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Johne’s disease (JD or paratuberculosis) control programs have been established in

many dairy-producing regions. However, the effectiveness (reduction of within-herd

prevalence) and the relative economic impact as measured by, for example, the ratio

of benefits to costs (BCR) across a comprehensive selection of regions and potential

control practices require further investigation. Within a Markovian framework using

region-specific economic variables, it was estimated that vaccination was the most

promising type of JD control practice modeled, with dual-effect vaccines (reducing

shedding and providing protective immunity) having BCRs between 1.48 and 2.13 in

Canada, with a break-even period of between 6.17 and 7.61 years. Dual-effect vaccines

were also estimated to yield BCRs greater than one in almost all major dairy-producing

regions, with greater ratios in regions characterized by above-average farm-gate prices

and annual production per cow. Testing and culling was comparably effective to a dual-

effect vaccine at test sensitivities >70% but would remain economically unviable in

almost all regions modeled.

Keywords: MAP, Johne’s disease, paratuberculosis, vaccination, testing and culling, control practice, Markov

chain, economic analysis

INTRODUCTION

Johne’s disease (JD), or paratuberculosis, is an infectious chronic inflammatory disorder of the
intestines that can affect domestic and wild ruminants including dairy cattle (1). The disease is
caused by an infection with Mycobacterium avium subspecies paratuberculosis (MAP), a relatively
resistant bacterium (2–4). As the infection progresses in cattle, the clinical effects worsen in
severity from diarrhea and reduced milk production to lethargy, hypoproteinemia, and severe
emaciation (5). These clinical effects result in substantial economic losses for dairy producers (6),
with decreased milk production (7, 8), decreased slaughter value (9–11), and premature culling
(12, 13) among the primary sources of losses. Annual losses per cow among MAP-infected herds
in the United States have been estimated at US$21 (12), US$35 (14), and up to US$79 per cow
(15), while annual losses among infected herds in Canada have been estimated at CA$49 (16)
and between US$35 and US$57 per cow (17). Globally, average annual losses in major dairy-
producing regions have been estimated at US$33 per cow, or ∼1% of gross milk revenue (17).
Although national control programs have already been established in several countries including
Australia, Ireland, Japan, the Netherlands, and the United States (18), there are few estimates of the
economic impact of potential control practices across major dairy-producing regions. It has been
estimated that an average benefit of US$8.03 per animal per year is associated with vaccination

https://www.frontiersin.org/journals/veterinary-science
http://crossmark.crossref.org/dialog/?doi=10.3389/fvets.2020.614727&domain=pdf&date_stamp=2020-12-xx
https://creativecommons.org/licenses/by/4.0/
mailto:dchall@ucalgary.ca
https://www.frontiersin.org/articles/10.3389/fvets.2020.614727/full
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in US dairy herds (19), and it has also been suggested through
simulation that the most profitable strategy in average Danish
herds is no control practice at all, with testing and culling
being the most profitable in low-hygiene herds (20). Similarly, a
recent stochastic simulation study found that no paratuberculosis
control was the highly preferred strategy in small herds with 10%
initial within-herd prevalence and frequently preferred in other
herd scenarios (21). Intuitively, it may seem obvious that these
economic losses warrant investment in control of the disease, but
the precise mechanisms of control require further investigation;
there is a need to estimate the effectiveness and economic
impact of potential control practices with consideration for
region-specific economic characteristics. Accordingly, this study
estimates the effectiveness in terms of reducing within-herd
prevalence, the economic impact in terms of the ratio of benefits
to costs, and the break-even period in terms of years required for
benefits to equal costs of various potential JD control practices
across a comprehensive selection of dairy-producing regions
within a Markovian framework.

MATERIALS AND METHODS

Within the Markovian framework established in Rasmussen
et al. (17), a MAP-positive herd with no intervention was
modeled over a 10-year horizon. Various control practices
were then introduced to the simulated herds, ranging from a
vaccine that reduced shedding among MAP-positive animals
to more comprehensive control programs such as a “dual-
effect” vaccine (a vaccine that both reduces shedding and also
provides some protective immunity) combined with annual
fecal PCR testing and culling of MAP-positive animals. The
herds with JD control measures in place were then simulated
over a 10-year horizon and compared to a positive herd with
the same economic characteristics with no intervention to
determine the changes in herd structure associated with each
control practice. By incorporating economic variables into the
Markovian framework, the region-specific benefits per cow,
costs per cow, 10-year benefit-cost-ratios (BCRs), and break-
even periods of each control practice were estimated. In all
scenarios, regional adoption of the control practice was assumed,
meaning that the replacement pool fromwhich annual purchased
replacements were acquired was assumed to be operating under
the same conditions modeled for the herd.

Markovian Framework
The spread of MAP-infection within a dairy herd was modeled
over a 10-year horizon using a MAP-positive herd model with a
separately modeled replacement pool (17). In this MAP-positive
model, the animal can remain negative and continue aging,
become infected and continue aging, or be culled. Once an animal
is infected, it can either be culled or its stage of infection can
progress, regress, or remain the same. Each stage of infection is
associated with a different risk of being culled, and each stage
has some non-shedding, lightly-shedding, moderately-shedding,
and heavily-shedding states within it. Infection pressure on
animals in the herd is determined by the number and degree
of shedding animals in the herd in each period, and all other

potential outcomes are functions of that infection pressure. For
MAP-negative animals, the probability of being culled remains
the steady-state MAP-negative value according to their age
category. For MAP-positive animals, the probability of being
culled depends on the stage of their infection, with the probability
increasing with the severity of infection. After the initial age
parameters were set, the herd and pool were modeled for 50
1-year periods stabilizing with an annual cow-culling rate of
27%, a young-stock percentage (including calves <1 year) of
48%, and for a 100-cow herd, 1.36 cows and 3.07 young-stock
between 1 and 2 years of age brought in from the external
replacement pool each year. These numbers are similar to those
observed in Canadian dairy herds, which have an average cow-
culling rate between 26 and 33% (22), an average young-stock
percentage of 48% (23), and purchase an average of 1.37 cows
and 3.09 young-stock between 1 and 2 years of age per 100
cows per year (24). Purchased replacements enter the herd at
a MAP infection prevalence according to the region’s animal-
level prevalence, which is determined by the product of the
region’s average within-herd prevalence and average herd-level
prevalence. For each economic region, a baseline MAP-positive
herd is then compared to a MAP-positive herds with various JD
control practices in place to estimate changes in herd structure,
JD prevalence, and three sources of losses associated with JD in
dairy cattle: premature culls; MAP-positive animals salvaged; and
MAP-positive cows producing reduced amounts of milk. Lastly,
because the current efficacies of available MAP vaccines in terms
of reduced shedding and protective immunity are unknown, a
range of vaccine efficacies are modeled.

Vaccine: Shedding
In this control scenario, a vaccine that reduces shedding among
MAP-infected animals is administered to the entire herd at time
zero and then administered to natural replacements at birth and
purchased replacements at the time of purchase. Once animals
are vaccinated, two main mechanisms operate: (i) the probability
of an animal transitioning from a MAP-negative state to a
shedding state of MAP-infection is decreased by the percentage
reduction in shedding attributable to the vaccine; and (ii) the
probability of an animal transitioning from a shedding state of
MAP-infection to another shedding state of MAP-infection is
decreased by the percentage reduction in shedding attributable
to the vaccine. In other words, shedding states of MAP-infection
become less likely outcomes and non-shedding states become
more likely according to the MAP shedding-reducing properties
of the vaccine.

Vaccine: Protective Immunity
In this control scenario, a vaccine that provides protective
immunity from MAP infection is administered to the entire
herd at time zero and then administered to natural replacements
at birth and purchased replacements at the time of purchase.
Once animals are vaccinated, a percentage of the MAP-negative
animals are provided with protective immunity and separated
into a new, immune cohort within the model according to the
vaccine’s efficacy (expressed as a percentage). The remainder
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of the MAP-negative animals continue in the original non-
immune cohort along with theMAP-positive animals in the herd,
which although vaccinated, cannot be provided with protective
immunity. Animals within the immune cohort either continue
aging or are culled according the MAP-negative steady-state
probability for their age but can never become infected in their
lifetimes. Animals that remain in the non-immune cohort are
subject to infection pressure according to the number of infected
animals in the herd and the degree to which those infected
animals are shedding MAP. These non-immune animals can
continue to age, be culled, become infected, or have their existing
infections progress, regress, or remain the same.

