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Cotton Farmers’ Technical Efficiency:
Stochastic and Nonstochastic
Production Function Approaches
Kalyan Chakraborty, Sukant Misra, and Phillip Johnson

Technical efficiency for cotton growers is examined using both stochastic (SFA) and nonstochastic
(DEA) production function approaches. The empirical application uses farm-level data from four
counties in west Texas. While efficiency scores for the individual farms differed between SFA and
DEA, the mean efficiency scores are invariant of the method of estimation under the assumption of
constant returns to scale. On average, irrigated farms are 80% and nonirrigated farms are 70% effi-
cient. Findings show that in Texas, the irrigated farms, on average, could reduce their expenditures
on other inputs by 10%, and the nonirrigated farms could reduce their expenditures on machinery and
labor by 12% and 13%, respectively, while producing the same level of output.

Key Words:  cotton, data envelopment analysis, stochastic frontier, technical efficiency

Cotton is the most important agricultural commodity
in Texas, after cattle and calves, in terms of cash
receipts. In 2000, cash receipts from the sale of
cotton lint and seed were $1.15 billion, representing
10% of the total agricultural cash receipts in the
state. Texas produced 4 million bales of upland
cotton in 2000, which represents 23% of total U.S.
cotton production. Recent cotton price decreases,
however, have considerably reduced cotton profit-
ability. The average price received by Texas cotton
producers for upland cotton lint has decreased from
74.6¢ per pound in 1995 to 51.4¢ per pound in
2000 (U.S. Department of Agriculture, 2000).

The severe economic stress confronting cotton
producers today has prompted research efforts in
production and marketing risk management strat-
egies. Yet it is equally important to assess the
production and scale efficiency of specific farming

Kalyan Chakraborty is assistant professor, Department of Accounting and
CIS, College of Business, Emporia State University, Emporia, Kansas;
Sukant Misra is associate dean for research, College of Agricultural
Sciences and Natural Resources, Texas Tech University; and Phillip
Johnson is associate professor, Department of Agricultural and Applied
Economics, Texas Tech University, Lubbock, Texas.

This project was funded by the Cotton Economics Research Institute,
Texas Tech University, College of Agricultural Sciences and Natural
Resources, and is Publication No. CER-00-15. The authors gratefully
acknowledge the valuable comments and suggestions from two anony-
mous reviewers on an earlier version of this paper.

units, which can help producers focus on necessary
adjustments within their operations and improve
productivity.

Compared with the number of studies devoted to
measuring productive efficiency of other agricul-
tural crops, studies on cotton farmers are limited.
Although Brooks (2001) analyzed production and
cost estimates for cotton-producing farms in the
United States, and Helmers, Weiss, and Shaik
(2000) measured regional efficiency and total factor
productivity for U.S. cotton-producing regions, there
has been no study measuring farm-level technical
efficiency for cotton farmers.

The primary objectives of this study are to
estimate technical efficiency of cotton-producing
farms and compare the results obtained from two
alternative methods of estimation—parametric and
nonparametric. Other objectives are to investigate
the relationship between the farm output and the in-
puts given the assumption of a specific technology,
and to analyze the slack input variables in terms of
their excess use in the production process. The
present analysis contributes to the existing literature
because it is the first comparative study of farm-
level efficiency of cotton producers.

The remainder of the article proceeds as follows.
First, we provide a background overview on the
development and application of parametric and
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nonparametric estimation techniques, highlighting
this discussion with references to relevant literature.
The measurement of technical efficiency is then
addressed, with specific emphasis on the DEA and
SFA models employed in our analysis. The descrip-
tion of data and our empirical results are detailed in
the next section, followed by a final section present-
ing our summary and conclusions.

Background

Since the pioneering work by Farrell in 1957,
which drew upon the works of Debreu (1951) and
Koopmans (1951), a considerable effort has been
directed at refining the measurement of technical
efficiency. The literature on efficiency analysis is
broadly divided into deterministic and stochastic
frontier methodologies. The deterministic, nonpara-
metric approach that developed out of mathematical
programming to measure efficiency is known as
data envelopment analysis (DEA), while the para-
metric approach which uses a stochastic production,
cost, or profit function to estimate efficiency is
called the stochastic frontier approach (SFA).

