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Assessing the Impact of Agricultural Intensification on Water Pollution: An Integrated 

Model Assessment of the San Salvador Basin in Uruguay 

 

 

ABSTRACT 

This research integrates for the first time in a South American basin, the San Salvador 

basin located in Uruguay, a biophysical model which simulates water quality and crop 

yields with an economic model to measure the economic benefits of agricultural 

intensification and well as the tradeoff between economic benefits and water quality 

in the period between the years 2000 and 2019. More specifically, using two different 

agricultural rotations we study the economic and environmental impact of agricultural 

intensification through nine (3x3) different scenarios in terms of irrigated area 

(rotation 1, rotation 2 or both) and fertilization (low, base, high) relative to a baseline 

scenario where production is held under rainfed agriculture.  Following Rosas et al. 

(2017), we quantify economic benefits of the simulated yields by computing the 

certainty equivalent of the proposed scenarios. On the other hand, we measure the 

tradeoff between economic benefits and environmental variables in each scenario by 

computing the ratio between the variation of the certainty equivalent and the 

variation in the simulated phosphorus and nitrates concentration. Economic results 

indicate that irrigation could improve yearly economic benefits for a risk-neutral 

planner up to 73 additional dollars per hectare while a very risk averse planner could 

value those benefits in 189 dollars per hectare due to a reduction in the risk premium 

cause by less volatile yields. In contrast, water quality would suffer an increase of 7.06 

and 4.84 percentage points for phosphorus and nitrates respectively.  
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1. Introduction 

According to the United Nations Development Program, the quantity and quality of water 

resources are key to achieve many of the millennium development goals.  Both water 

quantity and quality are being increasingly threatened in Uruguay by the 

intensification of agricultural production, endangering the sustainable development of 

the agricultural sector and urban areas (MVOTMA, 2018). Therefore, the generation of 

relevant information for the design and monitoring of water and agricultural policies is 

required to sustainably manage the resource. 

The sustainable availability of quantity and quality of water interacts in complex ways 

with economic decisions made by economic agents. In this line, it both affects and is 

affected by their choices. These decisions have effects on the functioning of 

ecosystems and ecosystem services, while the later affect the choices available to 

individuals. Thus, an analysis of these interactions and feedbacks requires a 

combination of model frameworks which simultaneously consider economic and 

biophysical elements. The assessment of these phenomena has been typically carried 

out independently through different types of models, which may be roughly grouped 

into economic models on one side, and biophysical models on the other (Plantinga, 

2015; Kling et al, 2017). Economic models can assess changes in land use and practices 

when other (endogenous) economic variables change, but taking biophysical variables 

as given (exogenous). Biophysical models, on the other hand, assess changes in 

(endogenous) biophysical variables by considering the economic factors that drive land 

use as exogenous. More recently, however, and under the recognition of the necessity 

of capturing the interactions and feedbacks of the different components of the 

socioecological systems, there has been a strong interest and progress towards the 

development and use of integrated assessment models (IAMs), which make more 

holistic assessments and help to avoid unintended consequences.  

IAMs encompass three different and interconnected systems that link human 

decisions, modeled by economic models, with biophysical processes, modeled by 

biophysical models. Firstly, decision systems determine outcomes such as agricultural 

land use, management practices or environmental policies. Decisions from the first 

system influence a second system defined by biophysical processes, which encompass 

natural variables related with water quality, soil health, crop production or climate. 

Lastly, natural outputs determine value systems that determine the market value of 

different goods as well as the nonmarket valuation of ecological services. Decisions 

taken at the first system depend on value systems (Kling et al., 2017). These models 

could have different complexity levels according to different assumptions regarding 

spatial and temporal interdependence in biophysical and economic variables, which 

make more challenging to find optimal solutions of land allocation or environmental 

practices. 

https://www.undp.org/content/undp/en/home/sustainable-development-goals.html


In the IAMs literature, the relationship between practices of to agricultural 

intensification, economic benefits and water quality has been analyzed in two different 

ways. A first group, explore a large set of combination of agricultural practices in order 

to find those that are optimal (i.e., Rabotyagov et al., 2010; Rabotyagov et al., 2014; 

Pastori et al., 2017). The second reduce the analysis to a comparison between a set of 

proposed scenarios (Lee et al., 2012; Corona et al., 2019; Liu et al., 2019; Griffin et al., 

2019; Lupi et al., 2019, etc.), which helps to find near-exact solutions for these 

problems, since it assesses a large number of possible policy combinations. It can be 

convenient, however, when we aim at comparing a limited number of policies due to 

different reasons, such as policy or computational feasibility.  

This study applies an IAM which integrates results from the Soil and Water Assessment 

Model (SWAT) with an economic model based on expected utility theory, to evaluate 

agriculture intensification scenarios of irrigation and fertilization practices in the San 

Salvador River basin in Uruguay. Results of economic benefits and water quality are 

benchmarked against a baseline scenario with no irrigation.   

