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In order to improve the efficiency of climate change initiatives China launched its
national carbon market in December 2017. Initial CO2 quota allocations are a matter
of significant concern. How should we allocate CO, emissions reduction responsibil-
ities among Chinese provinces, assuming that provinces will not or cannot trade these
responsibilities among themselves? In this paper, we allocate CO, quota from the
perspective of cost minimisation. First, we estimate the national CO, marginal
abatement cost (MAC) function and deduce the interprovincial MAC functions.
Second, we build an allocation model with nonlinear programming for cost
minimisation. Finally, we obtain the allocation results under the emissions reduction
target by 2030. The results are as follows. (i) The national MAC was 134.3 Yuan/t (at
the constant price of 1978) in 2011, with an overall upward trend from 1990 to 2011.
(i1) The interprovincial MACs differ significantly and decline gradually from east to
west. Hebei has the largest emissions reduction quota, and Shandong has the largest
emissions quota by 2030. (iii) Compared with other criteria of per capita, gross
domestic product (GDP), grandfathering and carbon intensity, the proposed
approach is the most cost-effective in achieving the reduction target, with cost savings
of 37.7, 34.5, 47.9 and 33.87 per cent, respectively.

Key words: Chinese national carbon program, CO, quota allocation, interprovincial
differences, marginal abatement cost.

1. Introduction

Global climate change is one of the most critical challenges for human beings’
sustainable development. As a cost-effective means of reducing CO,
emissions at the lowest cost, carbon markets have been receiving increasing
attention from academics and governments alike. As the world’s largest CO,
emitter, China has been making unremitting efforts to reduce its CO,
emissions. In 2009, it set the goal of decreasing its carbon intensity, defined as
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CO, emissions per gross domestic product (GDP), by 40-45 per cent by 2020
compared with 2005. Furthermore, in 2015 the Chinese Government
committed to reducing the carbon intensity by 60-65 per cent by 2030
compared with 2005. To achieve these goals, China formally launched its
national carbon market. This national trading program will assign emissions
budgets across provinces. CO, quota allocation is a key part of building the
carbon market (Zhou and Wang 2016). Therefore, determining how to
allocate the CO, quota fairly and reasonably is one of the focuses of academic
research.’

Previous studies have concentrated on the allocation principles and
methods of emissions quota allocation. The proposed principles can be
broadly classified into two categories: fairness; and efficiency. Some
fairness criteria are proposed and applied in the study of CO, emissions
quota allocation (Rose 1990; Rose and Stevens 1993; Rose er al. 1998;
Ringius et al. 2002; Wei et al. 2014; Zhou and Wang 2016), include
egalitarianism, historical responsibility, sovereignty, ability to pay, and
vertical and horizontal equity. The efficiency principle aims at getting the
lowest abatement cost and maximum revenue under the target of emissions
reduction, using three criteria: carbon intensity (Den Elzen e al. 2003);
cost-effectiveness (Okada 2007; Cui ef al. 2014); and input—output
efficiency (Feng et al. 2015; Miao et al. 2016). The allocation methods
can be generally divided into three types: indicator, optimisation and game
theory. The indicator methods include single and comprehensive indicator
methods. The single indicator methods include GDP (Rose 1990; Rose
et al. 1998), population (Baer et al. 2000; Ding et al. 2009), the historical
CO, emissions (Grandfathering) (Bohringer and Lange 2005), outputs
(Bohringer ef al. 2014) and carbon intensity methods (Den Elzen et al.
2003). Triptych (Hof and Den Elzen 2010) and multicriteria decision
analysis (MCDA) (Yi et al. 2011; Wei et al. 2012; Ni et al. 2015) are the
two main comprehensive indicator methods. Compared with the single
indicator method, the results via comprehensive indicators can be more
acceptable for the emitters, since in this case, they can integrate multiple
criteria. Various operation research models are used as optimisation
methods to allocate CO, allowances, including linear or nonlinear
programming (Tehrani 2007; Xu et al. 2015) and data envelopment
analysis (DEA) (Feng et al. 2015; Miao et al. 2016; Wang et al. 2016).
Furthermore, game theory has been introduced in exploring the optimal
allocation mechanism especially under asymmetric information (Helm
2003; Mackenzie et al. 2008). Although allocation of tradable allowances
does not determine their pattern of use, generally, the CO, quota
allocation results obtained using the various methods are different. As a
market mechanism, in theory, the carbon market can deal with global

! See Kampas and White (2003) and Cadarso ef al. (2010) for applications to agriculture
and freight transport.
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climate change with the least cost. Thus, the cost minimisation method has
gradually become a common trend for CO, quota allocation (Okada 2007;
Li et al. 2010; Cui et al. 2014; Miao et al. 2016).

