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Digital Transformation for a Sustainable Agriculture in the US: Opportunities and 
Challenges 

 

1. Introduction  

 With the growing global population and urbanization, declining availability of land for 

agriculture, depletion of water resources, and looming threat of climate change, the agricultural 

sector faces the critical challenge of meeting growing demands on land sustainably. Increasing 

crop productivity by increasing the efficiency of input use and conserving water and chemicals 

can potentially reduce acreage and adverse impacts on the environment. However, to intensify 

production sustainably, crop management decisions need to be site-specific because agricultural 

landscapes are characterized by considerable heterogeneity in growing conditions and variability 

over time.  Conventional practices for producing cash crops, like corn, soybeans, and wheat in 

the US, rely on intensive tillage practices, uniform rates of applying critical inputs, such as 

nitrogen and irrigation water, and the aerial spray of pesticides to reduce weeds and pests that 

disregard cropland’s spatial and temporal variability.  

Irrigated agricultural production in the many states with the largest amount of irrigated 

acres in the US relies primarily on groundwater which depletes aquifers, including the Ogallala 

aquifer leading to salinization (USGAO, 2019).  Fertilizer-intensive corn production in the 

Midwest is a leading cause of nutrient run-off and the growing problem of hypoxia in the Gulf of 

Mexico (Rabotyagov et al., 2014). Nonpoint pollution sources from agriculture have been 

estimated to contribute over 90% of the nitrogen in two-thirds of all nitrogen-impaired 

watersheds in the United States (Ribaudo et al., 1999). Excessive use of chemicals with herbicide 

tolerant corn and soybeans is contributing to a rising problem of herbicide-resistant weeds (Davis 

and Frisvold, 2017). Furthermore, agricultural production in the midwestern US that relies on 

conventional tillage practices has decreased soil organic carbon substantially since 1850 levels, 
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and large areas continue to decrease soil carbon (Yu et al., 2018). In addition, agricultural 

production continues to contribute to carbon emissions, chiefly from livestock production, direct 

energy use, and emissions of nitrous oxide from soil (Parton et al., 2015). Midwestern farmland 

is currently also responsible for the vast majority of fertilizer run-off and greenhouse gas 

emissions (Basso et al., 2009). It is estimated that cropland mineral soils have lost 30%-50% of 

the carbon stocks in the top-soil layers relative to their native condition (Paustian et al., 2019). 

Farming has also destroyed fertile topsoil by leading to soil erosion, and this contributes to lower 

crop yields, loss of ecosystem services, and affects the global carbon cycle. Zhang et al., (2015) 

estimate that soil erosion has led to a loss of organic-rich soils from a third of the Midwestern 

Corn Belt, contributing to a 6% reduction in crop yields and $2.8 billion losses on average 

annual economic losses.  

Current strategies for applying critical inputs, such as nitrogen and irrigation water, 

disregard the spatial variability in soil and growing conditions across the field and temporal 

information about weather. This results in over-application in some areas, and under-application 

in other areas relative to the required amounts and compromises crop productivity while 

adversely affecting the environment. Fertilizer is often applied after harvest in the Fall when it is 

cheaper, and labor is available, resulting in significant nutrient run-off before crops can take it up 

in the Spring. Limited availability and high cost of labor pose a barrier to adopting practices that 

can enable more targeted and timely application of these inputs. With conventional practices, 

about 40% of irrigation water applied using flood and furrow methods is not taken up by plants 

and is drained away from the field (Brouwer et al., 1989). Zhang et al., (2015) estimate that only 

68% of the applied nitrogen is absorbed by crops in the US and the rest is surplus that runs-off.   

Use of herbicides for weed control has grown exponentially, driven by price declines and 



4 
 

lower labor requirements of using herbicides compared to mechanical weeding using tractors. 

From 1952 to 2008, the percentage of corn, wheat and cotton acres treated with herbicides rose 

from 5-10% to 90-99% (USDA ERS 2014). The popularity of glyphosate-resistant crops has led 

to a heavy reliance on glyphosate and a reduction in the diversity of weed management tools, 

further reducing the adoption of IPM in weeds (Livingston et al., 2016). In a 2007 survey, 

Frisvold et al., (2009) found that 28% of farmers rarely or never used herbicides with different 

while 39% modes of action and respondents practiced it often or always. Herbicides are typically 

sprayed prior to the emergence of the plant and/or prior to the closure of the crop canopy; they 

are therefore not targeted to where and when weeds appear and have resulted in a reduction in 

the diversity of weeds and an increase in glyphosate resistant weeds.  

Although the labor intensity of agricultural production has been declining over time, the 

sector faces a shortage of labor and rising real wages of agricultural workers (Zahniser et al., 

2018). The US farm labor market is expected to further tighten in the coming years with 

economic development and continued transition to the service sector in the US and in Mexico, a 

major source for immigrant farmworkers and tightening of immigration laws in the US. Some 

crops rely more on labor for agricultural operations than others; overall, contract and hired labor 

together accounted for 10%1 In 2017, the Great Plains, Midwest, and Southeast accounted for 

37% of the labor employed in agriculture.  These trends in the agricultural labor market are 

creating a demand for making farming more autonomous using robotics and artificial intelligence 

(AI) technologies. 

The advent of digital technologies that offer information and computational tools has the 

potential to detect, quantify and enable site-specific management practices that apply the “right 

 
1 This share is 4.5% for oilseed and grain farming but as high as 40% for greenhouse, nursery, and floriculture 
production and fruit and tree nut farming (Zahniser et al., 2018) 
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seed and the right input application rate with the right soil at the right time.” This can increase 

the efficiency of input use, increase crop productivity and reduce environmental harm (Wolfert et 

al., 2017). Digitally enabled agricultural technologies enable the collection of vast amounts of 

geo-referenced information about growing conditions within a field that can be analyzed using 

machine learning, and other artificial intelligence (AI) approaches (van Es and Woodard, 2017). 

These technologies use electronic information to gather, process, and analyze spatial and 

temporal data and combine it with precision agricultural technologies that facilitate automated 

implementation of spatially varying input applications (Lowenberg-DeBoer et al., 2020). They 

allow monitoring and detection of variability in crop health, soil fertility, and yields in the field 

and have the potential to vary input application rates based on the precise location of fertility 

levels and crop requirements in a field. Recommendations for crop management based on this 

information can be fed to on-board technologies, such as Variable Rate Technologies (VRT), to 

apply inputs at varying rates through a field. These technologies can digitally record observations 

for a field and share this electronically information with crop advisors and input supplies and 

reduce the need for manual labor.  