 

 

 

2. The Model 

 

2.1 Model Setting 

The problem is framed from the perspective of benevolent catchment manager, who’s 

objective is to choose among different agricultural practices by aggregating and 

assessing their economic and environmental effects in each production unit 

considered.  Economic results in each unit are measured and ranked by applying the 

expected utility theory, which compares and aggregates welfare through a utility 

function U(πi) whose only input is the profits of the i-th unit. 

In each production unit, per-hectare profits are computed as revenues minus costs of 

the crops (activities) in unit I (equation 1). Revenues (equation 2) are the product of 

crop j yield (measured in tons per hectare) and price (in dollars per ton) aggregated 

over the crops in unit i. Costs are the sum over the J crops in unit i, of a fixed quantity 

Cij encompassing all input costs other than fertilizer and irrigation, plus the fertilizer 

level times its price and the applied water times its price (equation 3).   

 𝜋𝑖 = 𝑅𝑒𝑣𝑒𝑛𝑢𝑒𝑖 − 𝐶𝑜𝑠𝑡𝑠𝑖  (1) 
 



 𝑅𝑒𝑣𝑒𝑛𝑢𝑒𝑖 = ∑ 𝑌𝑖𝑒𝑙𝑑𝑖𝑗 × 𝑃𝑟𝑖𝑐𝑒𝑗

𝐽

𝑗=1

 (2) 

  
 
 

 𝐶𝑜𝑠𝑡𝑠𝑖 = ∑ 𝐶𝑖𝑗 + 𝑃𝑟𝑖𝑐𝑒𝐹𝑒𝑟𝑡 × 𝐹𝑒𝑟𝑡𝑖𝑗 + 𝑃𝑟𝑖𝑐𝑒𝑊𝑎𝑡𝑒𝑟 × 𝑊𝑎𝑡𝑒𝑟𝑖𝑗   

𝐽

𝑗=1

 (3) 

 

Profits are uncertain since they are affected by random variables in the revenue 

equation (crop yield) and in the cost equation (quantity of water needed for irrigation). 

In our model, these variables depend on irrigation and fertilization practices as well as 

on climate conditions. We assume that prices of both inputs and outputs are 

exogenous. The uncertainty of profits can be interpreted as a problem where the 

catchment manager faces a lottery on the benefits of each unit of production.  

In expected utility theory, the price at which the catchment manager is willing to sell 

this lottery in each unit of production i can be operationalized by using the concept of 

certainty equivalent (equation 4), which equals the lottery expected profits (E(πi)) 

minus the risk premium (RP). This premium represents how much money an agent is 

willing to pay to avoid the lottery risk.  Hence, a higher certainty equivalent can arise 

as a result of higher expected profits or lower risk premium1.  This certainty equivalent 

is applied over a continuous, concave, and monotone utility function of profits whose 

first and second derivatives can be used to get the absolute risk aversion level of the 

catchment manager (equation 5). Assuming risk exposure is a crucial component in the 

model since it has observed implications in the farmers’ decisions (Apland et al., 1980, 

Pandey, 1980; Chavas and Shi, 2015).  

 𝑈(𝐶𝐸𝑖) = 𝐸(𝑈(𝜋𝑖)) → 𝐶𝐸𝑖 = 𝑈−1 (𝐸(𝑈(𝜋𝑖))) = 𝐸(𝜋𝑖) − 𝑅𝑃 (4) 

 

 
𝑈′′(𝜋𝑖)

𝑈′(𝜋𝑖)
= 𝛼 (5) 

 

In equation 6, for each unit i and outcome t, we assume that the utility of the lottery 

can be represented with an exponential utility function. Under this assumption, the 

certainty equivalent can be derived as in equation 7. 

 𝑈(𝜋𝑖) = − ∑ 𝑒−𝛼𝜋𝑖𝑡

𝑇

𝑡=1

 (6) 

 
1 The risk premium is defined as the maximum amount of money that a risk averse agent is willing to pay 
to avoid the lottery.  



 

 𝐶𝐸𝑖 = 𝑙𝑜𝑔 [(𝑛−1 ∑ 𝑒−𝛼𝜋𝑖𝑡

𝑇

𝑡=1

)

−1
𝛼⁄

] (7) 

 

Finally, in equation (8), the catchment manager decides on the economic convenience 

of each scenario by computing the sum of these certainty equivalents weighted by the 

size of each production unit i (hasi). 

 𝐶𝐸 =
∑ 𝐶𝐸𝑖 × ℎ𝑎𝑠𝑖

𝐼
𝑖

∑ ℎ𝑎𝑠𝑖
𝐼
𝑖

 (8) 

 

 

To assess the environmental impact on water quality of each scenario, simulated 

phosphorus (P) and nitrates (NO3) daily concentration levels are computed as in 

equation (9) and compared to the environmental threshold (TP and TN) defined by the 

national environmental regulator. If P or NO3 levels are higher than this threshold, the 

indicator variables INO3 and IP take the value of 1, and 0 otherwise. Thus, by adding 

up the indicator variables and dividing by the number of simulated days (T), as in 

equation (10), we get the proportion of time in which environmental regulations are 

violated (i.e., the threshold is exceeded).  

