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1. Introduction 

In many regions of the world, irrigation is the backbone of agricultural production. But water 

supply is not unlimited, and it can even become severely scarce relative to its demand. 

Consequently, it is critical that water resources are managed in a sustainable way. In most 

unregulated situations this is not a forgone conclusion as irrigators (farmers) do not internalize 

the externalities associated with their own water use (Fishman, 2018). Agricultural water 

management policies aim to induce farmers to internalize those externalities and reduce 

consumption. Perhaps three of the most prominent policies include a cap or quota on water use, 

tier pricing (so that prices approximately reflect raising marginal cost), and a flexible cap that is 

adjusted as new weather information arrives during the growing season. In this paper, we 

compare these instruments based on their relative efficiency. We do so by deriving formal 

expressions for the expected deadweight loss associated with each instrument and quantifying 

those expressions based on data from irrigation districts in Mexico. 

The first instrument we consider is a cap or quota (hereafter fixed quota). Under a fixed 

quota policy, the government assigns or sells a fixed amount of permits (the “quota”) to 

irrigators. A fixed quota policy ensures water conservation by limiting total water use, which is 

the sum of permits allocated to individuals.1 A key challenge of fixed quota policies is to first 

identify the correct (efficient) level of total water use. The efficient cap is where the marginal 

social benefit (MSB) of water equals the marginal social cost (MSC). But MSB and MSC are 

inherently stochastic, so when their random realizations do not coincide with their predicted 

levels (based on which the fixed quota is set), then ex-post deadweight losses arise.  

 
1 CAP policies are not exclusive to water, of course. They have been implemented to curb air pollution as well (e.g. 

the EU Emissions Trading Scheme (EU-ETS) and the US Regional Greenhouse Gas Initiative (RGGI)) 

(https://ec.europa.eu/clima/policies/ets/reform_en, https://www.rggi.org/program-overview-and-design/elements ) 

https://ec.europa.eu/clima/policies/ets/reform_en
https://www.rggi.org/program-overview-and-design/elements
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Two prominent mechanisms have been proposed that add flexibility to a fixed quota policy 

and lower average deadweight losses. First, a hybrid mechanism, whereby agents can use an 

amount of water higher (lower) than the cap paying a fee (receiving a subsidy) that is higher than 

market price. This mechanism is called hybrid because it combines elements of quantity- and 

price-based policies. A hybrid policy is equivalent to tier-pricing (where the price is the 

opportunity cost) of water. Second, an index quantity mechanism, whereby the government 

changes the cap as new information regarding MSB and MSC arrives. While MSB and MSC are 

themselves unobservable, this mechanism relies on observable measures that are correlated with 

MSB and MSC, called an index (e.g. an observable measure of weather).  

Previous studies demonstrated that the ability of flexible mechanisms to mitigate 

deadweight losses associated with a fixed quota depends crucially on i) the relative slopes of 

MSB and MSC (Weitzman, 1974), ii) the degree of uncertainty in MSB (Jacoby and Ellerman 

2004; Jotzo and Pezzey 2007) and MSC (Leard, 2013; Pizer, 2002; Quirion, 2005), and iii) the 

strength of the correlation between the chosen index and MSB and MSC (Newell and Pizer, 

2008; Webster et al., 2010). This underscores the fact that efficiency gains from flexible 

mechanisms are, ultimately, an empirical question. In this study we empirically examine the 

extent to which flexible mechanisms would mitigate deadweight losses in heavily irrigated 

agricultural districts in Mexico.  

The strategy is as follows. We first estimate a structural model of water demand, where the 

marginal value of water is a function of weather.2 Second, we combine this with computed 

probability distributions of weather variables to estimate the probability distribution of the 

 
2 While uncertainty in both MSB (Jacoby and Ellerman 2004; Jotzo and Pezzey 2007) and MSC (Leard, 2013; Pizer, 

2002; Quirion, 2005) matters for policy performance, we focus on the former. This is because uncertainty related to 

MSB is particularly relevant in the context of water conservations as demand is highly sensitive to realized weather 

conditions (Haqiqi, 2019). As a result, in this study we are primarily concerned with uncertainty on MSB. 
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marginal value of water (MSB). Third, we use this probability distribution to formally 

characterize the optimal design of each policy instrument: the optimal level of the fixed quota, 

the optimal subsidy/cap/tax combination of the hybrid policy, and the ex-post adjustment of the 

indexed quantity. Fourth, and conditional on these designs, we derive formal expressions for 

deadweight loss for each policy instrument. Finally, we compute probability distributions of 

deadweight losses for a range of slopes of MSC. This is motivated by the fact that the slope of 

MSC is unobservable to us, so our objective is then to welfare-rank policies for a range of slopes 

of the MSC curve. 

We find that the use of a hybrid policy can increase efficiency substantially. This is true 

relative to both a fixed cap and an indexed quantity. The flexibility provided by a hybrid policy 

not only raises efficiency on average but also reduces downside risk, i.e., it shrinks the lower tail 

of the efficiency distribution. Therefore, the hybrid policy dominates the other two alternatives 

based on a second order stochastic criterion. Our analysis allows for a systematic comparison of 

instruments when reliable estimates of the slope of MSC are not available. 

The performance of competing policy instruments crucially depends upon the probability 

distribution of MSB, which in turn is shaped by weather patterns characterized by the probability 

distribution of temperature and precipitation. A key issue in the context of water conservation 

policies is how changes in weather patterns due to climate change will affect the relative 

performance of competing policy instruments. Perhaps more fundamentally, the question we 

raise is whether climate change is likely to enhance or lessen the value of adding flexibility to 

water conservation policies. We examine this issue by conducting counterfactual experiments in 

which we compare policies under future, projected weather patterns. 
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To compute our counterfactual scenarios, we first estimate probability distributions of 

current and projected weather patterns (i.e., we estimate the data generating process underlying 

random weather occurrences). We combine these with the structurally estimated water demand  

and generate probability distributions of the MSB curve. We subsequently obtain random draws 

of MSB from those distributions and compute deadweight losses for each policy instrument. We 

iterate this procedure to obtain a probability distribution of deadweight losses for each policy and 

each scenario of projected weather patterns. Finally, we use these probability distributions to 

compare policies.  

We find that projected changes in weather patterns will increase the value of flexibility and, 

especially, of the type of flexibility provided by a hybrid policy. But the efficiency gains (or 

prevented losses) from flexible water conservation policies are very sensitivity to the slope of 

MSC relative to MSB. It is important to note that, over time, MSC curves may become steeper as 

water sources are increasingly exhausted. This development would favor a fixed quota policy, 

undermining the benefits of flexibility under a changing climate.  

Our paper is related to studies on quota or cap policies addressing air pollution. But it is 

closest to other studies examining water conservation policies. Yet many of those studies 

consider policies that are more typical of a developed country context, in which creation and 

enforcement of property rights are robust. For example, previous studies have considered water 

rights or well retirement programs through payments (Tsvetanov and Earnhart, 2020), zoning 

(Drysdale and Hendricks, 2018), and trading restrictions (Bigelow et al 2019). However, little is 

known about the empirical performance of policies that are more commonly implemented in 

developing countries such as quotas (flexible or not) and energy tier-pricing to reflect the 

marginal cost of extraction. Our paper contributes to fill this gap in the literature.  
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2. Conceptual framework 

2.1. Policy Mechanisms 

We start by considering a conventional fixed quota policy where we characterize an expected 

demand for water; i.e. which is the estimated demand for water evaluated at average prices and 

weather conditions. Consider, as plotted in the left panel of Figure 1, a situation where the cap 

𝑄𝐹𝑄 is set where expected demand (𝐸[𝑀𝐵] in Figure 1, panel A) intersects MC. However, 

realized demand may be above or below expected demand. Random realizations of demand take 

place according to a probability distribution. If realized demand is higher (𝑀𝐵𝐻) than expected 

demand and MC is not vertical, then the socially optimal amount of irrigation (𝑄𝐻
𝑆𝑂) is higher 

than the quota level (𝑄𝐹𝑄). If no flexibility is introduced to the cap, then the conventional quota 

policy results in a substantial deadweight loss, indicated by area in gray shadow. The opposite 

case is also true where the realized demand is lower than the expected demand (𝑀𝐵𝐿) which 

generates inefficiently too small cap level at 𝑄𝐿
𝑆𝑂 . Providing additional flexibility to the cap can 

reduce those deadweight losses. We examine two mechanisms to provide flexibility to the cap: a 

hybrid cap policy, and index quantity cap policy.  