A detailed review of both approaches is provided
through the collective works of Lovell and Schmidt
(1988); Schmidt (1986); Bauer (1990); Seiford and
Thrall (1990); Lovell (1993); Greene (1993); Ali
and Seiford (1993); and Coelli (1995a). The most
commonly cited models employing DEA are those
developed by Charnes, Cooper, and Rhodes (1978),
and Banker, Charnes, and Cooper (1984).

In DEA, the performance of a farm is evaluated
in terms of its ability to either shrink usage of an
input or expand the output level subject to the
restrictions imposed by the best-observed practices.
This measure of performance is relative, in the
sense that the efficiency of each decision-making
unit (DMU) is evaluated against the most efficient
DMU, and it is measured by the ratio of actual
output to maximal potential output. In stochastic
frontier production functions (SFA) there are two
error terms. One accounts for the existence of
technical inefficiency, and the other accounts for
random disturbances arising out of measurement
error, luck, bad weather, etc.

In the past, common criticisms of DEA related to
its inability to account for the measurement error
and to test for significance of the efficiency mea-
sures. Banker (1993, 1996), and Fare and Gross-
kopf (1995) proposed several statistical tests which
have subsequently made DEA a powerful tool for
efficiency analysis. One of the major limitations of

the SFA is the restrictive assumption on the func-
tional form of the production function and the
distribution of the one-sided error term (Forsund,
Lovell, and Schmidt, 1980).

In the agricultural economics literature, stochastic
frontier estimation is generally the preferred pro-
cedure because of the inherent nature of uncertainty
associated with agricultural production. Uncertainty
in production can arise due to bad weather, fires,
pests, and diseases. However, because of limitations
associated with both stochastic and nonstochastic
frontier approaches, we use both techniques in the
current study to measure technical efficiency of
cotton farmers in Texas, and then compare the
results.

Earlier studies have investigated the sensitivity
of efficiency estimates to estimation methods
(Ferrier and Lovell, 1990; Coelli and Perelman,
1999; Ruggiero and Vitaliano, 1999; Chakraborty,
Biswas, and Lewis, 2001). By using data applied
from farm-level cotton producers, we seek to make
an important contribution to the knowledge related
to the comparative analysis of alternative methods
of measuring technical efficiency.

Measurement of Technical Efficiency

Simple DEA Model

For a given technology and a set of input quantities,
the production frontier defines the maximum output
possible from a given combination of inputs. In
DEA, a linear programming technique envelops the
data and defines the best-practice reference tech-
nology by using an output distance function. The
value of the output distance function serves as the
measure of technical efficiency for each farm
relative to the best-observed values of inputs and
outputs of all farms, and is used to construct the
reference technology. The output-oriented DEA
measure of technical efficiency seeks a proportion-
ate increase in its output level given its input usage,
while remaining on the same production frontier.
Hence, this method assumes that outputs are capable
of expansion. A simple output-oriented DEA model
is presented below. For a detailed procedural dis-
cussion, interested readers are referred to Seiford
and Thrall (1990); Lovell (1993); Fare, Grosskopf,
and Lovell (1994); and Chakraborty and Mohapatra
(1997).

Following Fare, Grosskopf, and Lovell (1994),
assume there are K farms using N inputs x =
(x1, ..., xN) 0 U+

N, producing M outputs y = (y1, ..., yM)
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0 U+
M. We denote N as an (N, K) matrix of N differ-

ent inputs used by K different farms; M is denoted
as an (M, K) matrix of M different outputs produced
by K different farms; and (xk, yk) represents the
input-output vector, or the activity of the kth farm.
Assuming inputs and outputs are nonnegative, the
piecewise linear output reference satisfying the
properties of constant returns to scale and strong dis-
posability of inputs and outputs (C, S) can be formed
from N and M as:

(1)   L(x*C, S) ' y :y # zM, zN # x, z0UK
%

,

x0UN
%

,

where z is the (K, 1) intensity vector (z = z1, ..., zk;
0U+

K) identifying to what extent a particular activ-
ity (xk, yk) is utilized. This vector allows us to shrink
or expand individual observed activities for the pur-
pose of constructing unobserved feasible activities.
Thus it provides the weights which help in the con-
struction of the piecewise linear boundaries of the
technology (Fare, Grosskopf, and Lovell, 1994).

