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On the use of flexible mixing distributions in
WTP space: an induced value choice experiment*

Claudia Bazzani,Marco A. Palma andRodolfoM.Nayga Jr†

In this study, we use data from an induced value choice experiment to compare estimates
from mixed logit models in willingness to pay (WTP) space using different parameter
distributional assumptions. Specifically,we test differences inWTPestimateswhenusing
flexible parameter mixing distributions (i.e. Legendre polynomials, step functions and
splines) and conventional parameter distributions (normal and lognormal). Similar
WTP estimates are obtained. However, we observe that WTP estimates are statistically
different from the induced value when conventional distributions are assumed, but they
are not when more flexible distributions are assumed. This suggests that flexible
distributions can provide more reliable WTP estimates.

Key words: flexible mixing distribution, induced value choice experiment, normal
distribution, WTP space.

1. Introduction

Discrete choice experiments (DCEs) are awidely used stated preferencemethod
in marketing and applied economics. In DCEs, respondents are presented with
several hypothetical purchasing scenarios representing product alternatives
which differ in terms of attributes, attribute levels and price. In each choice
scenario, individuals are generally asked to make trade-offs between the
product alternatives and an opt-out option. Their popularity in assessing
consumers’ willingness to pay (WTP) is given by a number of reasons. First,
DCEs allow researchers to simulate a decision mechanism which closely
resembles how individuals usually make their choices in real purchasing
situations and to simultaneously estimate consumer preferences for different
product attributes (Gracia et al. 2011; Akaichi et al. 2013; Bazzani et al. 2017).
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Second, DCEs are consistent with long-standing theories of consumer choice
behaviour, which are the random utility theory and the Lancaster theory (Luce
1959; McFadden 1974; Louviere et al. 2010). Third, the experiments are
flexible, and they can be presented in many different formats. Estimates from
random utility-based discrete choice models can then be translated into
marginal WTPs for the product attributes. The estimation of reliable WTP
values is important since these can be used not only for product marketing and
pricing decisions but also for welfare analysis and policymaking.
In order to obtain more reliable WTP estimates from DCEs, different

methodological and estimation issues have been tested. Discrete choice models
(DCMs) that account for random taste parameters, such as the mixed logit
models, are now routinely used due to improvements in computing power and
speed (Train 2003; Scarpa et al., 2005). Mixed models can be estimated by
specifying the utility parameters in preference space or in WTP space. In
preference space, researchers can derive the WTPs for nonprice attributes by
taking the negative of the ratios of the nonprice attributes coefficients and the
price coefficient. InWTP spacemodels, the utility is reparameterised so that the
attribute coefficients can be directly interpreted as marginal WTPs (Cameron
and James 1987; Train andWeeks 2005; Scarpa et al. 2008a; Scarpa andWillis
2010; Carson and Czajkowski 2013). In WTP space models, the price/scale
coefficient can be treated as random in order to overcome the confounding
distributional assumptions of price and scale parameters (standard deviation of
the unobserved utility) that usually occur in preference space due to the
specification of the price as a fixed parameter. Specifying the price as a fixed
parameter implies that the standarddeviationof the unobservedutility does not
vary over observations. The variation in scale might be confounded with the
variation in WTP, which would imply inaccurate interpretation of the WTP
estimates (Train andWeeks 2005; Scarpa et al. 2008a). Past studies report that
models estimated in WTP space provide more stable and reasonable WTP
estimates than models in preference space (e.g. Train and Weeks 2005;
Balcombe et al. 2009; Thiene and Scarpa 2009). Thus, researchers from several
areas, such as food, environment, health and transport economics have been
increasingly turning to the estimation of models in WTP space (Scarpa et al.
2008a; Daly et al. 2012; Hole and Kolstad 2012; de-Magistris et al. 2013;
Bazzani et al. 2017; Caputo et al. 2017).
However, some studies show a decrease in model fit when models are

estimated in WTP space instead of in preference space (Train and Weeks
2005; Sonnier et al. 2007). According to Train and Weeks (2005), this may be
due to the utilisation of commonly used convenient distributions (i.e. normal
and lognormal) of the attributes’ parameters1. For this reason, there is