In the hybrid cap policy, irrigators can use an amount of water that exceeds the cap, as long 

as they pay a pre-defined price for additional water, denoted by 𝑝𝑐𝑒𝑖𝑙𝑖𝑛𝑔 and 𝑝𝑓𝑙𝑜𝑜𝑟 in panel B. 

This system provides a cost containment as well as price containment mechanism in situations 

where the marginal value product of water is very large (or small), raising (or reducing) the 

socially optimal amount of water at 𝑄𝐻
𝑠𝑜 (or 𝑄𝐿

𝑆𝑂). Then, depending on the realized demand 

(𝑀𝐵𝐻 𝑜𝑟 𝑀𝐵𝐿), the price mechanism becomes relevant and total irrigation water is allocated at 

𝑄𝐻
𝐻𝐵 (or 𝑄𝐿

𝐻𝐵) which deviates from 𝑄𝐹𝑄 .  Thus, this adjustment still results in a deadweight loss 

denoted by gray area in panel B, which is smaller than the shaded area in panel A, the 
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deadweight loss without flexibility. Under the hybrid cap policy, the pre-defined price at which 

irrigators can procure additional water rights is set to minimize deadweight loss, conditional on 

the probability distribution of water demand. We will formally characterize the derivation of 

𝑝𝑐𝑒𝑖𝑙𝑖𝑛𝑔 and 𝑝𝑓𝑙𝑜𝑜𝑟 in the model section.   

In contrast to the hybrid policy which determines a flexibility mechanism ex-ante (previous 

to the realization of water demand and MSC), the index quantity policy changes the cap ex-post 

to adjust the policy to realized (as opposed to expected) demand. Since demand is not directly 

observable, the cap is adjusted based on a certain observable measure that is correlated with 

demand. This observable measure is called an index.  

If, for instance, rainfall is scarce and temperatures are high during the growing season, both 

factors that are associated with higher water demand, then the cap can be increased. Panel C in 

Figure 1 portrays a situation where an index X associated with realized demand is observed, and 

then the cap is raised to 𝑄𝐻
𝐼𝑄 or decrease to 𝑄𝐿

𝐼𝑄 resulting from adjustment of fixed quota at point 

a. Since the index X is not perfectly correlated with demand, the adjusted cap will not precisely 

correspond to the socially optimal level (𝑄𝐻
𝑆𝑂 or 𝑄𝐿

𝑆𝑂) and some degree of deadweight loss will 

take place. The stronger the correlation between the chosen index and realized demand, the 

smaller deadweight loss. In panel C, we plot a situation in which the correlation is strong enough 

(the estimated demand is sufficiently close to realized demand) so that the deadweight loss under 

the index quantity cap (gray area) is smaller than the gray area in panel A, the deadweight loss 

under status quo, a fixed quota policy.
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Figure 1 The cap allocating mechanisms and their expected deadweights loss  
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3. Analysis 

The objective of this study is to empirically develop a policy rule; i.e. identify the optimal policy 

mechanism under different conditions regarding the slope of MSC. The optimal policy in each 

circumstance is the one maximizing total surplus (i.e., minimizing deadweight loss). To compute 

deadweight losses (DWL), it would be ideal to estimate the marginal social cost of irrigation 

water. Unfortunately, the data necessary to do so is simply not available, which is a prevalent 

problem in environmental economics (Auffhammer 2018).3 Therefore, instead of pursuing the 

futile task of estimating MSC, we conversely back out the slope of MSC around the current 

prevailing caps in Mexican municipalities that would make a government indifferent between 

pairs of policy mechanisms. Specifically, the following steps describe analysis strategy.  

1. Estimate water demand at the municipality level (point 𝑎 in Figure 1). 

2. Find the amount of water at the average cap and compute the height of demand at that 

cap; that is the height of MSC (point 𝑎 in Figure 1). 

3. Introduce modifications to the cap according to policy alternatives (panel A, B, and C). 

4. Simulate realizations of demand and, conditional on MSC slope, compute DWL for each 

policy and each realization (gray area in panel A, B, and C). 

5. Repeat 100 times and take the average across the realized gray area (panel A, B, and C) 

6. Compare the values of DWL.  

7. Repeat 1-6 for different MSC slopes. 

8. Find the threshold slopes of flexible CAP policies at which the size of ABC is equal to 

the size of gray area in panels A, B, and C. 

 
3 Some that quantify costs of irrigation water utilize hedonic model wherein damage due to water depletion is the 

lost value of land value (Perez-quesada et al., 2020; Sampson et al., 2019). However, such costs do not fully 

capture the variation of social costs due to the weather shock.  
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Completing these iterative procedures will allow me to plot the relationship between the changes 

of DWL in relative slopes under each institution. One of the meaningful results of this study is to 

find the threshold level of slope, if there exists, at which any two cap allocating mechanisms can 

be compared so ranking is determined. Since we compare three cap mechanisms, there will be 

three sections created by the two threshold slopes. Based on these results, our goal is to identify 

an optimal policy that produces the least DWL within the specified ranges of slopes. Fully 

identifying policy schedules based on the welfare ranking as a function of the relative slope of 

MSC and MSB is the main contribution of this study. 

4. Model  

In this section, we develop two models in preparation for comparative welfare analysis as 

described. Our first model is to estimate the water demand function with which we can quantify 

welfare under different cap policy simulations. In that welfare quantification process, we use the 

welfare formula derived from our second model where we explicitly derive the analytical 

expression to calculate deadweight loss under each cap policy. The first and second models are 

followed in the following sections.   

4.1. Water demand estimation model 

Many studies estimating water demand use direct observations on water use in combination with 

exogenous variation in water prices to identify demand parameters (Bruno and Jessoe, 2019; 

Schoengold et al., 2006). However, farmers do not pay a price for irrigation water in Mexico. 

Alternatively, without price information, some studies use pumping costs (energy cost) as a 

proxy for water prices (Hendricks and Peterson, 2012; Pfeiffer and Lin, 2014). However, 

pumping costs are not a relevant proxy to identify water demand in Mexico because they are 

heavily subsidized and little exogenous variation is observed over time. In fact, Mexican 
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irrigators operate under binding volumetric concessions (quota). At the level of the concession 

the marginal benefit of water use is considerably higher than the marginal cost. Therefore, we 

estimate the shadow price of water by exploiting exogenous variation in the level of the binding 

cap at which farmers operate. 

In our data set, we have information on farm revenue, crop production, water cap, weather 

(rainfall and temperature), crop prices, and land allocation to farming. The strategy for 

estimation of water demand is a direct corollary of available data. we use a revenue function 

(where revenue is a function of crop prices, water, weather, and land) and apply Hotelling’s 

lemma to derive the supply for each crop. we use data to estimate the revenue function and 

derived supplies simultaneously (to increase estimation efficiency). We then derive a water 

demand function by taking a partial derivative of revenue with respect to the binding water cap. 

We use estimated parameters and available data to compute the shadow price of water for agents 

in the sample; the shadow price as a function of prices, weather, and land constitutes a formal 

characterization of water demand. 