Vaccine: Dual-Effect
In this control scenario, a vaccine that both reduces shedding
and provides protective immunity from MAP infection is
administered to the entire herd at time zero and then
administered to natural replacements at birth and purchased
replacements at the time of purchase. The percentage of animals
that are successfully provided with protective immunity enter
the immune cohort, and because they are MAP-negative and
remain so for their lifetimes, are not directly affected by the
shedding-reducing effects of the vaccine. MAP-negative animals
that remain in the non-immune cohort are still subject to
infection pressure as previously described, while MAP-positive
animals in this cohort transition from period to period according
to the altered transition probabilities of the shedding-reduction
vaccine model.

Testing and Culling
In this control scenario, animals aged 1–7 years are tested
annually using a combination of pooled and individual fecal PCR
tests. They are first tested at time zero, and then retested after
each transition period (year) along with purchased replacements
aged 1–3 years, which are tested only at the individual level. For
all testing periods, the probability of a pooled test containing
samples from an r number of MAP-positive animals given
the pool size n, or pr (TP) | C(n, r), is determined using the
following equation:

pr (TP) | C(n, r) =
n!

r!∗ (n− r)!
∗

(

TPs

animals(1−7)

)r

∗

(

1−

(

TPs

animals(1−7)

))1−r

(1)

where: TPs equals the number of true positive animals aged 1–
7 years in a shedding state and animals(1−7) equals the number
of animals aged 1–7 years in the herd. A testing pool size of five
animals is assumed, or n = 5. Pooled tests and individual tests
are assumed to share the same sensitivities and specificities, or
that sep = sei and spp = spi.

The number of true positive pools detected TPp given pooled
test sensitivity sep is determined using the following equation:

TPp =
∑n

r=1

(

pr (TP) | C (n, r)
)

∗
animals(1−7)

n
∗sep (2)

The number of false-positive pools detected FPp given pooled test
specificity spp is determined using the following equation:

FPp =

(

animals(1−7)

n
− TPp

)

∗

(

1− spp
)

spp
(3)

The number of individual tests required T given the total number
of positive pools detected, including true and false-positive pools,
is determined using the following equation:

T =
(

TPp + FPp
)

∗n (4)

The number of true positive individuals detected TPi
given individual test sensitivity sei is determined using the
following equation:

TPi = T∗

∑n
r=1

(

pr (TP) | C (n, r)
)

∗r
(
∑n

r=1

(

pr (TP) | C (n, r)
)

+ FPp
)

∗n
∗sei (5)

Finally, the number of false-positive individuals detected FPi
given individual test specificity spi is determined using the
following equation:

FPi = (T − TPi)∗

(

1− spi
)

spi
(6)

where the total number of culls resulting from testing and culling
equals the sum of true positive and false-positive individuals
detected, or TPi + FPi. These culls are then distributed across the
herd according to the herd structure in that period, with the false-
positive culls coming from among the MAP-negative animals
and the true positive culls coming from among the MAP-positive
animals. The culled animals are then replaced with animals from
the replacement pool, which is assumed to be operating under the
same test-and-cull conditions.

Economic Analyses
Benefits per cow, costs per cow, benefit-cost ratios, and break-
even periods of the various control practices were estimated
using general input variables, region-specific dairy sector
characteristics, and region-specific economic variables (17) (also
available in Supplementary Files). The following values were
assumed for control-specific economic variables: a fecal PCR
direct testing cost of US$40 per test, a pooled testing labor cost
of 30min per test, an individual testing labor cost of 5min
per test, a vaccination direct cost of $US20 per dose for all
vaccine types, and a vaccination labor cost of 1min per dose.
After each period, the herds with control practices in place were
compared to a region-specific baseline MAP-positive herd with
no intervention. The reduced economic losses in the herd with
control practices relative to economic losses in the herd with no
intervention were recorded as economic benefits for the various
control practices. Premature culling benefits were estimated
by tallying additional exits in the herd with no intervention
and assigning those exits a value according to their age-at-exit
and associated replacement price. The aggregated labor cost of
seeking out, purchasing, and introducing a replacement to the

3
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herd was also accounted for. Salvage benefits were estimated
by tallying additional MAP-positive exits and assigning them
a reduced salvage value according to their stage of infection.
Production benefits were estimated in two different ways: (i) for
the comprehensive selection of major dairy-producing regions,
production benefits were measured as the value of the additional
milk produced (the product of quantity and farm-gate price)
by the herd due to the reduced number of MAP-positive cows;
and (ii) for Canada, due to the unique market conditions that
arise due to supply management, production benefits were re-
estimated as the reduction in variable costs from requiring fewer
cows to maintain a fixed production level. The three sources of
benefits in the model (reduced premature culling losses, reduced
salvage losses, and reduced production losses) were summed and
divided by the number of cows in the herd to obtain an estimate
of benefits per cow for each control scenario in each region.

The direct cost per dose of the vaccine was added to the labor
cost per dose (i.e., time required to administer a single dose
multiplied by the aggregate wage rate) to obtain an estimated
total cost per dose. At time zero, the entire herd was vaccinated,
with only purchased and natural replacements being vaccinated
after each transition period. As overall herd health improved in
the model, the culling rate decreased and animals remained in
the herd for a longer period, leading to fewer doses being required
over time. Each period, the total cost of vaccination was divided
by the number of cows in the herd to obtain an estimate of
annual vaccination costs per cow for each control practice that
included vaccination in each region. Similarly, the direct cost
per fecal PCR test was added to the labor cost per test, with
pooled tests requiring more labor than individual tests. Syringe
and alcohol swab material costs for vaccine delivery were trivial
(pennies per cow) at the herd-level and were not accounted for in
the simulations. However, in the case of a national or widespread
JD control campaign, these costs would likely be significant when
aggregated across thousands of herds. The direct cost of replacing
culled animals that tested positive was added to the labor cost per
replacement, with the direct cost being dependent on the age of
the replacement animal. The total costs of testing and replacing
animals were summed each period and divided by the number
of cows in the herd to obtain an estimate of annual testing and
culling costs per cow for each control scenario that included
testing and culling in each region.

Annual benefits and costs per cow were discounted over time
at an assumed rate of 5% per annum, averaged over the 10-year
horizon to obtain the reported benefit and cost estimates. This
discount rate is consistent with small private firm investment in a
family enterprise, falling between a public investment return rate
of ∼3% (25) and a private investment return rate of ∼10% (26).
Similarly, the Treasury Board of Canada selected a discount rate
of 7% in its 2007 Cost-Benefit Analysis Guide but noted that it
would likely be reduced in future years (27). Once discounted,
these benefits and costs were summed over the 10-year horizon,
then divided by the sum of the costs to obtain an estimate of
the benefit-cost ratio for each control scenario in each region.
The annual cumulative costs were subtracted from the annual
cumulative benefits, and for scenarios and regions where this
value was greater than zero within the 10-year horizon, the

number of years required for the benefits to equal costs were
recorded to obtain an estimate of the break-even period.

Monte Carlo Simulations
Monte Carlo simulations of 10,000 iterations were run using
Palisade’s @RISK software version 8.0 (28) and used to estimate
the distribution of possible outcomes of the Markov chain
models and their sensitivity to various input variables. For
these simulations, assumptions of an initial mean within-herd
prevalence of 10% and an initial mean herd-level prevalence of
50% were used in all scenarios, both with normal distributions
and standard deviations of 20% of their mean values. Also
assumed were mean values of 50% for the vaccine’s reduction
in shedding, 50% for the vaccine’s protective immunity efficacy,
50% for both pooled and individual fecal PCR testing sensitivities,
and 99% for testing specificities. These variables were also
simulated with normal distributions but with standard deviations
of 20% of their means, except for testing specificities; these
were simulated with normal distributions truncated from 95
to 100% and standard deviations of 10% of their means.
All general input variables, region-specific economic variables,
and control-specific economic variables were assumed to have
normal distributions and standard deviations of 10% of their
mean values. Although the data required to determine the true
standard deviations of these variables are unavailable, the selected
standard deviations capture a wide range of input values without
destabilizing the simulations and their results.

