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Myopia and saliency in renewable resource
management
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An important challenge in managing renewable resources is to understand why owners
and managers sometimes make decisions that deplete resources and future earnings,
such as when graziers allow pastures and land condition to be degraded. In this paper, we
test two potential reasons for unsustainable management practices, myopia and salience,
with each explaining why resource managers may exhibit impatience in harvest
decisions. Myopia is associated with decision makers placing lower weight on future
outcomes than would be implied by their pure time preference. Salience is associated
with overweighting of consumption ‘now’, implying inconsistency in time preferences.
To test for these effects on renewable resource management, an incentivised, dynamic
field experiment was carried out with rangeland grazing enterprise owners in north-
eastern Australia that related management choices with uncertain rainfall events to both
profits and land condition over time. Results demonstrate that respondents exhibiting
myopia/salience in their choices tended to achieve lower cumulative scores in the
experiment, as well as lower land conditions on their properties as measured with remote
sensing data. Our results explain why there may be persistent optimisation failures by
resource owners that reduce both profits and environmental outcomes.

Key words: bounded rationality, experimental economics, field experiment, grazing,
Great Barrier Reef, renewable.

1. Introduction

Renewable resources under private control, such as private forests and
agricultural lands, sometimes exhibit degradation even though these out-
comes are suboptimal for the resource holder. Resource holders reduce the
stock of their resource, and future harvests, by actions such as overharvesting
(e.g. forestry) or over-stocking (e.g. grazing on pastures) that reduce the net
present value of the enterprise. Clark (2010) shows that these behaviours are
often driven by impatience of the resource owner with equilibrium ‘optimal’
resource stock levels being lower the higher is impatience, ceteris paribus.
However, there is increasing evidence that a large portion of impatience is not
derived from a pure time preference but rather is driven by behavioural
factors or by bounded rationality (Ballinger ez al. 2011; Brown et al. 2009).
Furthermore, in many cases regarding the management of renewable natural
resources there is jointness with public goods, such as for biodiversity or
water quality impacts, in addition to private values over the flow of benefits
from the resource in question. Improving the sustainability of privately held
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renewable resources thus may lead to both private and public welfare gains
(e.g. Star et al. 2013). Despite clear and substantive impacts of behavioural
factors in measures of revealed impatience (e.g. Brown er al. 2009) little is
known about how these aspects of choice impact on decisions in the setting of
renewable natural resources, nor the relative importance of different
behavioural factors in dynamic choice.

In this paper we use a field experiment to consider two sources of
impatience in dynamic decisions regarding renewable natural resources. One
source, myopia, is captured by allowing for bounded rationality (Simon 1955;
Heiner 1983), which causes the decision makers to place lower weight on
future outcomes than would be implied by their pure time preferences. The
other source of impatience, salience, is captured using quasi-hyperbolic
preferences, which allow the decision maker to have inconsistent time
preferences (Laibson 1997). These aspects have been widely tested in
laboratory experiments (e.g. Haiyan and Ausubel 2004; Brown et al. 2009;
Ballinger et al. 2011), but have received little attention in applied settings (i.e.
field experiment settings).

Laboratory experiments have provided major contributions to the under-
standing of human behaviour in markets, with respect to risk and uncertainty
and, slowly but increasingly, with respect to dynamic optimisation (Falk and
Heckman 2009). However, applied researchers are increasingly finding that
laboratory experiments alone may have low predictive capacity for
behaviours in the ‘real-world’ (Roe and Just 2009). Even when laboratory
methods have been taken to the field they have often been found to be of
limited relevance to actual behaviours or the outcomes of those behaviours
for the sample against which they have been applied, although this may be
related to particular methods (Csermely and Rabas 2016). These results have
led to an increasing realisation that applied research needs to both consider
populations of interest and to incorporate appropriate context (framing) in
experimental studies to access mental processes governing behaviours which
are relevant to the issue of interest (Harrison and List 2004).

We examine the impact of myopia and salience on choices in the context of
privately owned renewable resources using a framed field experiment
involving a dynamic choice problem. Our study exploits a naturally dynamic
setting, the management of pastures on rangelands grazing properties in close
proximity to the World Heritage-listed Great Barrier Reef (GBR). The GBR
is being considered for designation as ‘at-risk’ amongst World Heritage-listed
assets, in part because of high pollutant loads, including sediments, from
agriculture. Studies have shown that the vast majority of sediment is
generated by over-stocking and poor grazing land management that also
reduce resource quality (Star et al. 2013, 2015). Behaviours in these contexts
may be driven by a complex set of factors, but recent work indicates that
bounded rationality and behavioural aspects may be important (Rolfe and
Gregg 2015). Our results support this linkage between nonrationality in
decision-making to environmental degradation and lower profitability. In

© 2018 Australasian Agricultural and Resource Economics Society Inc.



396 D. Gregg and J. Rolfe

particular, we show that myopia and salience factors have significant
explanatory power for decisions made by respondents and have real-world
consequences for land conditions.

We make three important contributions to the literature. First, we make a
methodological contribution by demonstrating the development and appli-
cation of a model that explicitly allows for both myopia and salience
simultaneously in dynamic decision-making. This allows us to measure these
two sources of behavioural bias independently of each other and indepen-
dently of pure time preference. Our second contribution is to show how a
framed field experiment can be designed to measure these influences directly
with landholders, through the application of a type of dynamic experiment
involving ‘stocking’ and ‘harvest’ choices under risk. Third, we demonstrate
that myopia and salience exist in resource decisions about land management
and may underpin issues of land degradation and pollution into the GBR
from the pastoral sector.

The remainder of the paper is set out as follows. In Section 2, we develop a
simple representation of choices in dynamic settings that are affected by
bounded rationality (myopia) and behavioural aspects (salience). In Section 3,
we describe an incentivised dynamic choice field experiment involving
hypothetical land condition, land condition-dependent profits and stochastic
rainfall outcomes. The experiment was answered by 51 rangelands enterprise
owners and managers operating in north-eastern Australia. A structural
decision model that allows formal testing for the presence of myopia and
salience effects is described in Section 4. Section 5 provides an outline of the
data generated by the experiment and associated data used for posthoc
analysis. Section 6 presents the results and Section 7 provides conclusions.