The MAC function is the basis of the cost minimisation method. There
are three methods for estimating the MAC of a country or province. The
first method is the computable general equilibrium (CGE) model. The
CGE model estimates the MAC by using the CO, shadow price, which is
obtained by changing the constraint of CO, emissions. The CO, shadow
price can reflect the MACs under different abatement levels (Kesicki and
Stranchan 2011). Furthermore, this method can be classified into three
solutions: the ‘bottom-up’; ‘top-down’; and mixed models. The partial
equilibrium ‘bottom-up’ models, such as MARKAL (Tsai and Chang
2015), LEAP (Pan et al. 2013) and POLES (Criqui et al. 1999) design
simulations for the cost of related technology and CO, emissions. They
focus on the interrelationships between the energy and economic sectors.
The ‘top-down’ models, such as EPPA (Ellerman and Decaux 1998) and
DICE (Nordhaus 2014), describe the economic sectors elaborately using
CGE models. The mixed models, such as NEMS (U.S. EIA., 2015), not
only consider the relationships between different sectors embedded in the
‘top-down’ models but also integrate the characteristics describing the role
of technology as accurately as possible, just like ‘bottom-up’ models.
However, it is difficult to build these models and reach an exact conclusion
without complete and high-quality data.

The second method is the data envelopment analysis (DEA) model. The
main idea is to obtain the CO, shadow price estimated by directional distance
functions. There are two ways to find the shadow price. One is the parametric
approach, which needs to calculate the distance functions (Fare et al. 20006).
The other is the nonparametric approach (Choi et al. 2012; Yao et al. 2015;
Wang et al. 2016), which constructs a production possibility set in the DEA
model without setting the form of the distance function. The direction
distance function makes it more suitable for measuring the environmental
performance and shadow price.

The third method is the engineering—economic methodology where
engineering estimates of performance are linked in a market mechanism.
Wei and Rose (2009) estimated the marginal energy conservation cost in
China using the data of investment in energy conservation from 1981 to
2002. The authors explicitly point out that initial allocation will not change
the pattern of use when trading is possible. Zhou et al. (2013) developed the
Chinese interprovincial MACs in the quadratic function based on the Wei
and Rose method.

While CGE models have been generally adopted to estimate MAC,
designing simulations in CGE models need more complete data, which
aims at obtaining the relationships across economic sectors. Generally, the
DEA models do not consider technology advancement, which results in
the transformation of production frontiers. In this paper, we intend to use
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the third method (i.e. the engineering—economic methodology) for the
following reasons. First, compared with the CGE models, this method is
less complicated and easy to implement. It does not necessarily profile the
interplay between the different sectors. Second, the MAC is estimated
indirectly by specifying the CO, shadow price instead of in a direct way as
in the models above. The macro-investments are closely related to the
costs of emissions control. Therefore, it is appropriate to use the macro-
investments data to directly estimate the MAC with straightforward
economic implications. More importantly, the engineering—economic
methodology can provide robust results as demonstrated in the empirical
analysis below.

We examine the distribution of costs for CO, abatement across Chinese
provinces and identify the consequent cost-effective allocation of emissions
(quotas) across provinces. The motivation is that, in practice, the Chinese
national government is designing a carbon trading program that assigns
emissions budgets among the provinces, and provinces have the opportunity
to use markets to achieve their emissions outcomes. In future, provinces
may have the opportunity to link their programs.

The aim of this study was to allocate the CO, quotas for the 30 provinces in
China from the perspective of cost minimisation. The research objective lies
in estimating a marginal abatement cost measure across regions, and then
into applying an engineering method of the ‘nonlinear programming’ model
to minimise the total national abatement costs. The research question was
framed as follows: What is the most cost-effective allocation of emissions
across Chinese provinces from the viewpoint of the national emissions
reduction goal, assuming within-province cost-effective implementation is
achieved?

The main contributions are twofold: (i) we estimate the national MAC with
the engineering—economic methodology and deduce the interprovincial MAC
functions; and (i1)) we build a cost minimisation model under the national
reduction target by 2030 with nonlinear programming to obtain the CO,
emissions reduction for each province. Meanwhile, we verify that the
proposed method is the most cost-effective compared with other criteria.

The rest of the article is organised as follows. Section 2 introduces the
method. Section 3 describes the data and its sources. Section 4 provides
results and discussion. Conclusions and policy implications are put forward
in Section 5.