1 Specifying nonprice attribute coefficients with normal distribution and the price coefficient
with a log-normal distribution implies that WTP for the attribute is distributed as the ratio of a
normal to a log-normal. If a researcher works directly in WTP, this represents an inconvenient
WTP distribution (Train and Weeks 2005)
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increasing attention being paid to the use of commonly used distributions of
the parameter distribution in WTP space (Train and Weeks 2005; Train
2016). We focus on this important issue in this study by using data from a real
nonhypothetical induced value choice experiment (IVCE) to estimate WTP
space models with different forms of parameter distribution.
Findings from previous studies show that the use of flexible mixing

parameter distributions affects model performance and WTP estimates
(Fosgerau and Bierlaire 2007; Burda et al. 2008; Scarpa et al. 2008b; Train
2008, 2016; Fosgerau and Hess 2009; Bastin et al. 2010; Fox et al. 2011;
Fosgerau and Mabit 2013; Fosgerau 2014). Bastin et al., Fosgerau and
Bierlaire (2007), Fosgerau and Hess (2009), Fosgerau and Mabit (2013) and
Fosgerau (2014) tested that the specification of parameter distribution with
Legendre polynomials significantly improved model fit in comparison with
models where a normal distribution was specified. Scarpa et al. (2008b)
observed that the use of polynomial distributions improved model perfor-
mance and also captured significant interaction effects between the experi-
mental attributes. This suggests that the implementation of flexible
distributions impacted WTP estimates. Burda et al. (2008) obtained model
flexibility by using a normal Kernel distribution with a skewing function and
showed that the semiparametric model captured a richer preference structure.
Finally, Bajari et al. (2007), Train (2008) and Fox et al. (2011) documented
that the use of continuous nonparametric distributions had computational
advantages in the estimation of discrete choice models.
While results from these studies are based on estimates from models in

preference space, Train (2016), Bansal et al. (2016) and Franceschinis et al.
(2017) implemented flexible distributions (i.e. Legendre polynomials, splines
and step functions) to estimate models in WTP space. In these studies, the
authors found variations in model performance and WTP estimates when
flexible distributions were specified. However, these three studies tested the use
of flexible distributions using estimates from ‘home-grown value’ experiments.
In home-grown value experiments, the value of the good is known to the
respondent, but not to the experimenter. Hence, the experimenter would not
know whether the respondent is really providing truthful choices. On the other
hand, in induced value experiments, the value of the good is known to the
respondents and to the experimenter, and so the respondents should not have
uncertainty in defining their value for the good in question (Smith 1976).
Therefore, in contrast to previous studies, we use the induced value experiment
approach to determine which assumption of the parameter distribution gives
estimates equal or closer to the theoretical predictions. Theoretically, more
reliable WTP estimates should then be equal or closer than less reliable ones to
the induced value. Hence, we posit that in a context in which it is important to
test whether WTP values are accurate, modelling flexible distributions of the
utility parameters of the actual data will be critical.
In this study, we explore whether the use of WTP space models with richer

flexible distributions of the random parameters would affect the reliability of
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WTP estimates when the theoretical value of the parameters is known. We,
then, test whether the use of flexible or conventional distributions provides
WTP estimates equal or closer to the induced value in order to determine
which kind of distributions provide more accurate WTP estimates in WTP
space models. Specifically, we estimate the semiparametric logit-mixed logit
model (LMLM) proposed by Train (2016), with specification of Legendre
polynomials, splines and step functions to model the distributions of the
random parameters. We then compare the WTP estimates from these models
with the estimates from a second-degree polynomial, which essentially
assumes normally and lognormally distributed coefficients. Results suggest
that the use of flexible distributional assumptions of the WTP space
parameters can provide more accurate and reliable WTP estimates. Although
the magnitudes of the parameters using conventional distributions (i.e.
normal and lognormal) are not very different from those using more flexible
distributions, the WTP estimates from the models using conventional
distributions would have been misleading and ultimately wrong.