2. Conceptual background and supporting literature

Analysis of real-life revealed preferences commonly indicates the presence of
nonrational decision-making in complex dynamic decision problem. For
example, Arcidiacono et al. (2007) showed that older people applied discount
rates in the order of 30 per cent to smoking choices, indicating very high levels of
impatience, potentially associated with factors other than pure time-preference.
Similarly, Miranda and Schnitkey (1995) showed that dairy producers’ herd
replacement decisions exhibited high levels of discounting beyond market rates
and returns to capital in the dairy industry. Haiyan and Ausubel (2004) found
evidence of salience in choice experiments on use of credit cards and savings
decisions. More generally, Laibson et al. (2007) found hyperbolic intertempo-
ral preferences explain consumption better than the simple exponential model
using aggregate consumption data. Substantial evidence for myopia and
salience effects also exists amongst studies of choices made in dynamic decision
problems in laboratory experiments. Brown et al. (2009) show that decisions
over time-differentiated outcomes generally exhibit myopia and salience effects,

© 2018 Australasian Agricultural and Resource Economics Society Inc.



Bounded rationality and NRM 397

whilst Ballinger et al. (2011) present evidence of myopia in consumption-
savings decisions and link this to decreasing cognitive ability of agents.

Despite the research on dynamic decision problems over the last 30 years,
no studies have generated results involving a model that explicitly allows for
both myopia and salience simultaneously in dynamic decision-making. Brown
et al. (2009) employed a simple savings experiment to test myopia and
learning effects on bounded rationality over consumption of beverages by
thirsty subjects. Ballinger et al. (2011) only consider myopia in a dynamic
savings/investment laboratory experiment. However, the separation between
tests of bounded rationality and salience (Brown er al. 2009) largely precludes
formal measurement of myopia and salience in an integrated model, whilst the
laboratory setting limits generalisation of findings to real-world behaviour
and has focused only on myopia (e.g. Ballinger ez al. 2011) or salience effects
(Dohmen et al. 2011; Charness et al. 2013; Richards and Green 2015).

Applied research, such as Miranda and Schnitkey (1995), Arcidiacono
et al. (2007) and Skinner (2007), generally fails to adequately separate time
preference from behavioural aspects or from bounded rationality due to
limitations on joint identification of time preference and risk preference when
independent verification of one or the other cannot be undertaken (Rust
1994; Andersen et al. 2008). There is, thus, an interest and need to develop a
model of myopic and salience-affected behaviour that allows for simultane-
ous identification of these two sources of behavioural bias independently of
each other and independently of pure time preference.

A useful starting point is to consider the standard rational choice function
for a 3-period' intertemporal decision problem to represent the time
preference function:

U(co, c1,¢2) = ByUlco) + B1U(cr) + B, U(c2)
where:
U(-) = instantaneous utility function.

d2 U(Ct)
dc?

t

<0

¢;, consumption in period ¢, f3,, discount factor in period ¢.

Zc,ﬁC

Under the standard (exponential) model of discounting, the discount factor
is given by a reciprocal function of the discount rate (J):

' A 3-period formulation is needed to identify salience effects in addition to myopia effects.
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1
— ' fore>0
b= gy fore=

This formulation of the intertemporal choice problem generates maximal
lifetime utility when the marginal utility for consumption in period 1 is equal
to the discounted marginal utilities of consumption in periods 2 and 3.
Assuming that consumption in the three periods must add to some constant
(co + ¢1 T ¢» = C) and that the agent can consume as much as they want in any
period. The consumption decision is governed solely by the discount rate where
we have the following characterisation of rational consumption choices:

co=cy =c¢ for: 0=0;
co>c1 >cy for: 0<d<oo;and
6‘2:6'3:0 for 0 = o0.

More generally, consumption in period 0 is increasing in the discount rate,
meaning that saving for future periods is decreasing in the discount rate. Clark
(2010) shows that this is also pertinent for renewable resources, which have a
potentially infinite total consumption across time; higher discount rates for the
manager of these resources lead to higher initial harvests, lower equilibrium
stock levels and lower equilibrium maximum sustainable (economic) yields.

Theoretical (Brown and Lewis 1989) and empirical results (e.g. Arcidia-
cono et al. 2007; Brown et al. 2009) suggest that impatience may include
myopia (bounded rationality) as well as time preference in complex decision
problems. In such cases, preferences over time-differentiated utility streams
are functions of myopia as well as time preference. Using the standard
exponential functional form for discounting, we represent this using:

Ulco, c1,¢2) = PoU(co) + B1U(er) + BrU(c2),

where:
y = myopia

B, = f(time preference) = a +15)t > 0+ ; ) = g(time preference, myopia) = f, .

The representation above conforms to the assertion of Brown and Lewis
(1989) that myopia implies impatience but impatience does not imply myopia.
In other words, when myopia is present, the decision function is more
impatient than implied by preferences alone. This means that impatience is
comprised of at least two components — one factor associated with pure time
preference (intertemporal utility) and another with failure in dynamic
optimisation leading to choices reflecting higher impatience than is privately
optimal for the agent.

Bounded rationality caused by complexity of dynamic optimisation is not
the only factor potentially affecting impatience. Salience occurs when the

© 2018 Australasian Agricultural and Resource Economics Society Inc.
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discount rate underpinning harvest decisions is inconsistent with (is higher
than) other time preferences for future consumption (Brown et al. 2009). This
form of choice is often represented as hyperbolic discounting in which agents
have dual ‘selves’ (Thaler and Shefrin 1981; Harris and Laibson 2001): one
‘self” is affected by the saliency of current rewards (‘bird in the hand’) whilst
the other is long-sighted and considers the utility of current choices over the
longer term (‘two in the bush’). When an agent is affected by the salience of
current rewards, they will tend to have a higher preference for current
consumption over future consumption; however, when these rewards are
delayed, the long-sighted decision process ‘wins’ the rights to decision-making.
The level of salience is then a function of the tendency of the agent to use their
myopic ‘self’ in making trade-offs between current and future consumption.
A common representation of salience in economic models of choice is via a
quasi-hyperbolic function (Laibson et al. 2007), in which agents are assumed
to weight the current period consumption more highly than later periods.
This is typically represented by appending a weighting parameter to the
current periods’ consumption, which serves to inflate current-choice utility:

Ulco, 1, ¢2) = AByU(co) + B U(c1) + B2 U(c2)

where:
A >1 = salience effect.