2. Methodology

2.1 Estimating the national MAC function

Inspired by the approach of Wei and Rose (2009), which is used to estimate
the marginal energy conservation cost, we improve it to estimate the
marginal cost of CO, emissions control. The abatement cost in a CO,
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emissions reduction project is the sum of the capital cost and the operating
cost. The operating cost is only incurred by the running of the emissions
reduction project and the operation of equipment. Once the project ends,
there are no operating costs. Thus, it is usually estimated on an annual
basis. The capital cost tends to happen at the beginning of the emissions
reduction project. It can be converted into a capital recovery cost by
discounting for each year in the lifetime period (Park 2015). The sum of the
annual capital recovery cost and the operating cost is often called the
equivalent annual cost. Therefore, the total abatement cost of the emissions
reduction project is equal to the sum of the equivalent annual cost in the
lifetime period. As the global benchmark for carbon markets, we refer to
the crediting lifetime decision rules of clean development mechanism
(CDM) projects’ — any CDM project can choose a lifetime of either
10 years with no revalidation allowed or 7 years with the option of
revalidating twice (UNEP 2002) — and we determine that the average
lifetime of the emissions reduction projects in China is 10 years to avoid
tedious calculation.® Therefore, the total abatement cost, TC,, is expressed
as:

10 10
TC,=>» EC =) (RC+OC) (1)
=1

t=1

where EC,, RC, and OC, are the equivalent annual cost, capital recovery cost
and operating cost in a year ¢, respectively. Operating costs are taken to be a
fixed share of capital recovery costs.*

Given the present value of the capital 7, and investment rate r, in a year f,
we can calculate the capital recovery cost RC, by the following function:

Ly

RC, = — "
()

(2)

The operating cost, OC,, including the management cost, wage and benefit,
materials cost and other costs, is expressed as:

OC, = 1% RC, (3)

where / is the total percentage of the management cost, wage and benefit,
materials cost and other cost accounts for the capital recovery cost, RC,.

2 CDM projects are used to estimate a marginal abatement cost for each province, as they
best reflect in the world the cost and technological opportunities for emissions reductions.

3 This 10-year assumption represents actual investment horizons in the CDM.

4 These cost calculations provide an estimate of the amount of money spent on compliance.
They can be seen as a proxy of the correct measure of true total abatement costs, lost profits to
the firm or, more broadly, lost social surplus.
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CO, emissions reduction is measured in comparison with the base year.
TR, is the emissions reduction in the year  compared with the base year .
GDP, is the gross domestic product in a year ¢, which is calculated at the
constant price. e, and e, are the carbon intensity, defined as the CO,
emissions per GDP in the year ¢ and #,. The emissions reduction TR, is
defined by:

TR[7t0 — GDPt(e[O - e,) (4)

TR,, consists of several sources of emissions reduction caused by
fundamental factors. We assume that the innovations and updates of energy
conservation and CO, emissions reduction technology dominantly promote
CO, emissions reduction. We intend to take into account the other important
factors, such as industrial structure adjustments and carbon sinks, as well. We
define direct emissions reduction as that which is only caused by technology
and indirect emissions reduction as that which is caused by factors other than
technology. Thus, direct emissions reduction, R;,, is discounted by the
discount coefficient /; based on TR, :

RIJO - hI‘TRl‘,lo (5)

We calculate the national CO, emissions, E;, through the consumption of
three fossil primary energies: coal; oil; and natural gas. Let K; be the
reduction ratio, computed as the percentage that emissions reduction
accounts over the sum of CO, emissions and emissions reduction. MAC, is
defined as the result of dividing the abatement cost TC, by the direct
emissions reduction Ry ;. Thus, E,, K, and MAC, are expressed as,
respectively:

Et — (kcoaNcoat + koilNoilt + knagNnagt) X 44/12 (6)
Ry,
K =t 7
"TE+R f0 )
TC
MAC, = — (8)
R

where Neoar, Noiie and Np,e are the consumption of coal, oil and natural gas
in a year ¢, respectively. Ko, koit and ky,, are the carbon emission coefficients
for coal, oil and natural gas, respectively.

Moreover, we calculate the provincial CO, emissions, EY, through the
consumption of seven fossil energies: coal; coke; gasoline; kerosene; diesel;
fuel oil; and natural gas:
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E[t? = (kcoaNcoat + kcok Ncokt + kgaso Ngasot + kkerNkert + kdie Ndiet + kfue Nfuet
+ knag Nnagt) % 44/12 9)

where Neokt, Neasots Nkerts Ndiet and Ny, are the consumption of coke,
gasoline, kerosene, diesel and fuel oil in a year ¢, respectively. Keok, Kgaso> Kiers
kaqic and kg, are the carbon emission coefficients for coke, gasoline, kerosene,
diesel and fuel oil, respectively.