2. Materials and methods

2.1 Experimental design

Data were collected from a laboratory experiment conducted at a major
research university. Students were invited to participate in an economic
experiment focused on the investigation of individuals’ choice behaviour.
They were informed that they would receive a compensation of $8 for their
participation and that they would have the opportunity to increase their
earnings based on their decisions during the experiment. Fifty-three students
participated in our induced value choice experiment (IVCE).
Following Luchini and Watson (2014), fictitious goods, that is tokens, were

used as the product in question. As reported in Table 1, the tokens differed in
terms of colour (red/blue), shape (triangle/square) and price ($0.5, $1.5, $2.5,
$3.5). The value of the colours and shapes were known to the respondents2 .
Using a D-optimal design (Street and Burgess 2007), attributes and

attribute levels were allocated in eight choice sets with a 96.6 per cent D-
efficiency. Each choice set was characterised by two token alternatives and a
‘none of these’ options. For each choice set, participants were asked to make
a trade-off between the two token alternatives and the ‘none of these’
alternatives. The value of each token alternative was given by the sum of the
values of the attributes’ levels minus the price of the token (Table 1). The
final earning that participants could gain from the choice of one of the two
token alternatives was equal to the sum of the value of the token relative to
the initial $8. On the other hand, the value of the opt-out alternative was
equal to the $8 participation fee. Students were given a copy of the

2 See the experimental instructions available in the Appendix S1.
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experiment instructions which were also read aloud by the experimenter. The
instructions explained how to calculate the value of the choice alternatives
(two tokens and the opt-out alternative) (see Appendix S1). The objective of
the participants was to gain the maximum possible earnings by choosing the
alternative with the highest pay-off. The experiment was incentive compat-
ible, and one of the choice sets was randomly selected as binding. At the end
of the experiment, a participant picked a card from a randomly arranged
deck of eight cards, which represented the eight choice sets. The randomly
picked card represented the binding choice set and each respondent gained
the amount of money equal to the value of the alternative he/she chose in the
binding choice set.
The instructions were followed by a practical example and a quiz to test

respondents’ understanding of the mechanism. After the quiz, the answers to
each question were reviewed. In addition, following Collins and Vossler
(2009), subjects were incentivised to carefully read the instructions and
answer the quiz questions. A bonus of $2 was offered to participants if they
answered all the quiz questions correctly.

2.2 A semiparametric logit-mixed logit model in WTP Space

In random utility models, the utility for person n given by the choice of
alternative j at choice situation t can be specified as follows:

Unjt ¼ b0nxnjt þ enjt ð1Þ

where xnjt is a vector of observed attributes, b0n is the vector of structural taste
parameters which vary over all observations and ɛnjt is a random term that
represents the unobservable portion of the utility.
The deterministic part of the utility function (b0nxnjt) can be separated in

price and nonprice attributes. In particular, in WTP space models, marginal
WTP values enter in the utility function given that the utility coefficients vary
over individuals. Following Train (2016), the utility that individual n derives
in choosing alternative j at choice situation t can be expressed as follows:

Table 1 Attributes and attribute levels of the IVCE

Attributes Levels Value of the attribute ($)

Price $ 3.50 $ 3.50
$ 2.50 $ 2.50
$ 1.50 $ 1.50
$ 0.50 $ 0.50

Colour Red $ 3.00
Blue $ 1.00

Shape Triangle $ 4.00
Square $ 2.00
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Unjt ¼ �rnðpnjt þ wtp0nxnjtÞ þ enjt ð2Þ

where pnjt is price, wtpn is a vector of WTP for each nonprice attribute, and rn
is a random scalar. Note that rn = pn/kn, where pn is the price coefficient in
preference space and kn is the scale parameter of individual n; wtpn = cn/rn
and cn is the vector of nonprice coefficients in preference space; ɛnjt is the
random error that accounts for the unobserved portion of the utility. The
probability that alternative i is chosen by the individual n among a sequence
of choices from t = 1,. . .,T conditional on bn is:

Qnit bnf g ¼ e�rn pnitþwtp0nxnitð Þ
P

j2J e
�rn pnjtþwtp0nxnjtð Þ ð3Þ

where bn is the corresponding vector of utility coefficients and is defined as
the vector of rn and wtpn. The cumulative distribution function of utility
parameter bn and of distributional parameter a is F(b|a). F can be defined
discrete with a finite support set S. Thus, for any br 2 S, the probability mass
function of F can be specified as follows:

Wðbr=aÞ ¼
ea0zðbrÞP
s2S ea0zðbsÞ

ð4Þ

where z(br) is the vector capturing the distributional shape of the mass
function mixing distributions which can be represented as a logit function of
higher order Legendre polynomials, splines or step functions.
The associated log-likelihood function can then be defined as follows:

LL ¼
XN

n¼1;...N
lnð

X
r2S L brð ÞWðbr=aÞÞ ð5Þ

Given the large size of S, it is unfeasible to calculate the log-likelihood
function. As such, the Log-likelihood function is simulated using random
draws for each individual br. The procedure is implemented in MATLAB
using the code in Train (2016) with 2000 random draws.