 As a functional form, we use a normalized generalized quadratic revenue function. We 

consider producer behaviors by aggregating crop outputs into four groups such as grain irrigated, 

non-grain irrigated, non-grain not irrigated, and grain not irrigated using the price aggregation 

method introduced by Jorgenson, Gollop, and Fraumeni (1987) where output prices are weighted 

by own revenue share. We also separate inputs like water and others because the main interest is 

the quantity of water consumption. The revenue function is specified as 

(1) 

𝑅𝑖𝑡{𝑾, 𝑝𝑗 , 𝒛} = 𝛼0 + 𝛼1𝑝𝑗it + 𝛼2𝑝𝑗it
2 + 𝛼3𝑝𝑗𝑖𝑡𝑝−𝑗it

+ 𝛼4𝑞it  + 𝛼5 𝑙𝑖𝑡 

                                            +𝛼6𝑞it
2 + 𝛼7𝑙it

2 + 𝛼8𝑞𝑖𝑡𝑙𝑖𝑡 + 𝛼9𝑝𝑗𝑖𝑡𝑞it + 𝛼10𝑞𝑖𝑡𝑾it 

+𝛼11𝑝𝑗𝑖𝑡𝑙𝑖𝑡 + 𝛼12𝑾𝑖𝑡 + 𝛼13𝑝𝑗𝑖𝑡𝑾𝑖𝑡 + 𝜀𝑖𝑡 
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where i and t are indexes to represent municipality i and year t. j is the index of the normalized 

crop types and p is output price such that  𝑝𝑗 ∈ {𝑝𝑔/𝑝𝑔,𝑑, 𝑝𝑛𝑔/𝑝𝑔,𝑑, 𝑝𝑛𝑔,𝑑/𝑝𝑔,𝑑} is a vector of 

output crop prices which consist of grain irrigated (𝑝𝑔), non-grain irrigated (𝑝𝑛𝑔), and non-grain 

not irrigated (𝑝𝑛𝑔,𝑑) normalized by the price of non-grain irrigated (𝑝𝑔,𝑑). 𝒛 ∈ {𝑞, 𝑙} is an input 

vector of irrigation water (𝑧𝑤) and other inputs used in which land sizes planted are a proxy (𝑙).  

𝑾 ∈ {𝑇𝑒𝑚𝑝, 𝑃𝑟𝑒𝑐𝑖} is a vector of weather variables for temperature and precipitation.  

Crop supplies can be readily derived from the revenue function through the application of 

Hotelling’s lemma, by taking partial derivatives of these revenue functions with respect to the 

corresponding crop prices. Under a binding volumetric concession, the crop-specific supply 

functions are: 

(2) 
𝜕𝑅𝑖𝑡
𝜕𝑝𝑗

= 𝑦𝑗𝑖𝑡 = 𝛼1 + 2𝛼2𝑝𝑗𝑖𝑡
+ 𝛼3𝑝−𝑗it

+ 𝛼9𝑞it + 𝛼11𝑙𝑖𝑡 + 𝛼13𝑾𝑖𝑡 + 𝜀𝑖𝑡 

where 𝑦𝑗 ∈ {𝑦𝑔, 𝑦𝑛𝑔, 𝑦𝑛𝑔,𝑑}. 𝑦𝑔 and 𝑦𝑛𝑔 depict supply of irrigated grain and non-grain crops 

respectively, and 𝑦𝑛𝑔,𝑑 depicts supply of rainfed non-grain. These supplies depend on prices but 

also on effective water which is both a function of the volumetric concession 𝑞. Note that our 

panel data provides enough data in equilibrium that our estimated revenue coefficient is likely to 

be efficient. Since these coefficients estimated at the municipality level will be used in 

constructing marginal benefit function, efficient estimation due to panel data are important in our 

specification.  

Finally, we derive the value of marginal productivity of water by taking the partial 

derivative of estimated revenue function with respect to water consumption (equal to the 

marginal value product of water), which allows me to find water demand function in 

municipality level i by aggregating data over time as well as recovering the normalizing factor 

(𝑝𝑔,𝑑).  
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(3) 𝑀𝐵𝑖 = 𝑓𝑖(𝑏1̂𝑖,𝑡|𝑾𝑖𝑡) + 𝐸𝑡[𝑏2̂𝑖𝑡]𝑞𝑖          

where 𝑏1̂𝑖𝑡 = 𝑝𝑔,𝑑𝑖𝑡{ 𝛼̂4 + 𝛼̂8𝑙𝑖𝑡 + 𝛼̂9𝑝𝑗𝑖𝑡 + 𝛼̂10𝑾𝑖𝑡}, 𝑏2̂𝑖𝑡 = 𝑝𝑔,𝑑𝑖𝑡{2𝛼̂6 𝑞𝑖𝑡}.  

Thus, water demand functions are fully recovered (intercept and slope). Since weather variables 

affect demand only through the intercept of the demand function, any weather variations will 

shift the demand curve in a parallel manner without distorting the slope.  

To simplify our policy analysis, we use the one representative marginal benefit curve for 

Mexico’s water uses by aggregating 𝑀𝐵𝑖, originally constructed at the municipality level, to 

state levels. This state level cross-sectional data gives variance in intercept of the representative 

marginal benefit function and its mean serves as the slope. This as the realized marginal benefit 

curve estimated at the state level.  

(4) 𝑀𝐵(𝜃) = 𝑓𝑠(𝑏1,𝑠̂) + 𝑏2̂𝑞         

We parameterize the variance from the variation in the intercept of equation (4) and denote it as 

𝜎2. Therefore, the y-intercept of the state representative realized water demand function is 

bounded by lower and upper bound of the uniform distribution, 𝑓𝑠(𝑏1̂)~𝑈(𝐸[𝑏1̂], 𝜎
2). In our 

notation, we denote the uncertainty 𝜃 as the deviation from the mean 𝐸[𝑏1,𝑠̂], hence 𝜃 is 

distributed with zero mean and standard deviation 𝜎. For computational simplicity, we use 

uniform distribution of 𝜃~𝑈(−𝜎, 𝜎) where 𝜎 is estimated from our data.  

4.2. Alternative cap allocation policy  

In this section, we consider two flexible cap policies: (i) hybrid and (ii) indexed quantity in to 

compare with the status quo, a fixed quota policy. Here, we use expected net benefits to measure 

the compare each policy instead of deadweight loss discussed in the previous chapter because 
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either measure will generate the same comparison results based on the relationship, 

𝐷𝑊𝐿𝑘 = 𝑁𝐵𝐶 − 𝑁𝐵𝑘 where 𝑁𝐵𝐶 is welfare at competitive equilibrium. 

4.2.1. Fixed quota policy (status quo) 

Following Weitzman (1974), the cost and benefits function of water consumption (𝑞) is 

expanded around the optimal fixed quota quantity 𝑄𝐹𝑄 .  

(5) 𝐶(𝑄) = 𝑐0 + 𝑐1(𝑄 − 𝑄
𝐹𝑄) +

𝑐2
2
(𝑄 − 𝑄𝐹𝑄)2 

(6) 𝐵(𝑄) = 𝑏0 + (𝑏1 + 𝜃)(𝑄 − 𝑄
𝐹𝑄) −

𝑏2
2
(𝑄 − 𝑄𝐹𝑄)2 

where 𝑄 denotes water consumption, 𝑐0, 𝑐1, 𝑐2, 𝑏0, 𝑏1, 𝑏2 are parameters to be estimated. 𝜃 

represents stochastic uncertainty. 

Then, by taking derivative we obtain our basic demand and supply function of water as follows. 