This formulation clearly shows that consumption in ¢ = 0 is increasing in A,
whilst consumption in periods ¢ ## 0 is decreasingin A. The impact of this form of
salience is fleeting. An agent who faces a choice involving allocation of
consumption between periods 1 and 2 will not be affected by this form of salience.
As a result, the hyperbolic model of time preferences allows representation of
preference inconsistency over time-differentiated consumption options.

By combining myopia and salience effects into a single model of choice, these
aspects can be represented more generally for a given sequence of choices, as:

T
U(c) = 2BoUlco) + > _ B,U(c,)
=1

The discussion above relates myopia and salience effects as impacts on time
preferences in a decision function over time. As myopia and salience effects
become greater, the net value of consumption over time falls. Thus, there are
private benefits to reductions in myopia and salience effects. Where there are
additional biodiversity or externality issues, then there will be additional
public values for reduced myopia and salience exhibited by a private resource
owner. This provides a clear impetus for public intervention in the
management of privately owned renewable natural resources that may be
subject to myopia and salience effects.

© 2018 Australasian Agricultural and Resource Economics Society Inc.
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3. Experiment

The experiments were run in central Queensland (Australia) in 2012 with
owners and managers of rangelands grazing enterprises. Initially, 54
managers were involved in homestead visits with 51 completing the two
experiments outlined here. Respondent enrolment was undertaken using an
initial email contact with a follow-up telephone call using details from a
private consulting firm and from government extension services. Respondents
were thus self-selected from a pool of managers who were likely to be more
engaged in grazing land management extension services relative to average
enterprise managers in the industry. Because of this and our small sample size
(51 producers) relative to the total number of producers in the region
(approximately 3,500), it is unlikely that the sample is fully representative of
the population (Gregg and Rolfe 2016a).

The experiment was framed for beef cattle producers in extensive grazing
systems in Queensland, where overgrazing can lead to pasture degradation
and poor groundcover, reducing both future grazing conditions and
increasing sediment runoff. Managers/owners were largely male (2 of 49
were not) and had an average of 34-years industry experience (minimum of
8 years and maximum of 60 years). 69 per cent of the sample had children
with most of these (88 per cent) considering succession planning.

Management in these extensive grazing systems is complex because of
highly variable climatic conditions and poorly understood pasture response
mechanisms. Beef producers make choices about stocking rates that balance
production gains in the short term against risks of pasture degradation and
lower production in the longer term, with damage to pastures generally
occurring during drought periods.

Two experiments were designed for each producer to complete, involving
almost identical response functions and 20 sequential choices each. The first
experiment was a static choice task, where participants made 20 separate
choices between stocking rates, profits and land condition under varying
probabilities of low, medium and high rainfall outcomes (Gregg and Rolfe
2016a). The second task involved dynamic changes over the 20 periods, in
which choices were linked via the land condition variable which changed
depending on the stocking rate and the rainfall outcome in each period. The
first-choice task was used to familiarise participants with the experiments and
identify risk preferences, whilst the second-choice task was used to identify
myopia and salience effects.”

Choice tasks were framed as a grazing management scenario. The discrete
dynamic choice task utilising all of the above information was displayed as
presented in Figure 1 with respondents beginning at choice 1 populated using a

2 Conduct of the two separate tasks allowed us to address the issue identified by Andersen
et al. (2008) that it is not possible to jointly identify risk preferences and myopia in a single
experiment task.
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random starting point for land condition and making 20 sequential choices.
Respondents were allowed to undertake trial choices before beginning the task.
The first static choice task was presented in the same format but did not involve
details regarding future land condition. Experiment instructions were verbal
and based on a straight-forward outline that rewards would be calculated based
on performance relative to a computer player over a task lasting for 20 decision
periods. The experiment application,® a screen capture of which is shown in
Figure 1, provided all details needed to make informed choice, and respondents
were provided with a chance to practice the task prior to undertaking it. Further
details on the experiment design can be found in Gregg and Rolfe (2016b).

The dynamic choice task can be characterised as having three key
components: rainfall risk, state-dependence and decision dynamics. The
combination of the chosen management alternative (conceptually linked to
stocking rate), the current state (linked to land condition), and the stochastic
rainfall outcome defined a new state for the next choice and the profit in the
current period. In the static choice experiment there were no such linkages
between the tasks

The choice options were simplified for each set to make the decisions
tractable. The management alternatives were framed as ‘A’, ‘B’ and ‘C’ rather
than ‘low’, ‘medium’ and ‘high’ stocking rates to reduce other influences on
decisions. Rainfall for the next period was shown as low, average and high
outcomes, with probabilities of each adding to 100 per cent. Outcomes of
each management and weather outcome were defined in terms of potential
profit and land condition, which was based on a land condition framework
familiar to all respondents, the ‘ABCD’ framework (Karfs ez al. 2009). The
framework is defined in terms of both ecosystem resilience/health and in
terms of productive capacity, thereby providing a direct linkage for managers
to environmental function and profit potential on their land (Figure 2).

In both experiments, a starting state and probabilities of events were
selected randomly. The respondent then selected one of three possible
alternatives associated with three different possible payoff and future state
outcomes. A random number was drawn which determined the stochastic
outcome. The chosen alternative event combination was associated with a
payoff value and credited to the respondents’ record, which accumulated over
the sequence of 20 choices. In the dynamic experiment, the choices also
influence the state variable for each successive outcome, and by implication,
future trade-offs. Parallel to this, profits for the ‘computer’ were estimated by
selecting the best option in each set without considering dynamic factors.