3. Results

With Colour and Shape being coded as dummy variables, we estimated the
marginal WTPs for the colour and shape attributes, using the ‘lower’ value
levels (blue and square) as baseline. Hence, the ‘marginal’ induced value that
respondents should be willing to pay for an attribute of the token is equal to
the difference between the value of the two levels of the attribute, that is $2,
both in the case of the red and triangle attributes (Collins and Vossler 2009).
Given that the theoretical predictions of the marginal WTP (MWTP)
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estimates are equal to $2 for the red colour and the triangle shape, our
hypotheses are therefore the following:

H01 : MWTP Red colour ¼ 2;

H02 : MWTP Triangle Shape ¼ 2:

We posit that if H01 and H02 are not rejected, reliable WTP estimates are
obtained since the MWTPs for red and triangle tokens are equal to the
induced value theoretical predictions.
The MWTPs for red and triangle tokens were estimated using the

semiparametric logit-mixed logit model (LMLM) (Train 2016). First, we
estimated the model employing a normal distribution, that is second-degree
polynomial (2poly-LMLM). Then, in order to provide more flexible
distributions of the random parameters, we estimated models with the
specification of higher order Legendre polynomials, splines and step
functions. For each kind of z-function, we selected the form which provided
a significant improvement in model fit on the basis of the log-likelihood ratio
test. Specifically, we selected models with four-degree polynomial (4poly-
LMLM), two knots splines (2splines-LMLM) and five levels step function
distributions (5step-LMLM), respectively, since the log-likelihood ratio test
showed that the addition of extra parameters did not significantly improve
model performance.3 In Table 2, we report information criteria across the
four models.
Table 2 shows that when more flexible distributions are specified, an

increase in the LL function is observed indicating an improvement in model
fit. This result is consistent with the studies of Fosgerau and Hess (2009),
Bajari et al. (2007) and Franceschinis et al. (2017) who showed that model
performance improved with the specification of more flexible distributions.
We observe that 4poly-LMLM and 2splines-LMLM outperform the 2poly-
LMLM in terms of AIC statistics, while this is not happening in the case of
the 5level-LMLM. In addition, model fit does not improve in terms of BIC
statistics with the specification of more flexible distributions. This result is
consistent with the study of Bansal et al. (2016) who observed a decrease in
model performance in terms of BIC values when the number of extra
parameters specified in the mixing distributions increased. Similarly, our
results suggest that the increase in log-likelihood function due to the addition
of extra parameters might not necessarily be enough to improve BIC values.
This is actually not surprising given the fact that BIC measures aim at finding
the true model among a set of candidates and therefore might not handle high
dimensions or complex models well. It is also important to point out that BIC
and AIC statistics are used in the estimation of structural parameters. In the

3 Results are available upon request to the authors.
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case of nonparametric or semiparametric models, such as the semiparametric
LMLM, nuisance parameters could also be counted as model parameters.
Hence, the BIC and AIC statistics might be unsuitable to be part of model fit
information criteria.
In regard to model estimates, Table 3 shows that mean coefficients of the

red colour and triangle shape attributes are similar across the models.
In order to test whether the estimates are equal to 2, that is the induced value,

we compare the means of red colour and triangle shape parameters to a value
equal to 2 and apply a t-test to test whether the mean parameters are different
from the induced value at the 10 per cent level of significance. For each model
specification, we report P-values of the t-test between the mean values of red
and trianglemean parameters and the induced value. AP-value equal or higher
than 0.10 indicates that the hypothesis of equality between themean coefficients
and the induced value cannot be rejected. Results fromTable 3 show that when
flexible distributions are implemented, there is no evidence that the hypothesis
of equality with the induced value fails, since the MWTPs for red and triangle
attributes are not statistically different from 2. On the other hand, when a
normal distribution is specified, the hypothesis of equality with the induced
value is rejected. This suggests that, in some cases, small differences may be
important for the hypothesis being tested. We then deduce that more reliable
WTP estimates can be obtained when flexible distributions are specified.
It is also important to point out that the standard deviations of red colour