The assumption of strong disposability of inputs
and outputs as a feature of technology implies the
same input vector can produce lesser outputs, and
a higher input vector can produce the same outputs.
Given the technology in the above specification, the
Farrell output-oriented measure of technical effi-
ciency for activity k is the solution to the linear pro-
gramming problem (with θ representing the output
distance function):

(2)   F xk, yk &1
' Max

θ,z
θ

s.t.: θyk# zM ,
zN # xk,

z 0 UK
%

;
or

(3)   F xk, yk &1
' Max

θ,z
θ

s.t.: θykm#j
K

k'1
zk ykm , m ' 1, 2, ..., M ,

j
K

k'1
zk xkn # xkn , n ' 1, 2, ..., N ,

zk$ 0, k ' 1, 2, ..., K .

Hence, if the ratio of the distance functions as
measured by θ equals one, then farm k is the most
efficient and lies on the frontier, and any value less
than one implies the farm is operating below the
frontier. The implication of the technical efficiency

score using output-oriented DEA is the extent to
which that output vector may be increased given the
combination of input vector. The restrictive
assumption of constant returns to scale (zk $ 0) on
the production technology is further relaxed, and a
variable returns to scale with strong disposability
(V, S) is imposed with the following restriction on
the intensity vector: ΣK zk = 1.

The measure of technical efficiency can be
decomposed into a measure of scale efficiency and
pure technical efficiency (Fare, Grosskopf, and
Lovell, 1994). If a farm is not operating in the range
of constant returns to scale (CRS), then conceptually
it could increase output without increasing inputs if
CRS is realized. The measure of technical effi-
ciency using variable returns to scale (VRS) is
termed pure technical efficiency. Pure technical
efficiency occurs when a farm operates on its
production frontier. Scale efficiency is measured as
the ratio of CRS to VRS technical efficiencies
(Domazlicky and Weber, 1997; Fare, Grosskopf,
and Lovell, 1994). If the ratio is less than one, then
the farm has scale error.

Stochastic Frontier Approach (SFA)

The stochastic frontier model proposed indepen-
dently by Aigner, Lovell, and Schmidt (1977), and
Meeusen and van den Broeck (1977) is written as:

(4)   yi ' exp xiβ % gi ,

where yi is production of the ith farm, xi is the
(k × 1) vector of input quantities of the ith farm, and
β denotes the (k × 1) vector of unknown parameters
to be estimated. It is postulated that gi = vi ! ui,
where white noise and the one-sidedvi ~ N(0, σ2

v )
component ui ~ N(0, σ2

u ), with ui $ 0; the ui and vi
are assumed to be independently and identically
distributed. The one-sided component (ui) is ob-
tained by truncation at zero of a normal distribution
with mean µ and variance The term vi allows forσ2

µ.
randomness across firms and captures the effect of
measurement error, other statistical noise, and
random shocks outside the firm’s control. The one-
sided component ui captures the effect of ineffi-
ciency (Forsund, Lovell, and Schmidt, 1980).

Borrowing from Chakraborty, Biswas, and Lewis
(2001), the production function for the ith farm in
this study is represented by:

(5)   yi ' β0 k
K

k'1
x βk

k e (vi&ui),
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where y is output, xk are exogenous inputs, and v is
the stochastic disturbance term. The Cobb-Douglas
transformation of the above production function for
cotton producers is written as:

(6)   Ln(yi) ' β0 %k
K

k'1
βk Ln(xki) % vi & ui.