Additionally, emerging AI technologies have the potential to use machine intelligence to 

address the labor shortage challenge using advanced autonomous systems with low-cost robots, 

sensors, and other auto-steered and guided equipment to precisely guide equipment and enable 

site-specific input placement and application rates to manage heterogeneity and variability within 

fields. Small robots can be deployed to undertake operations, such as killing weeds, applying 

nitrogen, or planting cover crop seed under the canopy of field crops that are not feasible with 

conventional field equipment.  
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While these technologies offer the advantage of site-specific crop management with 

varying levels of autonomy, their adoption can impose financial costs and require learning, 

investment in new equipment and skills, and sharing data with technology and input suppliers. 

Furthermore, the benefits of these technologies to farmers are still uncertain and yet to be 

demonstrated, and adoption decisions are likely to be influenced by information sources that 

farmers trust, such as neighbors and peers. The policy incentives to induce adoption by 

rewarding farmers for the external benefits from adoption to the environment are yet to emerge 

and require demonstrated evidence of these benefits. Adoption of digital technologies also 

requires the availability of enabling infrastructures such as access to broadband, availability of 

technology providers, and technical assistance.  

This paper has three objectives. First, we describe some emerging digital technologies 

that provide alternative approaches to address the challenge of herbicide resistant weeds, over-

application of nitrogen and irrigation water, and cover crop planting. We also discuss how these 

technologies can contribute to the environmental sustainability of agriculture. Second, we 

discuss the factors likely to affect adopting these technologies relative to conventional 

approaches. Since these technologies are yet to be widely adopted and some are yet to become 

commercially available, there is limited literature examining the drivers of adopting digital and 

AI technologies. We discuss insights from the literature on economic factors, behavioral 

preferences of farmers, peer pressure, and social networks that can be expected to play a role in 

adoption decisions.    

Third, we discuss methods for analyzing the adoption of digital technologies even before 

they are widely adopted. These methods need to consider that adoption of new technologies is 

often not a discrete choice problem; instead, farmers may adopt technologies gradually following 
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on-farm trails and learning by doing on a small share of their land. Often technologies that 

consist of many components that can be adopted individually are not adopted as a complete 

package; instead, farmers adopt components sequentially as they learn about the benefits of 

various components. We discuss various options for surveying farmers to determine the drivers 

of the extent and mix of technology adoption decisions. Since these are hypothetical decisions 

and the technologies being considered are multi-dimensional in terms of their attributes and 

performance outcomes, choice experiment survey methods that go beyond open-ended questions 

about the discrete adoption decision are more informative about the trade-offs farmer are willing 

to make about various technology attributes and performance outcomes and the economic and 

behavioral drivers of adoption.  We also discuss modeling approaches to extrapolate from survey 

respondents to a regional level and examine the likely drivers of technology diffusion in the 

region while incorporating empirical evidence on both economic and behavioral drivers from the 

survey. Specifically, agent-based models (ABMs) offer an approach for modeling the behavior of 

a collection of autonomous decision-makers (agents) that are individually assessing a situation 

and making decisions on the basis of a set of rules and interactions with other agents. ABMs are 

useful for modeling complex behavior patterns that evolve over time and allow for learning, 

adaptation, and idiosyncrasies. We conclude with a discussion of the policies needed to cost-

effectively induce the adoption of digital technologies to make agriculture more sustainable. 

 

2. Challenges to Sustainable Agricultural Production 

Low Input-Use Efficiency 

Conventional methods for determining input application rates are typically based on 

average growing conditions in the field and disregard spatial variability within fields due to 

differences in soil quality, topography, soil moisture, and other locational characteristics. Zhang 
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et al., (2021) report that most farmers typically make decisions about irrigation timing and the 

amount by relying on their personal experience, weather forecast, visual observation, and their 

neighbors’ behavior; surveys report that fewer than 25% of irrigation scheduling methods are 

based on science and technology, resulting in over- or under-irrigation. The former leads to 

wastage of water and polluting run-off, while the latter may result in crop water deficit, lower 

yields, and economic loss. 

Similarly, recommendations for nitrogen application rates have been based on conditions 

at a regional level and on yield potential and broad management zones within fields. There is 

also empirical evidence that farmers consistently over-apply fertilizer due to the belief that it 

could otherwise be the factor limiting crop yield if expectations of favorable weather are realized 

(Basso et al., 2009); this is the case even when yield data imply that an increase in fertilizer 

applications increases yield variability (Paulson and Babcock, 2010). Uniform application rates 

for fertilizer using conventional technologies can lead to over-fertilization in some areas and 

under-fertilization in other areas. The former can lead to high salt concentration in the soil, 

damage to the root system of plants, degradation of soil health and increase in nutrient loss to 

surface and groundwater while the latter can result in crop nutrition stress, potential yield loss, 

and profit reduction. Nitrogen use efficiency in cereal grain production is low and a significant 

share of applied nitrogen is lost through denitrification, run off and volatilization of ammonia 

(Raun and Johnson, 1999). Despite efforts to increase nitrogen use efficiency in agriculture, it 

continues to remain low. Basso et al., (2019) estimate that it could be as low as 33%, particularly 

on subfields that can be classified as having stable low yields or unstable yields.  

Research shows that crop yields vary widely within fields and variable rate of input 

application has the potential to provide both environmental benefits for society and economic 
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benefits for farmers (Ruffo et al., 2006). High resolution spatial data from fields cultivated with 

maize, soybean, wheat and cotton in the US Midwest show that wide variations in crop 

productivity within a field; some areas produce more than others and with different levels of 

fluctuation in annual yields these variations across the field depend on the interaction between 

climate, soil, topography and management (Maestrini and Basso, 2018).  Basso et al., (2019) 

used eight years of high-resolution satellite imagery, at subfield resolutions of 30 × 30 m across 

30 million ha of 10 Midwest states to show that on average, 26% of subfields in the region could 

be classified as stable low yield, 28% as unstable (low yield some years, high others), and 46% 

as stable high yield.  

Moreover, there has been limited understanding of the processes within fields that control 

crop response to inputs. These processes vary spatially and temporally, and determining which 

site-specific characteristics determine corn yield response to nitrogen has been challenging2. 

Moreover, the agronomic knowledge needed to respond to observed heterogeneity in growing 

conditions in the field and to develop recommendations for varying input applications has lagged 

behind the engineering capabilities of technology to manage fields more flexibly (van Es and 

Woodard, 2017). As a result, although VRT for nitrogen application have been available since 

the mid-1990s, adoption rates have been low (Babcock and Pautsch, 1998; Liu et al., 2006). 