To generate the dynamic state variable, the ABCD land condition
framework shown in Figure 1 was modified to allow for three levels within
each land condition designation, namely {A+, A, A—}; {B+, B, B—}; {C+, C,
C—}; {D+, D, D—}. These levels were aligned with a monotonically

* This is available from the corresponding author on request.
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Scenario: 4
LAST PERIOD RESULTS
Rainfall AVERAGE Current land condition: Management option
Management Choice A c+ A B [
Land condition C
PROFIT:  $35,000 WEATHER OUTCOME:
LOW RAINFALL Profit  $5,000 -45,000 -$15,000
Probability = 50% Land Condition Cc+ C Cc-
AVERAGE RAINFALL Profit  $40,000 $40,000 $40,000
COMPARATIVE RESULTS | Probability=  30%  Land Condition B- c+ c
Profit LC(t-1) HIGH RAINFALL Profit  $55,000 $90,000 $50,000
Yours: 580,000 C Probability=  20%  Land Condition B B- c+
Computer:  $40,000 D+
You choose: ® O O

SELECT, GO TO NEXT

Figure 1 Screen grab of choice experiment as presented to respondents.

Land parameter: A Condition B Condition C Condition D Condition

Soil Good condition, no erosion Minor erosion Obvious erosion Severe erosion or scalding

Good coverage by 3P Increase in non-3P grasses. Large quantities of non-3P ~ General lack of perennial

Pasture grasses. <30% bare ground Between 30-50% bare grasses. >50% bate ground grasses. Majority bare

in most years ground in most years. in most years. ground in most years.
None or very early signs of Some thickening in woody General thickeningin Thickets of woody plants
Woodland . . :
woodland thickening. plants. density of woody plants. cover much of the area.

75% of A condition carrying 50% of A condition carrying 20% of A condition carrying

Carrying Capaci
Tying Capacity capacity. capacity. capacity.

Figure 2 Description of the ABCD land condition framework.Source: Karfs et al. (2009).
Note: 3P refers to ‘productive, palatable and perennial’ grasses considered ideal in rangelands
grazing environments in Australia.

increasing payoff distribution with the A+ state involving the greatest
potential profit levels and the D— state the lowest potential profit levels.
Each of the three alternative actions in each choice (options ‘A’, ‘B’ and
‘C’) was associated with, in order, increasing variance in payoffs, increasing
expected value of payoffs, and decreasing future land condition values
(decreasing future payoff possibilities). Thus, in general, a choice of
alternative ‘A’ involved lower expected instantaneous profits, a higher future
land condition (than the alternative choices) and lower variance of expected
instantaneous profits. On the other hand, alternative ‘C’ involved higher

© 2018 Australasian Agricultural and Resource Economics Society Inc.
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expected instantaneous profits (in all but the lowest land conditions), lower
future land condition (than the alternative choices) and higher variance of
expected instantaneous profits. Alternative ‘B’ was located between these two
extremes. Table 1 presents the combinations of payoffs and future land
conditions for each land condition variable that might be selected within the
experimental design conditional on choice and ‘rainfall’ (the variable
inducing stochasticity).

To ease cognitive burden in the dynamic task, the distribution of rainfall
probabilities was limited to three possible ‘seasonal’ values — ‘poor’, ‘average’
and ‘good’. These values were randomly allocated to each choice with
predefined probabilities. The probability distributions of weather outcomes
dependent on seasonal types are shown below in Table 2 — these were made
known to participants prior to their beginning the experiment.

The experiments were generally undertaken at participants’ properties.
Instructions were verbal and involved describing the structure of the
experiments and that they were being asked to participate to help develop
an understanding of aspects of decision-making over systems which were
similar to those they typically manage in their normal operations. It was
emphasised that the experiment was not designed to generate predictions
about how they manage their properties and responses would be anonymous.
Participants were given the opportunity to practice the experiments prior to
starting each one and were encouraged to explore the response function
underlying the experiment.”

The experiment involved a performance-dependent reward incentive of up to
75 Australian Dollars based on a performance function similar to that in
Ballinger et al. (2011). Our testing of the experiment prior to its extension led us
to develop a simple payoff function defined as the ratio of the participants’ total
profit from the experiment and 2 times the ‘computer’ total profit for the
experiment. Specifically, the reward function for this experiment was:

Reward payment — min [$75 " ( Total final sum of participant choice profits )’ }

2 x Total final sum of ‘computer/ choice profits

Table 2 Season types and presented rainfall probabilities for the dynamic choice task

Presented probabilities of rainfalls

Season type Low Average High
‘Poor’ 0.50 0.30 0.20
‘Average’ 0.33 0.33 0.33
‘Good’ 0.10 0.25 0.65

4 The experiments are available on request from the corresponding author and comprise 3
Microsoft Excel files with Macros.
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Whilst all respondents were eager to play the game and to ‘beat’ the
computer in what they regarded as an exercise that they should be ‘good’ at,
only six respondents were able to achieve the payoff-limited benchmark of
$75. The distribution of reward scores appears normally distributed with a
mean reward score of 85 per cent of the benchmark.

Additional data on land condition were also sourced for each grazing
property. The remotely sensed ground cover index used for this component is
a commonly used indicator of the land condition framework (Bastin et al.
2002) used in this experiment which is recognised to provide a measure of
both environmental health and carrying capacity, or profit potential, for a
given property (Karfs et al. 2009)

4. Analysis

The choices made by respondents were analysed in terms of the expected
returns in all future periods. A constant relative risk aversion (CRRA)
function® was specified for the instantaneous utility function based on
outcomes from combinations of the state variable (s), respondent choice (j)
and stochastic rainfall realisation (e¢) at choice 7 of 7= 20:

x(jsj,e) o

U('xj7s7[ae) = 1 —

3
EUj =Y Ple) U(Xjsre)
e=1

where:

U(x;4..) = Utility of outcome x from choice j under state s in time ¢ for
event e;
X(Js.r..) = Value of outcome from choice j under state s in time ¢ for event e;
o = Relative Risk aversion coefficient.