Technical efficiency is represented as:

(7)   TE ' exp(&ui).

A technically efficient farm produces output that is
on the stochastic production frontier and is subject
to random fluctuations captured by v. However, be-
cause of differences in managerial efficiency, actual
performance deviates from the frontier.

For maximum-likelihood estimation, following
Battese and Coelli (1992) and Battese and Corra
(1977), the variances are parameterized as follows:

  σ2
s ' σ

2
v % σ

2
µ and γ ' σ2

µ /σ2
s .

The parameter γ must lie between 0 and 1 to provide
a good starting value for an iterative maximization
process. If the coefficient of γ is significantly differ-
ent from zero, based on a one-sided likelihood-ratio
test, this implies inefficiency effects are present in
the model, and frontier estimation of the production
function is more appropriate than ordinary least
squares (OLS) estimation (Coelli, Rao, and Battese,
1998; Coelli, 1995b).

Description of Data and Empirical Results

Description of Data

The data are derived from the Standardized Per-
formance Analysis (SPA) database of revenues and
expenditures for cotton farms in the Texas High
Plains. The SPA database is maintained by the
Department of Agricultural and Applied Econom-
ics, Texas Tech University. The sample includes
information on multiple input expenditures and
production of cotton for 77 farms (54 irrigated and
23 nonirrigated) located in Crosby, Lubbock, Hale,
and Terry counties. Data on output and inputs were
obtained for the year 1998 on a per acre basis.
Output is defined as the average cotton lint produc-
tion per acre (pounds/acre). Inputs include per acre
expenditures on other inputs, fertilizer, chemicals,
machinery, and labor. Expenditures on other inputs
include gasoline, fuel and oil, seed and plants, and
other miscellaneous expenses.

With regard to yield, it is recognized that a por-
tion of the variability among producers may be due
to weather and soil conditions. Failure to account
for such variability in production due to weather
and soil conditions would lead to an incorrect
measure of efficiency. By using temperature- and
precipitation-adjusted measures, Helmers, Weiss,
and Shaik (2000) found increased efficiency and
productivity in the cotton-producing states of the
Southern Plains.

In this study we therefore assume, ceteris paribus,
that the difference in yields among counties is due
to differences in soil and weather conditions. Thus,
in order to eliminate the effect of weather and soil
conditions on farms’ productivity, producer-level
yields were normalized based on county average
yield for that year. For example, for irrigated cotton,
the yield per acre for Hale County was higher than
for Lubbock, Terry, and Crosby counties by 41.4%,
45%, and 37.34%, respectively. Using Hale County
as a base, yield per acre for farms located in
Lubbock, Terry, and Crosby counties was increased
by those percentages. For nonirrigated cotton, Terry
County was used as a base.

Table 1 presents a summary of adjusted yields
and input data used in this study. From table 1,
considerable variation in yields is evident between
irrigated and nonirrigated farms; the average yield
of irrigated farms is 34% higher than the yield of
nonirrigated farms. Similarly, average expenditures
on other inputs, chemicals, and fertilizer for irri-
gated farms are approximately twice as much as for
nonirrigated farms. In contrast, there is little varia-
tion in average expenditures on machinery and labor
between the two farm types.

Empirical Results

Tables 2 and 3 report technical efficiency (TE)
scores for the irrigated and nonirrigated farms
obtained from the DEA and SFA models. For the
DEA measure, we used a computer program (DEAP
V-2.1) developed by Coelli (1992). The DEA effi-
ciency scores are reported under constant returns to
scale (CRS) and variable returns to scale (VRS)
technology. CRS implies a proportionate change in
inputs leads to an equal proportionate change in
output, and VRS implies a proportionate change in
inputs leads to more than [increasing returns to
scale (IRS)] or less than [decreasing returns to
scale (DRS)] proportionate change in output. Since
there is no reason to assume CRS exists in the
production of cotton at the farm level, the measure
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Table 1. Descriptive Statistics of Output and Expenditure on Inputs (per acre) Used in the Study
Irrigated Farms (N = 54) Nonirrigated Farms (N = 23)