Precise knowledge of spatial variability factors are essential to estimate economic benefit of 

VRT over conventional approaches based on net improvement in crop yield with adaptation of 

VRT (Bullock et al., 2002). Studies and survey results find that only 16-26% of the U.S. corn and 

soybean farms applied VRT (Schimmelpfennig, 2016). Some of the reasons include farmers 

cannot process the available farm information data to make the optimal decision, margin 

 
2 https://water.unl.edu/documents/Section%20E.pdf 
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revenues from the site-specific application are not attractive enough, and alternative systems like 

the light bar systems and automatic guidance systems are developed (Pedersen and Lind, 2017). 

Herbicide Resistant Weeds 

Corn, soybean, and wheat production rely heavily on herbicides for weed management. 

Chemical herbicides are relatively low cost and easy to apply pre-emergence and post-emergence 

by equipment on the field or through spraying (Schutte et al., 2010). The effectiveness of 

herbicides at killing weeds has been declining. The productivity of pesticide use in the US has 

declined by more than 50% in the past three decades, while herbicide use intensity has been 

increasing for corn, cotton, rice, and wheat. Growing weed resistance is imposing a net cost on 

corn, soybean, and cotton of about $1 billion per year. This is particularly concerning because no 

new commercial herbicide modes of action have been discovered in more than 30 years. 

Although industry has been developing crop varieties tolerate to multiple modes of action, many 

weed species are already resistance to these modes and thus stacking herbicide tolerant traits is 

likely to be ineffective (Frisvold et al., 2017). Herbicide resistance management requires 

reducing selection pressure through lower levels of herbicide use, substituting non-chemical 

means of control and rotation or mixing alternative herbicides with different modes of action 

(Davis and Frisvold, 2017). Non-chemical means of herbicide control, other than manual 

weeding, include tillage and grazing; these can have other unintended negative environmental 

consequences such as soil compaction, loss of soil carbon, soil erosion, and therefore reduced 

water quality (Deynze et al., 2021).   

Low Soil Carbon Stocks and Soil Health  

 Most agricultural soils are depleted in soil carbon compared to native ecosystems due to 

intensive soil disturbance, soil erosion, nutrient depletion and removal of harvested biomass. 

Various best management practices can improve soil carbon stocks, including planting of high-
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residue crops, seasonal cover crops, green manure, continuous cropping (reduced fallow 

frequency), and planting of permanent or rotated perennial grasses. Cover crops can either be 

planted in fallow seasons or planted as an intercropping practice and terminated before planting 

cash crops in the Spring with the cover crop biomass mixed with the upper soil surface or be 

harvested for further economical use.  

  Cover crops have the potential to increase soil microbial activity, soil nitrogen and 

phosphorous availability to crops (Giuliano et al., 2021). This can reduce the need for  additional 

fertilizer and can increase crop yield (Lowry et al., 2021). Cover crop planting has also been 

reported to improve soil quality and soil health compared to frequently tilled management 

(Ramos et al., 2010). The magnitude of positive effect from cover crop may differ based on the 

soil type (Snapp et al., 2005). Additionally, large scale cover cropping practice can provide 

climate change mitigation benefits by sequestering atmospheric carbon in soil that are larger than 

with no-till practice alone (Kaye and Quemada, 2017). Planting cover crops can decrease weed 

cover and lower weed biomass (Christina et al., 2021), reduce soil compaction and tillage needs, 

improve soil moisture management and provide income from livestock grazing and sale of 

animal feed.  

Farmers have an incentive to adopt cover crops because of the perceived benefits such as 

soil health improvement, soil erosion abatement, yield boosts, and reduced risk associated with 

loss of nutrients into waterways and savings in costs of fertlizers and herbicides by enabling 

natural nutrient recycling and weed control (Arbuckle Jr and Roesch-Mcnally, 2015; Plastina et 

al., 2020). However, Plastina et al., (2020) report yield losses from cover crop planting in initial 

years if farmers have limited knowledge of cover crop management and choice of cover crop 

variety and till soil fertility improves. High management costs of seeding and terminating cover 
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crops and low costs of fertlizers and herbicides also limit the economic benefits of cover crops 

(Bergtold et al., 2019). Currently, cover crop planting remains a minority practice with over 95% 

of farmland soil left completely bare after the harvest of corn and soybeans in the early Fall and 

vulnerable to soil erosion and chemical run-off (Zulauf and Brown, 2019). A survey of farmers 

in Illinois, Indiana, Iowa and Minnesota by Singer et al., (2007) finds that about a third of 

farmers did not plant cover crops due to time and cost constraints. Low emergence and biomass 

of cover crops due to late planting after harvesting operations and the conflict between planting 

cover crops and other higher priority farm operations after harvest (such as spraying, soil 

preparation and fertilizer application) are other barriers to cover crop planting.  

 

3. The Imperative for Digital Agriculture for Sustainable Agricultural Production 

Advances in digital agricultural technologies, remote sensing, soil sensors and drones and 

AI have the potential to enable farmers to gather, process, store and analyze vast amounts of  

data from millions of acres and then use AI  to process the data into relevant and easily 

interpretable information that can guide decisions. Farm machinery companies are using 

telematics to wirelessly transfer data from field equipment to a centralized database where 

machine learning methods can study patterns in crop responses to various genetic traits, 

environmental conditions and management practices and develop site-specific recommendations 

for crop management. These technologies have the potential to overcome many of the challenges 

described above, including (a) provide site and time specific recommendations for input 

application to jointly reduce two main sources of uncertainty that affect farming operations – 

variations in soil conditions and topography and the weather (b) lower labor requirements for 

farm operations, such as tilling, harvesting, cover crop planting and weed control and (c) provide 

non-chemical approaches to manage weeds.  We describe these opportunities below. 
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Implement Site-and Time-Specific Input Applications 

Precision Irrigation 

Multiple irrigation technologies are available to farmers to increase efficiency of water 

use and avoid over-irrigation, including micro-irrigation, sprinkler and drip systems. Farmers can 

also use precision irrigation systems, such as soil moisture sensors, computer or smartphone 

decision support tools, and remote control of irrigation equipment to help optimize irrigation 

scheduling. Center pivot irrigation system can be designed to know exactly how fast to move and 

where water is most needed at any given moment. Variable rate irrigation systems gather field 

data including crop type, development stage of the crop, soil type, grade of the land, and weather 

information, and use that information to distribute water as effectively as possible. This allows 

farms to control water distribution by zone, speed, and individual sprinkler at each degree of the 

360 degree circle, which prevents watering areas that do not need it. A number of precision 

irrigation decision support products are available that estimate crop water needs and soil water 

balance for irrigation scheduling which can even be done for a few days ahead by incorporate 

information from weather forecasts (see Zhang et al., 2021). 