The full decision function for the dynamic choice problem, in the general
case allowing for the presence of myopia and salience effects, was estimated
using a discount factor based only on myopia and a salience factor outlined in
Section 2. The myopia factor was estimated as an exponential function with:

1
ﬂt_l—ﬂ7

> Hypothetical payoff values were normalised to the 0—1 interval allowing calculation of the
CRRA form (which is not defined for negative payoffs). We utilised the contextual utility
stochastic choice function of Wilcox (2011) which facilitates extension of results to other
contexts (i.e. outside of the 0-1 interval or which involve tradeoffs across this whole range).
This is outlined in more detail in the next section.
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y = myopia.

The experiment design was such that there was no pure time preference in
responses to the dynamic choice task allowing attribution of contributions of
the discount factor f to myopia alone. The intrachoice utility function based
on myopia and salience effects yielded a value function for each choice j and
at each stage ¢ of the decision process provided by the solution to the
Bellman equation® :

I'=t+1

20
V(isie) = AU(Xjse) + maX[ Z PEU:les,), S]

3
EVj,s.t - Z P(e,) V(jy,t,e)
e=1

where: 4 = Salience effect; f = myopia factor.
3
EU, = Z p(Eler]) U(Ximt’,e)
L[/—l

The functions outlined above indicate the resultant decision equation in-
volves identification of three decision function parameters: the relative risk
aversion coefficient within the instantaneous utility function («); the myopia
factor (f); and the salience factor (4).

To represent intertemporal choice using the Bellman equation, it is
necessary that the decision maker knows all of the relevant parameters of the
model (Cogley and Sargent 2008). This aspect is implicit in the expectation
over future events shown in the value function above. To meet this
requirement, two identifying assumptions were made that allowed formula-
tion of an exact solution to the Bellman equation. Firstly, we assumed future
weather outcomes (‘poor’, ‘average’ and ‘good’ seasons) were equally likely.
This was explained to participants (seasons were randomly chosen) and is a
relatively benign assumption.

The second identifying assumption involved the expectation that
participants were able to know the state-dependent payoff vectors, or at
least their expected utility equivalents, for each state of nature. This
second assumption is somewhat less benign. We justify it on the basis:
(1) participants undertook a static choice task involving 20 choices with
exactly the same state-dependent function immediately prior to the

© Details on the solution to the Bellman equation are provided in Rust (1994).
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dynamic task and were encouraged to take note of the state-dependent
payoff matrices in order that they could utilise this information; (2)
participants were able to practice both choice tasks prior to starting to
understand the state-dependent payoff matrices implicit in the response
function; and (3) assuming equal weather outcomes implies the real
burden on memory of state-dependent payoffs reduces to 12 expected
utility outcomes for the 12 possible land condition states. Combining
this with the fact (known to participants) that the expected value of
payoffs was monotonically increasing in the state variable implies the
true burden on rationality implied by the identifying assumption of
knowledge of the state-dependent response function was not as great as
might be thought. In particular, whilst participants may not have been able
to directly quantify an expected value of outcomes for each land condition
level, it is reasonable to assume they at least knew that higher land conditions
were associated with monotonically increasing expected values of profits and
that higher land conditions first-order stochastically dominated lower land
conditions.

Four models were considered which allowed formal testing for the presence
of myopia and salience effects and allowed nesting of the rational choice
function in all nonrational forms. Specifically, functional forms for the value
function considered for responses to the dynamic task were as follows:

Model Restrictions Description Nests
(a) A= 1 p=0 Rational choice model None

(b) A= Myopia model (a)

(c) p= Saliency model (a)

(d) No r strlctlons Myopia and saliency model (a), (b), (c)

Within this framework, (a), (b) and (c) are nested with (d), allowing formal
statistical testing for the hypothesis that:

(H1) Agents tend to use decision functions incorporating bounded
rationality and behavioural aspects in dynamic decision problems. Evidence
for this would be provided by a statistical preference for models (b), (c) and/
or (d) over model (a). This hypothesis was tested using pooled data.

Fifty-one individual-level models were estimated for each respondent
using the most general specification (d) to consider the effects of myopia/
saliency on decision performance. The hypotheses for this component were
as follows:

(H2) Myopia and/or salience effects lead to lower decision performance
and lower utility as measured by rewards received in the field experiment.
Evidence for this hypothesis was considered using a secondary regression
of reward scores on estimated myopia and salience parameters.
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(H3) Individuals with higher levels of myopia/salience will tend to employ
more impatient resource management strategies. This hypothesis was
considered using secondary regressions of a remotely sensed measure of
land condition on estimated myopia and salience parameters.

A nonlinear multinomial logit model was used to model the choice
probabilities for each respondent in two ways. Firstly, the sample-level
models were estimated by poling data for all respondents across both tasks
(static and dynamic). Secondly, individual-level models were estimated
pooling data for the two tasks for each respondent individually. Following
Moffat (2005) and Gregg and Rolfe (2016a), we allowed for incorrect
specification via the inclusion of a ‘Fechnerian’ error term. The Fechnerian
error generates a scaling of the choice probabilities based on the precision of
the model. For sample-level models, a separate error term was estimated for
each of the 20 choices in each of the static and dynamic tasks (40 error term
estimates) which allowed for examination of the precision of each of the
estimated models across choices.