 

𝐼𝑃𝑡 = {
1 𝑖𝑓 𝑃𝑡 < 𝑇𝑃𝑡

0 𝑖𝑓 𝑃𝑡 ≥ 𝑇𝑃𝑡
 

 

𝐼𝑁𝑂3𝑡 = {
1 𝑖𝑓 𝑁𝑡 < 𝑇𝑁𝑡

0 𝑖𝑓 𝑁𝑡 ≥ 𝑇𝑁𝑡
 

(9) 

 

 

𝑃𝑟𝑜𝑝𝑃 =
∑ 𝐼𝑃𝑡

𝑇
𝑡=1

𝑇
 

 

𝑃𝑟𝑜𝑝𝑁𝑂3 =
∑ 𝐼𝑁𝑂3𝑡

𝑇
𝑡=1

𝑇
 

 

(10) 

 

Finally, as shown in equations (11) and (12), the tradeoffs between economic benefits 

and water pollution are assessed by computing four different indices. Equation (11) 

relates the change of the aggregated certainty equivalent relative to the baseline 

scenario of no irrigation, to the change in the mean concentration of P and NO3. 



Equation (12) relates the same variation in aggregated certainty equivalent to the 

change in the median concentration levels of P and NO3. 

 

𝜁 =
∆𝐶𝐸

∆𝑃𝑚𝑒𝑎𝑛
 

 

𝜂 =
∆𝐶𝐸

∆𝑁𝑂3𝑚𝑒𝑎𝑛
 

 

(11) 

 

 

𝜅 =
∆𝐶𝐸

∆𝑃𝑚𝑒𝑑𝑖𝑎𝑛
 

 

𝜆 =
∆𝐶𝐸

∆𝑁𝑂3𝑚𝑒𝑑𝑖𝑎𝑛
 

 

(12) 

Hence, using equations (11) and (12), we measure by how much economic benefits 

(CE) change when P or NO3 mean or median concentration deteriorate in 1 percentage 

point. We choose to report these cost-effectiveness ratios with respect to both the 

mean and median, in order to account for nutrient concentration variability and 

especially the presence of extreme values caused by daily extreme nutrient 

concentrations caused by low precipitation levels, low stream flown, and high nutrient 

export levels to the basin. 

 

 

2.2 Model Data and Calibration 

The SWAT biophysical models a river basin scale model, based on Geographic 
Information Systems (GIS) input data (Neitsch et al., 2015). It simulates biophysical 
processes (like plant growth, evapotranspiration, leaching, etc.) on sub-basin units, 
which are named as “Hydrological Response Units” (HRU).  Each HRU is unique and 
homogeneous in terms of land use, soil and slope. The model reports water quality 
results for a number of spatially distributed modeled streams in the basin. This model 
has been widely used to analyze the impact on water pollution caused by land use and 
management practices (Gassman et al., 2007).  In recent years, Uruguayan authorities 
and researchers have made significant efforts in order to implement this model in a 
number of relevant basins (Mer et al., 2020).  

Our economic model includes not only purely economic variables, such as prices and 
costs, but also biophysical variables such as yields as well as phosphorus and nitrates 
concentrations in the catchment. The latter variables are obtained from a calibrated 
SWAT model (SWAT+ version), which simulates their output for a given land use and 
set of practices. This enables us to integrate purely biophysical processes into our 
economic assessment.  



More specifically, in equations (1)-(2) we input crop yield, fertilizer quantities, and 
irrigated water variables from the SWAT model to, conditional on output prices and 
production costs, evaluate and rank a set of agricultural practices scenarios in the river 
basin. We use a weighted average of the certainty equivalent, as seen in equation (8), 
to conduct the evaluation.  

Furthermore, nutrient concentrations and environmental standard compliance 
(equation 10) are assessed by using the SWAT model NO3 and P simulated 
concentrations at the basin’s outlet. These values are also used to calculate the cost 
effectiveness ratios in equations (11) and (12). 

We obtain economic data (see Annex) from different sources. Crop prices come from 
the Camara Mercantil de Productos del País, a chamber of agricultural exporters, 
which reports prices (dollars per ton) for all the simulated crops. Prices are adjusted by 
an estimated transportation fee of 10 dollars per ton to reach the relevant markets. 
Input-cost information were collected from different sources. Crop-specific production 
costs (Cij) were collected from a private firm that operates within the basin whereas 
irrigation water cost was assumed to be 0.65 dollars per millimeter (dollars per mm) 
based on expert judgment from the Instituto Nacional de Investigación Agropecuaria 
(INIA).    

Finally, the negative exponential utility function is calibrated at six uniformly 
distributed absolute risk aversion parameters within the range of 0 to 0.035 in order to 
quantify economic profits at different levels of risk aversion, consistent with reported 
parameters in the literature (Hardaker et al., 2004a; Hardaker et al., 2004b; Babcock et 
al., 1993).  

 

 

3. Study Area and Proposed Scenarios 

The San Salvador River basin belongs to a prominent agricultural area in the southwest 

region of Uruguay. It accounts for only 1.4% of the country area (about 240,000 

hectares) but produces 21% of the wheat, 17% of the corn, 9% of the soybean and 14% 

of the sorghum of the country (Sigmaplus, 2017). While it presents high inter-annual 

rainfall volatility, the majority of the area is under rain-fed crop production. 