To determine the precise amount of water to be supplied to plants at critical stages during 

the growing season requires understanding of crop water needs, soil water holding capacity, 

evapotranspiration rates, irrigation system capacity and the supply of moisture to plants across 

the field and at different times during the season. There are various devices to measure soil 

moisture, evapotranspiration rates and obtain real time weather data. Precision irrigation methods 

rely on multiple sources of data: in-situ data, remotely sensed data as well as gridded data on 

weather, soil and climate data. Soil sensors provide measurements of soil moisture, soil 

temperature, soil salinity and other soil conditions at a field scale while weather sensors 

deployed by weather stations provide information about meteorological conditions. Remote 
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sensing data characterize canopy conditions at a larger scale, across space and time, such as 

vegetation indices, leaf area index and canopy temperature. This information is used to develop 

soil-based and plant-based metrics for determining irrigation timing by quantifying the 

maximum allowable depletion of soil water capacity that plants can tolerate and the level of crop 

water stress. In addition to measurement-based approaches, process models combined with 

gridded weather, climate and soil data and daily evapotranspiration reports can be used to 

determine soil water balance and crop water use and develop irrigation schedules with lead time 

of a few days with weather forecasts. This information can be combined with other information 

within a decision support system on a smartphone or a computer to obtain a recommendation or 

prescription on when to irrigate and how much. These recommendations can then be 

implemented using technologies that allow remote control of farm equipment such as remote 

pivot controls that enable control of irrigation systems using a smartphone or a computer to start 

and stop pivots, adjust pivot speeds and monitor system’s location. Additionally, variable rate 

technology can enable farmers to vary watering intervals and amounts for different zones of their 

field by using GPS.   

There are several technological challenges that need to be overcome for effective 

application of precision irrigation decision-support systems. Firstly, in-situ sensors are costly, 

and they can be labor-intensive to install and remove before and after a growing season. They 

provide point specific estimates rather than capturing spatial heterogeneity in the field. While 

satellite-based data can provide data on vegetation conditions they lack the spatial and temporal 

resolution needed for accurate irrigation application decisions. Secondly, the ability to quantify 

plant water stress in the field based on soil conditions is limited because these metrics are not 

able to consider atmospheric conditions. Third, there are large uncertainties and lack of 
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generalizability in the ability of process-based models to predict crop water needs precisely 

within a field (see detailed review in Zhang et al., (2021). As a result, adoption rates of precision 

irrigation technologies have been growing but is still low. By 2013, it is estimated that less than 

10% of farms surveyed used a soil or plant-based moisture sensing device or a commercial 

irrigation scheduling service as a method for deciding when to irrigate. Variable rate irrigation 

technology was used on about 28% of corn acres in 2016 and on 11% of wheat acres in 2009 

(USGAO, 2019). 

Variable Rate Nitrogen Application 

 Determining the right amount of nitrogen to apply at specific locations of a field is 

challenging because it depends on fixed environmental factors, such as soil texture and N 

availability as well as time varying factors such as temperature, rainfall amount and timing. 

Environmental (E) factors, management (M) factors such as planting, and nitrogen application 

dates and genetic (G) factors of corn variety interact in non-linear ways to determine crop 

nutrient needs. To understand crop nutrient response, high spatial resolution data on crop yields 

and combinations of GxExM are needed together with machine learning algorithms, to develop 

generalizable methods for predicting nutrient management practices that vary by G and E at a 

sub-field level. Digital technologies are enabling the implementation of this approach using “big 

data” from millions of acres of cropland to provide the diversity in G, E and M to develop 

agronomic knowledge to respond to sub-field heterogeneity. Data on soil factors, weather 

conditions, canopy health indicators along with machine learning algorithms are being used to 

make fertilizer application recommendations and implemented using VRT. 

Variable rate nitrogen applications can be based on prescriptive information, such as 

historical yield maps or real-time parameters (Khakbazan et al., 2021; Shi et al., 2020) based on 
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remote sensing technologies and other real-time and non-destructive nitrogen detection methods 

(Tang et al., 2018). The latest generations of portable monitors are able to carry different types of 

real-time sensors and obtain remote sensing data accurately and quickly (Lan et al., 2019), but 

this is still at an experimental stage. Remote sensing measurements are affected by temperature, 

illumination, and other field conditions which can restrict the accuracy of the biological 

information that is obtained about crop characteristics. The enormous amount of remotely sensed 

data about crop characteristics at various stages of growth by hyperspectral imagers and Lidar 

sensors require immense computing power and advanced computer hardware in order to rapidly 

process data in real time. Current sensors are still too expensive to be widely applied and this 

limits applications of VRT. 

Reduce Labor Requirements 

 Labor shortages are a major concern in the agricultural sector in the US. About 73% of 

farm labor in the US is foreign born and much of this is seasonal labor and undocumented labor.3 

Tightening immigration laws and declining supply of immigrant workers and domestic workers 

seeking agricultural jobs are creating an increasing demand for automation of agricultural 

operations. Automation can reduce labor costs, allow for faster operations in a given period of 

time, reduce labor fatigue, increase the precision with which farming operations are conducted 

and reduce risks due to uncertainties about labor supply. A promising area for deploying a team 

of robots is for cover crop planting. Utracompact, undercanopy robots can plant cover crops as 

early as August while the annual crop is still in the field and thereby provide sufficient time for 

establishment of cover crops and generation of high biomass. These robots are expected to 

 
3 https://www.asme.org/topics-resources/content/automating-the-risk-out-of-farming 
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require minimal human oversight and eliminate time conflicts with other post harvest field 

operations.  

Non-Chemical Approaches to Manage Weeds  

Conventional herbicides are typically applied before the canopy closes and decisions 

about herbicide application rates are restricted to the early stage of the growing season (i.e., pre- 

and post-emergence of the crop). The resulting spraying threshold is time-invariant and not a 

function of time-varying density of weeds. Small agricultural robots are being designed to drive 

between two rows of crops even after the canopy closes, detect the weeds by their in-built 

cameras, and use “a course bristle on a robot arm” to pull and break the root of the young weeds. 

These weeding robots can be timed to traverse the fields and eliminate weeds before they start to 

spread seeds, and hence, reduce the next generation of weeds. They can also kill late-emergence 

weeds (i.e., weed that emerges after crop canopy closes) and thereby mitigate crop yield loss 

(McAllister et al., 2019). Post-emergence herbicide effectiveness can be limited when weeds are 

too large and when the crop is in later stages of growth. It also depends on environmental 

conditions which influence the absorption of herbicides and potential for crop injury (Livingston 

et al., 2016). Robots can improve weeding efficiency and work long hours in an optimized 

manner with uninterrupted and predictable performance (Uyeh et al., 2021).  In addition, because 

of their size and weight, these robots do not cause soil compaction and erosion. The long-term 

benefits of robotic weeding include the delay of resistance where it has not occurred, reducing a 

key barrier to the adoption of beneficial conservation tillage which can otherwise increase weeds 

and the environmental and health benefits of lower herbicide use (Deynze et al., 2021). 