and triangle shape attributes in the 4poly-LMLM and of the triangle shape
attribute in the 5step-LMLM are respectively not statistically significant
showing homogeneity of the attribute valuations around 2. In the case of the
2splines-LMLM, the standard deviation of the triangle shape attribute is not
significant, but the parameter mean estimates suggest that the WTP
distributions should be more centred around a slightly lower value than 2,
that is, 1.8. This is also illustrated in Figures 1 and 2 which report the actual
WTP distributions of the four model specifications.
Distributions of red colour and triangle shape MWTP from the 4-poly-

LMLM and of the triangle shape in the 5step and 2splines LMLM have,
indeed, a more homogeneous distribution. Specifically, distributions from
4poly-LMLM of both attributes MWTP and 5step-LMLM triangle shape

Table 2 Models

Distribution No. of
observations

No.
Parameters

Log-likelihood AIC BIC

Normal
Two-degree Polynomial 424 11 �117.382 256.764 301.311

Flexible
Four-degree Polynomial 424 19 �106.798 251.596 328.540
Two-knots Splines 424 21 �102.958 247.916 332.960
Five-levels- Step Function 424 25 �104.158 258.316 359.559
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MWTP are more centred on 2 in comparison with the 2poly and 2splines
LMLMs. As expected, WTP distributions from the 2poly-LMLM comprise
values greater than 2. Moreover, the colour parameter distribution is
particularly right skewed suggesting that the conventional normal distribu-
tion might not appropriately fit the true model distribution. This result
corroborates the conjecture of past studies (Cherchi and Polak 2005; Train
and Sonnier 2005; Balcombe et al. 2009) that the use of wrong distributions
could lead to biased model estimates, since estimates from the 2poly-LMLM
are statistically different from the induced value. However, from Figure 1, we
can observe that when the 2-knots spline is assumed, the MWTP for the red
colour attribute distribution appears bimodal instead of unimodal and
centred on 2 as expected. If we turn back the attention to the WTP estimates,
we can say that this outcome is actually not surprising. Indeed, Table 3 shows
that the estimates from the 2splines-LMLM are less close to the induced value
than the estimates from the other flexible distributions models. Despite this,
in contrast to the second-order polynomial model, the WTP estimates from
the 2splines-LMLM are still not statistically different from the induced value

Figure 1 WTP distributions of the Color Coefficient for 2-degree polynomial (red), 4-degree
polynomial (blue), 2-knots spline (cyan) and 5-step function (green).[Colour figure can be
viewed at wileyonlinelibrary.com]
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suggesting that estimates from 2splines-LMLM are more reliable than
estimates from models where conventional distributions are assumed. This is
also the case of the red colour attribute in the 5step-LMLM, since, although
we do not observe homogeneity of the WTPs distributions around 2, Table 3
shows that the mean estimates of the triangle shape attribute are not
statistically different from the induced value.

4. Conclusions

Our results show that similar values of WTP estimates can be obtained when
using models specified in WTP space with normal and more flexible
parameter distributions. This result is consistent with the studies of Train
(2016) and Bansal et al. (2016) and Franceschinis et al. (2017), who used a
home-grown value DCE to test model performance assuming different
parameter distributions. Our study differs from these studies in that we
implemented an IVCE, which allowed us to determine which model
specification provided the most reliable WTP estimations. Our results

Figure 2 WTP distributions of the Shape coefficient for 2-degree polynomial (red), 4-degree
polynomial (blue), 2-knots spline (cyan) and 5-step function (green). [Colour figure can be
viewed at wileyonlinelibrary.com]
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indicate that the use of flexible distributions (i.e. higher order polynomials,
splines and step function) can provide MWTPs for the attributes that are
equal to the induced value theoretical predictions. Specifically, in our case,
the fourth order provided WTP estimates that were more uniformly
homogeneously distributed around the induced value.
Hence, we conclude that more reliable WTP estimates can be obtained

when flexible mixing distributions are implemented. Researchers should then
consider the use of this approach when estimating individuals’ valuations in
WTP space from DCEs. This is an important issue since WTP estimates from
DCEs are not only used for business applications but also for critical welfare
and policy analysis.
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