Supplemented irrigation of crops is an attractive technology for farmers in the basin, 

since it can potentially increase crop yields and simultaneously reduce yield volatility 

(Failde et al., 2013; Rosas et al., 2014; Rosas et al., 2017; Sigmaplus, 2017; Montoya et 

al., 2017; Montoya et al., 2019). However, intensification of crop production is a 

problem of increasing concern in the basin because it increases the pressure on water 

resources (Baker, 2003). More specifically, in recent years (2014-2019), environmental 

authorities have found that nitrogen concentration at the basin outlet is higher than 

the recommended level (1 mg/L) while phosphorus concentration at some monitoring 

stations within the basin are also above the regulation’s threshold value (0.025 mg/L). 



Since water pollution in this basin is mainly explained by nonpoint sources (MVOTMA, 

2020), encompassing more than 90% of nitrates and phosphorus discharges, modeling 

fertilization, irrigation and other crop practices are key to understand and reduce 

nutrient discharges. 

We propose to evaluate the economic and environmental impact of different irrigation 

and fertilization scenarios relative to a baseline rainfed scenario. Nine (3x3) scenarios 

are constructed by means of three irrigation levels and three fertilization levels.  

Six of the most frequent crop rotations in the basin were used to model land use in the 

SWAT biophysical model (see Table 1). Only in rotations 1 and 6 the use of irrigation is 

considered to be technically feasible. Rotations encompass main crops (such as corn, 

soybean, wheat or barley) and cover crops (oats), whose main role is to maintain the 

quality of the soils by avoiding soil erosion and the consequent loss of nutrients. 

 

 

Table 1: San Salvador Basin Rotations2 

 

The application of irrigation on each HRU was simulated using an automatic routine of 

the SWAT model, which applies water to the plants when a given water stress 

threshold is reached. Water stress in an HRU is measured by an index that relates 

evapotranspiration (ET) with potential evapotranspiration (PET) as shown in equation 

(13). In this equation, 1 represents the maximum water stress level 

(evapotranspiration is equal to its potential) while 0 means there is no deficit. Aligned 

with the literature as well as technical recommendation from the modelers, the 

threshold was set to 0.8, meaning that at least 80% of the water demand is ensured 

(Montoya et al, 2017; Montoya and Otero, 2019).  This unlimited water source 

simulation routing gives us an opportunity to estimate the potential benefits of 

irrigation in the basin. 

 

 𝑆𝑡𝑟𝑒𝑠𝑠 = 1 −
𝐸𝑇

𝑃𝐸𝑇
 (13) 

 
2 For each year, the first crop is set according to its planting date. See Annex 7.1 for more detail on crop 
operation dates. 

Rotation

Rotation 1 Oats Corn Oats Soybean

Rotation 2 Oats Soybean Oats Soybean Oats Corn

Rotation 3 Pasture Soybean Oats Soybean

Rotation 4 Wheat Soybean 2 Oats Soybean

Rotation 5 Barley Soybean 2 Wheat Soybean 2

Rotation 6 Wheat Soybean 2 Oats Corn Oats Soybean

Year 1 Year 2 Year 3



 

 

Additionally, fertilization practices in irrigated farms were simulated at three different 

levels: high, medium and low, where the medium level is consistent with actual 

practices in irrigated fields. Fertilization practices include the application of urea, 

diammonium phosphate and urea 46-00-003. Application rates in rainfed crops are 

200, 150 and 46 kg/ha respectively. Application rates are 275, 190 and 53 kg/ha in the 

medium irrigation scenario.  Then, high and low fertilization scenarios are built by 

considering 50% increments or reductions from these rates. Therefore, high 

fertilization scenarios imply rates that are, respectively, 56.3%, 40% and 22.8% higher 

than the rainfed scenario in urea, diammonium phosphate and urea 46-00-00. Rates 

are 37.5%, 26.7% and 15.2% higher in the medium scenario, while the low fertilization 

scenarios assume rates 18.8%, 13.3% and 7.6% higher, respectively.   

Finally, as seen in Table 2, by combining irrigation and fertilization practices for the two 

considered irrigated rotations, we get the nine irrigation scenarios plus the baseline 

scenario of rainfed crop practices. When both rotations are irrigated, 25% of the basin 

area is covered by irrigated crops, while that percentage is only 18.9% and 6.3% when 

irrigation is applied to rotation 1 and 6, respectively. These scenarios aim at exploring 

the effect of agricultural intensification on economic benefits and water quality by 

increasing the irrigated area and fertilizer application rates. 

 

 

Table 2: Irrigation and Fertilization Scenarios 

5. Results 

 
3 The difference between standard urea and urea 46-00-00 is that standard urea contains N and NH3 
while urea 46-00-00 only contains N. 