The contextual utility (CU) model of Wilcox (2011) was also used to
account for the relatively large range of different contexts presented to
experiment respondents which were associated with the different land
condition states. The CU model allows estimation of a value function which
is valid for a normalised ‘context’ which can then be extended to other
normalised contexts. Wilcox (2011) shows that this model is preferred to the
strict utility models associated with the homoscedastic multinomial logit and
the Fechnerian error multinomial logit models whilst Andersen et al. (2008)
show that they can be combined yielding a specification which incorporates
both some potential for specification error and the context of the experiment.
The CU model is particularly pertinent in the case presented here due to the
significantly different contexts facing respondents early in the dynamic task
compared to later in the dynamic task. The CU model scales the value of
prospects by the range of utilities amongst all prospects within a choice
generating a stochastic model directly from the structural utility specification.
Combining the multinomial logit model with Fechnerian errors and the CU
model, we can represent the probability that a respondent i chooses
alternative j for choice ¢ as (i subscripts are suppressed):

For static choices: For dynamic choices:
P( . ) eEUm/H‘s/‘TH P( . ) gEV/\r/#d/“Zz
Jyst) = ——— Jyst) = ————
T L eFUndmen T L eBVi kil o

Where: P(j,i,t) = probability that individual i chooses alternative j in choice
t; o, Fechnerian error term for k = 1 for static and k = 2 for dynamic
experiment in rth choice; p; = max (Us,,.) — min (Us,.); pg = max (V.
9) — min (Vs,t,e)'
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The final log-likelihood was derived by stacking choice data from static
and dynamic tasks and calculating the log-likelihood based on the addition of
the log-likelihood for the static choices and the log-likelihood for dynamic
choices. The log-likelihood is shown below:

T,=20 EUj, /14s/ 05
. e !
In¢; = Z I(yl,tl =J1,n ) In Zj 1 oEUiny /1] 0

n=l1 =

T>=20
_I_ Z I(yz,tz :j2,l2)1n
Hh=1

gEV/‘.vrz /Bal0a

Z‘] 1 eEVjﬂg /taloa
J:

where: I(y;,=j;,) = indicator function for respondent static choice in
¢t = alternative jin ¢; I(y,, = j,,) = indicator function for respondent dynamic
choice in ¢ = alternative j in .

The log-likelihood for the individual-level models was based on the most
general value function, model (d), but with only two Fechnerian error terms
estimated: one for the static task responses; and one for the dynamic task
responses. To estimate all functions, it was necessary to solve a backward
induction algorithm for the EV function outlined above at each update of the
parameters in the maximum likelihood function.

The models were estimated using a custom multinomial logit function’
written in the free R statistical program (R Development Core Team 2013).
The likelihood function was maximised using the Broyden, Fletcher,
Goldfarb and Shanno algorithm in the maxLik library (Toomet et al.
2010). Numerical gradients were used to calculate standard errors. Starting
values were varied and global maximisation methods (e.g. simulated
annealing) were used to check for likely starting values when initial
maximisation failed.

5. Data

A total of 51 respondents answered the dynamic experiment.® On average,
most people chose option ‘B’ representing an alternative which was neither
conservative (saving) nor intensive (consumptive). Respondents tended to
choose more conservatively in Experiment 2 (the dynamic experiment than in
Experiment 1 as expected. Table 3 presents simple statistics associated with
these patterns.

Correlations between a range of variables from Experiment 2 were also
considered and are presented in Table 4. Prior expectations were that the
starting point of the experiment (‘LC_START’) should not matter much for
reward scores (‘SCORE’) due to the use of a score based on performance
relative to a computer-based agent. This is borne out by the data with
correlations between the starting point and the end difference in land

7 Estimation code can be provided by contacting the corresponding author.
8 The focusin all results sections is on answers to the dynamic experiment, and we will refer to all
results in general as referring to results associated with that experiment unless explicitly stated.

© 2018 Australasian Agricultural and Resource Economics Society Inc.



410 D. Gregg and J. Rolfe

Table 3 Frequency of choices for each alternative in Experiment 1 and Experiment 2

A (conservative B (medium C (unconservative
choice) choice) choice)
Sum in Experiment 1 333 446 241
Sum in Experiment 2 348 515 157
Proportion in Experiment 1 0.33 0.44 0.24
Proportion in Experiment 2 0.34 0.50 0.15

Table 4 Correlation coefficients (Pearson Rho) for choices, land condition, rain score and
reward scores for Experiment 2

COUNT COUNT COUNT_  LC_ LC_  RAIN_ SCORE
A B C START DIFF  SCORE

COUNT_A —O77FRE _Q34%%F  (.55FEE (5EHREE (52K () 4GRE
COUNT_B —0.34%% 0.2 —0.25% 0.23 —0.3]%*
COUNT_C —0.52%H% Q.46 (.43 (2
LC_START 0.9%%*  —0.01 0.16
LC_DIFF 0.12 0.17
RAIN —0.39%

SCORE

Note: stars indicate significance at the 1% (“***’), 5% (“**’) and 10% (‘*’) levels. No stars indicate the
relationship is not significant at any standard level.

Table 5 Summary of reward scores and land condition indices for respondents

Reward Ground cover Ground Last 3 years Last 5 Variance
score in year of cover in average years aver  of ground
(max reward  experiment  previous ground age ground cover
when > 1) (2012) year cover cover
Minimum 0.59 71.9 60.2 70.0 66.7 8.4
25th 0.76 87.1 77.1 81.9 77.3 22.5
Percentile
Median 0.86 92.1 83.0 87.1 83.1 35.2
75th 0.93 94.1 89.5 90.6 86.9 58.1
Percentile
Maximum 1.19 97.5 94.5 95.6 92.3 217.0
Mean 0.86 90.4 82.4 85.8 81.6 50.2
SD 0.14 5.4 8.0 6.0 6.8 48.4

condition being insignificant. ‘Bad luck’ in the form of relatively higher
incidences of a ‘LOW rainfall’ outcome was inversely related to reward score
as indicated by the variable ‘RAIN_SCORE’.? However, as expected, a lower

® RAIN_SCORE was calculated as the sum over 20 choices for each respondent where
LOW rainfall was recorded as equal to —1, AVERAGE rainfall was recorded as 0 and HIGH
rainfall was recorded as +1. Thus, each respondent could potentially have a minimum of —20
and a maximum of +20 for this score, although these are both highly unlikely (minimum for
the sample was —9, maximum was +8, and the mean was +0.39).
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RAIN_SCORE is associated with a lower frequency of conservative choices
(‘option A’) and vice versa for intensive choices (‘option C’). Reward scores
(‘SCORE’) are positively correlated with the number of conservative choices
suggesting that many respondents failed to choose the conservative choice often
enough (i.e. these results indicate returns to conservative choices are strongly
positive on average whilst they are negative or zero for the other options).

