAD those from the historic and futures specifications.
models at each risk level were evaluated in a series The crop mix from the futures MOTAD specifica-
of fifteen, three-way comparisons (five risk levels tion was dominant at the unconstrained level when
and three simulated sets of price and yield distri- evaluated using prices and yields from the historic
butions). For example, the optimal crop mixes re- distribution.
suiting from the three MOTAD models at a risk There was no discrimination among the crop
level of X = 100,000 were compared using sto- mixes from the three MOTAD specifications at
chastic dominance. A distribution of net returns any risk level when they were evaluated using
was first developed for each crop mix by drawing price and yield draws from the futures distribution.
a set of 100 "observed" prices and yields for each Similarly, there was no discrimination among the

Table 2. Second Degree Stochastic Dominant Crop Mixes for Each Risk Specification (S
indicates membership in the dominant set, N indicates that the crop mix is dominated)

Risk Specification Distribution Used
in MOTAD to Derive Optimal Crop Mix

Risk Level Distribution Used for Evaluation Historical Futures Options

$50,000 Historical S S S
Futures S S S
Options S S S

$100,000 Historical S S N
Futures S S S
Options S S S

$150,000 Historical S S N
Futures S S S
Options S S S

$200,000 Historical S S N
Futures S S S
Options S S S

Unconstrained Historical N S N
Futures S S S
Options N S S
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crop mixes at risk-constrained levels when they al.). The results of this analysis are presented in
were evaluated under prices and yields drawn from Table 3.
the options distributions. Only the crop mix result- Stochastic dominance with respect to a function
ing from the historical MOTAD specification was further discriminates among the distributions of re-
dominated by the other two distributions at the turns for the crop mix solutions under different risk
unconstrained level when evaluated under the risk specifications. The dominant crop mixes presented
specification derived from the options markets. in Table 3 indicate that there is still a wide variety

The important and somewhat surprising result is of crop mixes among which mildly risk averse pro-
the performance of the crop mixes derived using ducers would be indifferent. In this case, several
standard MOTAD methods and historical returns. crop mix scenarios would be appropriate for mildly
The co-dominance of the crop mixes derived from risk averse producers and there is no logical sup-
the solution of the MOTAD model using historical port for the use of one risk specification distribu-
data to reflect risk is contradictory to the argument tion over another for this group of producers.
that more explicit modelling of expectations in risk However, as the absolute risk aversion coefficient
models would result in more efficient crop mixes. increases, the dominant set of crop mixes evalu-
Note that the crop mixes from the futures MOTAD ated under each of the three risk specifications in-
specification were in the second degree stochastic cludes only the crop mix resulting from the futures
dominant set for each of the fifteen three-way com- specification at a risk level of X = 50,000. Thus,
parisons and perhaps may be judged to be the ap- the futures specification would be a more appro-
propriate method to specify risk. However, the priate choice of distribution for modelling very risk
crop mixes based on the historical MOTAD spec- averse producers.
ification were also in the dominant sets when risk Because there is no direct theory guaranteeing
was constrained; these crop mixes were only dom- consistency among MOTAD and expected utility
inated when risk was unconstrained. rankings, the consistency of the MOTAD and sto-

The previous stochastic dominance results re- chastic dominance results was evaluated. Means
flect the mildly discriminating nature of this type and standard deviations for the distributions arising
of analysis. Therefore, stochastic dominance with from the MOTAD-generated crop mixes are pre-
respect to a function was used to discriminate sented in Table 4. The mean-standard deviation
among all 15 crop mixes evaluated under each risk rankings of those crop mixes are consistent with
specification. The distributions of returns for each those presented in Table 2 and 3.
crop mix were compared over a range of absolute To evaluate the consistency of MOTAD approx-
risk aversion coefficients representing producers imations to mean-standard deviation solutions with
who are risk averse (Boggess and Ritchie; Moss, et expected utility, the Kolmogorov-Smirnov (K-S)

Table 3. Risk Efficient Crop Mixes for Different Absolute Risk Aversion Coefficients Using
Stochastic Dominance with Respect to a Function (x indicates membership in the dominant set)