RESULTS

Distribution of Possible Outcomes
The proportional changes in within-herd prevalence (the
differences between the final 10-year within-herd prevalence
and the initial within-herd prevalence divided by the initial
within-herd prevalence) from its initial mean value of 10% based
on 10,000-iteration simulations of the various control practices
are presented in Figure 1 and Table 1. For the MAP-positive
herd with no intervention, 90% of the iterations resulted in
proportional increases of within-herd prevalence ranging from
∼0.5 to 1.65, with a mean of 1.02, equivalent to a doubling
of within-herd prevalence from 10 to 20% over 10 years. Only
vaccines that provided protective immunity, dual-effect vaccines,
and testing and culling combined with various vaccine types had
90% confidence ranges that did not overlap with the positive herd
with no intervention. Additionally, only dual-effect vaccination
and testing and culling combined with either a protective
immunity vaccine or a dual-effect vaccine had 90% confidence
ranges entirely below zero indicative of absolute decreases in
within-herd prevalence over 10 years relative to its initial value.

Effects of JD Control on Herd Structure
The effects of the various control practices on within-herd
prevalence, the percentage of shedding animals within the herd,
and the cow-culling rate over time can be seen in Figure 2.
In all control scenarios, prevalence decreased relative to the
MAP-positive herd with no intervention. The greatest decreases
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FIGURE 1 | Distributions of 10-year proportional changes in within-herd prevalence for various JD (paratuberculosis) control practices compared to no intervention

(10,000 iteration simulations). Assumes initial mean values of 10% for within-herd Mycobacterium avium subsp. paratuberculosis (MAP) infection prevalence, 50% for

herd-level prevalence, 50% for vaccine efficacies, and 50% for testing sensitivities.

relative to no intervention were observed in the scenarios of dual-
effect vaccination, testing and culling combined with protective
immunity vaccination, and testing and culling combined
with dual-effect vaccination. After year three, the within-herd
prevalence in the testing and culling scenario began to increase
relative to its minimum value within the 10-year horizon. When
looking at the percentage of animals shedding in the herd,
overall trends are similar to those observed when looking at
within-herd prevalence, including the same upward trend after
year three in the testing and culling scenario. The greatest
decreases were observed in the dual-effect vaccination, testing
and culling combined with vaccination to reduce shedding,
and testing and culling combined with dual-effect vaccination
scenarios. A sharp and immediate decrease in shedding animals
as a percentage of animals in the herd was observed in scenarios
involving vaccines with a shedding reduction effect. As within-
herd MAP prevalence and the prevalence of MAP-shedding
animals changed over time in the various scenarios, so did the

cow-culling rates. In the various vaccination scenarios, after
2 years the cow-culling rate began to decrease relative to the
rate observed in the MAP-positive herd with no intervention,
approaching the MAP-negative baseline rate of 0.275. This was
indicative of both improving overall herd health and a decline
in the severity of infections among MAP-positive animals as
infection pressure in the herd began to fall due to the various
control practices. In scenarios involving testing and culling, an
initial increase in culling of cows was observed relative to the
scenario with no intervention as MAP-positive animals were
detected and removed from the herd. However, as the number
of animals detected began to decrease with time, culling rates
also fell, and by year 4, in the scenario combining testing and
culling with a dual-effect vaccine, they were near or below the
culling rate of cows in the positive herd with no intervention.
Once again, only in the exclusive testing and culling scenario
was there an eventual upward trend in the culling rate after an
initial decline.
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TABLE 1 | Summary statistics of the distributions of 10-year proportional changes in within-herd Mycobacterium avium subsp. paratuberculosis (MAP) infection

prevalence for various JD (paratuberculosis) control practices (10,000 iteration simulations).

Statistic No intervention Vaccine

(shedding)

Vaccine

(immunity)

Vaccine

(dual-effect)

Minimum −0.03 −0.25 −0.47 −0.52

Maximum 3.35 1.75 1.14 0.61

Mean 1.02 0.53 0.13 −0.13

90% range 0.51 to 1.66 0.18 to 0.92 −0.13 to 0.44 −0.22 to −0.20

Standard deviation 0.36 0.23 0.18 0.13

Statistic Test-and-cull Test-and-cull with

vaccine (shedding)

Test-and-cull with

vaccine (immunity)

Test-and-cull with

vaccine (dual-effect)

Minimum −0.75 −0.53 −0.83 −0.66

Maximum 2.26 1.51 1.16 0.79

Mean 0.01 0.09 −0.35 −0.26

90% range −0.36 to 0.66 −0.20 to 0.44 −0.62 to−0.02 −0.46 to −0.04

Standard deviation 0.32 0.20 0.19 0.13

Assumes initial mean values of 10% for within-herd MAP infection prevalence, 50% for herd-level prevalence, 50% for vaccine efficacies, and 50% for testing sensitivities.

Changes in the sources of economic losses in the models
(forgone production, premature culling, and reduced salvage
value due to MAP-positive culls) over time are presented in
Figure 3. In all scenarios, forgone production, or the production
lost due to MAP infection, as percentage of potential production
decreased relative to theMAP-positive herd with no intervention.
The greatest reductions were observed in scenarios with dual-
effect vaccination and scenarios where testing and culling was
combined with either a protective immunity vaccine or a dual-
effect vaccine. The previously observed upward trend in the
testing and culling scenario was once again observed for all
sources of losses in the model. Premature culls (culls that would
not have occurred in the MAP-negative baseline herd) as a
percentage of total culls decreased relative to the MAP-positive
herd with no intervention within 10 years in all scenarios except
testing and culling, with dual-effect vaccination showing the
greatest decrease. The greatest decreases in MAP-positive culls as
a percentage of total culls were observed in scenarios combining
testing and culling with protective immunity vaccination, testing
and culling combined with dual-effect vaccination, and dual-
effect vaccination only.

Economic Analysis: Major Dairy-Producing
Regions
With a 50% reduction in shedding and a 50% efficacy of
protective immunity, dual-effect vaccination resulted in BCRs
greater than one for all regions except Poland, Brazil, China,
Russia, and Turkey with revenue-weighted average values of 1.24
and 7.88 years for the scenario’s BCR and break-even period,
respectively (Table 2). Even at the 90% efficacy level in the
dual-effect vaccination scenario, the BCRs remain <1 for these
countries. For control practices involving testing and culling
(Table 3), all revenue-weighted average BCR values are less than
one, with the exception of testing and culling combined with a
dual-effect vaccine at the 90% efficacy and test sensitivity levels,

which resulted in a BCR value of 1.22 and a break-even period of
9.17 years.

Economic Analysis: Canada
Benefits and costs for the various control practices were
first estimated using the same method used for other major
dairy-producing regions. They were then estimated again with
consideration for the market conditions that arise due to supply
management: fixed annual production and higher farm-gate
prices. To account for these conditions, production losses were
estimated as the increase in variable costs due to the presence
of additional less productive MAP-positive cows in the herd
required to maintain a fixed production level. Once again, the
results are summarized using revenue-weighted average values at
the bottom of each table.

With production losses measured as forgone production
(Table 4), protective immunity vaccination and dual-effect
vaccination scenarios resulted in mean BCRs>1 for all provinces
within Canada, with the highest revenue-weighted average
BCRs resulting from scenarios with dual-effect vaccination until
control variables reach the 90%, when protective immunity
vaccination has a slightly higher BCR. Testing and culling did
not result in a BCR greater than one for any province at
any test sensitivity modeled, and testing and culling combined
with a shedding reduction vaccine only resulted in a BCR
greater 1 in Alberta and Newfoundland and Labrador in
the 90% vaccine efficacy and 90% test sensitivity scenario.
Testing and culling combined with a protective immunity
vaccine had a revenue weighted average BCR >1 (1.03)
only at the 70% efficacy and sensitivity level, while testing
and culling combined with dual-effect vaccination resulted in
revenue-weighted average BCRs and provincial BCRs >1 at
all vaccine efficacy and testing sensitivities modeled. Dual-
effect vaccination also had the shortest break-even periods
across vaccine efficacy scenarios. When production losses were
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FIGURE 2 | Within-herd prevalence, percentage of animals shedding, and culling rates of cows over time for various JD (paratuberculosis) control practices compared

to no intervention. Assumes an initial value of 10% for within-herd Mycobacterium avium subsp. paratuberculosis (MAP) infection prevalence, 50% for herd-level

prevalence, 50% for vaccine efficacies, and 50% for testing sensitivities.

instead measured as increased variable costs from additional
cows in the herd being required to maintain production levels
(Table 5), similar trends were observed but with lower BCRs
and longer break-even periods. Dual-effect vaccination was
still the most promising control practice, resulting in BCRs
greater than one for all provinces with a revenue-weighted
average of 1.48 in the 50% control variable scenario, and
the shortest break-even periods across all efficacy and test
sensitivity scenarios.