The summary of choices and their correlations above suggest that
respondents did respond to experimental inducements at least roughly
correctly as shown by the correlations with ‘RAIN_SCORE’ but that they
may have failed to fully optimise their dynamic choice problem (as indicated
by the correlations between ‘SCORE’ and choice variables).

Of those responding to the experiment, 49 had remotely sensed ground
cover available for comparison between estimated myopia levels and real-life
land condition. Table 5 below presents a summary of a range of data series
for the sample used in this research.

The sample presented here involves a wide range of reward scores from the
experiment and appears to involve substantial heterogeneity in ground cover
levels across a variety of measures and in the variance of ground cover.

6. Results

Hl1: Agents tend to use decision functions incorporating bounded
rationality and behavioural aspects in dynamic decision problems.

Choice frequencies for the three alternatives chosen by participants across
the 20 periods in the second experiment are shown in Figure 3. The observed
pattern appears to show that dynamic considerations played a part in
respondents’ decision-making in this experiment. Participants clearly showed
a preference for more conservative choices (choosing lower profits in the
current choice to allow for potentially greater profits in future choices) at the
beginning of the experiment and a preference for more intensive choices
towards the end of the experiment.

To compare performance of models at the sample level, the estimated error
terms for each of the models were plotted against the choice sequence
(Figure 4). The Fechnerian error is an indicator of model precision; the lower
the Fechnerian error, the more precisely the postulated response function fits
the data. As expected, the levels of Fechnerian error terms were considerably
higher across choice periods for the rational choice model (no myopia or
salience) than for the models incorporating myopia and/or salience. The
rational choice Fechnerian error terms clearly converged towards those
incorporating nonrational processes as the last choice approached. Consid-
ering only the nonrational models, there were generally higher levels in the
Fechnerian errors in the earlier and later choices, indicating the choices
during the middle of the experiment were better approximated by the myopic
functional forms than at the beginning and end.
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Figure 4 Fechnerian error trends over the 20 choices.

Table 6 presents the results for the decision function parameters from the
estimation of these models. Consistent with the results shown in Figure 4,
models (b), (c) and (d) in Table 6 provide a better fit to the data than the
model (a) which assumes rational decision-making. The combination of the
qualitative evidence depicted in Figure 4 and the clearly superior performance
of nonrational decision function formulations shown in Table 4 provide
support for the presence of myopic/salience-affected decision rules utilised by
the participants in this experiment.
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Table 6 Estimation results for sample-level models

Model: (a) (b) (c) (d)

Value function EU EU EU EU
Myopia? N Y N Y
Salience? N N Y Y

Alpha (CRRA) 0.72%** (0.08) 0.78*** (0.07) 0.84%*** (0.04) 0.82*** (0.05)
Beta (myopia, - 0.68*** (0.01) - 0.81%** (0.06)
lower is more

myopic)

Lambda (salience, - - 3.75%%% (0.24) 1.84*%%* (0.49)

higher is more
salience-affected)

N 2,040 2,040 2,040 2,040
K 41 42 42 43
Log-likelihood —1384.25 —1279.20 —1279.90 —1273.86
AIC 2,850 2,642 2,644 2,634
BIC 3,081 2,878 2,880 2,875

Likelihood ratio tests firmly reject the rational decision model against all
generalisations considered (models b, ¢ and d at the 1 per cent level of
significance for all comparisons). However, there is not any clear difference
between the myopic formulation over a salience-affected formulation in the
results of Table 6 providing no evidence, at least at the sample level, of
whether behavioural aspects or bounded rationality aspects of choice are
more important in this case. The likelihood ratio test rejects restrictions of the
most general model (a) to model (b) or model (c) at the one per cent level of
significance, indicating that, for the data presented here, myopia and salience
effects are likely to both be present, at least regarding mean effects across the
sample. All parameters are significant at the one per cent level of significance.
The results here provide strong support for hypothesis H1, that is that
respondents tend to employ nonrational decision functions.

Using the availability of 40 observations for each individual (20 from the
static task of the experiment and 20 from the dynamic task), 51 individual
models were estimated for the participants using the structural decision
function of model (d) but with a single Fechnerian error term for choices
made in the static task and another Fechnerian error term for those made in
the dynamic task (5 parameters in total). Distributions for each of the
decision function parameters are shown in Figure 5.

H2: Myopia and/or salience effects lead to lower decision performance

and lower utility as measured by rewards received in the field

experiment.

19 Note for all data presented in this section two outliers were removed, one for a reward
value of 2.9 and one for a salience value of 14 (almost 3 times larger than the next highest
value). Two respondents also did not have ground cover data and so were not included in the
regression analyses following.
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Figure 5 Distributions of estimated parameters from individual models.

Table 7 Regressions of reward scores on estimated decision function parameters

Reward score = f(x)

Estimate SE t Value Pr(>|t))

Intercept 0.71%%* 0.05 13.30 0.00
RRA —0.01 0.02 —0.35 0.73
Beta (myopia) 0.3%%* 0.07 4.60 0.00
Lambda (salience) —0.05%* 0.02 —2.67 0.01
N 49

R-squared 0.33

Log-Likelihood 38.14

Note: A beta value equal to 1 indicates no myopia is present whilst a beta value equal to 0 indicates
complete myopia. On the other hand, a value for Lambda of | indicates no salience and >1 indicates
salience. This means: (1) impatience will be higher the lower is beta (this corresponds to higher myopia); (2)
impatience will be higher the higher is Lambda (corresponding to higher salience). As a result, our
hypotheses posit an expectation that the relationship for reward performance or land condition to beta is
positive (myopia decreases these) and to Lambda is negative (salience also decreases these).