Variable Mean  Maximum  Minimum  Mean  Maximum  Minimum  

Adjusted Yield (lbs./acre) 485.75 913.84 233.63 319.98 688.34 55.11
Inputs ($/acre):
  Other Inputs 76.95 172.93 28.02 42.17 86.12 16.40
  Chemicals 34.46 90.78 4.68 16.87 43.89 3.93
  Fertilizer 17.59 42.75 4.97 9.02 21.14 1.36
  Machinery 52.81 95.44 22.64 62.05 190.01 20.34
  Labor 27.46 45.11 0.01 27.84 102.79 10.24

Table 2. Technical Efficiency (TE) Scores Estimated for Irrigated Farms Under DEA and SFA
Models (N = 54)

Farm   DEA Efficiency Scores a

SFA Farm  DEA Efficiency Scores a

SFA
No. CRS   VRS Efficiency Score No. CRS   VRS Efficiency Score

1  0.645   1.000 0.682 29 0.793   1.000 0.921
2  1.000   1.000 0.917 30 0.755   0.849 0.823
3  0.576   1.000 0.631 31 0.785   0.812 0.804
4  0.889   0.900 0.866 32 0.981   1.000 0.661
5  1.000   1.000 0.904 33 0.924   0.943 0.876
6  0.911   0.911 0.840 34 1.000   1.000 0.926
7  0.922   1.000 0.894 35  0.800   0.866 0.819
8  1.000   1.000 0.841 36  1.000   1.000 0.907
9  0.692   0.721 0.799 37 0.838   1.000 0.816

10  1.000   1.000 0.919 38 0.735   0.768 0.766
11  0.510   0.533 0.657 39 0.691   1.000 0.819
12  0.807   0.929 0.876 40 1.000   1.000 0.937
13  0.864   1.000 0.898 41 0.889   1.000 0.807
14  0.680   0.721 0.797 42 0.812   0.916 0.855
15  0.971   0.971 0.829 43 0.755   0.788 0.737
16  0.668   0.699 0.784 44 0.889   1.000 0.883
17  0.970   0.971 0.913 45 1.000   1.000 0.844
18  0.495   0.519 0.642 46 0.766   1.000 0.688
19  0.575   0.769 0.765 47 0.705   0.880 0.675
20  0.598   0.838 0.823 48 0.764   1.000 0.808
21  0.437   0.512 0.628 49 1.000   1.000 0.913
22  0.530   0.600 0.708 50 0.904   1.000 0.701
23  0.327   0.433 0.531 51 0.943   1.000 0.737
24  0.375   0.457 0.554 52 0.974   1.000 0.721
25  0.955   1.000 0.887 53 1.000   1.000 0.876
26  0.890   0.995 0.832 54 1.000   1.000 0.869
27  0.621   0.790 0.790
28  0.545   0.754 0.814  Avg. 0.799   0.886 0.800

a CRS denotes constant returns to scale, and VRS denotes variable returns to scale.

of technical efficiency under VRS relaxes this as-
sumption.

Of the 54 irrigated farms listed in table 2, 11
farms under CRS and 27 farms under VRS are fully
efficient. Under VRS, there are eight farms with ef-
ficiency scores between 90S99%, five farms scoring

between 80S89%, eight farms between 70S79%,
four farms between 50S69%, and two farms with
scores below 50%.

Of the 23 nonirrigated farms listed in table 3,
seven farms under CRS and 14 farms under VRS
are found to be fully efficient. For inefficient farms,
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Table 3. Technical Efficiency (TE) Scores Estimated for Nonirrigated Farms Under DEA and
SFA Models (N = 23)