Scenario
Irrigated 

Rotations
Fertilization

Irrigated Area 

(%)

1 1 and 6 High 25.30%

2 1 and 6 Medium 25.30%

3 1 and 6 Low 25.30%

4 1 High 18.90%

5 1 Medium 18.90%

6 1 Low 18.90%

7 6 High 6.30%

8 6 Medium 6.30%

9 6 Low 6.30%

10 None Rainfed 0%



This section presents the model results, which can be decomposed in three different 

parts: economic results (5.1), environmental or water quality results (5.2) and cost-

effectiveness analysis (5.3).  

5.1. Economic Results 

Simulated Profits. Table 3 presents the results in the treated area, which covers 

rotations 1 and 6, for each of the proposed scenarios. It shows mean yearly net profits 

per hectare (dollars per ha) and their percentage change relative to the rainfed 

scenario. Results show that irrigation increases mean yearly net profits per hectare in 

the period 2000-2019. Profits are higher when the increase in fertilization with respect 

to the rainfed scenario is low, as marginal fertilization costs in medium and high 

fertilization scenarios exceed the marginal revenue generated by yield improvements.   

In the rainfed crop scenario, yearly net mean profits reach 257 dollars per ha. Applying 

irrigation to rotation 6, which comprises approximately 25% of the total treated area 

(6.3% of the basin area) increase the net mean profits by up to 6.3% under a low 

fertilization level. When irrigation is applied to rotation 1, which comprises 75% of the 

total treated area, the net mean profit increases up to 22.3%. This figure is expected as 

the area treated under rotation 1 is approximately three times that of rotation 6. 

Lastly, when irrigation is applied in both rotations (25.3% of the basin area), net mean 

profits increase by 28% relative to the baseline.   

 

Table 3: Simulation Results of Mean Net Annual Profits (dollars per ha) 

The difference between mean annual profits under rainfed crops and irrigated can be 

also observed in Figure 1, which depicts simulated profits per year for the whole basin 

for the period (2000-2019).  Additionally, it can be seen that scenarios with full 

irrigation coverage (1, 2 and 3) achieve better results than those with partial coverage 

(4, 5, 6, 7, 8 and 9). Dry years, such as 2001, 2009 or 2012 explain much of this 

difference between profits (see precipitations in annex). This is an expected result, as 

irrigation reduces water stress suffered by the plants in drier years, preventing 

significant yield losses.  



 

Figure 1: Mean Profit per Hectare per Scenario (2000-2019). 

 

Figure 2 also displays the evolution of annual profits per hectare for each rotation and 

scenario. For rotation 1, irrigation is applied under scenarios 1 to 6 whereas scenarios 

7 to 10 imply no irrigation. Rotation 6 is treated with irrigation in scenarios 1 to 3 as 

well as 7 to 9. Although not identical, these two groups (irrigation or rainfed scenarios) 

mean profits remain similar for a given rotation, making it difficult to distinguish their 

respective time series plotted in Figure 2. Within each group, profit differences can be 

explained by fertilization levels as well as externalities from the hrus in the remaining 

rotation4. Conversely, while relative results among scenarios remain similar to those of 

Figure 1, there are some differences between results per rotation. Rotation 1 has a 

lower year-to-year variation than rotation 6 since it has a different crop mix and 

length. In particular, higher profits in rotation 1 can be explained by the higher 

frequency of the two main crops (corn and soybean) in a given year.  

 

 
 



 

Figure 2: Mean Profit per Hectare per Scenario and Rotation (2000-2019). 

           

Figure 3 shows profit dispersion across HRU’s per year, and per scenario. Similar to 

Figure 1, there are salient differences between irrigation and rainfed profits in dry years 

2001, 2009 and 2012. Rainfed production units tend to suffer more those years, since a 

large number of them experience losses. On the other hand, although the large 

majority of the production units achieve higher profits with irrigation, a small number5 

of them experience significant losses. Those losses are explained by increasing variable 

costs from irrigated water which are not compensated by yields improvements during 

dry years. Therefore, although irrigation remains convenient for a large portion of 

production units, not all of them are responsive to irrigation. Large irrigation costs in 

these units explain the presence of significant losses of more than 500 dollars in dry 

years. On the other hand, in spite of experiencing lower median profits, due to the 

absence of irrigation costs, losses of rainfed production units remain limited in dry 

years.   

 

 
5 For example, in scenario one, approximately 7% of units experience losses. 



 

Figure 3: Profit per Hectare Dispersion (for each HRU) by Year and Scenario. 

     

Simulated Certainty Equivalent. Previous results about mean profits per hectare for the 

whole simulated period, showed in Table 3, are the particular case where the mean 

certainty equivalent of equation (8) is calibrated for a risk-neutral agent (ARA 

parameter equal to zero). In this case, the basin central planner would value a 

certainty equivalent equal to the expected value of the profits. However, as risk 

aversion increases, it is important to account for and quantify changes in economic 

benefits of irrigation and fertilization practices, and how do they change for different 

levels of risk aversion.   

Certainty equivalent results, calculated according to parameters of risk aversion 

reported in section 2.2 are displayed in Table 4Table 4. Values range from negative to 

positive figures. The worst case implies an extremely risk averse basin planner (ARA 

equal to 0.035) in the rainfed crop scenario, which would pay 74 dollars per hectare to 

sell the lottery. On the other end is a moderately risk averse planner (ARA equal to 

0.007) in scenario 3 (both rotations are irrigated with low increases in fertilizer 

application) who would only sell his lottery for 242 dollars per hectare. 