In the future, robots are expected to play a significant role in precision farming beyond 

weeding by enabling site-specific fertilization, seeding, field diagnosis, and phenotyping. Several 

aspects of robotic technology are still under development, including their navigational 
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capabilities in conditions where row spacing and field conditions are irregular and plants are not 

precisely planted, the ability to operate with high levels of autonomy (without requiring human 

monitoring) and being able to eliminate weeds without damaging the crops (Carrington, 2021).  

 

4. Economic and Behavioral Drivers of Adoption 

Profitability 

The economic incentives to adopt digital technologies are expected, at least in part, to 

depend on their costs and benefits relative to conventional methods of farming. According to the 

threshold model of adoption a risk-neutral farmer is likely to adopt these technologies if they 

increase yield and lower variable input costs and if the net savings in operating profits are greater 

than the annualized costs of adopting the new technology. The extent to which these 

technologies increase yield and lead to input cost savings will vary across locations, crops, crop 

varieties and technologies as well as over time depending on weather conditions. Differences in 

soil, climate and other biophysical characteristics of their farm, the extent of variability in these 

characteristics, farm size, human capital availability and other factors will determine the 

economic outcomes of adoption. These factors affect the extent to which a technology is output-

enhancing and/or input-conserving (Caswell and Zilberman, 1986). 

The effects of technologies that increase input-use efficiency on yields, input-use and 

profits will depend on spatially heterogenous factors such as soil characteristics (slope, nutrient 

content, texture), technology characteristics and input and output prices. Typically, only a 

portion of the applied input is effectively used and the extent to which this is the case depends on 

soil characteristics.  Caswell and Zilberman, (1986) show that efficient irrigation technologies 

are more likely to be adopted in locations with low and quality and when water cost if high. They 

are likely to increase yields in areas where soil quality is low, but they may also increase water 
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use per acre, groundwater extraction and overall water consumption on the farm (Grafton et al., 

2018). While these technologies may reduce applied input use per unit yield, they may increase 

total yields, lead to a switch to more input-intensive crops and make it profitable to expand 

cultivation on non-cropland. Isik and Khanna, (2002) identified that site specific application of 

nitrogen may decrese overall nitrogen application, prevent over-application, and reduce nitrate 

run off to water bodies. However, success of variable rate nitrogen application in croplands rely 

upon the cropland and weather information systems and yield variability data, reduction in their 

uncertainties can potentially increase benefit of site-specific fertilizer application.  

A review of precision irrigation studies in the US shows that quantitative estimates of 

water savings by adopting variable-rate sprinklers range from 10% to 15% compared to 

conventional furrow and entire field surface irrigation using center pivots (Sadler et al., 2005). In 

addition, some studies show benefits of increased harvestable area, lowered disease incidence by 

eliminating water-logged conditions, and reduced leaching of nutrients with precision irrigation 

technologies. Adeyemi et al., (2017) report potential for reaping substantial benefits in terms of 

yield improvements and water savings if optimal irrigation scheduling i.e., the right time and 

quantity of irrigation water to be applied, can be incorporated into current precision irrigation 

management. They argue that existing research has emphasized sensing and control features for 

managing spatial variability in crop and soil water requirements with limited research on 

irrigation scheduling. An upgraded technology that incorporates real-time data on soil, plant, and 

weather for model predictive control can enable appropriate scheduling of irrigation. However, 

yield benefits of precision irrigation depend on soil characteristics and previous irrigation 

management strategies. For example, DeJonge et al., (2007) find their precision irrigation i.e., 



20 
 

automatic application when required by individual grid, to have slightly lower corn yields than 

uniform scheduled irrigation with center pivot system on loamy soils in the US. 

There have been several field experiments in the US to examine the agronomic and 

economic consequences of implementing VRT for nitrogen application. Some studies find that it 

can lead to higher yields and reduced costs compared to uniform application; the extent to which 

this is the case depends on the uniform rate that is applied and the within-field variation in soil 

properties, such as top soil depth (Wang et al., 2003). Other studies do not find similar benefits 

from VRT compared to applying the same amount of fertilizer at a uniform rate (Ferguson et al., 

2002).  

The profitability of using robots for cover crops will depend on the costs of using robots 

for planting cover crops and the benefits they provide in terms of improving establishment of 

cover crops and thereby reducing weeds, improving soil health and crop productivity, compared 

to conventional methods. Using robots for intra-row weeding in both the organic and 

conventional farming reduce herbicide and can mitigate yield losses due to herbicide-resistant 

weeds. The economic benefits will depend on avoided yield damages; these depend on weed 

density (Swinton and King, 1994), frequency with which weeds emerge during the growing 

season (Wu and Owen, 2014), number of days weeds survive in the field (Steckel and Sprague, 

2004), and herbicide resistance level (Livingston et al., 2016). Weeding robots can operate 

throughout the growing season, even after the plant canopy closes, and thus have greater 

effectiveness at killing weeds before they start to cause damage or produce seeds. The cost of 

adopting robotic weed control compared to herbicides will depend on a number of factors such 

as, the cost of robots, then number of robots needed, the level of autonomy of the robot and 

whether robots need to be owned or can be rented from technology providers.  
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Risks and Uncertainties of Adoption 

In addition to the profitability of crop production with alternative technologies, the 

riskiness of those profits can also affect decisions about adoption by risk averse farmers (Just and 

Zilberman, 1983). Risk-averse farmers value higher profits but associate negative benefits to the 

riskiness (frequently measured by variance) of those profits. By providing recommendations for 

input application rates (particularly for inputs such as fertilizer which are risk increasing) based 

on precise and geo-coded information about production conditions on the field and real time 

weather information, digital technologies can reduce the riskiness of production. The extent to 

which this is the case will depend on the ability of digital technologies to provide precise 

information about growing conditions and management responses to observed conditions.  

Uncertainty about the accuracy of precision technologies and risk preferences of farmers can 

reduce the benefits of adopting these technologies for farmers and the environment (Isik and 

Khanna, 2002). High capital and learning costs of adoption and uncertainty about how to 

specifically respond to information about growing conditions can also increase the risks of farm 

operations.  

Uncertainty about the benefits and/or costs of adopting a technology that involves large 

sunk costs and are largely irreversible can affect decisions about the timing of adoption. Digital 

technologies are still undergoing development and improvements and their costs can be expected 

to decline and performance improve with economies of scale in production and learning by 

doing. Increased use of these technologies in the future are likely to improve the accuracy of 

recommendations for site specific management, the effectiveness of weed removal and cover 

crop planting.  In such cases, the literature on investment decisions under uncertainty shows that 

there is a value to keeping the option of adoption at a later date and to delay adoption until the 

expected benefits of adoption are sufficiently higher than the expected costs. Farmers that have 
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high discount rates may be less willing to adopt a technology with high upfront costs and whose 

benefits are uncertain and may be realized over a long horizon (Khanna et al., 2017, 2000). 