(7) 𝑀𝐶(𝑄) = 𝑐1 + 𝑐2(𝑄 − 𝑄
𝐹𝑄) 

(8) 𝑀𝐵(𝑄) = (𝑏1 + 𝜃) − 𝑏2(𝑄 − 𝑄
𝐹𝑄) 

As noted in (6) water demand curve shifts vertically only overtimes. Under the fixed quota 

policy, the optimal policy decision is to set the level of quota that minimizes the expected 

deadweight loss with uncertainty, which can be expressed as   

(9) Min 
𝑄
𝐸𝜃(𝐷𝑊𝐿

𝐹𝑄; 𝜃) 

In solving this optimization problem, regulators equalize the expected marginal benefits and 

marginal costs 𝐸𝜃[𝑀𝐵] = 𝑀𝐶.  Assuming that distribution of uncertainty 𝜃 as symmetry, the 

optimal quantity is same as the quantity under fixed quota, 𝑄∗ = 𝑄𝐹𝑄. 

(10) 𝑄∗ = 𝑄𝐹𝑄 

We quantify deadweight loss under fixed quota policy when the realized marginal benefits 

deviate from the expected marginal benefit curve. A bootstrap approach is appropriate to perform 
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this work where a random draw is generated from the known uniform distribution 100 times. 

Recall that the distribution is known because we estimate the variance of water demand. Since 

each draw (𝜃𝑖) forms a realized water demand curves that deviate from the fixed quota, 

deadweight loss arises for any positive deviation (𝜃𝑖 > 0). We quantify this inefficiency of each 

draw by the following equation. Notice that the second bracket term has no uncertainty 

associated with it because the quota is fixed regardless of the realized water demand, which is 

𝐷𝑊𝐿𝑖
𝐹𝑄
= {𝐵(𝑄𝑖

𝑆𝑂; 𝜃𝑖) − 𝐶(𝑄𝑖
𝑆𝑂; 𝜃𝑖)} − {𝐵(𝑄𝑖

𝐹𝑄
) − 𝐶(𝑄𝑖

𝐹𝑄
)}. The representative deadweight 

loss of the hybrid policy is then determined by taking an average of over 100 times of repetition. 

Simplifying this equation, we get the analytical expression.  

(11) 𝐷𝑊𝐿𝐹𝑄 = 𝐸𝑖 (𝜃𝑖
2(𝑄𝑆𝑂 −𝑄𝐹𝑄) −

1

2
(𝑏2 + 𝑐2)(𝑄

𝑆𝑂 − 𝑄𝐹𝑄 )2)  

This is our benchmark of fixed quota policy with no flexibility. Next, we consider a hybrid 

policy where, by design, some flexibility in allocating cap is added.  

4.2.2. Hybrid policy  

As noted in Figure 1, the hybrid policy uses the combined price mechanisms using 𝑝𝑐𝑒𝑖𝑙𝑖𝑛𝑔 and 

𝑝𝑓𝑙𝑜𝑜𝑟 at which farmers can purchase extra water permits or subsidize for selling water 

quantities. Designing a hybrid policy requires to set a price ceiling (or price floor) at which more 

(or less) water quantity can be adjusted. This is equal to say that hybrid policy is not different 

from the fixed quota policy unless the price ceiling or floor become activated. Thus, setting the 

optimal level of price ceiling and price floor is the key decision for hybrid policy. Regulators can 

do so by minimizing deadweight loss of the expected payoffs including the case where either 

price ceiling or price floor bind and where they do not. The binding price condition can be 

expressed as the deviation is high enough to be beyond some threshold level of uncertainty 

𝜃̃ (i.e., 𝜃 ≥ 𝜃̃ or 𝜃 ≤ −𝜃̃). The probability of binding price mechanism is, therefore, 
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𝑃𝑟𝑜𝑏(𝜃 ≥ |𝜃̃|) and the probability of non-binding price mechanism is 𝑃𝑟𝑜𝑏(𝜃 ≤ |𝜃̃|).  The 

optimization problem is set by  

(12) Min 
𝜃̃
{𝑃𝑟𝑜𝑏(𝜃 ≥ |𝜃̃|)𝐸𝜃(𝐷𝑊𝐿

𝐻𝐵|𝜃 ≥ |𝜃̃|)⏟                      
𝑃𝑟𝑖𝑐𝑒 𝑐𝑜𝑛𝑡𝑟𝑜𝑙

+ 𝑃𝑟𝑜𝑏(𝜃 ≤ |𝜃̃|)𝐸𝜃(𝐷𝑊𝐿
𝐻𝐵|𝜃 ≤ |𝜃̃|)⏟                      

𝑄𝑢𝑎𝑛𝑡𝑖𝑡𝑦 𝑐𝑜𝑛𝑡𝑟𝑜𝑙

} 

This optimization problem provides the optimal level of price ceiling and price floor using the 

solution of 𝜃̃∗ = argmin 
𝜃̃

𝐸(𝐷𝑊𝐿𝐻𝐵) such as 𝑝𝑐𝑒𝑖𝑙𝑖𝑛𝑔 = 𝑏1 + 𝜃̃
∗ and 𝑝𝑓𝑙𝑜𝑜𝑟 = 𝑏1 − 𝜃̃

∗. The 

solution is therefore dependent upon the distribution of water demand shock 𝜃 which follows 

some distribution 𝑓. 

(13) 𝜃~𝑓(𝑚(𝜃), 𝜎(𝜃)) 

In this study, we use uniformly distributed uncertainty with zero mean to derive an analytical 

solution. Hence, 𝑚(𝜃) = 0 and 𝜃~𝑈(−𝜎, 𝜎). Under the uniform distribution assumption, we 

further expand the equation (13) as follows. 𝑃𝑟𝑜𝑏(𝜃 ≥ |𝜃̃|) = ∫
1

2𝜎
𝑑𝜃

𝜎

𝜃̃
= ∫

1

2𝜎
𝑑𝜃

−𝜃̃

−𝜎
=
1

2
−

𝜃̃

2𝜎
  

and 𝑃𝑟𝑜𝑏(𝜃 ≤ |𝜃̃|) = ∫
1

2𝜎
𝑑𝜃

𝜃̃

−𝜃̃
=
𝜃̃

𝜎
. The conditional expected value of DWL under hybrid 

under the price mechanism (i.e., when price ceiling or floor is binding) is 

𝐸𝜃(𝐷𝑊𝐿
𝐻𝐵|𝜃 ≥ |𝜃̃|) = 2∫

𝐸(𝐵(𝑄𝑆𝑂;𝜃)−𝐶(𝑄𝑆𝑂))−𝐸(𝐵(𝑄𝐻𝐵;𝜃)−𝐶(𝑄𝐻𝐵))

(𝜎−𝜃̃)
𝑑𝜃

𝜎

𝜃̃
. The conditional 

expected value of DWL under the quantity mechanism (i.e., when price ceiling or floor is not 

binding) is 𝐸𝜃(𝐷𝑊𝐿
𝐻𝐵|𝜃 ≤ |𝜃̃|) = ∫

𝐸(𝐵(𝑄𝑆𝑂;𝜃)−𝐶(𝑄𝑆𝑂))−𝐸(𝐵(𝑄̅;𝜃)−𝐶(𝑄̅))

(2𝜃̃)
𝑑𝜃

𝜃̃

−𝜃̃
. Solving the first-

order condition finds the optimal threshold level of uncertainty, 𝜃̃∗ =
𝑐2𝜎

2𝑏2+𝑐2
. This determines 

price ceiling and price floor such as 𝑝𝑐𝑒𝑖𝑙𝑖𝑛𝑔 = 𝑏1 + 𝜃̃
∗ and 𝑝𝑓𝑙𝑜𝑜𝑟 = 𝑏1 − 𝜃̃

∗.  Thus,  
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(14) 

𝑝𝑐𝑒𝑖𝑙𝑖𝑛𝑔 = 𝑏1 +
𝑐2𝜎

𝑏2(2 + (𝑐2/𝑏2))
 

𝑝𝑓𝑙𝑜𝑜𝑟 = 𝑏1 −
𝑐2𝜎

𝑏2(2 + (𝑐2/𝑏2))
 

Note that these prices are determined endogenously based on the relative slope of MSB and 

MSC functions. For example, the hybrid policy will place higher weights on price mechanism as 

the slope of MSC (𝑐2) gets flatter by narrowing the gap between 𝑝𝑐𝑒𝑖𝑙𝑖𝑛𝑔 and 𝑝𝑓𝑙𝑜𝑜𝑟. However, 

more weights will be given to quantity mechanism with a steep slope of MSC (𝑐2) by increasing 

the difference between 𝑝𝑐 and 𝑝𝑓 . In that sense, the relative slopes (𝑐2/𝑏2) can be fully 

endogenized in the quantity under hybrid policy.   