As expected, certainty equivalent values decrease with higher levels of risk aversion. 

As stated in equation (4), this reflects the fact that risk averse individuals would pay 

higher risk premiums to get rid of the lottery. On the other hand, at the same level of 

risk aversion, scenarios with irrigation on both rotations reduce significantly the risk 

premium as certainty equivalent values increase with respect to rainfed certainty 



equivalent. The magnitude of this difference grows as the individual becomes more 

risk averse.  Particularly, when the ARA parameter equals 0.021, 0.028 or 0.035, the 

rainfed agriculture scenario has a negative certainty equivalent which becomes 

positive in scenarios (1, 2, 3, 4, 5 and 6) where irrigation is applied to the majority of 

the area. Hence, even when considering extreme risk averse basin planners, 

production would be possible in most of the irrigation scenarios.    

Under all risk preference levels, the most preferred scenarios imply the irrigation of 

both rotations. Instead, preferred fertilization levels will depend on risk aversion 

levels. A moderately risk averse planner (ARA equal to 0.007, 0.014 and 0.021) would 

prefer practices with lower fertilization increases whereas a more risk averse planner 

(ARA equal to 0.028 and 0.035) would prefer fertilization practices based on medium 

increases. This change in preferences show how more risk averse agents value the 

effect of fertilizer on uncertainty reduction via yield stabilization. 

Conversely, on the rainfed practices scenario, certainty equivalents are only positive 

when risk aversion levels are moderate. This implies that, even when expected 

benefits under rainfed agriculture are of 257 dollars per hectare, a risk averse planner 

could decide not to produce due to high risk premiums. This risk premium is 

determined by the higher volatility of profits with respect to irrigation scenarios. 

Particularly, volatility is exacerbated in dry years where crop yields are affected by 

hydric stress.   

 

Table 4: Certainty Equivalent by Scenario and Risk Aversion Level. 

The difference between certainty equivalent values between each irrigated agriculture 

scenario and the rainfed agriculture scenario can be observed in Table 5. In the most 

extreme case, where ARA equals 0.035, the difference between the certainty 

equivalent in rainfed agriculture and the irrigated agriculture (scenario 2) is of 191 

dollars per hectare.  

Moreover, previous observations about the potential risk-reducing benefits of 

irrigation are verified in the same table. While irrigation could induce improvements 

up to 73 dollars per hectare via higher expected profits, improvements due to risk 

premium reductions could be even greater.  For example, in scenario two where 



improvements via expected profits are valued in 63 dollars per hectare, an extreme 

risk averse planner could value improvements from risk premium reduction as high as 

128 dollars per hectare (difference between total CE increase of 191 dollars per 

hectare and CE increase for a risk neutral agent of 63 dollars per hectare). Hence, in 

this scenario, economic benefits via risk premium reductions could account for 

approximately two thirds of the total benefits.  

 

Table 5: Certainty Equivalent Increase, per Scenario and Risk Aversion Level.  

Relative to Rainfed Agriculture Scenario. 

 

 

Finally, when observing certainty equivalents at the unit level for each scenario and 

risk aversion parameter (see annex), most of the results are positive. In cases where 

certainty equivalents are negative, this result is explained by recorded losses due to 

low yield, excessive irrigation or both. However, in the non-rainfed scenario an upward 

shift in the boxes with respect to the rainfed agriculture scenario is observed, which 

shows that most of the units experienced growth in their certainty equivalent values. 

The same result is clearly observed on the density functions plotted in Figure 8 and 

Figure 9 in the annex, which show a shift towards higher values.     

5.2 Environmental Results 

In Table 6, environmental results in terms of nitrate and phosphorus concentrations are 

reported for each scenario. The main indices to report water pollution are mean and 

median values nitrate and phosphorus on water as well as maximum values and the 

percentage of time (measured in days) in which the environmental threshold is 

breached.  

In the case of nitrates (NO3), in the rainfed agriculture scenario, the simulated mean 

value for the 2000-2019 period was of 3.11 mg/l while the simulated median value was 

of 1.26 mg/l. These results are in line with those reported by the Environment Ministry 



of Uruguay.6 For alternative scenarios, results indicate that nitrate concentrations will 

be higher as agricultural intensification is based on higher quantities of fertilizer 

application. In the most intensive scenario, where the increase in fertilization 

quantities is high and irrigation is applied on both rotations, the median value 

increases up to 3.58 mg/l and the median to 1.40 mg/l. As observed in Table 7, these 

variations are of 15.38% and 11.11% for nitrate mean and median concentration 

respectively.   

On the other hand, the maximum recorded values for daily nitrate concentrations in 

the same period are excessively high, with values as high as 242 mg/l in the worst case 

scenario (9). These values are mainly explained by low simulated flow in the year 2008, 

when there was a major drought in the region. Nevertheless, those maximum values 

decay slowly in the most intensive scenarios.  