Partial and/or Sequential Adoption  

Digital technologies include many components, data acquisition technologies, data 

analysis technologies and precision application technologies, and offer many choices (e.g the 

level of autonomy of equipment). Not all farmers will adopt all components at once or adopt on 

all of their land at the same time. Farmers prefer to customize their adoption decisions to meet 

their individual needs and to adopt on a small portion of their land first as a learning mechanism 

and then expand adoption. Studies show they often prefer to adopt technologies sequentially 

based on risk considerations, supply constraints, and due to a lack of knowledge about their costs 

and benefits (Khanna, 2001). Data acquisition technologies may be adopted first because they 

can inform information management decisions about the benefits of precision application for a 

range of inputs, including fertilizer, herbicides, pesticides, and irrigation. Data analytics and 

precision application equipment is likely to be adopted if the spatial variability in growing 

conditions is large enough to make it beneficial to adopt VRT. Applicative technologies may 

then be adopted more selectively to manage particular management needs. The components 

adopted may also depend on farm size the scale neutrality of the technology. Some technologies 

such as soil sensors are and small robots are scale neutral and more likely to be adopted even by 

smaller farmers while other technologies like VRT equipment if more likely to be adopted by 

larger, more experienced and innovative farmers with greater human capital skills. Weersink and 

Fulton, (2020) describe the agricultural technology adoption process as a multi-stage process 

including information awareness, non-trial evaluation, field experimentation, initial adoption, re-

evaluation, and eventual continuity or disadoption. The factors that affect each of the stages of 

adoption differ: profitability is important determinant in the later stages of adoption whereas 
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social and cognitive considerations are more important in early stages of adoption since novel 

technology requires adaptation and acclimatization with initial costs prohibiting positive net 

returns initially. Trialability is also important in the learning process to reduce high uncertainty 

associated with adopting a novel agricultural technology (Chavas and Nauges, 2020). Learning 

from extension agents, input providers, neighbors (peers), and virtual social networks play a 

strong role in the initial assessment and selection of a new agricultural technology (Norton and 

Alwang, 2020). Adoption is not a single discrete choice decision, instead farmers can decide on 

how many acres they can adopt. They may also be able to adopt components sequentially. On-

farm trials is one way for farmers to learn about the benefits of adoption and adopt gradually.  

Behavioral Preferences and Non-Economic Drivers 

Socio-psychological characteristics   

There is a growing literature going beyond profit or utility maximization as motives for 

adoption by economic agents to examining the role of socio-psychological factors in explaining 

the innovation adoption and diffusion process. Pannell et al., (2006) note that adoption occurs 

when the landholder perceives that the innovation in question will enhance the achievement of 

their personal goals, that include economic, social and environmental goals. Tey and Brindal, 

(2012) found that farmer’s perception of perceived profitability of using precision agricultural 

technology and intention to adopt these technologies play an important role in the adoption 

decision. Various behavioral preferences of farmers, such as their risk-attitudes, environmental 

consciousness, information awareness have also been shown to affect technology adoption 

(Prokopy et al., 2019). Socio-psychological factors like perceived response efficacy or a belief 

that adopting an additional practice makes a difference to environmental quality (Wilson et al., 

2014); subjective norms or the perceived social pressure from peers to behave accordingly i.e., 

farmers' perceived social pressure to apply fertilizer on the basis of soil test results as their 
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neighbors (Zhang et al., 2015); perceived control or the control on extent of adoption and 

management skill i.e., ability to undertake a practice that has potential for nutrient loss reduction 

(Doran et al., 2020); and, perceived sources or the degree to which farmers perceive they have 

access to necessary resources i.e., finance, labor, time, farmer networking, and extension 

consultant (Daxini et al., 2019), are also important determinants of adoption behavior4.  Pathak et 

al., (2019) note that studies analyzing the adoption of precision agricultural technologies have 

typically not considered the multidimensional and complex nature of the adoption process. 

Farm Characteristics  

Shang et al. (2021) conducted an extensive review of studies that focused on non-

economic determinants of decisions to adopt digital farming technologies5. They found a 

significant effect of farm characteristics, including, biophysical conditions, such as land quality 

and spatial variability in land quality, and use of complementary technologies (for example, 

probability of adopting yield mapping technology increases if farmers have already used a VRT 

(Isgin et al., 2008). Land and livestock ownership also influence technology adoption, 

particularly if the precision technology requires investment which is attached to the land itself 

(such as precision irrigation) (Moreno and Sunding, 2005; Fernández Lambert et al., 2015).  

Farmer Characteristics  

Familiarity of operators with computer use in farm management make them comfortable 

in using and adopting digital technologies (D’Antoni et al., 2012). Other farmer characteristics 

like off-farm income and farming experience could influence digital technology adoption. For 

 
4 These studies analyzed likelihood of adoption of BMPs for reducing nutrient loss and restoring water quality 
including cover cropping, strip cropping, conservation tillage, soil testing to determine fertilizer requirements, 
variable rate fertilization application, and recommended dose and timing of fertilizer application. 
5 They provide quantitative impacts wherever possible with statistical significance of several factors under each of 
the six broad categories i.e., farm characteristics, operator characteristics, interactions, institutions, technological 
attributes, and psychological factors, on PAT adoption. 
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example, Schimmelpfennig, (2016) find significant impact of off-farm income on  adoption of a 

bundle of technologies (yield monitor, GPS, and VRT) whereas Asare and Segarra, (2018) find 

farming experience has a positive impact on georeferenced grid soil sampling technology 

adoption. Using debt and asset ratio as a measurement of risk preference, Isgin et al., (2008) find 

that famers with a higher risk bearing capacity tend to adopt more precision agricultural 

technologies. As novel farming technologies involve more uncertainty than traditional ones, 

research has highlighted the importance of not only risk aversion (Marra et al., 2003) but also 

loss aversion and ambiguity aversion (Barham et al., 2014) and subjective view of risk (Liu 

2013) in determining their potential adoption.  

Technological Attributes 

Attributes such as relative advantage (or perceived net benefit), complexity, compatibilty, 

and trialability are important determinants of digital technology adoption (Adrian et al., 2005). 

Pannell et al. find that  innovations are more likely to be adopted when they have a high ‘relative 

advantage’ (perceived superiority to the idea or practice that it supersedes), and when they are 

readily trialable (easy to test and learn about before adoption). Shang et al., (2021) emphasize the 

effect of concerns about data safety on digital technology adoption decision since famers are 

concerned with potential misuse of digitally gathered data by technology service providers. 