The results of regressions with decision performance (score relative to
computer) on relative risk aversion, myopia and salience-effects are shown in
Table 7. Risk preferences have no significant impact but both myopia and
salience are significant factors affecting decision making.
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As expected, the higher is myopia-induced impatience as measured by the
impatience factor, the lower are rewards from decision-making in the
experiment. The effects appear substantial — a completely myopic respondent
will have a reward score approximately 30 per cent lower than a respondent
who is not myopic. The mean value of the myopia factor in the sample was
0.79 indicating that the decision ‘cost’ of myopia for respondents in this
sample accruing from the presence of myopia was 6.3 per cent of the potential
reward amount (0.3 (1 — 0.79)). However, the lowest estimated myopia
parameter was approximately 0.07 indicating substantial costs for a subset of
respondents (in the order of 28 per cent of potential rewards).

The effect of salience is also substantial — a respondent who values current
consumption at twice the rational choice level (4 = 2) will have a reward score
approximately 4 per cent lower than that of a respondent with 4 = 1 (i.e. with
no salience effect). The mean value of A in this sample was 1.83 indicating a
mean ‘cost’ of salience effects in the sample of approximately 3 per cent of the
potential reward amount. However, again, this belies the fact that some
respondents presented with high levels of salience — in the order of / between
3 and 5 for 11 graziers with one outlier (removed for regression analysis) in
the order of 4 = 14. For these graziers, the ‘cost’ of salience effects was in the
order of 8-14 per cent of potential rewards.

These results provide clear support for hypothesis H2: that respondents
affected by myopia and/or salience effects will tend to have substantially lower
decision-making performance than respondents who are not affected by these
factors. Given the contextualisation of the experiment in terms of range stocking
decisions and land condition, this also suggests that bounded rationality may
play an important part in the management of these renewable resources. We also
note that these impact estimates are likely to be conservative due to the
comparison to a potential reward function which was right-truncated.

H3: Individuals with higher levels of myopia/salience will tend to
employ more impatient resource management strategies.

The results of regressions with land condition (remotely sensed ground
cover) on relative risk aversion, myopia and salience effects are shown in
Table 8.

The results for the impact of decision function variables on ground cover,
as an index of land condition on respondents’ properties, indicate that the
contextualised experiments here provide substantial predictive ability for
highly variable and long-term management outcomes associated with grazing
land management, namely land condition, as indicated by ground cover
levels. The impact of myopia on land condition is both significant and
substantive in this case; a completely myopic respondent will have, on
average, 10 per cent lower ground cover than a respondent who does not
employ a myopic decision function. Similarly, a respondent with a lambda
value of 2 will have, on average, approximately 2.2 per cent less ground cover

© 2018 Australasian Agricultural and Resource Economics Society Inc.



416 D. Gregg and J. Rolfe

Table 8 Regressions of ground cover on estimated decision function parameters

Ground cover = f(x)

Estimate SE t Value Pr(>|t))

Intercept 78.7*** 3.56 22.11 0.00
RRA —0.30 1.49 —0.20 0.84
Beta (myopia) 10.19%* 4.39 2.32 0.03
Lambda (salience) —2.26%* 1.05 -2.15 0.04
N 49

R-squared 0.14

Log-Likelihood —164.16

than if they were rational. Given the levels of myopia and salience in the
sample, these are substantive effects. They can be seen to be major factors in
the management of rangelands pastures for sustainable profit or for the
generation of externalities such as sedimentation. These results provide
strong support for hypothesis H3; that myopia and salience effects estimated
for individuals from choices made in our experiment explain aspects of
decision-making regarding grazing land management for respondents as
reflected in a measure of land condition on respondents’ properties.

7. Conclusions

Suboptimality in decision-making is viewed in the economic literature from
two substantially different perspectives — that of irrationality and inconsis-
tency and that of bounded rationality and restrictiveness of assumptions
embodied in the ‘optimal’ decision function. In this paper, we explored the
implications of these decision theories with respect to their implications for
renewable resource management by outlining a simple model of choice in
dynamic decision problems incorporating salience effects (a behavioural
theory of choice) and myopia (associated with bounded rationality). The
model was tested using an incentivised, framed field experiment undertaken
with managers of rangeland grazing properties in north-eastern Australia,
many of whose properties are located in catchments which drain into the
World Heritage-listed GBR lagoon.

The results provide strong evidence for impacts of both behavioural and
bounded rationality effects on choice.'! Myopic behaviours, estimated from
choices in the experiment, are strongly associated with both poorer decision
performance and with lower levels of land condition in our sample. Given the
importance of land condition as a factor influencing both the carrying
capacity of land and the contribution of sediments to streams potentially

' As the participants in the experiments were graziers who had voluntarily engaged in a
grazing land management courses or government extension services for range management, it
is possible that other graziers may exhibit larger levels of irrational choices.
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flowing to the GBR, results suggest there are joint private and public benefits
to improving decision-making amongst managers of grazing land. Beha-
vioural effects (salience) were somewhat less important as factors influencing
land condition but were significant in both predicting respondents’ decision
performance and the land condition on their properties.

The experimental results also show that properly contextualised field
experiments, undertaken with the populations of interest directly, can provide
detailed insights into behaviours which are relevant to the context being
explored. The results suggest a greater emphasis should be placed on
exploring bounded rationality in resource management settings to ensure that
efficient policies are developed which do not presume perfect rationality in
decision-making of the managers of these resources.

The results here are based on what might be considered a small dataset for
generalisation, even though it is relatively large for a field experiment with
agricultural producers. The approach is based on testing theory in a
hypothetical context (framed field experiment) and in a real context (relation
to real-world outcomes). From this perspective, we note that our sample is
well beyond what might be considered ‘large’ from the perspective of the
Central Limit Theorem. As a result, and due to earlier findings of Brown
et al. (2009) and Ballinger et al. (2011), we have some confidence in stating
that our results indicate that myopia and salience are major factors affecting
dynamic optimisation in our sample. However, we caution against making
inferences such as ‘all managers are failing to optimise their farms’. We make
no claim on aspects such as these given the high level of heterogeneity
between managers and between farms and given we do not have what could
be considered a representative sample. These are obviously questions to be
explored, with this study as a starting point.
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