The established environmental threshold for nitrate concentration was suggested by 

the Environment Ministry, which uses a value of 1 mg/l. This threshold is breached in 

most of the simulated days. In the rainfed agriculture scenario, the threshold is 

breached in 53.74% of the days. Conversely, in the most intensive use scenario this 

value grows up to 57.92%, which implies an increase rate of 7.75 with respect to 

rainfed production. 

For phosphorus, as indicated before in the model data section, the reported values are 

informative only in relative terms. This is so because the basin SWAT model is still 

being in its development phase for phosphorus loads. Therefore, we will focus our 

phosphorus results analysis on relative variations as presented in Table 7. In this table 

we observe that, in the most intensive land use scenario (1), the mean phosphorus 

concentration grows 5.81% while the median value grows 13.28%.  

 

Table 6: Nitrates (NO3) and Phosphorus (P) Concentrations at the Basin Outlet. 

 

 
6 Measurements reported in the document, for the 2014-2019 period, are of 2.4 mg/l for 
median values. https://www.gub.uy/ministerio-ambiente/comunicacion/publicaciones/ 
evolucion-calidad-agua-cuenca-del-rio-san-salvador-2014-2019 



 

Table 7: Nutrient Concentration Variations With Respect to the Rainfed Agriculture Scenario.  

Additionally, the cumulative density function for nitrates is displayed on Figure 4. As 

noted above, mean nitrate concentration values are higher than median values due to 

the presence of extreme concentrations on dry years. The red vertical line indicates 

the environmental threshold of 1 mg/l. Comparing cumulative density functions 

between scenarios, a shift towards higher concentrations is noted as agriculture 

becomes more intensive.   

 

Figure 4: Cumulative Density Function for Nitrates Concentration at the Basin Outlet. The Vertical Line indicates 
the Environmental Threshold. 

 For phosphorus concentrations, shown in ¡Error! No se encuentra el origen de la 

referencia., as concentration levels are not informative, we focus our analysis only on 

the relative variations between the cumulative density functions. In this case, we also 

note a shift from lower concentration levels, in the rainfed agriculture scenario, 

towards higher phosphorus concentrations as agriculture intensifies its practices.   



 

Figure 5: Cumulative Density Function for Phosphorus Concentration at the Basin Outlet. The Vertical Line 
indicates the Environmental Threshold. 

Lastly, Table 8 quantifies the cumulative density function shifts for each scenario with 

respect to the base rainfed agriculture scenario. In order to compare those shifts we 

normalize each scenario’s mean, computing them intro a unitary range by subtracting 

the range’s minimum value (zero) and dividing by the length of the range (maximum 

simulated concentration level minus zero). Hence, using the normalized mean 

(𝜇𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 =
𝜇−𝑀𝑖𝑛

𝑀𝑎𝑥−𝑀𝑖𝑛
) for each scenario, we measure the shift for each scenario by 

computing the difference between its mean and the base (rainfed) scenario’s mean. As 

noted in the Table, the shifts between scenarios (excepting scenarios 3 and 6) are 

greater for nitrates than for phosphorus.     

 

Table 8: Cumulative Density Function Shift With Respect to the Rainfed Agriculture Scenario. 



 

5.2 Cost-Effectiveness  

Results about equations (11) and (12) are presented on Table 9  and Table 10. These 

tables show the impact of a marginal relaxation of one percentage point of nutrient 

concentration (median value) on the annual certainty equivalent per hectare. Each 

table places scenarios on its rows and risk aversion levels on its columns. In this way, 

the value placed in each cell represents the tradeoff between a marginal relaxation in 

the nutrient level for a given scenario and risk aversion level. 

 

 

Table 9: Tradeoff Ratios Between Economic Benefits and Median Nitrates Pollution. 

 

Table 10: Tradeoff Ratios Between Economic Benefits and Median Phosphorus Pollution. 

 

As noted in the economic results section, agricultural intensification through irrigation 

and fertilization practices tend to raise yield and economic benefits for producers. At 

the same time, this phenomenon could bring higher nutrient (P and NO3) 

concentration levels as a consequence of numerous factors such as growing fertilizer 

use and its interaction with other biophysical processes such as surface runoff, 

leaching, etc.   



As presented on Table 9, the tradeoff between median nitrate concentrations and the 

certainty equivalent is greater for scenarios 6 and 3. Those scenarios imply a low 

increase of nutrient application. As a consequence of the variation on certainty 

equivalents (ratio numerator) we observe a monotone increase in the tradeoff ratio as 

risk aversion grows. Results show that, on the best scenario (3), the relaxation of one 

percentage point on median nitrate concentration could yield an increase of 10.66 

dollars per hectare in the certainty equivalent of a risk neutral planner whereas this 

amount grows to 27.49 dollars for an extreme risk averse individual (ARA equal to 

0.035).  