Inspired by Nordhaus (1991), we define the national MAC function as:

MAC = B, + f,In(1 — K) (10)

where K is the emissions reduction ratio. Once ﬁ , and ﬁz have been estimated”,
we can obtain the national MAC function.

Notice the national MAC estimation is successfully obtained throughout
the engineering—economic methodology. However, it is difficult to estimate
the provincial marginal costs function independently by the engineering—
economic methodology due to the limited availability of the primary data on
provincial investments in emissions reduction.

2.2 Deducing the interprovincial MAC functions

The relative marginal abatement costs of the provinces depend on the extent
to which the emission intensity of a given province is greater than or less than
the national emission intensity. Hence, we assume that MAC depends on
emission intensity and, in particular, that local MAC varies only with the
difference of local carbon intensity from national carbon intensity (Bohm and
Larsen 1994; Okada 2007). This approach is general and nonconfined to
cooperative games. Besides, it can inform about the methodological choices
made in this paper.

To deduce the interprovincial MAC functions, as shown in Figure 1, the
MAC function is plotted by the emissions reduction ratio K on the horizontal
axis and MAC on the vertical axis. x; is the value of the emissions reduction
ratio K; of the province i. e is the national carbon intensity and e; is the
carbon intensity of province i.

If the carbon intensity, eg, of the province L is lower than e, the MAC of
this province is higher than that of the nation. Thus, its MAC curve starts at a
point KY in the first quadrant, which is steeper than the zero point and

5 Nordhaus (1991) proposes the function of MAC: MAC =y + 5 In (1 — K). As a result,
he estimates the MAC function of the United States : f/; = —4.12 and f, = —185.2. We use this
function to estimate the MAC function of China here. It should be noted that the variables
MAC and K are both time series, and the autocorrelation problem may result in an unbiased
but inefficient estimator by ordinary least square (OLS) regression. Thus, it is necessary to
carry out the autocorrelation tests after OLS regression, for example Durbin—Watson (DW)
and Breusch—Godfrey (LM) tests. Then, regression of the Newey—West or FGLS should be
carried out if there is an autocorrelation problem.
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A
MAC
MAC 4
—>
0
K, K,
Province with lower carbon intensity
MAC 0 (Nation) K
0 >
K H K H
Province with higher carbon intensity

Figure 1 The curves of national and interprovincial MAC.

extends along the nation’s curve. There is a relationship between ¢; and e:
xr =1—%, and x; > 0. On the contrary, if the carbon intensity, ey, for the
province H is higher than e, the MAC of this province is lower than that of
the nation. Its MAC curve starts at a point K%, in the third quadrant, which is
flatter than the zero point and extends along the nation’s curve. The
relationship between ey and eis: xy = 1 —*Z, and x; < 0. In brief, the MAC!
of any province iis expressed as:

. Kz
MACI(KZ) = MAC(K, -+ Xl') — MAC(X,) = ﬁz 11’1(1 — 1

) (1)

i

Additionally, the tqtal abatement cost for the province i, (', is obtained by
integrating the MAC' of the emissions reduction ratio in [0, K]:

C(K) /MAC’( )k — ﬂz[ln(l—lK W1—xi—K)+K]  (12)

_xl

2.3 CO, quota allocation model: A nonlinear programming approach

A nonlinear programming model for CO, quota allocation was developed to
minimise the sum of the abatement costs for n provinces under the national
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CO, emissions reduction target:

n K
in7C = —B,[In(1 = —(1 —x;, — K;) + K;
min7C =3 ~falln(l — 2 ) (1 — i~ K) + K]
n 13
R—R (13)
S.t.{ =1
0<K;<l1

where TC is the sum of the abatement costs for n provinces, and R and R; are
the national and interprovincial emissions reduction in target year f
compared with the base year, 7,. Thus, K; can be solved by the nonlinear
programming method.

3. Data

In this study, the GDP, investment, and abatement cost are calculated at the
constant price of 1978. However, we do not consider Tibet, Taiwan, Hong
Kong, and Macao due to unavailability of data. The data are specified as
follows:

1. CO; emissions reduction target: In 2009, China set the goal of reducing its
carbon intensity by 40 per cent from 2005 levels before 2020. Further-
more, the Chinese Government announced explicitly in 2015 that the
emissions reduction target by 2030 is to reduce the carbon intensity by
60-65 per cent compared to 2005. Thus, we select 60 per cent as the 2030
emissions reduction target.

2. Investments: The investments in technical updating and transformation of
energy saving during 1980-2002 and 2003-2011 are collected from the
China Statistical Yearbook (1981-2003) and the Annual Review of Low-
Carbon Development in China (2011), respectively.