Farm   DEA Efficiency Scores a

SFA Farm  DEA Efficiency Scores a

SFA
No. CRS   VRS Efficiency Score No. CRS   VRS Efficiency Score

1  0.736   1.000 0.712 13 1.000   1.000 0.966
2  0.756   1.000 0.719 14 1.000   1.000 0.751
3  1.000   1.000 0.933 15 0.344   1.000 0.714
4  0.647   0.771 0.549 16 0.366   0.649 0.775
5  0.319   0.352 0.253 17 0.338   0.662 0.678
6  0.599   1.000 0.555 18 0.208   0.382 0.414
7  0.734   1.000 0.663 19 0.458   1.000 0.973
8  0.648   0.798 0.570 20 1.000   1.000 0.893
9  1.000   1.000 0.845 21 1.000   1.000 0.875

10  0.992   0.992 0.838 22 0.799   0.819 0.759
11  0.408   1.000 0.385 23 1.000   1.000 1.000
12  0.945   0.998 0.496  Avg. 0.708   0.888 0.709

a CRS denotes constant returns to scale, and VRS denotes variable returns to scale.

the causes of inefficiency were identified as either
inappropriate size or misallocation of resources.
Operating at an inappropriate size suggests the farm
is not taking advantage of economies of scale, while
misallocation of resources refers to inefficient use
of input combinations.

The coefficients of the production function in
SFA are estimated using Frontier Program Version
4.1 (Coelli, 1996). A Cobb-Douglas production
function in log form is assumed for convenience
and simplicity. The attractive feature of the Cobb-
Douglas form is that a logarithmic transformation
provides a model, which is linear in logarithms of
the inputs, and the coefficients measure elasticity.
It is recognized that the Cobb-Douglas production
function uses restrictive assumptions on the returns
to scale and elasticity of substitution.

A translog (Greene, 1980) or generalized pro-
duction function (Forsund and Hjalmarsson, 1979;
Kumbhakar, Ghosh, and McGuckin, 1991) was not
used because of potential multicollinearity and loss
of degrees of freedom (due to the small number of
observations in this study). Various other combin-
ations of input variables were examined, and the fol-
lowing production function specification provided
the best results:

   Ln(Adjusted Yield ) ' β0 % β1Ln(Other Inputs)
% β2 Ln(Chemicals) % β3 Ln(Fertilizer)
% β4 Ln(Machinery) % β5 Ln(Labor) % vi & ui.

The maximum-likelihood estimates of the param-
eters are reported in table 4. The signs on the coef-

ficients of Chemicals and Labor are positive and
significant for both irrigated and nonirrigated farms.
The sign of the coefficient on Machinery is negative
for both types of farms and is significant for non-
irrigated farms, although a positive sign was ex-
pected for both types of farms.

The expenditures on Machinery include custom
hire and depreciation. Based on findings of a recent
study by Brooks (2001), smaller farms generally
had lower yields per acre and had more custom hire
for cultivation and harvesting than larger farms.
Examination of our raw data on planted cropland
revealed that 44% of irrigated farms and 50% of
nonirrigated farms have a size less than 100 acres.
The higher share of expenditure on custom hire by
smaller farms may have raised the total expenditure
on Machinery while yield per acre remained unaf-
fected. It is possible this phenomenon contributed
to the negative relationship between yield per acre
and the Machinery variable. Finally, the coefficients
for Other Inputs and Fertilizer are insignificant
(table 4). These results are similar to those found by
Battese and Hassan (1998) measuring technical
efficiency of cotton farmers in Pakistan.

The test statistic for the generalized likelihood-
ratio test for γ = 0 had a value of 5.17 for irrigated
farms and 6.57 for nonirrigated farms. The null
hypothesis that there is no technical inefficiency in
the model is rejected at the 5% level, indicating the
coefficients of the frontier production function are
significantly different from the average production
function estimated by OLS (Battese and Coelli,
1988; and Coelli, 1996). The Chemical variable has
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Table 4. Maximum-Likelihood Estimates of the Stochastic Frontier Model Using Cobb-Douglas
Production Function [dependent variable = Ln(Adjusted Yield)]

Irrigated Farms (N = 54) Nonirrigated Farms (N = 23)