Risk Specification Used in MOTAD Models

Historical Futures Options
Range of
Absolute Risk Distribution Crop Mix from Risk Constraining Level in MOTAD Using the above Risk Specification
Aversion Used for (X in 1000s)
Coefficients Evaluation 50 100 150 200 999 50 100 150 200 999 50 100 150 200 999

.0000-0001 Historical x x x x x x
Futures x x x x x x x x x
Options x x x

.0001-.0002 Historical x x x
Futures x
Options x x x

.0002-.0003 Historical x
Futures x x
Options x

.0003 + Historical x
Futures x
Options x
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Table 4. Means and Standard Deviations of the Distributions Compared with
Stochastic Dominance

Risk Specification Distribution Used in MOTAD to Derive Optimal Crop Mix

Distribution Used Historical Futures Options
Distribution Used

Risk Level for Evaluation Mean Std. Dev. Mean Std. Dev. Mean Std. Dev.

$50,000 Historical 14,462 8,352 12,174 5,961 17,892 12,495
Futures 21,351 11,672 18,093 9,167 26,986 14,250
Options 17,881 9,128 15,680 7,660 22,565 13,279

$100,000 Historical 20,654 16,754 18,405 14,284 20,446 27,656
Futures 30,476 19,189 26,800 18,629 32,303 25,913
Options 24,010 15,700 21,339 12,356 25,838 23,658

$150,000 Historical 22,531 24,643 20,539 22,204 19,731 29,005
Futures 33,065 27,881 29,461 26,448 33,819 36,757
Options 23,856 20,744 21,802 17,060 24,744 32,079

$200,000 Historical 22,623 32,292 22,336 29,769 18,783 50,511
Futures 34,257 35,501 31,735 33,961 35,100 47,923
Options 22,854 26,763 22,087 22,204 23,414 40,875

Unconstrained Historical 21,171 48,367 22,648 31,773 18,494 53,462
Futures 36,157 80,949 32,135 35,363 35,380 50,800

Options 19,268 40,917 22,122 23,194 23,028 43,153

test was used to test the location and scale condi- tributions perform as well as distributions using
tion (Meyer and Rasche) for these distributions of conditional information, then determining the cor-
returns. The 45 distributions were first normalized rect methods to detrend data, explicitly incorporate
to have zero means and unit variances and then the risk, and adjust monetary measures to real terms
K-S test was applied to determine whether the may depend more on the performance of model
samples are identically distributed. Tests were per- results than on "sensible" methods.
formed for all combinations of the 15 distributions Stochastic dominance with respect to a function,
devaluated under each of the three expected price however, does discriminate among the solution
assumptions. The tests failed to reject the null hy- crop mixes, particularly for the range of absolute
potheses of identical distributions for any of the risk aversion coefficients representing very risk
comparisons at the five percent significance level, averse producers. This ordering of crop mixes in-
Thus, the location and scale condition is satisfied, dicates that the risk specification based on the his-
implying that the rankings of the MOTAD results torical accuracy of futures market prices provides
are consistent with expected utility for this analy- the most robust solution of the three specifications
sis. examined. In this case, a "sensible" method has

been validated.
The extreme sensitivity of crop mix solutions to

Conclusions and Implications the choice of risk specification suggests that more
research is necessary to determine exactly how

The results presented suggest that the use of his- current market risk can be incorporated into risk
torical data to calculate risk measures in program- programming models. The important conclusions
ming models works equally as well as or better of this research, then, are the demonstrated need to
than the methods using conditional information incorporate market information into conditional
based on futures market prices investigated in this probability distributions in risk models and to test
research. This conclusion is based on results of the robustness of optimal crop mixes from risk
mildly discriminating second degree stochastic programming solutions to different methods of risk
dominance criteria. Although this is not a very specification. Research using stochastic domi-
discriminating tool, it has been used to order crop nance techniques frequently results in a set of ef-
mixes in other studies and is a common method to ficient farm plans, not just a single plan. Research-
distinguish between risky prospects. It is acknowl- ers using risk programming methods need to rec-
edged that the results presented in this research ognize that model solutions under one set of
may hold only for a single case farm and only for assumptions may not be robust across alternative
the risk specifications examined under the market risk specifications. This is an important result, es-
conditions at that time. However, if historical dis- pecially given the widely divergent optimal crop
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