3. Energy consumption: The consumption of coal, oil, and gas in 1980-2011
is collected from the China Energy Statistical Yearbook (1981-2012).

4. Population and GDP: The nation’s population and GDP during the period
1980-2014 are taken from the China Statistical Yearbook (1981-2015).
The population and GDP of China are expected to increase at an average
annual growth rate of 0.48 and 4.5 per cent, respectively. Meanwhile, we
calculate the population and GDP of each province by 2030 through the
population and GDP proportion of each province in 2013, respectively.

5. Investment rates: The annual investment rates during the period 1980—
2011 are from the Almanac of China’s Finance and Banking (1981-2012):
5.04 per cent from 1980 to 1981, 6.48 per cent from 1982 to 1984, 7.92 per
cent in 1985, 10.08 per cent from 1986 to 1989, technical renovation
investment rates from 1990 to 1995 and lending rates for the medium to
long term more than 5-year rates in fixed assets from 1996 to 2011. If the
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rate in one year changed several times, we set the average of the changed
rates in this year as the annual investment rate.

6. Referring to CDM projects as the global carbon market benchmark: We
estimate that the average percentage of the management cost, wage and
benefit, material cost, and other cost accounts for the capital recovery cost
are 15, 5, and 19 per cent, respectivelyé; thus, the sum of the percentages /
is 39 per cent. According to Tian ez al. (2014) and Zhang et al. (2014), the
discount coefficient /4, is set as 90 per cent during the period 1990-1998
and 87.5 per cent during the period 1999-2011. The carbon emission
coeflicients are listed in Table 1.

4. Results and discussion

4.1 MAC function estimation

The national MAC function depends on the fraction of initial emissions
abated and is estimated by regressing national total annual abatement
expenditures (measured as described above) on the log of the abatement
fraction.’

Using Equations (11) and (12) above, we calculate, the MACs and Ks,
respectively in China from 1990 to 2011. Notice that the emissions reduction
is negative from 2002 to 2005, which is a possibility given the log functional
form during the nonlinear optimisation process. Data analysis further reveals
that the overall trend of carbon intensity in China has declined gradually
during 1990-2011. To avoid expanding the calculation deviation, we select
the annual average rate of descent of carbon intensity during 2001-2006,
which is adjacent to 2002-2005. Thus, we obtain the MACs and Ks as shown
in Fig. SI.

Table 1 Carbon emission coefficients in units of t (C)/t (coal equivalent)

keoa 0.7304
Kol 0.5630
Knag 0.4190
Keok 0.8550
Kgaso 0.5538
Kier 0.5714
Kaie 0.5921
Krue 0.4483

© The average ratio of the management cost, wage and benefit, material cost, and other cost to
the capital recovery cost are estimated based on the data in the feasibility reports of the regular
CDMs in China.

7 Note this estimation strategy is robust when applied to first differences.
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Furthermore, Equation (10) allows estimating of the coefficients §; and S,
using the ordinary least square (OLS) and the Newey—West estimation. In
order to underpin the robustness of results, we utilise, bootstrap regression
and the least absolute deviation estimator (LAD)®. Both are appropriate in
the case of small samples, as shown in Table 2.

The first column in Table 2 indicates that, in the OLS regression, the
constant coefficient f; is not statistically significant, but the bootstrap
coefficient f3; is significant at the level of 1 per cent. We conducted the
Durbin—Watson (DW) and Breusch—Godfrey (LM) tests for autocorrelation.
The DW statistic is 0.52, and the P-value is 0.3 per cent in the LM test; thus,
first-order autocorrelation exists. The second column is the Newey—West
estimation; the constant coefficient is not significant yet, but the bootstrap
coefficient is significant at the level of 5 per cent. The third column is the
bootstrap regression, and it shows that f8, remains the same with OLS and
NEWEY_1, and significant at the level of 5 per cent but f; is not significant.
The fourth column is LAD, and f, is significant at the level of 5 per cent but
f, 1is still not significant. Consequently, we take the national MAC function
as follows:

MAC = —91.79 « ln[l - <ﬁ>} (14)

with k; the emissions reduction ratio of province i = 1,...,30, and «; the
abatement coefficient estimated. Indeed, we can deduct from Equations (10—
12) the M AC functions for 30 provinces as shown in Table 3, which can be
used to calculate the CO, emissions reduction quotas for 30 provinces by
2030 with the proposed model.

4.2 Allocation results

We solve the nonlinear programming problem stated in Equation (13) with
the LINGO software (ver. 11), developed by LINDO Systems Inc, to obtain

Table 2 Sensitivity of f; and f3, regression results with bootstrap methods

Coefficients OLS NEWEY_1 Bootstrap LAD
i3 —91.79%** —91.79** —91.79%* —89.95%*
b 5.351 5.351 5.351 2.725

Note: ***P < 0.01, **P < 0.05.