(15) 𝑄𝐻𝐵 = 𝑄𝐹𝑄 ± (𝜃 −
(𝑐2/𝑏2)𝜎

2 + (𝑐2/𝑏2)
)
1

𝑏2
 

where it notes that quantity will be adjusted increasing when price ceiling binds (𝑒. 𝑔. , + sign) 

but the quantity will be lowered when price floor binds (𝑒. 𝑔. , − sign). Of course, if either price 

ceiling or price floor does not bind (i.e., the demand deviation (𝜃) is small), then the quantity 

under the hybrid policy is the same as fixed quota (𝑖. 𝑒. , 𝑄𝐻𝐵 = 𝑄𝐹𝑄).   

Also, we note that hybrid quantity may be larger or smaller than the socially optimal cap 

quantity denoted by 𝑄𝑆𝑂 = 𝑄𝐹𝑄 +
𝜃

𝑏2(1+(𝑐2/𝑏2))
  depending on two factors: the relative sizes of 

parameters (
𝑐2

𝑏2
) and the distributional information 𝜎. In expectation, however, hybrid cap policy 

produces quantity identical to the fixed quota policy under the assumption of mean zero shock. 

(16) 𝐸[𝑄𝐻𝐵] = 𝐸[𝑄𝑆𝑂] = 𝑄𝐹𝑄 

We compute DWL using a bootstrap approach where a random draw is generated from the 

known uniform distribution 100 times. Since each draw(𝜃) forms a realized water demand curve, 

deadweight loss is likely to occur by the difference between the drawn water demand and the 
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targeted water demand given the hybrid policy. The deadweight loss is calculated by the 

following formula for each random draw 𝑖 = [1,100] which is 𝐷𝑊𝐿𝑖
𝐻𝐵 = {𝐵(𝑄𝑖

𝑆𝑂; 𝜃𝑖) −

𝐶(𝑄𝑖
𝑆𝑂; 𝜃𝑖)} − {𝐵(𝑄𝑖

𝐻𝐵; 𝜃𝑖 , 𝜎) − 𝐶(𝑄𝑖
𝐻𝐵: 𝜃𝑖 , 𝜎)}. The deadweight loss of the hybrid policy is then 

determined by taking the average over the 100 times of repetition.  

(17) 

𝐷𝑊𝐿𝐻𝐵

= {
𝐸𝑖 [𝜃𝑖(𝑄

𝑆𝑂 − 𝑄𝐹𝑄) −
1

2
(𝑏2 + 𝑐2)(𝑄

𝑆𝑂 − 𝑄𝐹𝑄 )2]    𝑖𝑓 𝑁𝑜𝑡 𝑏𝑖𝑛𝑑𝑖𝑛𝑔

𝐸𝑖 [𝜃𝑖(𝑄
𝑆𝑂 − 𝑄𝐻𝐵) −

1

2
(𝑏2 + 𝑐2)((𝑄

𝑆𝑂 − 𝑄𝐹𝑄)2 − (𝑄𝐻𝐵 − 𝑄𝐹𝑄 )2)]  𝑖𝑓 𝐵𝑖𝑛𝑑𝑖𝑛𝑔

  

4.2.3. Indexed quantity (IQ)  

The use of available information to determine cap quantity is known as index quantity policy 

(Newell and Pizer 2008). In our study, index quantity policy uses weather information to add 

some flexibility to the fixed quota policy. To practitioner, the main advantage of IQ policy is the 

simplicity because they can just use observable information instead of estimating water demand 

in every season which requires various other information as well such as production input and 

output. Hence, even though IQ policy does not rely on a perfect estimation of water demand, it 

uses a proxy of the realized water demand using weather information as an index.  

Of water demand relevant weather information (max temperature and precipitation), we 

focus on rainfall information to adjust water cap level compared to fixed quota. Indeed, we also 

considered temperature information as the candidate of index information because it is known 

that high temperature is also related to high water demand. In our data, however, we observe that 

the degree of uncertainty of water shadow price is more sensitive to rainfall fluctuation (i.e., 

below-average precipitation) than temperature variation (i.e., above-average maximum 

temperature). This is illustrated in Figure 2 in which panel B shows strong relationship between 

greater variation in water demand and lower precipitation. On the other hand, panel A shows 
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relatively weak relationship between water demand variation and maximum temperature. 

Specifically, we denote the coefficient of the relationship between water demand and rainfall by 

𝜂. We calibrate 𝜂 from the rainfall variable in RHS of Equation (3) where 𝑀𝐵 =

𝜂 × 𝑃𝑟𝑒𝑐𝑖 𝑎𝑛𝑑 𝜂 = 𝐸[𝑝𝑔,𝑑] × 𝛼̂10. The calibrated 𝜂 has mean and standard deviation, -0.0034 

and 0.002 respectively, showing a clear negative relationship between rainfall and water demand 

shock.  

 

 

Panel A. Variation of Maximum Temperature and Water Shadow Price 

 

 

Panel B. Variation of Precipitation and Water Shadow Price 

Figure 2 The relationship of water demand uncertainty with respect to weather information 

(Panel A is for maximum temperature and Panel B is for precipitation)  

  In this study, the extra cap is allocated than a fixed quota if rainfall is short compared to 

the average rainfall level, but less cap is allocated if the observed rainfall information is greater 

than the average level of rainfall in each state. In this setup, the only policy parameter under IQ 
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is the degree of flexibility by which the existing fixed quota level is increased or decreased. We 

employ symmetric allocation rule to simplify the analysis using the parameter 𝜌 where 𝜌 ∈ [0,1]. 

As a base level, we use 𝜌 = 0.2, but we also consider the varying level of 𝜌 in chapter 6.2.1.  

(18) 𝑄𝐼𝑄 = {
 (1 + 𝜌)𝑄𝐹𝑄      𝑖𝑓 𝑃𝑟𝑒𝑐𝑖𝑡 < 𝐸[𝑃𝑟𝑒𝑐𝑖]

  (1 − 𝜌)𝑄𝐹𝑄      𝑖𝑓  𝑃𝑟𝑒𝑐𝑖𝑡 > 𝐸[𝑃𝑟𝑒𝑐𝑖]
  

where 𝑃𝑟𝑒𝑐𝑖𝑡 is related to the random realization of water demand shock (𝜃) defined in Equation 

(13). Since the calibrated relationship between rainfall and water demand is 𝜂𝑖, each simulation 

produces precipitation from 𝑃𝑟𝑒𝑐𝑖𝑡 = 𝜂 × 𝜃. 