For phosphorus, results show that scenarios 7, 8 and 9 are those with best tradeoff 

ratios when the planner is risk averse while scenario 3 if preferred if the planner is risk 

neutral. In the case of an extremely risk averse planner, in the best scenario (8), a 

resignation of one percentage point in the median value of phosphorus could yield an 

increase of the certainty equivalent of 18.59 dollars. In the case of a risk neutral 

planner, in the best scenario (3), a resignation of one percentage point in phosphorus 

median concentration yield an increase of the certainty equivalent valued on 5.81 

dollars. The convenience of scenarios 7, 8 and 9 could be explained by the lower 

relative variation in their median phosphorus concentrations (lower denominator).   

When taking into account the central planner tradeoffs in terms of both nutrients, the 

optimal decision varies according to its risk aversion preferences as well as the 

importance placed on each nutrient concentration. In the case of a neutral risk 

planner, the best tradeoff scenario is scenario 3, which combines low increases in 

fertilizer application with irrigation on both rotations. Conversely, when the planner is 

extremely risk averse, there is not a single scenario that comes first for both nutrients. 

However, assuming that both nutrients are equally important, when comparing the 

best scenario (3) for nitrate tradeoffs with the best scenario (8) for phosphorus 

tradeoffs, scenario 3 seems to be better for the joint quantities.  

Results also show that high increases of fertilizer application do not seem to have good 

relative economic or environmental results given that scenarios 1, 4 and 7 are not 

particularly highlighted in our results. Lastly, although rainfed agriculture achieves 

better environmental results than the rest of the nine scenarios of agricultural 

intensification in terms of water pollution, it implies a significant opportunity cost in 

economic terms. More specifically, this cost will be even higher for an extremely risk 

averse basin central planner, who might resign economic benefits valued as high as 

190 dollars per hectare (Table 4), which is a significant amount for agricultural returns.     

 

 

 



6. Conclusions 

The present work measured the effects of agricultural intensification through irrigation 

and fertilization practices, on economic and environmental results for one of the most 

important Uruguayan agricultural basins, the San Salvador river basin. This work has 

been carried out through the novel application the first time in the country, of an 

integrated assessment model (IAM). This modeling approach enabled us to explore in 

the period 2000-2019, the effects of ten different agricultural management scenarios 

in terms of irrigated area and fertilizer application. Particularly, the integrated model 

consisted on the integration of a widely used biophysical model as the SWAT (Neitsch 

et al., 2011) with an economic model based on the expected value theory. This latter 

was based on national antecedents such as Rosas et al. (2017) and also international 

ones (Pandey, 1990; Apland, 1980).  

For two of the most typical agricultural rotations in the basin, we estimated the 

economic benefits and nutrient concentrations in a rainfed agriculture scenario. 

Moreover, considering the economic potential of irrigation and fertilizer application 

practices on both of these rotations, the same results were computed for nine 

alternative scenarios with different levels of irrigation and fertilization application. 

The proposed model includes the economic benefits valuation derived from higher 

expected yield as well as those derived from lower yield volatility. These benefits are 

measured through the application of the expected utility theory concept of certainty 

equivalent. This concept allows us to measure, for a given risk aversion preference 

profile, the economic benefits of agricultural intensification derived from yield 

increases and yield interannual volatility reductions.    

Results show an estimated mean profit per hectare of 257 dollars under rainfed 

agriculture for the whole period. Notwithstanding, this value could increase up to 330 

dollars per hectare when both rotations are irrigated with low increases in fertilizer 

application. Taking into account different profiles on risk preferences, the difference 

between economic benefits under irrigation and rainfed agriculture could increase to 

189 dollars. This result is explained by a reduction in the basin planner risk premium. 

Additionally, when considering the tradeoffs between the economic benefits and 

water pollution, irrigation scenarios with low increases in fertilizer application (with 

respect to rainfed agriculture) are the ones with better performance. Most of the 

considered scenarios show increases in the certainty equivalent in the range of 1-30 

dollars when the nutrient median concentration is relaxed in one percentage point.  

Finally, it must be noted that our model results depend on the quality of the SWAT 

biophysical calibration, which is still being developed. Model developments are being 

held mainly on aspects related to the simulation of phosphorus and nitrates nutrient 



concentrations. Therefore, results are subject to revisions as SWAT model calibration 

improvements related to those variables are made.    
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7. Annex 

 

7.1 Crop Operations  

 

Table 11: Dates of Operations 

7.2 Economic Data 

7.2.1 Prices 

 

Table 12: Crop Prices. 

7.2.2 Costs 

 

Table 13: Costs per Crop and Fertilization Level. 

Crop Planting Date Harvest Date

Corn 23-Sep 20-Feb

Oats 2-May 11-Nov

Oats (After Corn or Soybean 2) 22-Apr 22-Sep

Soybean 12-Nov 21-Apr

Soybean 2 10-Dec 1-May

Wheat 14-Jun 25-Nov

Barley 14-Jun 25-Nov

Pasture 22-Apr 11-Nov



7.3 Additional Figures

 

Figure 6: Precipitations per Year. 



 

Figure 7: Seasonal Precipitations. 

 

 



 

Figure 8: Certainty Equivalent per Scenario and Risk Aversion Level.  



 

Figure 9: Certainty Equivalent per Scenario, Risk Aversion Level and Rotation.  

 

 

 