8 To investigate the finite sample properties of statistics such as OLS estimators when we do
not believe that asymptotic distribution can serve as a good approximation to what happens in
finite sample, we can resort to bootstrap. One advantage of LAD compared to OLS is that
LAD is more robust against outliers in the dependent variable, especially when the size of the
observations is small.
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Table 3 Abatement coefficient g; estimated for each interprovincial MAC function by 2030

Province a; Province a;
Beijing 0.51 Henan 1.83
Tianjin 1.12 Hubei 1.31
Hebei 3.17 Hunan 1.16
Shanxi 6.14 Guangdong 0.79
Inner Mongolia 4.38 Guangxi 1.36
Liaoning 1.95 Hainan 1.31
Jilin 1.85 Chongqing 1.22
Heilongjiang 2.07 Sichuan 1.42
Shanghai 1.01 Guizhou 3.56
Jiangsu 1.20 Yunan 2.17
Zhejiang 0.98 Shaanxi 243
Anhui 1.90 Gansu 2.61
Fujian 1.03 Qinghai 2.87
Jiangxi 1.34 Ningxia 7.02
Shandong 1.77 Xinjiang 4.23
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1041 ]
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4- . ol NN\ e
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S R by 2030 (100 million tonnes) o= K by 2030 (%)

Figure 2 Ks and Rs of 30 provinces by 2030.

the global optimal solutions, K} and R;. For this study, we set 2013 as the
base year.

Figure 2 reports the emissions reduction quota and ratio for each province.
As regards the emissions reduction ratio, the highest is shown by Shanxi, with
71.33 per cent by 2030 compared with 2013, followed by Inner Mongolia and
Hebei. Their emissions reduction ratios are all over 60 per cent. The carbon
intensities of the three provinces substantially exceed that of the nation in
2013, and the MACs of these provinces are lower than those of the nation.
Thus, the emissions reduction ratios of these provinces should be higher than
others.

As regards the emissions reduction quota, the highest is found for Hebeli,
with 1.04 billion tonnes compared with 2013, followed by Shanxi, Shandong
and Inner Mongolia. The emissions reduction quotas of these four provinces
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drastically surpass other provinces. Their MACs are among the highest
across provinces, which is why the model has them abating more intensely
than most others.

There are two characteristics of the proposed method: first, when the GDP
are the same, the province with a higher carbon intensity has a higher
emissions reduction ratio. For example, Shanxi and Yunnan had approxi-
mately equal GDP in 2013, but the carbon intensity of Shanxi is nearly three
times as high as Yunnan in 2013; thus, the emissions reduction ratio of
Shanxi is nearly twice that of Yunnan. Second, when the carbon intensities
are the same, the province with a larger GDP has a higher emissions
reduction ratio. Taking Hubei and Hainan as an example, the carbon
intensities of these two provinces were approximated in 2013. GDP in Hubei
was eight times that in Hainan in 2013; thus, the emissions reduction ratio of
Hubei is 23 per cent higher than that of Hainan.

The MAC:s of 30 provinces by 2030 are reported in Figure 3. In relation to
regional differences, the MACs in the western provinces (excluding Sichuan
and Xinjiang) are lower than those in the central and eastern provinces. The
MAC:s in the eastern coastal provinces (excluding Fujian and Shanghai) are
higher than those in most inland provinces, and the highest MAC is in
Shandong. This means that there is an inverse relationship between the
marginal abatement cost and the economic development level. Furthermore,
the interprovincial MACs obviously differ, the highest MAC (Shandong)
being 15 times as high as the lowest one (Hainan). We verify here a classic
property of emissions trading schemes, whereby cost-efficient abatement
occurs primarily at the sources with the lowest cost.

Generally, a positive correlation exists between the reduction potential and
the emissions reduction ratio. According to the emissions reduction potential,
we can divide the 30 provinces into four classes, as shown in Figure 4.
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Figure 3 The interprovincial MACs by 2030.
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Null
K<30%
K:30%—40%
K:40%-50%
K>50%

<

Figure 4 The interprovincial CO, emissions reduction potential in China. Note: K > 50 per
cent includes Shanxi, Inner Mongolia, Hebei, Xinjiang, Ningxia, and Shandong. K: 40-50 per
cent includes Guizhou, Henan, Liaoning, Shaanxi, and Jiangsu. K: 3040 per cent includes
Anhui, Heilongjiang, Yunnan, Sichuan, Gansu, and Hubei. K < below 30 per cent includes
Zhejiang, Guangdong, Hunan, Guangxi, Jiangxi, Fujian, Shanghai, Chongqing, Qinghali,
Tianjin, Hainan, and Beijing.