Variables Coefficient t-Statistic Coefficient t-Statistic

Intercept 4.579* 7.067 3.997* 23.36
Ln(Other Inputs) 0.121 1.078 0.043 0.133
Ln(Chemicals) 0.335* 4.993 0.685* 3.101
Ln(Fertilizer) !0.011 !0.103 0.679 0.775
Ln(Machinery) !0.002 !0.020 !0.945* !5.928
Ln(Labor) 0.006* 3.647 1.143* 1.645

0.113 0.229σ2
s ' σ

2
u % σ

2
v

0.774 0.999γ ' σ2
u /σ2

s

* Denotes coefficients are significantly different from zero at the 5% level or below.

the highest partial elasticity for irrigated cotton, and
Machinery has the highest partial output elasticity
for nonirrigated cotton.

The technical efficiency scores from SFA, assum-
ing a half-normal distribution of the inefficiency
component (u) for the irrigated and nonirrigated
farms, are reported in column 4 of tables 2 and 3,
respectively. From table 2, there are eight irrigated
farms with SFA efficiency scores above 90%, 24
farms with scores between 80S89%, 12 farms be-
tween 70S79%, eight farms between 60S69%, and
two farms scoring below 50%. From table 3, there
are four nonirrigated farms with SFA efficiency
scores above 90%, four farms between 80S89%, six
farms between 70S79%, and four farms with scores
below 50%.

Although individual efficiency scores for the ir-
rigated and nonirrigated farms differ between DEA
and SFA, their mean efficiency scores of 0.80 and
0.70, respectively, are similar (tables 2 and 3). This
finding implies the irrigated farms could operate
with 80% and nonirrigated farms with 70% of their
current input levels and still produce the same level
of output. The most inefficient irrigated farm under
both DEA and SFA is farm 23 (Hale County), with
efficiency scores of 33% and 53%, respectively
(table 2). The most inefficient nonirrigated farm
under DEA using CRS is farm 18 (Terry County),
which is 21% efficient; under SFA, farm 5 (Lub-
bock County) is the most inefficient, operating at
only 25% efficiency (table 3).

The differences in efficiency scores between
DEA and SFA arise due to specification of the
production function and the distributional assump-
tion of the random disturbance term. This may be
explained as follows. Farms appearing more effi-

cient under SFA contain a relatively large random
component (v) of the error term compared to the
inefficiency component (u). Hence, under DEA,
these farms appear less efficient because the pro-
duction function does not account for randomness,
where any deviation from the maximum is mea-
sured as inefficiency. Examples of such farms are
farms 11, 22, and 23 in table 2, and farms 16 and
18 in table 3. The reverse is the case for farms that
appear less efficient under SFA and more efficient
under DEA—e.g., farm 11 (table 2) and farm 16
(table 3).

A ratio of technical efficiency scores obtained
from DEA under CRS and VRS assumptions
measures scale efficiency (SE) (not reported here).
A value of SE equal to one implies the farm is scale
efficient, and a value less than one suggests the
farm is scale inefficient. A farm is scale inefficient
because it might be producing inefficiently large
output in the face of DRS or producing inefficiently
small output in the face of IRS.

Farms identified as scale inefficient were ana-
lyzed further in terms of “peer counts” in table 5,
and “input slacks” in table 6. For scale-inefficient
farms producing in the face of DRS, table 5 reports
the number of counts a farm appeared as a peer for
other farm(s). Farms appearing more frequently as
a peer for other farms are termed robustly efficient.
They are robustly efficient because their production
practices are such that these farms were frequently
used to form the efficient frontier for the inefficient
farms in the data. As observed from table 5, irri-
gated farms 10, 29, and 49, and nonirrigated farms
3 and 23 are identified as robustly efficient.