Sensitivity Analyses
For simplicity, a generalized MAP-positive herd with no region-
specific variables was selected to test the sensitivity of estimated
within-herd prevalence to various input variables. For the
shedding reduction vaccine, once the shedding reduction reached
70%, a slight overall downward trend in within-herd prevalence
was observed (Figure 4). However, it was not until the shedding
reduction exceeded 90% that an absolute decrease in within-
herd prevalence relative to its initial value within the 10-year
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FIGURE 3 | Sources of economic losses due to JD (paratuberculosis) over time for various control practices compared to no intervention. Forgone production as a

percentage of potential production over time, premature culls as a percentage of total culls, and Mycobacterium avium subsp. paratuberculosis (MAP) -positive culls

as a percentage of total culls. Assumes an initial value of 10% for within-herd MAP infection prevalence, 50% for herd-level prevalence, 50% for vaccine efficacies, and

50% for testing sensitivities.

horizon was observed. For the protective immunity vaccine, at
only 50% protective immunity a downward trend was observed,
and an absolute decrease in within-herd prevalence within the
10-year horizon relative to its initial value was observed at
<60% protective immunity. The relationship between protective
immunity, shedding reduction, and the final 10-year within-herd
prevalence in the dual-effect vaccination scenario is explored
in Figure 5; the results suggest that the protective immunity

effect drove the overall effectiveness of dual-effect vaccines in
the model, particularly at moderate control variable values.
For example, a vaccine with 0% shedding reduction but 70%
protective immunity resulted in a final 10-year within-herd
prevalence of ∼0.08 (assuming an initial within-herd prevalence
of 0.10), whereas a vaccine with 70% shedding reduction and 0%
protective immunity resulted in a final prevalence of 0.13. There
was no significant 10-year decrease in within-herd prevalence
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TABLE 2 | Estimated benefit-cost ratios (BCRs), and revenue-weighted average benefits and costs per cow (US$), BCRs, and break-even periods (BEP) of various JD

(paratuberculosis) vaccine types in major dairy-producing regions across a range of vaccine shedding reduction and protective immunity percentages.

Region Vaccine (shedding) Vaccine (immunity) Vaccine (dual-effect)

50% 70% 90% 50% 70% 90% 50% 70% 90%

European Union (28) 0.69 0.94 1.18 0.99 1.32 1.60 1.23 1.47 1.60

Germany 0.80 1.10 1.37 1.14 1.52 1.84 1.43 1.70 1.85

France 0.69 0.95 1.18 0.99 1.31 1.59 1.23 1.46 1.59

Great Britain 0.73 1.00 1.26 1.07 1.42 1.72 1.32 1.57 1.71

Poland 0.36 0.51 0.65 0.62 0.82 1.01 0.73 0.87 0.95

Netherlands 0.94 1.28 1.61 1.34 1.78 2.16 1.67 1.99 2.16

Italy 0.69 0.95 1.19 1.02 1.36 1.65 1.26 1.50 1.63

Ireland 1.03 1.38 1.70 1.27 1.67 2.00 1.66 1.96 2.13

Spain 0.59 0.81 1.03 0.93 1.24 1.51 1.12 1.34 1.46

Denmark 1.06 1.45 1.80 1.49 1.98 2.40 1.87 2.22 2.42

Belgium 0.75 1.02 1.27 1.06 1.41 1.71 1.33 1.58 1.71

Austria 0.78 1.06 1.32 1.07 1.42 1.72 1.35 1.61 1.75

Czechia 0.54 0.76 0.97 0.90 1.21 1.48 1.07 1.29 1.40

Sweden 0.91 1.25 1.55 1.29 1.71 2.07 1.61 1.92 2.08

Finland 0.95 1.31 1.63 1.38 1.83 2.22 1.71 2.04 2.21

United States 0.93 1.27 1.59 1.33 1.76 2.14 1.66 1.97 2.14

California 0.91 1.24 1.56 1.31 1.73 2.10 1.63 1.93 2.10

Wisconsin 0.81 1.11 1.40 1.21 1.61 1.96 1.49 1.77 1.93

Idaho 0.70 0.97 1.23 1.12 1.50 1.83 1.35 1.61 1.75

New York 0.96 1.32 1.65 1.37 1.82 2.20 1.71 2.04 2.21

Texas 0.85 1.17 1.47 1.26 1.68 2.04 1.56 1.85 2.01

Michigan 0.79 1.10 1.39 1.24 1.65 2.02 1.50 1.80 1.95

Pennsylvania 0.79 1.08 1.35 1.14 1.51 1.84 1.42 1.69 1.83

Minnesota 0.84 1.14 1.43 1.21 1.60 1.94 1.50 1.78 1.94

New Mexico 0.75 1.04 1.32 1.18 1.57 1.92 1.43 1.71 1.86

Washington 0.91 1.25 1.57 1.33 1.76 2.14 1.65 1.96 2.13

Brazil 0.17 0.24 0.30 0.26 0.34 0.42 0.32 0.38 0.41

China 0.26 0.36 0.46 0.41 0.54 0.66 0.49 0.59 0.64

Russia 0.25 0.35 0.45 0.42 0.57 0.70 0.50 0.60 0.66

New Zealand 0.55 0.74 0.91 0.71 0.94 1.14 0.92 1.09 1.18

Turkey 0.21 0.29 0.37 0.34 0.46 0.56 0.41 0.49 0.54

Australia 0.71 0.96 1.18 0.92 1.22 1.47 1.19 1.41 1.53

Japan 1.66 2.28 2.87 2.48 3.30 4.01 3.05 3.63 3.95

Revenue-weighted average benefits and costs (US$/cow/year), BCRs (ratio), and BEPs (years)

Benefit 6.20 8.48 10.60 9.00 11.94 14.47 11.14 13.24 14.37

Cost 9.05 9.02 9.01 9.05 9.03 9.02 9.02 9.00 8.99

BCR 0.69 0.94 1.18 0.99 1.32 1.60 1.24 1.47 1.60

BEP 8.38 8.67 8.22 8.47 7.60 6.89 7.88 7.05 6.58

Assumes an initial within-herd Mycobacterium avium subsp. paratuberculosis (MAP) infection prevalence of 10% and a herd-level prevalence of 50%.

relative to its initial value resulting from testing and culling until
test sensitivity exceeded 50% (Figure 6). However, even within
the 50% to 70% sensitivity range, within-herd prevalence began
to trend upwards in the later periods of the 10-year horizon.
This upward trend did not clearly disappear until test sensitivity
exceeded the 70% level.

The sensitivity of the proportional changes in within-herd
prevalence over the 10-year horizons to a variety of input
variables based on 10,000 iteration Monte Carlo simulations are

presented in Figures 7, 8. In the shedding reduction vaccine
scenario, the proportional change was most sensitive to the
initial within-herd prevalence, with above-mean within-herd
prevalence values resulting in lesser proportional increases
and therefore more effective JD control. Other impactful and
negatively related variables were the shedding reduction efficacy
of the vaccine and the additional culling risk associated with
Stage 1 MAP infection. The degree of bacterial shedding among
lightly shedding infected animals and herd-level prevalence

9



1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

Rasmussen et al. Analysis of JD Control Practices

TABLE 3 | Estimated benefit-cost ratios (BCRs), and revenue-weighted average benefits and costs per cow (US$), BCRs, and break-even periods (BEP) of various JD

(paratuberculosis) control practices involving testing and culling in major dairy-producing regions across a range of testing sensitivities and vaccine shedding reduction

and protective immunity percentages.