Class-I K exceeds 50 per cent. Class-1I K is 40-50 per cent. Class-III K is
30-40 per cent. Class-IV K is below 30 per cent. Corresponding province
names can be found in the figure.

Figure 5 contrasts the burden that each province represents, in terms of
carbon emissions and quotas, between 2013 and 2030, revealing leaders and
laggards within the national Chinese carbon market. Ten provinces will
shrink in the quota percentage compared with the CO, emissions percentage
in 2013, and the shrinking proportion totals 11.7 per cent. Shanxi, Hebei and
Inner Mongolia are the three largest contraction provinces that sum up to 8.8
per cent. Thus, emissions reduction in these three provinces will be the core
task in future. In addition, the CO, emissions quota of the western provinces,
including Guizhou, Yunnan, Shanxi, Ningxia and Xinjiang, will shrink to
varying degrees, and Xinjiang will experience the largest decline, reaching
0.64 per cent. The province with the largest increase in the quota percentage is
Guangdong, which will rise by 1.3 per cent compared with 2013. Shandong
will have the largest CO, emissions quota, which will be 7.58 per cent by
2030, and the next will be Jiangsu and Guangdong. Shanxi, Hebei and Inner
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Figure 5 The percentage of the CO, emissions quota by 2030 and CO, emissions in 2013.

Mongolia, with a higher emission intensity in 2013, have more reduction
potential. It is reasonable to reduce their CO, emissions. Meanwhile,
Guangdong, with a lower emission intensity, has less reduction potential, and
its GDP is comparatively large; thus, it is also reasonable to increase its CO,

emissions.
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4.3 Comparison with other criteria

To obtain the differences between the proposed method and other criteria,
including the per capita, GDP, grandfathering and carbon intensity methods,
we report allocations in Table 4.

Regarding abatement cost heterogeneity, the abatement cost of grandfa-
thering is the highest, which will be 38.74 billion yuan by 2030. Following this
are the per capita, GDP and carbon intensity methods. The cost minimisation
method involves the lowest cost, with 20.18 billion yuan, which makes cost
savings of 37.7, 34.5, 47.9 and 33.87 per cent more than the per capita, GDP
and carbon intensity methods, respectively. In summary, because the
outcome depends on the ‘allocation’ then there is an assertion of cost-
effectiveness within provinces. Following the cost minimisation exercise, we
proceed to explain differences in marginal abatement costs across provinces.

As for individual heterogeneity, significant individual differences exist across
the five methods. The maximums of the CO, emissions quota are 10 per cent
more than the minimums for any province following the five methods, and
Beijing, Tianjin, Hainan, Chongqing, Gansu, Qinghai and Ningxia exceed 60
per cent. The GDP method is obviously beneficial to the provinces with a large
GDP, such as Shandong, Jiangsu, Guangdong and Zhejiang, while the western
provinces are allocated less than in the other methods. The provinces with high
carbon intensities or large CO, emissions, such as Hebei, Shanxi, Inner
Mongolia, Guizhou, Ningxia and Xinjiang, are allocated more in the
grandfathering method than in other methods, while the provinces with low
carbon intensities, such as Beijing, Zhejiang, Fujian and Hainan, are allocated
less. Beijing and Hainan are allocated more in the emission intensity method
than in the others. The provinces with high carbon intensities are allocated less
in the proposed method than in the others, which implies that the proposed
method focuses on the CO; emissions reduction potential.

This analysis shows that the most unequal is the grandfathering method,
with a Gini coefficient’ of 0.415. The variables GDP, per capita, carbon
intensity and cost optimisation methods have Gini coefficients of 0.405, 0.401,
0.361 and 0.337 in turn. Thus, the proposed method is the most equitable one.

4.4 Sensitivity analysis

4.4.1 Changes of h,

The discount coefficient 7, is set as 90 per cent during the period 1990-1998
and 87.5 per cent during the period 19992011 in the analysis above, which is
regarded as the case of medium level. To examine the sensitivity of the results

n—1

® The Gini coefficient is defined as G = 1 — (23> wi 4+ 1), where n is the number of sample
groups; here, n = 30. w; is the CO, emission quotaifjlercentage of province i. Note that the Gini
coefficient is often used to measure inequality in income distribution in a population. We use a
modified Gini “index” to measure inequality across provinces.
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Table 5[5, regression results

Coefficients Case 1: Low level Case 2: Medium level Case 3: High level

p2 —102.1 -91.79 —83.08

Table 6 [5, regression results

Coefficients Case 1: Low level Case 2: Medium level Case 3: High level

i3 —88.49 -91.79 —95.09

to the changes of /,, we only change 4, and keep other variables unchanged.
Thereby, we specifically set /4, at a high level: 95 per cent (1990-1998); and
92.5 per cent (1999-2011), and at a low level: 85 per cent (1990-1998) and
82.5 per cent (1999-2011). The regression results of national MAC are
reported in Table 5. It shows that f8; is always insignificant, and 3, increases
with /,, which means that national MAC decreases with i,. Moreover, f3, in
case 2 is 10.1 per cent higher than in case 1, and f3, in case 3 is 9.5 per cent
higher than in case 2.