The expected cap allocated under IQ policy can be expressed as a function of variable 

precipitation, 𝑃𝑟𝑒𝑐𝑖, which is 𝐸(𝑄𝐼𝑄) = ∫ {(1 + 𝜌)𝑄𝐹𝑄 𝑓(𝑃𝑟𝑒𝑐𝑖)} 𝑑(𝑃𝑟𝑒𝑐𝑖)
𝑃𝑟𝑒𝑐𝑖

+

∫ {(1 − 𝜌)𝑄𝐹𝑄 𝑓(𝑃𝑟𝑒𝑐𝑖)} 𝑑(𝑃𝑟𝑒𝑐𝑖)
𝑃𝑟𝑒𝑐𝑖

. Similar to hybrid policy, under the symmetric 

assumption of rainfall distribution with zero mean of uncertainty, the expected quantity under IQ 

policy is equal to the fixed quota. Therefore, in expectation, all three policies (index quantity, 

hybrid, and fixed quota) have the same cap quantity as the socially optimum level.  

(19) 𝐸[𝑄𝐻𝐵] = 𝐸[𝑄𝐼𝑄] = 𝑄𝐹𝑄 = 𝐸[𝑄𝑆𝑂] 

The deadweight loss under IQ policy is computed by taking differences of welfare between 

social optimal quantity and the IQ cap quantity, expressed as 𝐷𝑊𝐿𝑖
𝐼𝑄 = {𝐵(𝑄𝑖

𝑆𝑂; 𝜃𝑖) −

𝐶(𝑄𝑖
𝑆𝑂; 𝜃𝑖)} − {𝐵(𝑄𝑖

𝐼𝑄; 𝑅𝑖) − 𝐶(𝑄𝑖
𝐼𝑄; 𝑅𝑖)}. We simulate 100 times of water demand shock 

(𝜃𝑖) to generate the representative 𝐷𝑊𝐿𝐼𝑄 .  

(20) 𝐷𝑊𝐿𝐼𝑄 = 𝐸𝑖 [𝜃𝑖(𝑄
𝑆𝑂 − 𝑄𝐼𝑄) −

1

2
(𝑏2 + 𝑐2)((𝑄

𝑆𝑂 − 𝑄𝐹𝑄)2 − (𝑄𝐼𝑄 − 𝑄𝐹𝑄 )2)]  

5. Data and Identification 

We use nationwide Mexican irrigation and agricultural production panel data spanning over 8 

years from 2007 to 2015 except for 2010 provided by Sesmero and Schoengold (2020). It covers 
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30 states, 248 municipalities, and 86 irrigation districts with a total of 1,713 observations at the 

municipality level. Under this dataset, we have access to crop production, prices, water 

volumetric concessions, and agricultural land acreage data. All of the data is aggregated at the 

municipality level given that each dataset is collected at a different level. The following sections 

describe each type of data more in detail. 

The crop-level production data is available at the municipality level, which is initially 

collected from the Estadística de Producción Agrícola report. The collected production data 

includes crop-level information on the area, crop price, and thus value (revenue) of production 

for each municipality. Values are recorded separately for irrigated and rainfed production. In 

terms of crop-types, since there are ranges of crop types counted in municipalities of the whole 

country, potential issues (e.g. model tractability and censored problems) might arise noted by 

Sesmero and Schoengold (2020). Thus, crop types are aggregated into four types (grains/ 

irrigated, grains/non irrigated, non-grains/irrigated, and non-grains/non-irrigated). To generate 

the aggregate price, Jorgenson’s exact aggregation method is used where the aggregate price is 

calculated using each crop’s price and share of total revenue. Thus, the final production dataset 

includes output (tons), revenue (millions of pesos), hectares planted (ha), hectares harvested (ha), 

and price (pesos) for every four categories.  

The water consumption data is collected at the irrigation district. The data is collected from 

the annual reports of Estadísticas Agrícolas de Los Distritos de Riego, published by the 

Comisión Nacional Del Agua (CONAGUA). In each irrigation district, total water allocation is 

summed by surface water and groundwater allocation (𝑚3). To compute data on the crop mix by 

irrigation source and total area irrigated, water data is combined with the production data. To do 

so, water data is processed to only include agricultural-related water use, which means that 
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municipalities with only rainfed production are not included due to irrelevancy. Another data 

processing issue is that since the geographical jurisdiction of irrigation districts do not always 

match with the ones of municipalities, merging the irrigation district data and municipality data 

takes the extra steps. The key difficulty is that there is no information on the water use within 

irrigation districts. Therefore, the irrigated area and water use of an irrigation district are simply 

equally divided between municipalities where that irrigation district is located. For example, if one 

irrigation district is in three municipalities, 1/3 proportions of the associated water use and irrigated 

area are allocated to each municipality. Then, water use and irrigated area in each municipality are 

generated by summation.  

The weather data is collected at the weather station level from Servicio Meteorológico 

Nacional. The data includes daily information on total precipitation (mm) and 

maximum/minimum temperature (℃). The daily data for each station is aggregated to calculate 

annual precipitation and the average maximum and minimum daily temperature. To be consistent 

with other data, weather data is also aggregated at municipality level based on average of the 

weather observations for weather stations located in the municipality. If there is no weather 

station in the municipality, the average of all stations in the state is used.  

We estimate the system (1) and (2) jointly by linear seemingly unrelated regression with 

fixed effects. We have a total of 24 cross-equation restrictions. Since we estimate the model by 

fixed effects, which means we do not estimate intercepts, we only have 21. We estimate our 

model at the municipality level. We estimated our model using 173 municipalities for a period of 

8 years (2007 to 2015 with 2010 missing). Therefore, we have a total of 1,389 observations.  

Endogeneity of the water variable in estimation is not a source of great concern because 

volumetric concessions are binding, as confirmed by the fact that the estimated shadow price of 

water is substantially higher than the computed extraction cost. To minimize the risk of omitted 
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variable bias, we include both municipality-level fixed effects and time fixed-effects. The former 

control for unobservables at the municipality level that may be correlated both with water and 

revenue or outputs. The latter controls for macro shocks that greatly affect revenue, productivity, 

and crop mix in a given year, but do so uniformly across municipalities (e.g. currency 

depreciation). We cluster errors at the municipality level which means we allow for correlation 

of errors within the municipality, but not across municipalities, or overtime. Table 1 shows the 

descriptive statistics of our data. 

Table 1 Descriptive statistics of data 

 Mean Std.dev. Median 

Planting    

Non-grain irrigated Planted Area(ha) 2,816.6 (6,562.2) 650.0 

Grain Irrigated Planted Area (ha) 2,201.8 (7,291.1) 479.0 

Non-grain Non-irrigated Planted Area(ha) 8,819.5 (20,366.7) 2,745.5 

Grain Non-irrigated Planted Area (ha) 8,112.7 (11,861.8) 3,817.0 

    

Harvesting    

Non-grain irrigated Harvested Area(ha) 2,594.1 (6,076.7) 601.4 

Grain Irrigated Harvested Area (ha) 8,332.0 (18,360.2) 2,639.0 

Non-grain Non-irrigated Harvested 

Area(ha) 

1,875.3 (6,699.4) 286.6 

Grain Non-irrigated Harvested Area (ha) 7,044.1 (10,409.8) 3,310.5 

    

Price    

Non-grain Irrigated Price (Peso) 5,452.8 (6,105.3) 4,152.2 

Grain Irrigated Price (Peso) 1,743.1 (1,340.7) 1,503.2 

Non-grain Non-irrigated Price (Peso) 5,570.1 (4,627.0) 4,595.7 

Grain Non-irrigated Price (Peso) 2,383.1 (1400.3) 2,462.9 

    

Weather    

Municipality Max Temperature (ºC) 29.7 (3.7) 30.0 

Municipality Min Temperature (ºC) 13.6 (5.0) 12.9 

Municipality Precipitation (mm) 737.0 (470.7) 703.9 

    

Water    

Water Cap Allocated (106𝑚3)  152.7 (303.2) 55.0 

 

 



24 
 

6. Results 

6.1. Water demand estimation 

We first report the water demand estimation result in Table 2 where we note two features about 

Mexican irrigation water demand. Firstly, our estimation result shows that the water demand 

presents highly flat slopes which leads to welfare implications and thus, impacts on policy 

ranking analysis in section 6.3. For example, the flat slope of the water demand is likely to make 

high relative slopes between supply and demand, which consequently disfavors flexible cap 

policies over the quota policy. Secondly, we observe that Mexican irrigators experience large 

uncertainty in water demand as shown by the estimated intercept variation. Such large degree of 

demand shocks and its resulting inefficiency are discussed in the following section.  