Region Test-and-cull Test-and-cull with Test-and-cull with Test-and-cull with

vaccine (shedding) vaccine (immunity) vaccine (dual-effect)

50% 70% 90% 50% 70% 90% 50% 70% 90% 50% 70% 90%

European Union (28) 0.44 0.54 0.59 0.42 0.52 0.58 0.59 0.71 0.79 0.69 0.85 1.07

Germany 0.46 0.56 0.60 0.47 0.57 0.65 0.64 0.74 0.82 0.76 0.93 1.19

France 0.43 0.52 0.57 0.42 0.51 0.58 0.58 0.69 0.77 0.68 0.84 1.05

Great Britain 0.46 0.57 0.62 0.45 0.55 0.62 0.63 0.75 0.84 0.73 0.90 1.13

Poland 0.39 0.53 0.62 0.30 0.37 0.38 0.48 0.64 0.78 0.49 0.63 0.73

Netherlands 0.50 0.59 0.64 0.52 0.64 0.74 0.70 0.80 0.88 0.85 1.04 1.34

Italy 0.47 0.57 0.63 0.44 0.54 0.60 0.62 0.75 0.85 0.71 0.89 1.10

Ireland 0.39 0.44 0.45 0.47 0.57 0.68 0.56 0.61 0.64 0.74 0.89 1.19

Spain 0.48 0.61 0.70 0.42 0.51 0.56 0.63 0.78 0.92 0.68 0.86 1.04

Denmark 0.51 0.60 0.64 0.56 0.68 0.79 0.73 0.83 0.89 0.90 1.11 1.44

Belgium 0.45 0.54 0.58 0.44 0.54 0.61 0.60 0.71 0.79 0.71 0.88 1.12

Austria 0.43 0.51 0.54 0.44 0.54 0.62 0.59 0.68 0.74 0.71 0.87 1.11

Czechia 0.50 0.66 0.76 0.41 0.51 0.54 0.64 0.83 0.99 0.68 0.86 1.03

Sweden 0.48 0.57 0.62 0.51 0.62 0.71 0.67 0.77 0.85 0.82 1.00 1.29

Finland 0.52 0.61 0.66 0.54 0.65 0.75 0.72 0.83 0.91 0.87 1.07 1.37

United States 0.50 0.59 0.63 0.52 0.63 0.73 0.69 0.80 0.87 0.84 1.03 1.33

California 0.50 0.59 0.64 0.51 0.63 0.72 0.69 0.80 0.88 0.83 1.03 1.32

Wisconsin 0.52 0.63 0.69 0.50 0.61 0.69 0.70 0.84 0.94 0.82 1.01 1.27

Idaho 0.55 0.69 0.78 0.48 0.60 0.65 0.72 0.89 1.03 0.80 1.00 1.23

New York 0.50 0.59 0.64 0.53 0.64 0.75 0.70 0.80 0.88 0.85 1.05 1.36

Texas 0.51 0.62 0.67 0.51 0.62 0.71 0.70 0.83 0.92 0.83 1.02 1.30

Michigan 0.55 0.68 0.76 0.52 0.64 0.71 0.75 0.90 1.03 0.85 1.06 1.32

Pennsylvania 0.47 0.57 0.62 0.47 0.57 0.65 0.64 0.76 0.84 0.76 0.94 1.19

Minnesota 0.48 0.58 0.63 0.49 0.60 0.68 0.66 0.78 0.86 0.79 0.98 1.24

New Mexico 0.54 0.67 0.75 0.50 0.61 0.68 0.72 0.88 1.01 0.82 1.02 1.26

Washington 0.51 0.61 0.66 0.52 0.64 0.73 0.71 0.82 0.91 0.85 1.05 1.34

Brazil 0.18 0.25 0.29 0.14 0.17 0.17 0.21 0.28 0.35 0.22 0.28 0.32

China 0.27 0.36 0.41 0.20 0.25 0.27 0.32 0.42 0.52 0.33 0.42 0.50

Russia 0.29 0.40 0.48 0.21 0.26 0.27 0.35 0.47 0.59 0.35 0.45 0.52

New Zealand 0.33 0.39 0.42 0.32 0.39 0.44 0.43 0.51 0.57 0.51 0.63 0.79

Turkey 0.24 0.33 0.39 0.17 0.22 0.22 0.29 0.39 0.48 0.29 0.37 0.43

Australia 0.37 0.44 0.47 0.39 0.47 0.55 0.51 0.58 0.63 0.62 0.76 0.97

Japan 0.69 0.80 0.85 0.79 0.96 1.16 1.02 1.13 1.21 1.30 1.59 2.13

Revenue-weighted average benefits and costs (US$/cow/year), BCRs (ratio), and BEPs (years)

Benefit 15.36 23.82 29.45 14.29 17.25 16.34 20.84 27.16 31.10 18.26 20.60 19.46

Cost 31.65 40.59 45.98 29.85 29.41 24.65 31.52 34.79 35.68 23.49 21.41 16.01

BCR 0.49 0.59 0.64 0.48 0.59 0.66 0.66 0.78 0.87 0.78 0.96 1.22

BEP – – – – – 10.00 10.00 10.00 10.00 10.00 10.00 9.17

Assumes an initial within-herd Mycobacterium avium subsp. paratuberculosis (MAP) infection prevalence of 10% and a herd-level prevalence of 50%.

were also determined to be impactful, but positively related
to the proportional increase in within-herd prevalence, with
above-mean values resulting in greater proportional increases
in within-herd prevalence. The protective immunity vaccine
estimate was sensitive to similar variables, with the percentage
of protective immunity being the most impactful, as was
the dual-effect vaccine scenario estimate, with protective

immunity having a significantly larger impact than shedding
reduction. In all scenarios involving testing and culling, both
alone and in combination with some type of vaccination,
proportional changes to within-herd prevalence were most
sensitive to test sensitivity, with initial within-herd prevalence,
vaccine efficacy, and the degree of bacterial shedding among
lightly shedding animals being consistently impactful to lesser
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TABLE 4 | Estimated benefit-cost ratios (BCRs), and revenue-weighted average benefits and costs per cow (US$), BCRs, and break-even periods (BEP) of various JD

(paratuberculosis) control practices in Canadian regions across a range of vaccine shedding reduction, protective immunity percentages, and testing sensitivities.

Region Vaccine (shedding) Vaccine (immunity) Vaccine (dual-effect)

50% 70% 90% 50% 70% 90% 50% 70% 90%

Canada 1.15 1.59 2.00 1.74 2.32 2.82 2.14 2.55 2.77

Québec 1.05 1.45 1.83 1.62 2.16 2.63 1.97 2.35 2.56

Ontario 1.12 1.55 1.95 1.69 2.26 2.74 2.08 2.48 2.69

British Columbia 1.26 1.74 2.19 1.92 2.55 3.11 2.34 2.80 3.04

Alberta 1.45 1.98 2.48 2.08 2.76 3.35 2.59 3.08 3.35

Manitoba 1.11 1.53 1.93 1.71 2.29 2.79 2.08 2.49 2.71

Saskatchewan 1.29 1.77 2.22 1.91 2.54 3.09 2.36 2.81 3.05

Nova Scotia 0.99 1.37 1.74 1.57 2.10 2.56 1.90 2.27 2.47

New Brunswick 0.99 1.37 1.73 1.54 2.06 2.51 1.88 2.24 2.44

Prince Edward Isl. 0.99 1.38 1.75 1.58 2.11 2.58 1.91 2.28 2.48

Nfld. and Labrador 1.56 2.15 2.70 2.34 3.12 3.80 2.88 3.43 3.73

Revenue-weighted average benefits and costs (US$/cow/year), BCRs (ratio), and BEPs (years)

Benefit 10.44 14.34 18.03 15.80 21.00 25.51 19.29 22.97 24.94

Cost 9.10 9.08 9.06 9.11 9.09 9.07 9.07 9.06 9.05

BCR 1.15 1.58 1.99 1.73 2.31 2.81 2.13 2.54 2.76

BEP 9.14 7.56 6.64 7.05 5.97 5.32 6.17 5.45 5.08

Region Test-and-cull Test-and-cull with Test-and-cull with Test-and-cull with

vaccine (shedding) vaccine (immunity) vaccine (dual-effect)