Additionally, adoption can be constrained by the lack of proper user interface leading to 

difficulty in use, limited access to information and technical assistance (Zhang et al., 2021). 

Interaction and Information Source 

Access to information about the technology also influences adoption decisions. The effect 

of extension services, technology providers and equipment providers has been found to have 

mixed effects depending on farmer belief in usefulness of the information and their trust in it. 

Weber and McCann, (2015) find that practices to increase N use efficiency i.e., N soil testing, 
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plant tissue testing, and N transformation inhibitors, were less likely to be adopted by farmers 

receiving no N fertilizer recommendations compared to the ones receiving recommendations 

from a crop consultant. They also find that N soil testing and plant tissue testing were less likely 

to be adopted by farmers receiving N recommendations from fertilizer dealers compared to the 

ones receiving no N fertilizer recommendations which suggests the impact of source of 

information on adoption.  

Effect of Networks and Spillovers 

Studies have generally found positive influence of adopters within a social network on 

acceptance of a novel technology (Bandiera and Rasul, 2006). Information shared by adopters 

amongst individuals within a social network influences potential adopters to initiate 

experimentation and proceed further based on gathered experience. At the same time it is found 

that having many adopters in the network increases incentives to delay adoption strategically and 

free ride on the knowledge accumulated by others i.e., social effects are positive when there are 

few adopters in the network, and negative when there are many. Innovation diffusion in 

agriculture creates both the knowledge (information) and environmental (externality) spillovers 

which create feedback effects in determining technology adoption in the neighborhood. Even 

though there are spatial and temporal connectedness among these spillovers, technology 

diffusion models in agriculture have rarely addressed these impacts for coordinated decisions 

among farmers (Lewis et al., 2011). Few studies have examined the spatial spillovers in adoption 

decisions (the effect of technology adoption decision on one’s neighbors) or temporal spillover 

impact (the effect of technology adoption on an individual’s likelihood of subsequently adopting 

other technologies in future (Turinawe et al., 2015; Wollni and Andersson, 2014). Wollni and 

Andersson (2014) find the likelihood of adopting organic farming increased as a result of 

information spillover from the neighborhood. Similarly, Turinawe et al. (2015) find that the 
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probability of adoption of soil and water conservation technologies increased if neighbors 

adopted similar practices.  

Other Considerations 

Enabling technologies, such as adoption of computers, electronic communication 

methods and access to high-speed internet are needed to achieve the full utilization of digitally-

enabled precision technologies (Khanna, 2020). Monitoring and sensing technologies require 

computers and GPS-based mapping of yield and soil data, unmanned aerial vehicles or drones, 

and remote soil sensors that generate real-time data on soil nutrient levels. Auto-steer systems 

are driven by satellite based guidance systems and paired with telematics, or the real-time data 

collection for machine and harvesting efficiency management. Information generated by 

precision technologies can then be transmitted via short-range wireless or WiFi technologies 

(which are more efficient than a manual transfer of collected data) to cloud-based farm data 

management systems for further analysis. 

Dependable and high-speed internet connectivity are critical for wireless data transfer for 

uploading and downloading data from the field, for operating auto-steer and VRT and for two-

way wireless data transfer between farmers and aggregators. Internet connectivity and access to 

computers is not yet universal even in the US; only 26% of rural Americans had access to high-

speed fixed service in 2017 (LoPiccalo, 2021). Broadband adoption is not homogenous across 

farms. Larger farms, farms further upstream (e.g., feed suppliers) and those with international 

operation are more likely to adopt the Internet and engage in e-Commerce. Other factors that 

contribute to broadband adoption include farmer age and educational achievement, family size, 

and previous exposure to computers and the Internet.   

Farmers purchasing these services need to share their farm data about crop management, 

input-use, yields and so on, with the precision farming service provider. This creates concerns 



28 
 

about data ownership, privacy and confidentiality and these can create a barrier to adoption in the 

absence of clarity on these issues. Adoption of digital technologies requires trust in the precision 

technology service providers to protect data and to provide recommendations that will increase 

profitability of the farm and reduce its riskiness. It also requires farmers to overcome concerns 

about data privacy and confidentiality. Landowners that adopt digital technologies are also likely 

to have less control on their farm operations based on their expertise and previous experience on 

their farm since these technologies require recommendations for farm management from 

technology providers based on data from multiple sources and farms.    

 

5. Directions for Future Research: Assessing Ex-Ante Determinants of Adoption and 
Diffusion of Digital Technologies 

The sections above described the insights obtained from the technology adoption 

literature on factors likely to affect the adoption of digital technologies. Much of this literature 

has conducted farmer surveys to examine the ex-post determinants of their decision to adopt 

digital technologies for crop production (see reviews in Shang et al., 2021). These studies 

typically analyze the discrete decision to adopt existing digital technologies based on farm and 

farmer characteristics, technology characteristics, institutional factors and behavioral factors. 

Insights provided by these studies can be limited because of their static nature and because 

technologies  evolve and improve rapidly. To understand the likely drivers of adoption of new or 

evolving digital technologies that are yet to be commercially available or adopted on a large 

scale, ex-ante analysis is needed. This can be used to examine the determinants of farmer 

willingness to adopt or willingness to pay for digital technologies that are still under 

development. Additionally, systems analyses can be used to examine the mechanisms that will 

lead to diffusion of new digital agricultural technologies in a region consisting of many 
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heterogeneous farmers that interact with each other and with the technology and their 

environment in a manner that evolves over time. We now briefly discuss the methods for 

conducting ex-ante analysis of adoption and diffusion decisions. 

Methods for Analyzing Ex-Ante Adoption Decisions 

Stated preference methods, specifically contingent valuation methods and choice 

experiments, can be used to determine a farmer’s hypothetical willingness to adopt digital 

technologies. These are useful approaches to examine farmers' heterogeneous preferences for 

new agricultural technologies that lack market data or are not widely adopted (Blasch et al., 

2020). They can be used to analyze the effects of heterogeneity in non-pecuniary factors like 

farmers' perceptions, attitudes, environmental effects, and technology attributes on likely 

adoption choices  (Khanna, 2020).    

Comparative studies have shown that when they are well-designed, stated preference 

methods reveal preferences and willingness to pay estimates that are incentive compatible (Lusk 

and Schroeder, 2004). The contingent valuation method requires potential adopters to state their 

willingness to pay for a technology or their willingness to accept an incentive payment to 

purchase it (Merino-Castello, 2003). Methods for eliciting this willingness can be through open 

ended questions about willingness to adopt or pay for a product or referendum-style questions 

about whether or not a respondent would adopt a technology or pay a pre-set amount for it. 