Table 2 Water demand information  

 Unit Mean sd Median 

Estimated parameters     

Slope(𝑏2) $/106(𝑚3 ∙ 𝑚3) 0.32 0.17 0.32 

Intercept(𝑏1) $/𝑚3 0.45 0.21 0.44 

Note: (i) The slope and intercept correspond to specifications in Equation (4). (ii) We 

convert currency from Mexican pesos to USD using the exchange rate of 0.05. 

 

6.2. Flexible cap policy mechanism 

This section presents how the two factors (relative slopes and size of uncertainty) affect the 

mechanism of each flexible cap policy. We begin with the hybrid cap policy analysis followed 

by the IQ policy mechanism.   

6.2.1. Hybrid cap policy 

In the hybrid policy, price ceiling and price floor are the mechanisms to allocate cap flexibly 

(i.e., adjusting fixed quota policy). When the positive water demand shock is greater than the 

price ceiling, the additional cap is allocated according to this price ceiling. Similarly, given the 
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sufficiently large size of a negative shock, the price floor will determine how much cap to be 

decreased. Thus, price ceiling and floor play are of our focus in this section.  

To enrich our understanding about hybrid policy mechanisms, this section introduces two 

types of hybrid policies. The first hybrid policy is when the hybrid policy is fully optimized but 

the second hybrid policy is when it is not fully optimized. Our mathematical illustration in 

section 4.2.2 represents the first policy. More specifically, the fully optimized hybrid policy 

means that price ceiling and floor are fully endogenized to the varying factors such as the level 

of the relative slope of MSC/MSB (i.e., 𝑏2/𝑐2) and the level of water demand shock (i.e., 𝜎). 

Thus, we call endogenous hybrid policy and denote by 𝐻𝐵 − 𝐸. In contrast, the second hybrid 

policy for which the price ceiling and floor are not fully endogenous, instead, they are fixed at 

the initial level of 𝑏2/𝑐2 and the fixed level of water demand shock (𝜎). Hence, the second 

hybrid policy is called hybrid policy with fixed price ceiling and floor and is denoted by 𝐻𝐵 − 𝐹. 

Figure 3 illustrates the difference between the endogenous hybrid policy versus fixed hybrid 

policy. Under 𝐻𝐵 − 𝐸 policy, price ceiling and floor deviate farther away as the relative slope 

increases. However, in 𝐻𝐵 − 𝐹, price ceiling and floor do not respond to any changes in the 

relative slopes or the level of a demand shock. Note that increasing gap between price ceiling 

and floor means that flexible cap allocation is less likely because it imitates more quantity 

mechanism like a fixed quota. In other words, increasing price gaps under 𝐻𝐵 − 𝐸 policy 

indicate that it updates price ceiling and floor such that it relies less on price mechanism but 

relies more on quantity mechanism because that is the efficient policy behaviors. However, 

absent such policy updating process, 𝐻𝐵 − 𝐹 does not change the level of price ceiling or floor 

from the initial level. The welfare effects of this difference in responsiveness between these two 

mechanisms are carefully discussed in section 6.2.2.  
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Panel A. Panel B. 

Figure 3 The effect of relative slope of MSC/MSB (panel A) and water demand shock (panel B) 

on price ceiling and price floor 

Note: Panel A is based on the 100% of water demand shock and Panel B is based on 
𝑐2

𝑏2
= 0.1. 

6.2.2. IQ policy 

Having a simple rule of cap allocation shown in Equation (18), IQ policy has only one policy 

parameter (𝜌). By varying the level of 𝜌 parameter, we determine the degree of flexibility under 

IQ policy. For example, 𝜌 = 0.2 means that 20% of additional cap are allocated in addition to 

the quota level originally allocated under fixed quota policy if the rainfall is realized below the 

average rainfall level. On the contrary, cap quantity is reduced by 20% compared to the fixed 

quota level if more rainfall than the average rainfall is observed in that region. It is worth noting 

that rainfall is just a part of information of water demand shock; thus, IQ cap allocation is 

unlikely to provide efficient cap flexibility to the changing water demand. However, this simple 

rule adds a partial degree of flexibility, and our empirical results show that this can effectively 

improve welfare efficiency compared to the status quo (fixed quota) policy.  

Figure 4 shows that IQ policy produces smaller DWL in almost all levels of 𝜌 and of 

relative slope. Also notice that this degree of welfare enhancement, represented by the gap size 
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between red and black lines, increases as more flexibility is allowed in IQ policy (i.e. higher 𝜌). 

However, too much flexibility (e.g., 𝜌 = 0.4) can increase DWL as the relative slopes get steeper 

as is shown in panel D of Figure 4. This result provides similar sentiments to the analysis of 

prices versus quantity mechanisms in that welfare efficiency is sensitive to the interaction 

between the degree of flexibility of cap institutions (i.e., the choice of 𝜌 in our context) and the 

underlying contextual factors such as the slopes between demand and supply.  

Panel A Panel B 

  
Panel C Panel D 

  

Figure 4 The effect of welfare under index quantity policy compared to fixed quota policy in 

relative slopes of MSC/MSB. 

6.3. Cap policy ranking analysis 

Based on the understanding of the mechanism, in this section, this section reports the main 

finding of this paper. The relative policy ranking is presented by comparing deadweight loss 
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under each cap policy. We examine this comparison especially focusing on how ranking changes 

in two ways: i) the relative slopes of MSC/MSB, and ii) the degree of a water demand shock. We 

begin with the first aspect.  

6.3.1. The welfare effects of relative slopes 

Figure 5 shows deadweight loss under four cap policies relative to efficient cap policy (i.e., zero 

DWL). The red line represents the status quo, fixed quota policy, in which deadweight loss 

decreases as the relative slope of MSC/MSB increases. The coarse dashed line is the index 

quantity policy which closely follows the pattern of fixed quota because index quantity directly 

adjusts the level of cap allocation of fixed quota policy. Given the chosen level of index 

parameter (𝜌 = 0.2), IQ policy produces less deadweight loss compared to the fixed quota policy 

regardless of the level of relative slopes. Thus, IQ policy holds its welfare improving property in 

a robust manner with respect to the relative slopes changes.  

On the contrary, all hybrid policy does not necessarily improve welfare inefficiency of fixed 

quota policy. In fact, one might think that hybrid policy is maybe always worse than fixed quota 

policy when relative slopes get steeper because the hybrid policy has more flexibility in 

allocating caps than the fixed quota policy. Our result suggests that this argument is true only in 

the fixed hybrid policy but not in the endogenous hybrid policy. In Figure 5, the dotted and solid 

black line represent fixed hybrid policy (𝐻𝐵 − 𝐹) and endogenous hybrid policy (𝐻𝐵 − 𝐸), 

respectively. The fixed hybrid policy produces increasing deadweight loss as the slope of 

MSC/MSB gets steeper. This is due to the fixed price ceiling and floor where the same level of 

cap flexibility remains regardless of the slope changes. In consequence of this rigidity in 

quantity, 𝐻𝐵 − 𝐹 results in substantial deadweight loss when the slopes are very steep. However, 

this problem does not exist under 𝐻𝐵 − 𝐸 policy because it allows price ceiling and floor to 
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endogenously change correspondingly to the changing relative slopes. As a result, the 

endogenous hybrid policy always produces smaller deadweight loss than the fixed quota policy 

because it optimizes price ceiling and floor for each level of relative slope.  