50% 70% 90% 50% 70% 90% 50% 70% 90% 50% 70% 90%

Canada 0.61 0.73 0.79 0.64 0.79 0.91 0.87 1.00 1.10 1.05 1.30 1.68

Québec 0.62 0.75 0.82 0.62 0.76 0.87 0.86 1.02 1.13 1.02 1.27 1.61

Ontario 0.61 0.72 0.78 0.63 0.77 0.89 0.85 0.99 1.09 1.03 1.27 1.64

British Columbia 0.65 0.77 0.83 0.69 0.84 0.98 0.93 1.06 1.16 1.13 1.39 1.81

Alberta 0.60 0.69 0.74 0.69 0.84 1.01 0.88 0.98 1.04 1.13 1.37 1.84

Manitoba 0.64 0.77 0.85 0.65 0.80 0.91 0.90 1.05 1.17 1.07 1.32 1.69

Saskatchewan 0.62 0.73 0.78 0.68 0.82 0.97 0.89 1.01 1.10 1.10 1.35 1.78

Nova Scotia 0.64 0.79 0.87 0.62 0.76 0.86 0.89 1.06 1.19 1.03 1.27 1.61

New Brunswick 0.62 0.75 0.83 0.61 0.74 0.84 0.85 1.01 1.14 1.00 1.24 1.57

Prince Edward Isl. 0.65 0.79 0.88 0.62 0.77 0.86 0.89 1.06 1.20 1.03 1.28 1.61

Nfld. and Labrador 0.68 0.79 0.85 0.77 0.94 1.12 1.00 1.12 1.20 1.26 1.54 2.06

Revenue-weighted average benefits and costs (US$/cow/year), BCRs (ratio), and BEPs (years)

Benefit 23.79 37.15 46.34 21.79 26.36 24.86 32.38 42.51 48.98 28.12 31.78 29.95

Cost 37.67 49.45 56.71 33.01 32.66 26.65 36.17 41.11 43.08 25.92 23.79 17.33

BCR 0.63 0.75 0.82 0.66 0.81 0.93 0.90 1.03 1.14 1.08 1.34 1.73

BEP – – – – – – – 10.00 10.00 10.00 9.72 8.17

Assumes an initial within-herd Mycobacterium avium subsp. paratuberculosis (MAP) infection prevalence of 10% and a herd-level prevalence of 50.

degrees. Similar variables were identified as impactful in the
10,000 iteration Monte Carlo simulation sensitivity analyses
of estimated 10-year BCRs using an average Canadian dairy
herd (Figures 9, 10).

The stochasticity introduced through the Monte Carlo
simulations resulted in values ranging from ∼5 to 15% for
the initial within-herd prevalence over the 10,000 iterations,
with the 10-year proportional change in within-herd prevalence
varying accordingly, as presented in Figure 7 through Figure 10.
However, additional economic and production variables such
as the vaccine price per dose, farm-gate price of milk, annual

production per cow, and the effect of MAP infection on
milk production were also identified. The degree of bacterial
shedding among lightly shedding animals was once again
consistently found to be impactful and positively related to BCR
estimates in all scenarios. All significantly impactful variables
in these BCR sensitivity analyses were positively related to
estimated BCRs, aside from the vaccine price per dose, which
was negatively related. In all control scenarios, within-herd
prevalence was inversely related to the 10-year proportional
change in within-herd prevalence and directly related to the
benefit-cost ratio of the control practice.
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TABLE 5 | Estimated benefit-cost ratios (BCRs), and revenue-weighted average benefits and costs per cow (US$), BCRs, and break-even periods (BEP) of various JD

(paratuberculosis) control practices in Canadian regions across a range of vaccine shedding reduction, protective immunity percentages, and testing sensitivities, and with

consideration for supply management (fixed output over time and production losses allocated as increased variable costs necessary to maintain production).

Region Variable costa Vaccine (shedding) Vaccine (immunity) Vaccine (dual-effect)

(US$/cow/year)

50% 70% 90% 50% 70% 90% 50% 70% 90%

Canada 2,476 0.89 1.20 1.48 1.15 1.52 1.83 1.48 1.76 1.91

Québec 2,430 0.79 1.07 1.33 1.05 1.39 1.67 1.34 1.59 1.72

Ontario 2,256 0.85 1.15 1.42 1.09 1.44 1.74 1.42 1.68 1.82

British Columbia 3,204 1.00 1.35 1.68 1.34 1.77 2.13 1.70 2.02 2.19

Alberta 3,106 1.20 1.62 1.99 1.53 2.01 2.42 1.98 2.34 2.54

Manitoba 3,014 0.87 1.18 1.46 1.18 1.57 1.89 1.50 1.78 1.93

Saskatchewan 2,785 1.02 1.37 1.69 1.31 1.73 2.08 1.69 2.00 2.17

Nova Scotia 2,515 0.73 0.99 1.23 1.00 1.32 1.59 1.26 1.50 1.63

New Brunswick 2,464 0.75 1.02 1.26 1.01 1.34 1.61 1.28 1.52 1.65

Prince Edward Isl. 2,144 0.70 0.95 1.18 0.93 1.23 1.48 1.19 1.41 1.53

Nfld. and Labrador 4,112 1.27 1.73 2.14 1.70 2.25 2.72 2.17 2.58 2.80

Revenue-weighted average benefits and costs (US$/cow/year), BCRs (ratio), and BEPs (years)

Benefit 8.04 10.85 13.38 10.48 13.80 16.59 13.44 15.88 17.21

Cost 9.10 9.08 9.06 9.11 9.09 9.07 9.07 9.06 9.05

BCR 0.88 1.20 1.48 1.15 1.52 1.83 1.48 1.75 1.90

BEP 9.05 9.05 7.61 9.11 7.60 6.75 7.61 6.71 6.23

Region Test-and-cull Test-and-cull with Test-and-cull with Test-and-cull with

vaccine (shedding) vaccine (immunity) vaccine (dual-effect)

50% 70% 90% 50% 70% 90% 50% 70% 90% 50% 70% 90%

Canada 0.41 0.47 0.49 0.45 0.55 0.64 0.57 0.64 0.68 0.71 0.87 1.14

Québec 0.40 0.47 0.50 0.43 0.52 0.60 0.55 0.63 0.69 0.68 0.83 1.07

Ontario 0.39 0.45 0.47 0.44 0.53 0.62 0.55 0.61 0.65 0.69 0.84 1.09

British Columbia 0.45 0.52 0.55 0.50 0.61 0.72 0.64 0.71 0.77 0.80 0.98 1.29

Alberta 0.44 0.50 0.51 0.53 0.64 0.78 0.64 0.69 0.72 0.84 1.02 1.38

Manitoba 0.44 0.52 0.55 0.47 0.57 0.66 0.61 0.70 0.76 0.75 0.92 1.19

Saskatchewan 0.43 0.49 0.51 0.49 0.59 0.71 0.60 0.67 0.71 0.77 0.94 1.25

Nova Scotia 0.41 0.49 0.52 0.42 0.51 0.58 0.55 0.64 0.71 0.67 0.82 1.04

New Brunswick 0.40 0.48 0.51 0.42 0.51 0.59 0.55 0.64 0.70 0.67 0.82 1.05

Prince Edward Isl. 0.38 0.45 0.48 0.39 0.48 0.55 0.52 0.59 0.65 0.62 0.77 0.98

Nfld. and Labrador 0.49 0.56 0.59 0.59 0.71 0.86 0.72 0.79 0.83 0.94 1.14 1.53

Revenue-weighted average benefits and costs (US$/cow/year), BCRs (ratio), and BEPs (years)

Benefit 16.23 24.68 29.79 15.73 18.86 18.08 21.83 27.86 31.36 19.59 22.00 20.91

Cost 37.92 49.83 57.17 33.15 32.79 26.74 36.37 41.38 43.39 26.02 23.89 17.38

BCR 0.43 0.50 0.52 0.47 0.58 0.68 0.60 0.67 0.72 0.75 0.92 1.20

BEP – – – – – – – – – – 9.26 8.48

Assumes an initial within-herd Mycobacterium avium subsp. paratuberculosis (MAP) infection prevalence of 10% and a herd-level prevalence of 50%.
aSTATCAN—Table 32-10-0136-01 Farm operating revenues and expenses, annual (29). Sum of “Feed, supplements, straw, and bedding,” “Veterinary fees, medicine, and breeding

fees,” and “Salaries and wages, including benefits related to employee salaries” for average dairy farms across all revenue levels in 2018. Total per farm divided by number of cows per

farm. Number of cows per farm obtained by number of cattle divided by number of farms: CDIC—Number of farms with shipments of Milk (30). Number of cattle: STATCAN—Table

32-10-0130-01—Number of cattle, by class and farm type (23).