Table 6 reports input slacks for irrigated and
nonirrigated farms. A slack variable represents the



218   October 2002 Agricultural and Resource Economics Review

Table 5. Farms and Their Counts Appearing as Peers for Other Farms

IRRIGATED FARMS:
  Farm No. 2 5 7  8 10 13 25 29 32 36 40 41 46 48 49
  Peer Counts 8 5 8  2 11   3   7 12   3   8   8   6   2   2 11

NONIRRIGATED FARMS:
  Farm No. 2 3 9 13 19 21 23
  Peer Counts 2 5 2   3   3   2   5

Table 6. Input Slacks and the Number of Farms Associated with the Slacks
Irrigated Farms Nonirrigated Farms

Input Variables
No. of
Farms

 Actual
  Use ($)

 Target
  Use ($)

Excess
Use (%)

No. of
Farms

Actual
Use ($)

Target
Use ($)

Excess
Use (%)

Other Inputs 13 4,156 3,727 10.3 1 983   961     2.2
Chemicals   3 1,861 1,814   2.5 3 388   377     2.8
Fertilizer 10 950 890   6.3 — —    —     —
Machinery 16 2,852 2,634   7.6 5 1,427   1,255   12.0
Labor   6 1,483 1,435   3.2 4 640   554   13.4

amount of excess expenditure on an input, i.e., the
amount by which the expenditure on a particular in-
put could be reduced without altering the production
level. It is evident from table 6 that 13 irrigated
farms together could reduce total expenditures on
Other Inputs by 10.3% without reducing their cur-
rent level of production. Similarly, excess expendi-
tures on Machinery and Fertilizer are estimated at
7.6% and 6.3%, involving 16 and 10 irrigated
farms, respectively. For nonirrigated farms, the
excess expenditures on Machinery and Labor are
12% and 13.4%, representing five and four farms,
respectively.

Summary and Conclusions

This study measured technical efficiency of indi-
vidual cotton farms employing two commonly used
methods of estimation—data envelopment analysis
(DEA) and the stochastic frontier approach (SFA).
Evidence suggests that under the assumption of
constant returns to scale (CRS), mean efficiency
estimates for cotton farmers in this study were
similar when applied to DEA and SFA. On average,
the irrigated farms were more efficient (80%) than
their nonirrigated counterparts (70%). Findings also
show, on average, irrigated and nonirrigated farms
had similar efficiency scores under the assumption
of variable returns to scale (VRS) in DEA.

One of the interesting results from this study is
that a large number of farms—from both the irri-

gated and nonirrigated categories—were scale in-
efficient (as is evident from table 5). The major
cause of inefficiency for irrigated farms was the
production of large output in the face of decreasing
returns to scale (increasing cost conditions), and for
nonirrigated farms the production of small output in
the face of increasing returns to scale (decreasing
cost conditions).

Considering the growing number of large-size
farms in the United States over the past 20 years,
the above finding seems striking. However, Brooks
(2001), in her study investigating the characteristics
of production costs for U.S. cotton farms, reported
similar results. Brooks found that one-third of the
farms in the Prairie Gateway (which includes Texas)
and Fruitful Rim regions were high-cost producers.
While irrigation in these regions mitigates the
effects of adverse weather conditions, it also raises
production costs considerably. Hence, in order to
improve efficiency, our findings suggest these farms
should adjust their scale of operation. Several of
these inefficient farms could reduce their operating
costs by reducing expenditures on Other Inputs,
Machinery, and Labor without decreasing their cur-
rent level of output.

Although an adjustment was made in this analy-
sis for yields per acre at the farm level based on the
difference in yields per acre across counties, the
assumption upon which such adjustments was made
is restrictive. The assumption that the differences in
yields across counties were due solely to variation
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in weather and soil conditions is not very realistic.
Variation in yield among counties may be attributed
to several other factors, such as farmers’ education,
age, farming experience, and contact with extension
agents. Consequently, adjusting county yields only
for weather and soil conditions leaves the effect of
other factors unaccounted for in the measure of
efficiency and productivity, and may lead to an
inaccurate estimate of technical efficiency.

Thus, one of the limitations of this study was the
non-inclusion of variables representing soil quality
and weather variability affecting farms’ productiv-
ity. In future research estimating the technical
efficiency of cotton farmers, it would be helpful to
include inputs such as soil conditions, annual rain-
fall, and temperature, as well as the demographic
characteristics of the cotton farmers.
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