However, i, does not influence the allocation results because /2, only has an
impact on f,, which does not change the solutions (K;) of the nonlinear
programming.

4.4.2 Changes of |
The discount coeflicient / is set as 39 per cent in the analysis above, which is
also regarded as the case of medium level. Similarly, we further specifically set
[ at a high level: 44 per cent, and at a low level: 34 per cent. The other
variables remain unchanged. The regression results are reported in Table 6. It
shows f; is still not significant in all cases, and f8, decreases with /, which
means that the national MAC increases with /. Moreover, f8, in case 2 is 3.7
per cent lower than in case 1, and f3, in case 3 is 3.6 per cent lower than in case
2. Thus, the national MAC is less sensitive to the changes of / compared with
that of 4,. A

Similarly, / only has an impact on f,, which does not change the solutions
of the nonlinear programming. Hence, the allocation results do not change
with /.

5. Conclusions and policy implications

In this paper, we allocate CO, quotas for the Chinese national carbon market
with nonlinear programming. First, we use a mixed engineering—economic
approach to estimate the national MAC functions and deduce the inter-
provincial MAC functions. Second, we build a cost minimisation allocation
model with the constraint of the CO, reduction target to obtain CO, quotas
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of 30 provinces by 2030. Under our assumptions and calculation, this method
emerges as the most cost-effective. The main conclusions are as follows:

First, the Chinese national MAC showed an increasing trend from 1990 to
2011, especially in 2008-2011, with the average annual growth of 55.3 per
cent. In 2011, the national MAC reached 134.3 Yuan/t, which was the highest
from 1990 to 2011, and the CO, reduction ratio of China was 51.7 per cent
compared with 1990.

Second, there are significant differences in interprovincial MACs. By 2030,
the lowest MAC is predicted to be in Hainan, while the highest will be in
Shandong, which is 15 times as high as the former. Furthermore, the
interprovincial MACs tend to decline from east to west.

Third, the 30 provinces can be divided into four classes according to their
emissions reduction ratio potential. Shanxi has the largest emissions
reduction quota, which is up to 1.04 billion tonnes. Next are Shanxi,
Shandong and Inner Mongolia with 1.03, 0.94 and 0.90 billion tonnes.
Meanwhile, Shandong has the largest CO, emissions quota, which will be
0.87 billion tonnes by 2030, followed by Jiangsu and Guangdong with 0.80
and 0.67 billion tonnes, respectively.

Finally, compared with the other four allocation methods, the proposed
allocation model cannot only obtain the lowest Gini coefficient but also
minimise the abatement cost. Specifically, this method offers cost savings of
37.7, 34.5, 47.9 and 33.87 per cent more than the per capita, GDP,
grandfathering and carbon intensity methods, respectively.

Based on the conclusions above, we derive and argue for some policy
implications. First, a single index distribution program sharply increased the
abatement costs due to the considerable differentiation existing in
the interprovincial MACs. Decision-makers should take into account the
heterogeneity of MACs. Meanwhile, the allocation results of several methods
are quite different. No method can embody all the principles and factors.
Thus, the national carbon market needs a mix of allocation methods
involving the basic attributes, and this paper can be considered as an
important benchmark for one of the attributes — the efficiency principle, for
allocating CO, quotas in the Chinese national carbon program.

Second, the provinces that have a greater emissions reduction potential,
such as Hebei, Shanxi and Inner Mongolia, should be allocated higher
emissions reduction quotas. The provinces that have lower emission
intensities or larger GDP, such as Shandong, Jiangsu and Guangdong,
should be allocated more CO, emissions quota.

Third, the national MAC is estimated by the data of macro-investment in
energy conservation and CO, emissions reduction. However, the reliability of
MAC directly depends on the quality of the data. Thus, it is necessary to
improve and complete the objectivity and integrity of the related data.

While in this study we efficiently allocate CO, quotas at the provincial
level, determining the allocation to various emission sources within each
province remains unresolved. How to do so efficiently and equitably,
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conditional on the provincial allocations remains an open question for future
research.
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