DISCUSSION

With the assumptions of mean within-herd MAP infection
prevalence of 10%, a mean herd-level MAP infection prevalence
of 50%, vaccine efficacies (reduction in shedding and protective

immunity) of 50%, mean test sensitivity of 50%, and mean
test specificity of 99%, no scenarios resulted in the elimination
of JD within a 10-year horizon. However, all control practices
reduced within-herd MAP prevalence relative to no intervention
within a 10-year horizon. However, at the 50% vaccine efficacy

12



1369

1370

1371

1372

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

1404

1405

1406

1407

1408

1409

1410

1411

1412

1413

1414

1415

1416

1417

1418

1419

1420

1421

1422

1423

1424

1425

1426

1427

1428

1429

1430

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

1441

1442

1443

1444

1445

1446

1447

1448

1449

1450

1451

1452

1453

1454

1455

1456

1457

1458

1459

1460

1461

1462

1463

1464

1465

1466

1467

1468

1469

1470

1471

1472

1473

1474

1475

1476

1477

1478

1479

1480

1481

1482

Rasmussen et al. Analysis of JD Control Practices

FIGURE 4 | Estimates of within-herd Mycobacterium avium subsp. paratuberculosis (MAP) infection prevalence over time for JD (paratuberculosis) vaccines across a

range of control-specific variable values.

and 50% test sensitivity level, the only control practices that
resulted in absolute reductions relative to initial within-herd
MAP prevalence within the horizon were dual-effect vaccines,
and protective immunity and dual-effect vaccines combined with
testing and culling. Testing and culling alone did not; after three
to four periods, an upward trend in within-herd prevalence was
observed as new MAP infections occurred. Kudahl et al. (31)
found that testing and culling alone only delayed an increase
in within-herd prevalence, whereas Kirkeby et al. (20) found
that that even with currently available testing tools, eradication
of JD was attainable within seven to 10 years through testing
and culling in Danish dairy herds. However, in the latter
model, MAP infection was treated as an endemic situation,
and therefore modeled using a density-dependent transition
model as opposed to modeling the probability of infection as a
function of the number and degree of infected animals in the
herd. Also, their model explicitly considered a range of hygiene

levels across herds, whereas in this model, variations in herd
hygiene are instead implicitly captured using a range of possible
disease progression rates and MAP-specific input variables. The
upward trend observed in the testing and culling scenarios was
also accentuated by the 10-year horizon of the simulations;
at test sensitivity levels in the 50–70% range, testing, and
culling did not lower infection pressure within the herd quickly
enough to overcome the disease progression of false-negative,
subclinically infected, and non-shedding animals to stages of
infection characterized by moderate and heavy shedding. As
infections in those strata progressed, infection pressure within
the herd, and therefore within-herd prevalence, began to rise
again. If testing and culling were continued, with each passing 5-
or 10-year horizon these oscillations would lessen in amplitude
and an overall downward trend would be observed. However,
from an economic and epidemiologic modeling perspective, it
is unrealistic to assume that herd compositions, management
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FIGURE 5 | Estimates of final 10-year within-herd prevalence across a range of protective immunities and shedding reductions given an initial within-herd

Mycobacterium avium subsp. paratuberculosis (MAP) infection prevalence of 0.10.

FIGURE 6 | Estimates of within-herd Mycobacterium avium subsp. paratuberculosis (MAP) infection prevalence over time for testing and culling across a range of test

sensitivities.
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FIGURE 7 | Sensitivity of 10-year proportional changes in within-herd Mycobacterium avium subsp. paratuberculosis (MAP) infection prevalence due to various JD

(paratuberculosis) vaccine types to a range of input variables. Assumes initial mean values of 10% for within-herd MAP infection prevalence, 50% for herd-level

prevalence, and 50% for vaccine efficacies. The color of the sensitivity bars indicates the direction of the relationship between the variable and 10-year proportional

change in within-herd prevalence (grey indicates the effect of variable values below their mean value, white indicates the effect of values above their mean, and black

indicates that the effect is unclear).

techniques, testing procedures, and evenmarket structures would
remain unchanged for more than 10 years. Therefore, the time
horizon of the model was not extended.

Control variable values such as vaccine efficacy and testing
sensitivity were clearly impactful on the effectiveness (ability
to reduce within-herd prevalence within a 10-year period),
economic impact (the ratio of benefits to costs per cow accrued
as a result of implementation), and break-even period (years
for cumulative benefits to equal cumulative costs). The results
suggest that the effectiveness of the dual-effect vaccine was
primarily driven by the protective immunity effect of the vaccine
as opposed to the shedding reduction effect. At higher ranges
of protective immunity, the reduced-shedding effect of the dual-
effect vaccine ceased to have impact on the final MAP prevalence;
at levels >80% protective immunity, reduced shedding among
MAP-positive animals actually had the reverse effect, resulting
in a final prevalence greater than the final prevalence that would
have been achieved using a single-effect protective immunity

vaccine. In the model, disease progression is related to the
degree and number of shedding animals in the herd. Therefore, a
reduction in shedding among MAP-infected animals resulted in
less severe but more prolonged subclinical infections; these non-
shedding, subclinically infected animals remained in the herd
rather than developing clinical signs of JD and being culled.
Once again, if the horizon of the model were extended by five
or 10 periods, this result would likely not be observed as the
remaining subclinically infected animals would eventually exit
the herd. However, for reasons already described, the model was
not extended past its 10-year horizon.

Through the Monte Carlo sensitivity analyses, the degree of
bacterial shedding among lightly shedding animals was identified
as an impact variable, highlighting the need for further research
into this area. Also impactful were the farm-gate price of milk
and annual production per cow due to their positive relationships
with production, and therefore forgone production losses due
to MAP infection. For the selection of major dairy-producing
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FIGURE 8 | Sensitivity of 10-year proportional changes in within-herd Mycobacterium avium subsp. paratuberculosis (MAP) infection prevalence due to various JD

(paratuberculosis) practices involving testing and culling to a range of input variables. Assumes initial mean values of 10% for within-herd MAP infection prevalence,

50% for herd-level prevalence, 50% for vaccine efficacies, and 50% for testing sensitivities. The color of the sensitivity bars indicates the direction of the relationship

between the variable and 10-year proportional change in within-herd prevalence (grey indicates the effect of variable values below their mean value, white indicates

the effect of values above their mean, and black indicates that the effect is unclear).

regions that were modeled, production benefits were measured
as potential increases in milk sales. Dual-effect vaccines were
among the most successful control practices in terms of their
reduction in within-herd prevalence and were economically
viable with BCRs greater than one in all countries except Poland,

Brazil, China, Russia, and Turkey. These countries are five of
the seven countries with the lowest annual milk production per
cow that were modeled, along with Ireland and New Zealand.
However, Ireland and New Zealand have significantly greater
aggregated salvage prices and replacement costs than the other
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FIGURE 9 | Sensitivity of 10-year benefit-cost ratios (BCRs) associated with various JD (paratuberculosis) vaccine types in average Canadian dairy herds to a range of

input variables. Assumes initial mean values of 10% for within-herd Mycobacterium avium subsp. paratuberculosis (MAP) infection prevalence, 50% for herd-level

prevalence, and 50% for vaccine efficacies. The color of the sensitivity bars indicates the direction of the relationship between the variable and 10-year BCR (grey

indicates the effect of variable values below their mean value, white indicates the effect of values above their mean, and black indicates that the effect is unclear).

five countries. The combination of relatively low costs and low
annual production resulted in lower economic losses due to JD,
and therefore less economic benefits from controlling JD in those
five countries.