Respondents are typically presented with a technology with given attributes. As a result, 

contingent valuation methods are limited in their ability to elicit information about adoption 

decisions for complex digital technologies with many choices of features and components. 

Therefore, they do not allow assessments of the relative importance of multiple attributes in 

influencing the adoption decision. Moreover, the analysis of respondent's behavior is static (Le 

Pira et al., 2017).  
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In contrast choice experiments allow respondents to choose among bundles of technology 

attributes and related performance outcomes, at pre-specified prices. A choice experiment involves 

choosing the most preferred option relative to the other options which includes the status quo 

(Merino-Castello, 2003). Choice experiments mimic actual market behavior where various 

dimensions of the attributes are considered and provide estimates of willingness to pay for a 

technology that are consistent with welfare economic theory (Champ et al., 2017). The levels of 

multiple attributes can be varied across the bundles presented to the respondent and this enables 

assessment of the willingness to pay estimates associated with individual attributes and assessment 

of the relative importance of multiple attributes. Moreover, a choice experiment can be designed 

to account for interaction effects among attributes and estimate the trade-offs that respondents are 

willing to make between attributes.  As such, the willingness to pay estimates from a choice 

experiment can reveal that potential adopters of a multifunctional digital technology might be 

willing to pay for two complementary attributes presented together more than they are willing to 

pay for the sum. Conversely, if potential adopters perceive attributes as substitutes, results from a 

choice experiment can reveal that they will pay less for a technology that has two attributes 

presented jointly than for the sum of each one individually.  

Limitations of choice experiments include the possibility of strategic behavior, 

hypothetical bias and cognitive difficulty faced by respondents when examining the complex 

tradeoff between different sets of attributes. Too many choice attributes will lead to the cognitive 

difficulty that potential adopters may use decision-shortcuts (heuristics) which do not reflect their 

preferences (Champ et al., 2017). Focus group meetings can play a vital role by providing 

information about the attributes that are important to farmers when considering adopting a digital 

product or service. Focus groups are also important to identify the levels of the attributes that are 
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relevant for farmers. Another limitation of welfare estimates derived from choice experiments is 

measurement error if attributes and their levels are not presented in accurate, measurable, and 

interpretable terms (Schultz et al., 2012). For example, describing a technology attribute related to 

data safety, compatibility, or learning time in a way that is relatable to farmers, scientifically 

accurate, and measurable by the researcher might be challenging. Despite their advantages, choice 

experiments are limited in their ability to capture the dynamic nature of preferences and adoption 

decisions and their ability to be informative about technology diffusion across groups of farmers. 

However, these limitations can be overcome when choice experiments are dynamically integrated 

with system-level models, described below.  

Agent-Based Models 

 One of the approaches for going beyond individual farmer-level adoption decisions to 

modeling adoption and diffusion of new technologies among heterogenous farmers is using agent-

based models (ABMs).  ABMs can capture system-level outcomes that result from interactions 

among autonomous heterogenous agents and interactions between each agent and their 

environment. ABMs differ from standard neoclassical economic models in that agent decisions do 

not need to be driven by a single objective of maximizing profit or utility nor do they need to be 

rational, as defined by neoclassical economic theory. Standard economic models analyze static 

adoption decision but not the process of diffusion through adopter groups, innovators, early 

adopters, early majority, late majority, and laggards (Rogers, 2010). These models also do not 

explicitly represent direct interactions among agents, the effects of neighbors’ information, or the 

role for non-economic behavioral and psychological factors like attitudes and subjective norms. 

With ABMs, researchers can analyze the effects of agent interactions with their neighbors or within 

their social network and interactions with their environment. As a result, these models can 
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represent how landscape-level outcomes such as adoption and diffusion of new technologies can 

emerge from agent-level interactions. A review of the literature by Shang et al., (2021) shows that 

ABMs are yet to be applied to study adoption and diffusion of digital agricultural technologies. 

The authors also note that current agricultural ABMs applied are not based on empirical farm-level 

evidence. Huber et al., (2018) also note the need for future agent-based models to incorporate 

empirical data on farm or farmers' characteristics and farmers' heterogeneous preferences.  

There are at least three promising ways to integrating evidence from farm choice 

exoeriment surveys in ABMs of ex-ante farmer adoption of digital technologies. In the first, the 

econometric models used to analyze choice data can be used to specify the probability that farmer-

agents adopt a technology (e.g., Gatta et al., 2020). In the second, the econometric model parameter 

estimates can be used to specify the utility of agents adopting a technology (Le Pira et al., 2017). 

In the third, the welfare estimates from the choice experiment results can be used to compare the 

WTP of each farmers-agent with the cost of the technology so that adoption takes place when WTP 

exceeds costs. In order to model the effect of agent heterogeneity on adoption, researchers can 

include interaction effects of the status quo variable or the price variable with individual 

characteristics (e.g., Huang et al., 2007) or environmental variables, or use latent class models to 

identify heterogeneous groups of agents from surveys (Holm et al., 2016). The agent decision 

criterion – the probability, the utility, or the WTP – can be explicitly modeled as a function of 

fixed and dynamic individual characteristics, environmental variables, and behavior of other 

agents. As such, the decision to adopt can take into account agent heterogeneity and be 

dynamically updated as a function of changing socio-ecological determinants such as the action of 

neighbors and the stock of a biological organism relevant to the technology (e.g., weeds). Together, 

individual decisions to adopt and their connectedness of agents either socially or through 
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environmental factors, lead to system-level outcomes such as technology diffusion and economic 

and environmental outcomes that could not be represented using standard economic models alone.   

 6. Conclusions 

 This paper examines the imperative for digital technologies to enhance the economic and 

environmental sustainability of agriculture in the US. We discuss ways in which these 

technologies can increase effectiveness and lower labor costs of  site-specific management of 

crops, weed control and improvements in soil health. The capabilities of digital technologies are 

developing rapidly and their costs are expected to decline in the future. These technologies have    

The existing literature has examined the drivers of adoption of new technologies by farmers and 

of earlier generations of precision technologies. This literature shows that adoption of these 

technologies will depend on both economic and behavioral drivers as well as on policy 

incentives that reward farmers for providing ecosystem services. While it provides insights that 

are applicable to the emerging digital technologies, future research is needed to examine ex-ante 

willingness to adopt these emerging technologies that may differ considerably from existing 

precision technologies. Choice experiments provide an appropriate approach to examine the 

technology attributes and performance features and behavioral factors that are likely to induce 

adoption and the trade-offs farmers are willing to make among these features. These can be 

combined with ABMs to go beyond individual farmer-level adoption decisions to modeling 

adoption and diffusion of new technologies among heterogenous farmers in a region.  
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