Figure 5 The changes in DWL by the relative slopes of MSC and MSB.  

Note: Here IQ policy parameter is assumed at 𝜌 = 0.2. 

 

 Table 3 reports simulation results in detail where we consider two levels of relative 

slopes; (i) when relative slopes of MC/MB is small as 0.6 (i.e., flat 𝑀𝐶) and (ii) when it is large 

as 5 (i.e., steep 𝑀𝐶).  As are highlighted in gray colors, the worst policies differ between these 

two levels of relative slopes. First, the fixed quota policy produces the largest DWL in a small 

level of relative slopes. However, with the large relative slopes context, the fixed hybrid policy 

brings the largest DWL because too much flexibility in policy can lead to substantial deviation 

from the socially optimum level of cap. Perhaps more importantly, we note that the size of DWL 

in the latter case is much larger than the former case, which suggests that implementing an 

inaccurately designed hybrid policy may hamper the welfare much larger than remaining under 

the fixed quota policy. 
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Table 3 A policy comparison by simulation results: Quantity allocated and DWL. 

  Unit* Mean sd Median 

(i) MSC/MSB=0.6 

 Allocated Cap Quantity Deviated from Social Optimum Level (𝜟𝑸 = 𝑸𝒑𝒐𝒍𝒊𝒄𝒚 − 𝑸𝑺𝑶) 

 Fixed quota (|Δ𝑄𝐹𝑄|) 106𝑚3 147.5 6.1 144.3 

 Index quantity (|Δ𝑄𝐼𝑄|) 106𝑚3 127.8 6.2 124.7 

 Hybrid: Endogenous price ceiling/floor (|Δ𝑄𝐻𝐵−𝐸|) 106𝑚3 33.5 1.3 33.8 

 Hybrid: Fixed hybrid (|Δ𝑄𝐻𝐵−𝐹|) 106𝑚3 54.8 3.3 54.1 

      

 Deadweight Loss     

 Fixed quota (𝐷𝑊𝐿𝐹𝑄) 𝑀 $ 0.014 0.0012 0.013 

 Index quantity (𝐷𝑊𝐿𝐼𝑄) 𝑀 $ 0.012 0.0011 0.012 

 Hybrid: Endogenous price ceiling/floor (𝐷𝑊𝐿𝐻𝐵−𝐸) 𝑀 $ 0.001 0.0001 0.001 

 Hybrid: Fixed hybrid (𝐷𝑊𝐿𝐻𝐵−𝐹) 𝑀 $ 0.003 0.0003 0.002 

      

(ii) MSC/MSB=5     

 Allocated Cap Quantity (𝜟𝑸)     

 Fixed quota (|Δ𝑄𝐹𝑄|) 106𝑚3 51.1 0.7 51.5 

 Index quantity (|Δ𝑄𝐼𝑄|) 106𝑚3 38.1 0.8 38.1 

 Hybrid: Endogenous price ceiling/floor (|Δ𝑄𝐻𝐵−𝐸|) 106𝑚3 35.3 0.4 35.1 

 Hybrid: Fixed hybrid (|Δ𝑄𝐻𝐵−𝐹|) 106𝑚3 145.7 2.6 146.0 

      

 Deadweight Loss     

 Fixed quota (𝐷𝑊𝐿𝐹𝑄) 𝑀 $ 0.005 0.0003 0.005 

 Index quantity (𝐷𝑊𝐿𝐼𝑄) 𝑀 $ 0.004 0.0002 0.004 

 Hybrid: Endogenous price ceiling/floor (𝐷𝑊𝐿𝐻𝐵−𝐸) 𝑀 $ 0.002 0.0001 0.002 

 Hybrid: Fixed hybrid (𝐷𝑊𝐿𝐻𝐵−𝐹) 𝑀 $ 0.053 0.0025 0.053 

*Note: All unit is per year per state. 

 

6.3.2. The welfare effects of the water demand shock 

This section studies the welfare effects of varying levels of water demand shocks. Figure 6 

illustrates the welfare effects in varying levels of water demand uncertainty. Albeit different 

extents of DWL under fixed quota policy depending on the relative slopes, the absence of 

flexibility in fixed quota policy is heavily affected by increasing the levels of demand 

uncertainty. It is noticeable that inefficiency under fixed quota policy in red lines increase more 
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than any other policies in all panel of Figure 6, which positively supports the idea of adding 

flexibility to improve welfare efficiency especially when water demand experiences a high level 

of uncertainty. In contrast, all four flexible cap policies show they effectively reduce DWL in 

fixed quota policy. Moreover, the degree of welfare improvement increases with a higher degree 

of demand uncertainty. For example, in panel B, the welfare improvement increases by 80% 

from a smaller shock (Δ1) to a bigger shock (Δ2). 

Panel A Panel B 

 
 

Panel C Panel D 

 
 

Figure 6 The effects of a water demand shock on a policy comparison.  

Note: Here IQ policy parameter is assumed at 𝜌 = 0.2. Hybrid cap policy (both HB-E and HB-F) 

is based on the fixed relative slopes specified in each panel. The price ceiling and floor for HB-F 

policy use a fixed level of demand shock at 100% whereas HB-E policy accounts for a varying 

level of a demand shock. 
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7. Policy Performance under Projected Weather Patterns  

TO BE COMPLETED 

8. Discussion and Conclusions 

Implementing efficient institutions for water management is critical because of increasing water 

constraints in Mexican agriculture. Under the current institution (fixed quota policy), however, 

efficiency loss is unavoidable because the fixed quota has no mechanism to flexibly deal with 

stochastic water demand which inherently occurs due to the ex post realized weather 

(temperature or precipitation). Reforming to a flexible cap policy might help reduce efficiency 

loss; however, doing so does not always warrant welfare improvements because even larger 

inefficiency under flexible cap policies is possible depending on the relative slope between MSB 

and MSC (Weitzman 1974). Moreover, the degree of water demand uncertainty affects the 

degree of inefficiency as well. Failing to account for these contextual factors would hinder 

designing an efficient water policy. This study considers three flexible cap policies (i.e., index 

quantity, endogenous hybrid policy, and fixed hybrid policy) and empirically ranks the efficiency 

of competing cap mechanisms by comparing welfare improvement compared to the status quo, 

fixed quota policy.  

Our results first show that there exists a large degree of uncertainty in irrigation water 

demands due to the weather variations in Mexico. Our empirical results reveal that Mexican 

irrigators bear substantial economic losses due to the inefficient cap allocation under the status 

quo. Introducing a flexible cap system can effectively mitigate the inefficiency, consistent with 

theoretical predictions. Specifically, our results suggest that the index cap policy performs 

generally well in the sense that welfare improvement from using an index cap policy is robust to 

the slope of MSC over reasonable ranges. On the other hand, the hybrid policy can be 
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significantly worse than the status quo as the slope of MSC gets steeper than MSB, if it is not 

carefully designed. Only when the hybrid policy perfectly endogenizes the varying environments 

in relative slopes and size of uncertainty (i.e., frequently updating price ceiling and floor), hybrid 

policy is welfare robustly enhancing of status quo. However, realistically speaking, it might be 

difficult to update policy rules; hence our analysis favors the use of index quantity policy. 

Moreover, we observe that greater uncertainty leads to greater efficiency loss under the fixed 

quota policy, making index quantity policy more attractive in the face of climate uncertainty.  

However, the relative cap policy ranking is ultimately sensitive to how specific parameter 

choices of each institution interact with ranges of contextual factors. Therefore, proper caution is 

still needed before adopting the index quantity mechanism for irrigation water management. To 

sum up, while no one policy dominates others globally (for the whole domain of relative slopes 

of MSB and MSC), an index quantity seems to be quite robust; outperforms other policies for a 

rather large range of relative slopes of MSB and MSC.  
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