Two interesting patterns emerged across a range of control
variable values (test sensitivity, shedding reduction, and
protective immunity), both related to testing and culling. Firstly,
testing and culling and testing and culling combined with a
protective immunity vaccine were the only control scenarios
where estimated annual costs per cow increased as the control
variable values increased. In the vaccine scenarios without
testing and culling, as within-herd MAP prevalence decreased
with more effective controls, the culling rate also decreased as
overall herd health improved. Because the vaccine was only
administered to natural and purchased replacements after the
initial time 0 whole-herd vaccination, costs per cow decreased
over time as there were relatively fewer replacements requiring

vaccination in each period. However, with testing and culling,
this effect was outweighed by the fact that a more sensitive
test detected more positive animals, which then needed to be
culled and replaced at a relatively high cost. While testing and
culling was effective at reducing within-herd prevalence relative
to its initial value at test sensitivities >70%, this effectiveness
depended entirely on aggressive culling of test-positive animals
which may be impractical in a real-world setting, particularly
in moderate and high prevalence herds. Similarly, in their
simulations, Groenendaal et al. (32) found that while a test
with 80% sensitivity in all infected animals was effective at
reducing within-herd prevalence, the strategy was economically
unviable because of the high culling rate of test-positive animals,
particularly young ones, required to achieve that reduction
in prevalence. Unless the costs of replacing test-positive and
subsequently culled animals can be reduced for producers, this
model also suggests that the benefits of testing and culling may
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FIGURE 10 | Sensitivity of 10-year benefit-cost ratios (BCRs) associated with various JD (paratuberculosis) control practices involving testing and culling in average

Canadian dairy herds to a range of input variables. Assumes initial mean values of 10% for within-herd Mycobacterium avium subsp. paratuberculosis (MAP) infection

prevalence, 50% for herd-level prevalence, 50% for vaccine efficacies, and 50% for testing sensitivities. The color of the sensitivity bars indicates the direction of the

relationship between the variable and 10-year BCR (grey indicates the effect of variable values below their mean value, white indicates the effect of values above their

mean, and black indicates that the effect is unclear).

not equal or exceed the costs, even if new, more sensitive and
specific tests are developed. However, it is important to note
that the simulated testing protocol remained static throughout
the 10-year horizon; a desirable real-world testing and culling
program would not only need to reduce replacement costs, but

also reduce testing costs by using a dynamic testing strategy
(e.g., environmental testing instead of pooled and individual
testing once within-herd prevalence is reduced to a certain level).
For herds with low initial within-herd prevalence, a dynamic
testing strategy alone could reduce costs to the point where
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testing and culling becomes economically viable, particularly
in closed herd scenarios where all replacements come from
within the herd. If more sensitive tests were also developed,
these low prevalence closed herds could become reliable and
certifiable sources of MAP-negative replacements for higher
prevalence open herds seeking to reduce within-herd MAP
prevalence or low prevalence herds seeking to rapidly expand,
with these replacements potentially being sold at an economic
premium. The second interesting pattern that emerged related
to testing and culling was that when combined with a vaccine
that reduced shedding and when combined with a dual-effect
vaccine, benefits per cow decreased as the control variable
values (vaccine efficacy and test sensitivity) increased from 70
to 90%. Because a fecal PCR test was modeled, the test could
only detect animals in shedding states of infection. Therefore,
as the shedding-reducing effects of the vaccine were increased,
the number of animals detectable by fecal PCR testing was
reduced, and the prevalence-reducing effects of improved testing
sensitivity were partially offset. Because of this reduced ability
to detect positive animals, the replacement costs associated with
testing and culling also decreased. When these decreased costs
were combined with the overall improvement in herd health due
to vaccination and less aggressive testing and culling, the total
costs per cow decreased at a greater rate than did benefits; the
BCRs still increased with the control variable values despite the
combination of vaccine-induced shedding reduction and fecal
PCR testing being relatively inefficient.

While the general method described is appropriate for
most dairy industries, the Canadian industry requires special
attention. Canada’s dairy sector operates with planned and
controlled production levels, administered cost-of-production-
based pricing, and import controls. There are two consequences
relevant to this model: (i) production losses, a significant
contributor to the benefits of JD control, can no longer be
measured as forgone milk sales due to the production quota
system; and (ii) Canada’s above-average farm-gate price, which
is the highest among countries modeled and much higher
than the farm-gate price in the United States, Canada’s most
comparable counterpart. Apart from a higher level of annual
output in the United States, both countries have similar dairy
sector characteristics in terms of genetics, marketing, consumer
preferences, and annual production per cow, and assuming the
same within-herd and herd-level MAP prevalence across the two
countries, there should be similar per-cow benefits and costs
associated with controlling JD. However, the above average farm-
gate price in Canada results in a greater valuation of production
losses and therefore benefits from JD control in Canada. While
these differences are attributable in part to differing technical
and allocative efficiencies across US and Canadian dairy sectors,
which are not addressed by this study, the effects of the differing
market structures are addressed; to reflect the constraint of
fixed production, production losses were also estimated as the
cost of having additional, less productive MAP-positive cows
to maintain a fixed level of production. Once adjusted, the
estimated BCRs of all control practices in Canada dropped and
their break-even periods increased. For example, the Canadian
revenue-weighted average BCR for dual-effect vaccination at 50%
efficacy decreased from 2.13 to 1.48 when production levels were

treated as fixed. While this is more in line with the BCR of 1.66
in average US herds for the same type of vaccination, this may
be an overcorrection. Although overall production and farm-
gate prices in Canada are predetermined and producers are not
paid for production that exceeds their quota-based targets, the
overall level of production generally increases year-over-year
(33) and producers trade quota through an exchange market;
essentially, more technically efficient producers purchase quota
from less technically efficient ones to increase the size of their
operations. Evidence of this competition is clear: the number
of dairy farms in Canada has steadily decreased over the last
several decades while the size of herds has increased (34). In
other words, Canadian producers operate in an environment
between fixed production and pure competition. Therefore, the
true BCRs of the various potential JD control practices for
Canadian dairy herds likely lie between the fixed production and
variable production estimates.

Finally, it is also important to recognize the limitations
of this study. The net costs associated with a higher culling
rate may be overestimated in this model. Because only the
economic impacts of culling due to MAP-infection were
considered, this model ignores the potential benefits associated
with having a greater proportion of younger animals in the herd.
For example, age-related conditions such as reduced fertility,
mastitis, and lameness are all potential sources of economic
losses that could be partially offset as a direct result of an
increased cow-culling rate. Also, the production benefits due
to an increased conception rate resulting from JD control
were not explicitly estimated. Instead, these benefits were
only implicitly considered through the variations around the
mean milk yield reduction estimated by McAloon et al. (8).
Lastly, it is also important to note that production systems,
grazing periods, cattle breeds, etc. were assumed to be uniform
across herds within regions at the mean level. However,
variations in these production factors were implicitly captured
through variations around the mean values used in the 10,000
iteration simulations.

CONCLUSIONS

Vaccination was the most economically viable type of JD
control practice modeled, with dual-effect vaccines (reducing
shedding and providing protective immunity) being the most
promising. Even with modest 50% reductions in shedding and
50% protective immunity conferred by vaccination, BCRs for this
type of vaccine were between 2.13 and 1.48 in Canada, with a
break-even period of between 6.17 and 7.61 years. At this same
level of efficacy, dual-effect vaccines were also estimated to be
desirable with BCRs greater than one in almost all major-dairy
producing regions, with a revenue-weighted average BCR of 1.24
and a revenue-weighted average break-even period of 7.88 years.
Testing and culling was comparably effective to a dual-effect
vaccine at test sensitivities>70% but would remain economically
unviable in almost all regions modeled, even at levels of testing
sensitivity above 70%. The results suggest that the main barrier
to testing and culling programs for JD is the impractical
nature of the aggressive culling that would have to accompany
highly sensitive tests. Without a reduction in the replacement
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cost of culled animals, vaccination, particularly dual-effect
vaccination, is the most promising potential JD control practice
for dairy producers. This research is an important contribution
to the policy discussion surrounding paratuberculosis control in
Canada and internationally.
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